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The standard sign conjecture on algebraic cycles:
the case of Shimura varieties

By Sophie Morel at Princeton, NJ and Junecue Suh at Santa Cruz, CA

Abstract. We show how to deduce the standard sign conjecture (a weakening of the
Künneth standard conjecture) for Shimura varieties from some statements about discrete auto-
morphic representations (Arthur’s conjectures plus a bit more). We also indicate what is known
(to us) about these statements. 1)

1. Introduction

First we recall the standard sign conjecture, its origin, statement and significance.
Let k be a field and fix a Weil cohomology theory H∗ on the category of smooth projective

varieties over k with coefficients in a field F of characteristic zero (cf. [3] 3.3.1). Denote by
Mhom(k)F the category of homological motives over k associated with H∗, and byMnum(k)F
the category of numerical motives over k, both with coefficients in F (cf. [3] 4.1). The functor
H∗ defines a realization functor from Mhom(k)F to the category of graded F -vector spaces,
that we will denote by H∗ (cf. [3] 4.2.5).

The Künneth standard conjecture (cf. [3] 5.1.1) states that, for every smooth projective
variety X/k, the Künneth projectors piX onto the direct factor Hi(X) of H∗(X) are given by
algebraic cycles. In the classical theory of motives (of Grothendieck), one uses it to modify the
sign in the commutativity constraints in the ⊗-structure in order to get the Tannakian category
of homological motives.

For classical cohomology theories, the conjecture would be a consequence of the Hodge
conjecture over the complex numbers and the Tate conjecture over finitely generated fields.
Namely, as noted by Grothendieck (see [25] p.99), the projectors (and any linear combination
thereof) clearly are morphisms of Hodge structures and commute with the Galois action, and
these cohomology classes make natural test cases for the Hodge and Tate conjectures.

The strongest evidence for the Künneth conjecture is given by Katz and Messing ([15],
Theorem 2): It is true when k is algebraic over a finite field and H∗ is either the `-adic coho-
mology for a prime ` 6= char(k), or the crystalline cohomology.

For the purpose of modifying the commutativity constraints and getting the Tannakian
category, one needs somewhat less, and the necessary weakening is called the standard “sign”
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conjecture (terminology proposed by Jannsen; cf. [3] 5.1.3 for the formulation and see [3]
6.1.2.1 for obtaining the Tannakian category):

Conjecture 1.1. For everyM ∈ ObMhom(k)F , there exists a decompositionM = M+⊕M−
such that H∗(M+) (resp. H∗(M−)) is concentrated in even (resp. odd) degrees.

Equivalently, for every smooth projective X/k, the sum p+
X (resp. p−X ) of the even (resp.

odd) Künneth projectors on H∗(X) is given by an algebraic cycle. Note that such a decompo-
sition is necessarily unique (up to unique isomorphism).

This conjecture has, in addition to the consequences in terms of the category of homo-
logical motives and the algebraicity of (Hodge or Tate) cohomology classes, also the following
interesting consequence, due to André and Kahn. Recall that the numerical and the homolog-
ical equivalences on algebraic cycles on projective smooth varieties are conjectured to be the
same.

Theorem 1.1. ([3] 9.3.3.3) LetM be an additive ⊗-subcategory of Mhom(k)F and let
Mnum be its image in Mnum(k)F . If the sign conjecture is true for every object ofM, then
the functorM−→Mnum admits a section compatible with ⊗, unique up to ⊗-isomorphism.

Next we turn to the main geometric objects of this paper, Shimura varieties. In this paper,
we will take for k a subfield of C, and for H∗ the cohomology theory that sends a smooth
projective variety X over k to the Betti cohomology of X(C) with coefficients in number
fields F .

Let (G,X ,h) be pure Shimura data (cf [11] 2.1.1 or [22] 3.1), E ⊂ C the reflex field
and K a neat open compact subgroup of G(Af ). Denote by SK the Shimura variety at level K

associated to (G,X ,h); it is a smooth quasi-projective variety over E. Assume that E ⊂ k. If
SK is projective, denote by M(SK) the image of SK in Mhom(k)Q.

