
Beilinson’s construction of nearby
cycles and gluing

Sophie Morel

March 6, 2018

The goal of this note is to present Beilinson’s construction of the nearby cycles functor, and
its application to gluing perverse sheaves (also due to Beilinson). The original reference for
all of this is Beilinson’s article [1]. See also Reich’s article [5] and Sam Lichtenstein’s senior
thesis [4].

We fix a field k. All the schemes we will consider will be separated and of finite type
over k. If X is a scheme, we write Db

c(X) for the category of bounded constructible `-adic
complexes on X (with coefficients in a finite extension of Q` or in Q`) or, if k = C, for
bounded constructible complexes on X(C). (The formalism will work in both cases.) In both
cases, we’ll write Perv(X) for the heart of the selfdual perverse t-structure on Db

c(X). When
we say “exact” later, it is always understood to mean “exact for the perverse t-structure”. The
standard reference for this paragraph is the book [2] by Beilinson-Bernstein-Deligne.

Here is a bit of motivation : Let i : Y → X be a closed embedding; we want to understand
the functor i∗ as a functor between derived categories of perverse sheaves. The simplest case
if when the open embedding j : X − Y → X is affine, and we can always reduce to this case
locally (by an induction on the number of equations defining Y in X), so we will assume that
we are in this case. Then, if K ∈ Perv(X), i∗K is concentrated in degrees −1 and 0, and we
have an exact sequence of perverse sheaves on X :

0→ i∗
pH−1i∗K → j!j

∗K → K → i∗
pH0i∗K → 0,

so that i∗i∗K is represented by the complex of perverse sheaves j!j∗K → K (withK in degree
0). However, this is a complex of perverse sheaves on X . We would like to find a complex of
perverse sheaves on Y (or of perverse sheaves onX with support in Y ) representing i∗K. This
turns out to be possible, provided we fix an equation f ∈ O(X) of Y (which is always possible
locally). Then we will see that there exist two functors Ψu

f : Perv(X − Y ) → Perv(Y ) and
Φu
f : Perv(X)→ Perv(Y ) and a functorial exact sequence

0→ pH−1i∗ → Ψu
fj
∗ → Φu

f → pH0i∗ → 0.
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Remark 0.1 The functors Ψu
f and Φu

f are the nearby cycles functor and the vanishing cycles
functor (shifted by [−1] so they will preserve perverse sheaves), or rather the direct factors
of these functors where the monodromy operator acts unipotently. We could remove the “u”
and get the same result, but the unipotent versions are a bit simpler to construct. Nearby and
vanishing cycles functors have many other properties, some of which we will review later.

We will assume the results of SGA 7 I and XIII and SGA 4 1/2 [Th. finitude]. More pre-
cisely, here is what we need : First, fix a topological generator T of the prime-to-p quotient of
πgeom
1 (Gm,k, 1) (where p = char(k)). For every scheme X and every morphism f : X → A1,

if i : Y := f−1(0) → X and j : U := X − Y → X are the inclusions, we assume that we
know how to construct a nearby cycles functor Ψf : Db

c(U) → Db
c(Yk), a functorial action

of π1(Gm,k, 1) on Ψf , compatible with the action of Gal(k/k) on Yk, and a functorial exact
triangle Ψf

T−1→ Ψf → i∗j∗
+1→. (Technically, the last term should be base changed from Y

to Yk. We’ll omit this in the notation.) Note that we have shifted the nearby cycles functor of
SGA 7 XIII by [−1], so that it will preserve perverse sheaves (as we will see later).

If g : X ′ → X is a morphism of schemes, we have canonical functorial morphisms :

Ψfg∗ → g∗Ψgf

g!Ψgf → Ψfg!

g∗Ψf → Ψgfg
∗

Ψgfg
! → g!Ψf .

If g is proper, then the first two morphisms are isomorphisms and are each other’s inverse. If
g is smooth, then the last two morphisms are isomorphisms, and are each other’s inverse up to
some twists and shifts. (We will only use the existence of the third morphism.)

