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Sec 0: Intro

Example (3-var cubics soluble/Z)

1. Covid: (x + y + z)3 = 100x + 10y + z
Pf: ∃ Zoomers (512)

2. Ghosh–Sarnak ’17: x2 + y 2 + z2 − xyz = b for 100% of
admissible (locally rep’d) ints b

3. Let g := x3 + y 3 + z3

Booker ’19: g = 33
Wooley ’95+: g = b for � A0.917 ints b ≤ A (A→∞)
Hooley ’86+: “ ” for �ε A

1−ε ints, under Hypo HW (≈
modularity + GRH for Hasse–Weil L-fn’s)
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1. Rel to (2)–(4), (1) is less interesting (not log Calabi-Yau?)
2. Pf: Variance analysis + counts for 4 + 2ε vars
3. Pf: Use 16 + 16 + 16 digits (large!)

See “33 and all that”; algo is based on min (not max).
4. Pfs: 2nd mom’t method + bounds for 6 vars

(The precise H–W L-fn’s: later.)



Theorem (W.)

Roughly: Assume standard NT conj’s on L-fn’s (e.g. Hypo HW
+ “RMT”) & “unlikely” divisors (“p2 | ∆(c)”)
Then 100% (resp. > 0%) of admiss. ints b are sums of 3 cubes
(resp. 3 cubes > 0)

Remark (Re: 100% Hasse)

For 5x3 + 12y 3 + 9z3, ∃ Hasse failures (Cassels–Guy ’66 + ε)
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1. > 0%, i.e. ≥ δ%
2. Results: “+ flavor”

Hypo’s: “× flavor”



Thm pf hint.

d = 3,m = 6 =⇒ m − d =
m

2
+���O(ε) =

d

4
(m − 2) +����O(4ε)

= 3 +����O(5ε)

+ Stats 101 & 102.
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Stats 101: Zero/Level sets (Counting basics)

For P = x3
1 + · · ·+ x3

s (s = 3, 6), K ⊂ Rs nice (cpt, semi-alg),
X →∞, let NP−b,K (X ) := #{x ∈ Zs ∩ XK : P = b} (b ∈ Z)

Example

K = [−1, 1]s =⇒ XK = [−X ,X ]s ,

Zs ∩ XK
P−→ Z

x 7→ P � X 3.

So NP−b,K (X ) is � X s−3 on avg (in `1) over b � X 3.

HL (“randomness”) prediction: NP−b,K (X ) ≈≈ X s−3
∏

v≤∞ σv
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1. The 100% result needs weirder K ,
e.g. Kλ := {v ∈ [−λ, λ]3 : |g(v)| ≤ 3}; λ→∞.

2. As X →∞, distribute � X s pts x over values P(x)� X 3.
3. Here and elsewhere, ≈≈ means “roughly approximately” or

“(roughly) looks like”. It means I may be lying a bit. It is not
meant to have a precise definition.

4. HL prediction (with dependencies spelled out slightly more
precisely): NP−b,K (X ) ≈≈ cfin(b) · c∞K (b/X 3) · X s−3 (b/X 3

fixed)



Stats 102: Doubling (Rags to riches)

Let g := y 3
1 + y 3

2 + y 3
3 . From Z3 g−→ Z, get (the 2nd moment

map, or “fiber-wise square”)

Z← Z3 ×g Z3 = {(y , z) ∈ (Z3)2 : g(y) = g(z)}.

Here g(y) = g(z) ⇐⇒ F (y ,−z) = 0 (F := x3
1 + · · ·+ x3

6 ).

Observation
Let K = [−1, 1]6. If NF ,K (X )� X 3 (X →∞), then > 0% of
Z lies in g(Z3

>0).

Proof.
C–S ineq (2nd mom’t method)
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Hooley ’86a: HL misses triv. sol’s
(e.g. x1 + x2 = x3 + x4 = x5 + x6 = 0). But:

Conjecture (HLH)

For any nice K ⊂ R6,

NF ,K (X ) = cHL,F ,K · X 3 + #{triv. x ∈ Z6 ∩ XK}+ o(X 3)

(X →∞).

Theorem (S. Diaconu ’19 + ε)

Say, ∀ nice K ⊂ R6, HLH holds. Then 100% Hasse holds.

Proof.
Variance analysis (for log C–Y’s) (cf. Ghosh–Sarnak ’17)
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1. Must allow gen’l K ! ∀ fixed K , ∃ “stingy” AP of b’s.



Sec 3: What’s known?