For a general connected reductive group G over Q, we say that G satisfies condition (C),
if

(i) Arthur’s conjectures (cf section 3) are known for G,

(ii) the cohomological Arthur parameters for G satisfy a certain condition that will be spelled
out at the end of section 3 (roughly, that what happens at the finite places determines the
parameter) and

(iii) the classification of cohomological representations of G(R) giv en by Adams and John-
son in [1] agrees with the classification given by Arthur’s conjectures.

Given the current state of knowledge of (C) (see below), we will also consider a weaker
condition. We say that G satisfies condition (C´), if there exists a Q-algebraic subgroup G′ of
G which contains the derived group Gder and satisfies (C).

The goal of this paper is to prove the following theorem :

Theorem 1.2. Let (G,X ,h) be simple Shimura data. Assume that G is anisotropic
over Q modulo its center (so that SK is projective and smooth) and that it satisfies condition
(C´).

Then M(SK) ∈Mhom(k)Q satisfies the sign conjecture.
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If G is not anisotropic modulo its center, then SK is not projective, so we can not talk
about its homological motive. A possible generalization is the motive representing the inter-
section cohomology of the minimal compactification of SK. Such a motive is not known to
exist for general varieties (though we certainly expect that it does), but in the case of minimal
compactifications of Shimura varieties it has been constructed by Wildeshaus, even in the cat-
egory of Chow motives over E (cf [27] Theorems 0.1 and 0.2). We then have the following
generalization of the previous theorem :

Theorem 1.3. Let (G,X ,h) be simple PEL Shimura data, and assume that G satisfies
condition (C´). Denote by IM(SK) the “intersection motive” of the minimal compactification
of SK.

Then IM(SK) satisfies the sign conjecture.

We actually have versions of these two theorems for motives with coefficients in smooth
motives (whose Betti realizations are automorphic local systems), see Theorem 2.1.

We will deduce Theorems 1.2 and 1.3 from another result that we need some more no-
tation to state. Let G be a connected reductive group over Q, AG the maximal Q-split torus
in the center of G, K∞ a maximal compact subgroup of G(R), K′∞ = AG(R)◦K∞, and
X = G(R)/K′∞. We assume that X is a Hermitian symmetric domain; this is satisfied by the
group G in any Shimura data, and also by any subgroup thereof as in condition (C´).

With the notation and under this assumption, the double coset space

SK = G(Q) \ (X ×G(Af )/K)

still makes sense for open compact subgroups K of G(Af ), and is a finite disjoint union of
quotients of Hermitian symmetric domains by arithmetic subgroups of G(Q). In particular, it
is a disjoint union of locally symmetric Riemannian manifolds if K is neat. Moreover, by a
theorem of Baily and Borel (cf [7] Theorem 10.11), SK is a quasi-projective complex algebraic
variety, smooth if K is neat.

LetHK = C∞c (K \G(Af )/K,Q) be the algebra of functions K \G(Af )/K −→ Q that
are locally constant and have compact support, with multiplication given by the convolution
product.

Let j : SK −→ S
K be the embedding of SK in its minimal compactification. Let W

be an irreducible algebraic representation of G defined over a field F , and denote by FW the
associated F -local system on SK (cf [18], p 113). Let d be the dimension of SK (as an algebraic
variety). The intersection complex of SK with coefficients in FW (or W ) is the complex

ICK
W := (j!∗(FW [d]))[−d].

The intersection cohomology of SK with coefficients in FW (or W ) is

IH∗(SK,W ) := H∗(S
K
, ICK

W ).

It admits an F -linear action ofHK ⊗Q F (cf [18] p 122-123).
We write

(1) IHi(SK,W )⊗F C =
⊕
πf

πK
f ⊗ σi(πf ),
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where the sum is over all irreducible admissible representations πf of G(Af ), πK
f is the space

of K-invariant vectors in πf (a representation ofHK⊗C) and the σi(πf ) are finite-dimensional
C-vector spaces. Then :

Theorem 1.4. Assume that G satisfies (C) and let πf be as above. Then, either σi(πf ) = 0

for every i even, or σi(πf ) = 0 for every i odd.