Note also that, for K,K ′ ∈ Db
c, we have a canonical morphism

ΨfK ⊗ΨfK
′ → Ψf (K ⊗K ′)[−1],

see 4.3 of Illusie’s Autour du théorème de monodromie locale ([3]).

Finally, note that, if L is a local system on Gm and L is the representation of π1(Gm, 1)
corresponding to L , then Ψid sends L [1] to L{0} with its obvious action of π1(Gm, 1).

Remark 0.2 It is not totally clear from the formula “Y = f−1(0)” what scheme structure we
are putting on the closed subset Y of X . It doesn’t matter in practice, because the category
Db
c(Y ) only depends on Yred. So we could put the reduced structure on Y , or we could think

of Y as the fiber product of {0} (with reduced structure) and X over A1.

1 Unipotent nearby cycles functor

We fix a scheme X and a morphism f : X → A1. As before, we denote by
i : Y := f−1(0)→ X and j : U := X − Y → X the inclusions.

2



Proposition 1.1 There exists a functorial T -equivariant direct sum decomposition
Ψf = Ψu

f ⊕ Ψnu
f such that, for every K ∈ Db

c(U), T − 1 acts nilpotently on Ψu
f (K) and

invertibly on Ψnu
f (K).

In particular, the functorial exact triangle Ψf
T−1→ Ψf → i∗j∗

+1→ induces a functorial exact
triangle Ψu

f
T−1→ Ψu

f → i∗j∗
+1→.

The functor Ψu
f is called the unipotent nearby cycles functor.

Proof. It suffices to prove that, for every K ∈ Db
c(U), there exists a nonzero polynomial P

(with coefficients in the coefficient field F that we are using for the categories Db
c) such that

P (T ) acts by 0 on Ψf (K). (The rest is standard linear algebra.) As we know that Ψf sends
Db
c(X) to Db

c(Yk) (ie preserves constructibility), this follows from the fact that, for every
L ∈ Db

c(Yk), the ring of endomorphisms of L is finite-dimensional (over the same coefficient
field F ). To prove this fact, we use induction on the dimension of X to reduce to the case
where the cohomology sheaves of L are local systems, and then it is trivial.

�

Remark 1.2 We can recover the full nearby cycles functor from Ψu
f , at least if we extend the

coefficient field to make it algebraically closed.

Proposition 1.3 The functor Ψu
f : Db

c(X)→ Db
c(Yk) is t-exact.

Proof. Let K ∈ Perv(U). We want to prove that Ψu
fK is perverse. Remember that we have an

exact triangle Ψu
fK

T−1→ Ψu
fK → i∗j∗K

+1→. As i∗j∗K is concentrated in perverse degrees −1
and 0, Ψu

fK is concentrated in perverse degrees −1, 0 and 1. Moreover, looking at the long
exact sequence in perverse cohomology coming from the exact triangle above, we see that the
maps T − 1 : pH−1Ψu

fK → pH−1Ψu
fK and T − 1 : pH1Ψu

fK → pH1Ψu
fK are respectively

injective and surjective. But T − 1 is nilpotent on all the pHiΨu
fK by construction, so we get

pH−1Ψu
fK = pH1Ψu

fK = 0, and Ψu
fK is concentrated in perverse degree 0.

�

Our next task will be to show that Ψu
f can actually be seen as a functor from Perv(U) to

Perv(Y ) (instead of Perv(Yk)). We will need a more canonical version of the endomorphism
T − 1, as T − 1 will not in general descend to an endomorphism in Db

c(Y ).