Hua ’38: NF ,K (X )� X 7/2+ε (by Cauchy b/w structure and
randomness).
Vaughan ’86+: “ ” � X 7/2(logX )ε−5/2 (by new source of
randomness).
Hooley ’86+: “ ” � X 3+ε, under Hypo HW.

Remark
A large-sieve hypoa would suffice (W.).
(It’s open! But)
∃ uncond. apps to x2 + y 3 + z3 (W., via Brüdern ’91 +
Duke–Kowalski ’00 + Wiles et al).

aa la Bombieri–Vinogradov
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Proposition (δ-method: Kloosterman ’26,
Duke–Friedlander–Iwaniec ’93, Heath-Brown ’96)

NF ,K (X ) ≈≈ Ec�X 1/2En≤X 3/2[n−1Sc(n)] =: ?

(Hooley ’86: �), where

Sc(n) :=
∑′

a mod n

∑
x mod n

en(aF (x) + c · x)

(en(t) := e2πit/n) (Don’t worry about the “′”; it means a ⊥ n)
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“Pf”.

NF ,K (X ) ≈≈
∑

n≤X 3/2

1

nX 3/2

∑′

a mod n

∑
x�X

en(aF (x)) (◦-method)

≈≈
∑

n≤X 3/2

1

nX 3/2
Ec�n/X [Sc(n)] (“complexity” n/X )

≈≈ ?

(In gen’l,
∑′

a mod n

∑
x�X en(aF (x)) is “incomplete” mod n,1

but still a wt’d avg. of the complete sums Sc(n), by Poisson
(Nyquist–Shannon))
(Re: sampling complexity, give analogy to movies where car
goes too fast, and wheels look like they’re going backwards)

1such “sparsity” is a large part of the difficulty of analytic NT
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Let S̃c(n) := n−7/2Sc(n)
(Related to) Vc := {[x ] ∈ P5 : F (x) = c · x = 0}
Fact: ∃ disc poly ∆ ∈ Z[c ] measuring singularities of Vc

Lemma (Hooley)

If ∆(c) 6= 0, then S̃c(n) look (to 1st order) like the coeffs
µc(n) of 1/L(s,Vc) (Vc := (Vc)Q).

(Keys: F homog; Vc
∼= odd-dim hypersurface; LTF.)

Exercise (Cf. Hooley, “2×-Kloosterman”)

“Assume” ∀c , n,N : ∆(c) 6= 0, S̃c(n) = µc(n),∑
n≤N µc(n)� ‖c‖εN1/2+ε. Then ?� X 3+ε.
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1. Here F is homog (& a is summed), so Sc(n) is multiplicative.
Locally: If p - c , then S̃c(p) = Ẽc(p) + O(p−1/2), where
Ẽc(p) := p−3/2[#Vc(Fp)−#P3(Fp)].

2. So in a nutshell, δ-method relates NT of a “+” flavor to NT of
a “×” flavor.

3. The modern definition of L(s,Vc) (see Taylor, 2004) is a bit
technical, and is based on the Galois representation
H3(Vc ×Q,Q`) for a choice of auxiliary prime `. (The choice
of ` should not matter; for our specific representations, this is
probably known unconditionally.)

4. In the earlier “cryptic pf. outline”, the 2 in d
4 (m − 2) comes

from averaging over a, n (“double Kloosterman method”). The
dm/4 corresponds to a heuristic of square-root cancellation
over x mod n.



Sec 4: What’s new?

Theorem (W.)

Assume standard NT conj’s on

I L(s,Vc), L(s,Vc ,
∧2), L(s,V (F )) (Hypo HW2 + Ratios

Conj’s + Krasnera), and

I “unlikely” divisors (“p2 | ∆(c)”).

Then for any nice K ⊂ R6 w/ K ∩ hessF = ∅,b (we have)
NF ,K (X )� X 3, & in fact HLH Conj. holds. (Actual hypo’s for
former are cleaner than those for latter.)

a“effective version of Kisin’s thesis (Local constancy in p-adic families
of Galois representations)”

bThis could probably be removed with enough work, but is mild enough
for our main qualitative needs.
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1. If pressed for time after stating the thm, just write “Pf
ingredients incl. (R2’) & partial results toward a dichotomy/Fp”
and after that briefly state dichotomy conj and (R2’).



Glossary for hypo’s

1. HW2 (skip? similar in spirit to Hooley’s Hypo HW): Need
modularity, 1/L(s) to be holom. on <(s) > 1/2, & other
technical things (e.g. basic expected properties of
conductors and γ-factors).

2. Ratios (cover): Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s,Vc) and
1/L(s1,Vc)L(s2,Vc) over (natural) fam’s of c ’s.