Remark 1.5. In general, for πf fixed, there can be several degrees i with σi(πf ) 6= 0

(as is clear on the formula for IHi in section 4). Hence the methods of this paper cannot be
used to prove the full Künneth conjecture.

This is also clear from the fact that the Lefschetz operator on IH∗ commutes with the
action of the Hecke operators. Note that the action of C× on the IHi that gives the pure
Hodge structure (whose existence follows from M. Saito’s theory of mixed Hodge modules)
also commutes with the action of the Hecke operators (and with the Lefschetz operator). See
page 8 of Arthur’s review paper [5] for a more precise version of these two statements.

Here is the present state of knowledge about condition (C) :

(i) Arthur’s conjectures (with substitute parameters) are known for split symplectic and
quasi-split special orthogonal groups, by the book [6] of Arthur, modulo the stabilization
of the twisted trace formula and a local theorem at the archimedean place (see the end
of the introduction of [6]). They are also known for quasi-split unitary groups by work
of Mok ([21]) and for their inner forms by work of Kaletha-Minguez-Shin-White ([14]),
modulo the same hypotheses. Finally, still assuming the same hypotheses, the conjec-
tures are known for tempered representations of split general symplectic and quasi-split
general orthogonal groups, by work of Bin Xu ([28]).2)

(ii) This condition, in the cases where Arthur’s conjectures are (almost) known, follows eas-
ily from strong multiplicity one for the groups GLn.

(iii) The agreement of the classifications of Arthur and Adams-Johnson for cohomological
representations of G(R) is still open, though it should be accessible.

Remark 1.6. In the case of even special orthogonal groups, Arthur’s methods don’t
allow to distinguish between a representation and its conjugate under the orthogonal group.
This doesn’t affect the methods of this paper and thus is not a problem for us, see the end of
section 4.

In the final section, we discuss the possibility of using finite correspondences to attack
the standard Künneth (or sign) conjecture for general projective smooth varieties.

Remark 1.7. Some time after receiving an earlier draft of this article, C. Mœglin has
informed us through private communication that the facts we need in (ii) and (iii) of the condi-
tion (C) have been established. In order to clarify the points and the way we make use of these
nontrivial facts in our arguments, we retain these conditions in this article.

2) Note that we only need condition (C´) for theorem 1.3, so Arthur’s results already allow us to get theorem
1.3 for the Shimura varieties of split general symplectic groups.
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2. Reduction to Theorem 1.4

First, we review the motivic constructions of coefficient systems and intersection mo-
tives, by Ancona and Wildeshaus. This will allow us to state Theorem 2.1 with coefficients,
which, together with Theorem 1.4, implies both 1.2 and 1.3. We then make certain reduction
steps necessary for passing from PEL Shimura varieties to the associated connected Shimura
varieties. Finally we prove Theorem 2.1, modulo Theorem 1.4.

2.1. Review of motivic constructions. Let F be a number field and let W be a finite
dimensional algebraic representation of GF.

One applies Théorème 4.7 and Remarque 4.8 of [2] to get a Chow motive µ̃(W ) over
SK, whose cohomological Betti realization over SK(C) is the local system corresponding to
W . By construction, it is a direct sum of Tate twists of direct summands in the motives

π
(r)
∗ 1Ar

where r ≥ 0 and π(r) : Ar −→ SK is the rth power of the Kuga-Sato abelian scheme.
Then one applies3) the main result of [27] (Theorems 0.1 and 0.2 and Corollary 0.3) to

obtain the intermediate extension j!∗µ̃(W ) on the minimal compactification SK, whose coho-
mological Betti realization is naturally isomorphic to the intersection complex.