Let t be the usual surjective map from πgeom
1 (Gm,k, 1) to Z`(1) (in the `-adic case) or

Ẑ(1) := (2iπ)Ẑ (in the complex case), cf SGA 7 I (0.3). Let K ∈ Db
c(U). Then

T : Ψu
fK → Ψu

fK is unipotent, so there exists a unique nilpotent N : Ψu
fK → Ψu

fK(−1)
such that T = exp(t(T )N) on Ψu

fK. The operator N is usually called the “logarithm of the
unipotent part of the monodromy”. (Here it is the logarithm of the monodromy, because we
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are looking only at the part where the monodromy is unipotent.) We get a functorial exact
triangle Ψu

f
N→ Ψu

f → i∗j∗
+1→.

2 Some local systems on Gm,k

If char(k) > 0, we write p = char(k); otherwise we take p = 1.

Note that the category of local systems on Gm,k is equivalent to the category of (continuous)
representations of π1(Gm,k, 1). We have an exact sequence

1→ πgeom
1 (Gm,k, 1)→ π1(Gm,k, 1)→ Gal(k/k)→ 1.

Any k-rational point of Gm,k gives a section of the last map. Using the section given by the
point 1, we get an isomorphism π1(Gm,k, 1) ' πgeom

1 (Gm,k, 1) o Gal(k/k), where Gal(k/k)

acts on πgeom,(p)
1 (Gm,k, 1) = Ẑ(p)(1) (the exponents (p) mean that we are taking the prime-to-p

quotients) by multiplication by the cyclotomic character.

As before, we denote by F the coefficient field that we use in the categories Db
c. Fix a ∈ N.

Let La = F ⊕ F (−1)⊕ · · · ⊕ F (−a), and let N : La → La(−1) be the (nilpotent) morphism
given by

N =


0 1 0

. . . . . .
. . . 1

0 0

 .

We define an action of the group π1(Gm,k, 1) = πgeom
1 (Gm,k, 1) o Gal(k/k) on La in the

following way : an element uoσ acts by the matrix exp(t(u)N)


1

χ(σ)−1

. . .
χ(σ)−a

,

where χ : Gal(k/k) → Ẑ(1) is the cyclotomic character. We denote by La the local system
on Gm,k associated to La.

For a ≤ b, there is an obvious injection αa,b : La → Lb and an obvious surjection
Lb → La(a − b), and these maps are π1(Gm,k, 1)-equivariant, hence they define morphisms
of local systems αa,b : La ↪→ Lb and βa,b : Lb � La(a − b). Moreover, the dual of La
is isomorphic to La(a), and again this isomorphism is π1(Gm,k, 1)-equivariant, hence we get
an isomorphism D(La) ' La(a + 1)[2]. Via these isomorphisms, D(αa,b) corresponds to

βa,b(b+ 1)[2]. Finally, note that the composition La
αa,a+1→ La+1

βa+1,a→ La(−1) is equal to N .
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3 Beilinson’s construction of Ψu
f (cf [1])

Let X , f etc be as in section 1. Note that, for every perverse sheaf K on U , K ⊗L f ∗La is
also perverse; we often denote this perverse sheaf by K ⊗La.

Proposition 3.1 Let K ∈ Perv(U). Then, for every a ∈ N, there is a natural isomorphism
Ker(Na+1,Ψu

fK) ' Ker(N,Ψu
f (K ⊗La)).

Corollary 3.2 For any a ∈ N such thatNa+1(Ψu
fK) = 0 (in particular, for any a big enough),

there is a natural isomorphism

i∗Ψ
u
fK ' Ker(j!(K ⊗La)→ j∗(K ⊗La)) = pH−1i∗j∗(K ⊗La) = i∗j!∗(K ⊗La)[−1].

(The last two equalities are corollary 4.1.12 of [2].)

Proof. By the exact triangle Ψu
f
N→ Ψu

f → i∗j∗
+1→, we have

i∗Ker(N,Ψu
f (K ⊗La)) = i∗

pH−1i∗j∗(K ⊗La)
= Ker(j!(K ⊗La)→ j∗(K ⊗La))

.