3. Krasner (cover? since haven’t said anything about it? skip
is fine too): Need Lp(s,Vc) to only depend on
c mod p∆(c)1000 (cf. Kisin’s thesis).

4. SFSC (skip? already sketched intuition): Need (for Z ≥ 1,
P ≤ Z 3)

Pr
[
c ∈ [−Z ,Z ]6 : ∃ p ∈ [P , 2P] with p2 | ∆(c)

]
� P−δ.
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Fairy-tale proof sketch

Recall (the toy sum) ? := Ec�X 1/2En≤X 3/2[n−1Sc(n)]. There
are (maybe) 5 sources of ε in Hooley/Heath-Brown, incl. (what
I’ll call) II, IIIG, IIIBp.
The locus ∆(c) = 0 in ? unconditionally produces the conj’d
main term cHLH · X 3 (cf. II). (Here c = 0, n small, gives
“random” part; ∆(c) = 0, n large, gives “structured” part. Key:
Sc(n) is biased for special c ’s.)
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The remaining sum (over ∆(c) 6= 0) is conditionally

≈≈
∑

finite set

(typically O(1))2 × (RMT-type sum).

To prove “typical-O(1)” (under SFSC), re: IIIBp, need partial
results towards a dichotomy conj. /Fp; use “worst-case” results
of Skorobogatov ’92 (or Katz ’91) and “average-case” results of
Lindner ’20 (or Debarre–Laface–Roulleau ’17). (We apply these
partial results with the aid of SFSC.)
Here each “RMT-type sum” is 0 + O(X 3−δ) (under Ratios),
improving on GRH bound Oε(X

3+ε) (cf. IIIG).
(Put everything together to finish.)

2needs proof; loosely resembles Sarnak(–Xue) “density philosophy”
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Dichotomy conjecture /Fp

Side Conjecture

If p ≥ 100 and c ∈ F6
p with |#Vc(Fp)−#P3(Fp)| ≥ 1010p3/2,

then Vc mod p contains a plane P ⊆ {F = 0} mod p
(i.e. c3

1 − c3
2 = c3

3 − c3
4 = c3

5 − c3
6 = 0 or. . . ).

Remark (R. Kloosterman)

A char. 0 analog of a stronger conj. (in the nodal case) holds
(with a Hodge-theoretic proof).

(Lindner ’20 proves partial results towards the “stronger
conjecture”.)
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“RMT”

How does c 7→ L(s,Vc) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery–Dyson,
and “near 1/2” from Katz–Sarnak. CFKRS (2005) developed
full main term predictions for L-powers, and CFZ (2008) for
L-ratios; e.g. for some δ > 0, one expects the following:

Conjecture (R1, roughly)

E′c�X 1/2

 1

L(s,Vc)
− ζ(2s)L(s + 1/2,V (F ))︸ ︷︷ ︸

polar factors

AF (s)

�σ,t X
−δ

(over ∆(c) 6= 0) (for X ≥ 1; s = σ + it; σ > 1/2)
Here AF (s)� 1 for <(s) ≥ 1/2− δ.
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1. The polar factors are related to the RMT symmetry type,
which is conjecturally determined by knowing (enough about)
Sato–Tate groups or analogous things (Universality Conjecture;
see e.g. Sarnak–Shin–Templier ’16).
In our case, the latter can be computed to be symplectic,
either by point-counting /Fq (using Lindner at one point!), or
by “visiting monodromy.com” (in some sense; one can basically
quote various works of Deligne, Katz, and Sarnak);
cf. Deligne’s interesting quote “I did not know at first how far I
could go. The first case I could handle was a hypersurface of
odd dimension in projective space. But that was a completely
new case already, so then I had confidence that one could go
all the way. . . ” recorded in Milne’s pRH.pdf or LEC.pdf.

https://www.jmilne.org/math/xnotes/pRH.pdf
https://www.jmilne.org/math/CourseNotes/LEC.pdf


We really care about integrals over s.

Conjecture (R2’, roughly)

For certain holomorphic f (s), e.g. es
2
, we have

E′c�X 1/2

∣∣∣∣∫
(σ)

ds
ζ(2s)−1L(s + 1/2,V (F ))−1

L(s,Vc)
· f (s)N s

∣∣∣∣2 �f N

(σ > 1/2; 1� N � X 3/2).

I There are no logN or logX factors on the RHS! The
numerator ζ(2s)−1L(s + 1/2,V (F ))−1 serves as a mollifier,
and

∫
ds also helps.

I We use (R2’) for NF ,K (X )� X 3, and a “slight adelic
perturbation” of (R1) for HLH.
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