Finally, by taking the direct image of j!∗µ̃(W ) under the structure morphismm : S
K −→ Spec k,

one gets the intersection motive IM(SK ,W ) whose Betti realization is canonically isomorphic
to the intersection cohomology IH∗(SK(C),W ). 4)

Also constructed in [27] (Theorem 0.5) is an endomorphism KgK of IM(SK,W ), for
each double coset KgK ∈ K \ G(Af )/K, whose Betti realization coincides with the usual
action of the Hecke operator for the coset on the intersection cohomology. The construction
uses the compatibility of the motivic middle extension and the “change of level” maps [h· ]∗,
see Theorem 0.4 of [27].

To avoid possible confusion, we will use the notation K̃gK for the endomorphisms of
IM(SK,W ).5)

2.2. Sign conjecture with coefficients. Now we are ready to state a version with coef-
ficients.

Let W be an irreducible algebraic representation of G over a number field F . We denote
by IH+ (resp. IH−) the direct sum of IHi(SK(C),W ) for i even (resp. odd), and denote by
p+
W = p+

W,F (resp. p−W = p−W,F ) the corresponding projector on IH∗(SK(C),W ).

Theorem 2.1. Assume that the group G in the simple PEL data satisfies condition (C´),
so that there exists a subgroup G′ which contains Gder and satisfies condition (C).

3) Wildeshaus’ construction requires a condition, which he names (+) and is the same as (3.1.5) in [22], on
the central torus in the Shimura data. It is satisfied by any PEL Shimura data: See for instance the analysis of the
maximal torus quotient of G in §7 of [17].

4) Strictly speaking, Wildeshaus’ construction works only for direct factors N of π(r)
∗ 1Ar . Given a Tate

twist N(m), one takes the mth Tate twist of IM(SK, N), which has Betti realization IH∗(SK(C), N(m)).
5) Wildeshaus does not construct an action of the Hecke algebra on IM(SK,W ). One expects, but does

not know at the moment, that there is a canonical choice of K̃gK.
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Then there exists an endomorphism p̃+
W (resp. p̃−W ) of the image of IM(SK,W ) in

Mhom(k)F whose Betti realization is p+
W (resp. p−W ). It follows that the image of IM(SK,W )

in Mhom(k)F admits a decomposition

IM(SK,W )hom = IM(SK,W )+
hom ⊕ IM(SK,W )−hom

such that H∗(IM(SK,W )+
hom) = IH+ and H∗(IM(SK,W )−hom) = IH− are concentrated in

even and odd degrees, respectively.

2.3. Reduction steps. Change of base field: First, we reduce to the case where k = C.
For this, note that the vector spaces of algebraic correspondences modulo an adequate equiva-
lence that is coarser than the algebraic equivalence (in particular the homological equivalence)
are invariant under the change of ground field from k̄ to C. Then use the fact that the even and
odd projectors are invariant under the action of Gal(k̄/k).
Connected components: As the minimal compactification SK is normal by construction, its
connected components and irreducible components coincide. Thus the even projector for SK

is the sum of the even projectors for the connected components, and the sign conjecture is true
for SK and W iff it is true for each of its connected components.
Raising the level: Finally, we may pass from a neat level subgroup K to any level subgroup
K′ ⊂ K. It suffices to show that IM(SK,W ) is a direct factor of IM(SK

′
,W ) in Mhom(C)F .

Take a connected component X of SK, with X = X ∩ SK. The change of level map
f := [1·] : SK′ −→ SK is a finite étale surjection that extends to a finite surjection f : S

K′ −→ S
K.

Let Y be the inverse image f
−1

(X) and Y := Y ∩ SK′ = f−1(X).
Over X we have the adjunction map for direct image and the trace map:

adjf : FW −→ f∗FW and Trf : f∗FW −→ FW .

Since f is finite, these maps extend to

adjf : j!∗FW −→ f∗(j!∗FW ) and Trf : f∗(j!∗FW ) −→ j!∗FW
(here j!∗FW means j!∗(FW [dimX])[−dimX]). In Betti cohomology, these maps give rise to

IHi(SK,W )
adj // IHi(SK′ ,W )

Tr // IHi(SK,W )

Lemma 2.1. The composite map is equal to multiplication by deg(f).

Proof. We may replace Y (hence Y ) with any connected component, denoting the re-
striction of f (also f ) by the same letter. It suffices to show that

Trf ◦ adjf = deg(f) on j!∗FW .

By construction F = FW is a semisimple local system, and we may replace it with a direct
summand and assume it is irreducible. Then j!∗F is a simple perverse sheaf (cf. Théorème
4.3.1(ii) of [8]), and it suffices to show the equality over the dense open subset X . This last
follows from Théorème 2.9 (Var 4) (I), exposé XVIII, SGA4.

As we have recalled, Wildeshaus constructs [1·]∗ between intersection motives; see also
the construction leading up to Corollary 8.8 in [27]. Thus IM(SK,FW ) is canonically a direct
factor of IM(SK′ ,FW ) modulo homological equivalence.
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2.4. Proof of Theorem 2.1 modulo Theorem 1.4. By the previous reduction steps, we
may pass to the connected Shimura varieties, see 2.1.2, 2.1.7 and 2.1.8 in [11]: The projective
system of connected locally symmetric varieties depend only on the triple (Gad,Gder,X+).
The motivic constructions of the coefficient systems and the intersection cohomology can be
therefore transferred to the connected locally symmetric varieties attached to the subgroup G′,
for all small enough level subgroups.

Lemma 2.2. If Theorem 1.4 is true for W , then there exist elements

h±W,F ∈ HK ⊗Q F

which act as p±W on IH∗(SK(C),W ).

Proof. First we prove the statement over the field of coefficients F ′ = C. Let Σ be the
finite set consisting of the irreducible admissible representations πf that have nonzero contri-
bution to the right hand side of (1) for some i. Then as representations of the Hecke algebra
HK ⊗Q C, (πKf )πf∈Σ are irreducible and pairwise inequivalent. By Jacobson’s density theo-
rem, for each πf ∈ Σ there exists an element hπf ∈ HK ⊗Q C that acts as 1 on πKf and as 0

on π′Kf for every other π′f in Σ.
By Theorem 1.4, Σ is the disjoint union of two subsets Σ±, consisting of those πf ∈ Σ

that have contribution in even or odd degrees, respectively. Therefore

h±W,C =
∑

πf∈Σ±

hπf ∈ HK ⊗Q C

acts as p±W,C = p±W,F ⊗F 1C.
To conclude the proof, use the fact: If f : H −→ E is an F -linear map of F -vector

spaces and F ′ is an extension field of F , then an element p ∈ E lies in the image of f iff
p⊗ 1F ′ is in the image of f ⊗F 1F ′ .

Now Theorem 2.1 follows easily from the lemma: Writing

h±W,F =
∑

g∈K\G(Af )/K

c±g [1KgK ], c±g ∈ F

the endomorphism of IM(SK,W ) in Mrat(C)F and also its image in Mhom(C)F

p̃±W :=
∑

c±g K̃gK

has Betti realization p±W .
In the case W is the trivial representation defined over Q, we get Theorems 1.2 and 1.3.

Remark 2.2. We have focused on PEL Shimura varieties, in order to apply the known
constructions. However, the deduction via Lemma 2.2 of the sign conjecture from Theorem
1.4 is valid for more general varieties.

First, for the trivial coefficient system, the motivic construction of coefficient systems is
unnecessary, and we do not need to restrict to PEL types.
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Then for compact Shimura varieties (that is, in case the group is anisotropic over Q
modulo center), we do not need Wildeshaus’ construction of intersection motives, and the
Shimura data do not need to satisfy his condition (+) on its central torus.

Over the complex numbers (or even over Q, see [12]), the sign conjecture can be verified
for the locally symmetric varieties considered in Theorem 1.4. Through the work of Shimura,
Deligne, Milne, and others we have a complete theory of canonical models of Shimura varieties
over reflex fields, and the sign conjecture holds for these models.

Finally, if we know the sign conjecture for the varieties attached to a Q-anisotropic
semisimple group G, we also know it for the varieties attached to any isogenous quotient
group of G. For any variety of the latter kind admits a finite étale covering from a variety of
the former kind, and we can apply an argument similar to the one in 2.3.

Of course, Theorem 1.4 is essential in all these generalizations.

3. Arthur’s conjectures

We follow the presentation of Kottwitz in section 8 of [16]. As before, G is a connected
reductive group over Q.

Let ξ : AG(R)◦ −→ C× be a character of AG(R)◦. Let L2
G be the space of functions

f : G(Q) \G(A) −→ C such that :

• f(zg) = ξ(z)f(g) ∀z ∈ AG(R)◦, g ∈ G(A);

• f is square-integrable modulo AG(R)◦.

(Cf. the beginning of section 2 of [4].)
Then G(A) acts on L2

G by right multiplication on the argument of the function. We say
that an irreducible representation π of G(A) is discrete automorphic if it appears as a direct
summand in the representation L2

G. In that case, we write m(π) for the multiplicity of π in
L2
G; it is known to be finite. We denote by Πdisc(G) the set of equivalence classes of discrete

automorphic representations of G(A) and by L2
G,disc the discrete part of L2

G (ie the completed
direct sum of the isotypical components of the π ∈ Πdisc(G)).

Arthur conjectured that

L2
G,disc '

⊕
ψ

⊕
Πψ

m(ψ, π)π,

where the ψ are equivalence classes of global Arthur parameters, the Πψ are sets of (iso-
morphism classes of) smooth admissible representations of G(A) called Arthur packets and
m(ψ, π) are nonnegative integers that we will define later. Note that we are not saying that the
representations π are irreducible. (They are not in general.)

The traditional statement of Arthur’s conjectures involves the conjectural Langlands group
LQ of Q, and Arthur parameters are morphismsLQ×SL2(C) −→ LG, where LG = ĜoWQ
is the Langlands dual group of G. In some cases, it is possible to use instead substitute param-
eters defined in terms of cuspidal automorphic representations of general linear groups. This
is the point of view that is taken in the proofs of Arthur’s conjectures by Arthur for symplectic
and orthogonal groups (cf [6]) and by Mok in the case of quasi-split unitary groups (cf [21]).
In any case, a global Arthur parameter ψ gives rise to :
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• a character ξψ : AG(R)◦ −→ C×;

• a reductive subgroup Sψ of Ĝ such that S◦ψ ⊂ Z(Ĝ)Γ ⊂ Sψ, where Γ = Gal(Q/Q);

• a character εψ of the finite group Sψ := Sψ/Z(Ĝ)ΓS◦ψ with values in {±1}.

In the sum above, we only take the parameters ψ such that ξψ = ξ.
Part of Arthur’s conjectures is that there should be a map π0 7−→ 〈., π0〉 from the

set of isomorphism classes of irreducible constituents of elements of Πψ to Ŝψ, such that
〈., π0〉 = 〈., π1〉 if π0 and π1 are two irreducible constituents of the same π ∈ Πψ, and that the
multiplicity m(ψ, π) is given by the following formula :

m(ψ, π) = m(ψ, π0) := |Sψ|−1
∑
x∈Sψ

εψ(x)〈x, π0〉,

if π0 is an irreducible constituent of π.
We can now state part (ii) of condition (C). It says that, for every irreducible admissible

representation πf of G(Af ), there is at most one Arthur parameter ψ such that πf is the finite
part of an irreducible constituent of an element of Πψ.

There are also local versions of Arthur’s conjectures involving local Arthur parameters
and local Arthur packets. We will not give details here (see for example chapter I of Arthur’s
book [6]).

4. Proof of Theorem 1.4

We use the notation of Theorem 1.4 and of section 3, and we take for ξ : AG(R)◦ −→ C×
the inverse of the character by which AG(R)◦ acts on W (R).

If π is an irreducible representation of G(A), we can write π = πf⊗π∞, where πf (resp.
π∞) is an irreducible representation of G(Af ) (resp. G(R)).

Let g be the complexified Lie algebra of G(R). If π∞ is an irreducible representation of
G(R), we write H∗(g,K′∞;π∞ ⊗W ) for the (g,K′∞)-cohomology of the space of K′∞-finite
vectors in π∞ ⊗W (cf chapter I of [10]).

It follows from Zucker’s conjecture (a theorem of Looijenga ([19]), Saper-Stern ([24])
and Looijenga-Rapoport([20])) and from Matsushima’s formula (proved by Matsushima for
SK compact and by Borel and Casselman in the general case, cf Theorem 4.5 of [9]) that there
is aHK ⊗ C-equivariant isomorphism, for every k ∈ Z,

IHk(SK,W ) '
⊕

π∈Πdisc(G)

πK
f ⊗Hk(g,K′∞;π∞ ⊗W )m(π)

(see also (2.2) of Arthur’s article [4]).
If πf is an irreducible representation of G(Af ), let Π∞(πf ) be the set of equivalence

classes of irreducible representations π∞ of G(R) such that π := πf ⊗π∞ ∈ Πdisc(G). Then,
for every irreducible admissible representation πf of G(Af ) and every k ∈ Z,

dimσk(πf ) =
∑

π∞∈Π∞(πf )

m(πf ⊗ π∞) dim Hk(g,K′∞;π∞ ⊗W ).
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Vogan and Zuckerman have classified all the admissible representations π∞ of G(R)

such that H∗(g,K′∞;π∞ ⊗W ) 6= 0 in [26], and Adams and Johnson have constructed local
Arthur packets for these representations in [1]. (It is part of our assumptions that their construc-
tion is compatible with the local and global Arthur conjectures of section 3.) We will follow
Kottwitz’s exposition of their results in section 9 of [16].

Let θ be the Cartan involution of G(R) that is the identity on K∞. For every real reduc-
tive group H , let q(H) = 1

2 dim(H/KH), where KH is a maximal compact-modulo-center
subgroup of H .

Fix πf such that Π∞(πf ) 6= ∅. By part (ii) of condition (C), πf determines a global
Arthur parameter ψ, and we write ψ∞ for the local Arthur parameter of GR defined by ψ. The
set Π∞(πf ) is a subset of the local Arthur packet associated to ψ∞. If π∞ ∈ Π∞(πf ) and
π = πf ⊗ π∞, then the character 〈., π〉 of Sψ factors as 〈., πf 〉〈., π∞〉, where both factors are
characters of Sψ, and the first (resp. second) factor depends only on πf (resp. π∞). By the
multiplicity formula in section 3, the fact that m(π) = m(ψ, π) 6= 0 means that the character
〈., π∞〉 of Sψ is uniquely determined by πf . 6)

Let π∞ ∈ Π∞(πf ). Then there is a relevant pair (L,Q) such that π∞ comes by coho-
mological induction from a 1-dimensional representation of L, cf pages 194-195 of [16]. Here
Q is a parabolic subgroup of GC and L is a Levi component of Q that is defined over R. By
proposition 6.19 of [26], π∞⊗W can only have (g,K′∞)-cohomology in degrees belonging to
R+ 2N, with R = dimC(u∩ p), where u is the Lie algebra of the unipotent radical of Q and p

is the −1-eigenspace for θ acting on g. Let l be the (complex) Lie algebra of L. As l and u are
invariant under θ (by construction of L and Q), we see easily that

dimC(p) = 2R+ dimC(l ∩ p),

hence R = q(GR)− q(L). So the parity of R is determined by the parity of q(L).
Now lemma 9.1 of [16] says that

(−1)q(L) = 〈λπ∞ , sψ〉,

where sψ ∈ Sψ is determined by the global parameter ψ (if we see global parameters as
morphisms ψ : LQ × SL2(C) −→ LG, then sψ is the image by ψ of the nontrivial central
element of SL2(C)) and λπ∞ is the character of Sψ∞ ⊃ Sψ defined on page 195 of [16].
But lemma 9.2 of [16] implies that the product λπ∞〈., π∞〉 is independent of π∞ in the Arthur
packet of ψ∞, so the restriction of λπ∞ to Sψ depends only on πf . This implies that the parity
of R depends only on πf , which gives Theorem 1.4.

We have to be a bit careful if G is a quasi-split even special orthogonal group, because in
that case Arthur proved his conjectures only up to conjugacy by the quasi-split even orthogonal
group G′ ⊃ G. But, if π∞ is a representation of G(R) with nonzero (g,K′∞)-cohomology,
then the integer R associated to π∞ as above does not change if we replace π∞ by a G′(R)-
conjugate (because the relevant pair (L,Q) is just replaced by a G′(R)-conjugate). So the
proof above still applies.

6) 〈, .π∞〉 is actually a character of the bigger group Sψ∞ , but its values on Sψ∞ are not determined by
πf , otherwise Π∞(πf ) would be a singleton, and this is not the case in general (cf case 3 on page 90 of Rogawski’s
paper [23] for a counterexample if G = GU(2,1)).
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5. Künneth conjecture and finite correspondences

From the proofs of the theorem of Katz and Messing and that of ours, one may wonder
if the Künneth conjecture or the sign conjecture can be proved for more general projective
smooth varieties, only using finite correspondences. More precisely, consider the Q-subspace

Zdfin,H∗ ⊆ H2d(X ×k X)(d)

spanned by the cohomology classes of all the cycles of codimension d on X ×k X , that are
finite in both projections to X (where d = dimX).

Conjecture 5.1. For every projective smooth varietyX/k and every i ∈ Z, the Künneth
projector πiX (resp. the projector π+

X ) belongs to Zdfin,H∗ .

This is a priori stronger than the Künneth (resp. the sign) conjecture. It turns out that
the apparent strength is only illusory, if either (a) k is algebraically closed or (b) k is perfect
and H∗ is a classical Weil cohomology theory. The case (a) is a consequence of the following
proposition.

Proposition 5.1. Suppose that k is an algebraically closed field. Then the abelian group

Zdfin,∼rat
⊆ Zd∼rat

generated by the cycles mapping finitely to X in both projections, in the group of codimension
d cycles on X modulo rational equivalence, is in fact equal to the whole Zd∼rat

.

Proof. It is enough to prove that any irreducible closed subscheme of codimension d on
X ×k X is rationally equivalent to a cycle that is finite in both projections. Because a proper
quasi-finite map is finite, it is the matter of finding a cycle in the rational equivalence class, that
meets all the closed fibres over k-rational points in both projections properly, that is, in dimen-
sion at most zero. This follows from the generalized moving lemma [13] of Friedlander and
Lawson: In any fixed projective embedding, all the fibres of the first (resp. second) projection
have the same degree, as they are all algebraically equivalent.

Now, in the case (b), let k be a perfect field, and suppose that Z is an algebraic cycle
of codimension d on X ×k X . If H∗ is a classical Weil cohomology theory, then we have a
corresponding cohomology theory H∗/k′ for every algebraic extension k′ of k, compatible with
the cycle class maps in an obvious sense.

Let k be an algebraic closure of k. By Proposition 5.1, Z ⊗k k is rationally — hence
homologically — equivalent to a cycle Z ′ which is finite over X ⊗k k in both projections.
Let k′ be a finite Galois extension of k over which Z ′ is defined. Taking the “average” of the
Gal(k′/k)-translates of Z ′ (which requires Q-coefficients), one gets a cycle Z ′0 on X , defined
over k, that is finite in both projections and has the same cohomology class as Z.

This means that, in the two cases, if the Künneth conjecture is true for X/k, then each
πiX is in fact a linear combination of the cohomology classes of finite correspondences over
X . Finding enough such finite correspondences for general X/k (which can be turned into
the problem of finding certain finite extensions of the function field k(X)) seems to be an
interesting open problem.
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