�

Proof of the proposition. By the lemma below, for every a ∈ N, we have
Ψu
f (K ⊗ f ∗La) ' Ψu

fK ⊗ La, and the action of N on the tensor product in the second
term is N ⊗ id + id⊗N . Define a map

γ : Ψu
fK → Ψu

fK ⊗ La = Ψu
fK ⊕Ψu

fK(−1)⊕ . . .Ψu
fK(−a)

by γ(x) = (x,−Nx, . . . , (−N)ax). Then Nγ(x) = (0, . . . , 0, (−1)aNa+1x), so γ induces an
isomorphism between Ker(Na+1,Ψu

fK) and Ker(N,Ψu
f (K ⊗ f ∗La)).

�

Lemma 3.3 Let K ∈ Db
c(U). Then, for every a ∈ N, the canonical morphism

Ψu
f (K)⊗ f ∗Ψu

id(La)[1]→ Ψu
f (K)⊗Ψu

f (f
∗La)[1]→ Ψu

f (K ⊗ f ∗La)

is an isomorphism.

Note that Ψu
id(La)[1] is La,{0} with the obvious action of π1(Gm, 1).

Proof. We prove the result by induction on a. If a = 0, then La = FGm , so all complexes in
the formula above are isomorphic to Ψu

fK, and it is clear that the maps are the identity maps.
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Assume that we know the result for a ≥ 0. Then the exact sequence

0→ La → La+1 → L0(−a− 1)→ 0

gives a commutative diagram

Ψu
f (K)⊗ f ∗Ψu

id(La)[1] //

��

Ψu
f (K)⊗Ψu

f (f
∗La)[1] //

��

Ψu
f (K ⊗ f ∗La)

��
Ψu
f (K)⊗ f ∗Ψu

id(La+1)[1] //

��

Ψu
f (K)⊗Ψu

f (f
∗La+1)[1] //

��

Ψu
f (K ⊗ f ∗La+1)

��
Ψu
f (K)(−a− 1)

+1

��

Ψu
f (K)(−a− 1)

+1

��

Ψu
f (K)(−a− 1)

+1

��

whose columns are exact triangles. We know that the morphisms on the first and the third lines
are isomorphisms, so the morphisms on the second line are also isomorphisms.

�

The corollary above gives a construction of Ψu
fK, for K ∈ Perv(U). We now explain how

to see the map N : Ψu
fK → Ψu

fK(−1) on this construction. The following proposition is
obvious from the explicit formula for the map Ker(Na+1,Ψu

fK)
∼→ Ker(N,Ψu

f (K ⊗ f ∗La)).

Proposition 3.4 Let K ∈ Perv(U). Let a ≥ 0 such that Na+1 = 0 on Ψu
fK. By the corollary

above, we have an exact sequence 0→ i∗Ψ
u
fK → j!(K ⊗ f ∗Lb)→ j∗(K ⊗ f ∗Lb) for every

b ≥ a. Then the following diagram is commutative :

0 // i∗Ψ
u
fK

// j!(K ⊗ f ∗La) //

αa,a+1

��

j∗(K ⊗ f ∗La)

αa,a+1

��
0 // i∗Ψ

u
fK

//

N
��

j!(K ⊗ f ∗La+1) //

βa,a+1

��

j∗(K ⊗ f ∗La+1)

βa,a+1

��
0 // i∗Ψ

u
fK(−1) // j!(K ⊗ f ∗La)(−1) // j∗(K ⊗ f ∗La)(−1)

Remark 3.5 By the results of this section, we can redefine Ψu
fK, for K ∈ Perv(U), as the

direct limit of the i∗j!∗(K ⊗ f ∗La)[−1], where the transition maps are given by the αa,a+1.
(In fact, we will see in corollary 4.3 that Ψu

fK is also isomorphic to the direct limit of the
i∗j∗(K ⊗ f ∗La)[−1].) So we can see Ψu

f as a functor from Perv(U) to Perv(Y ) (instead of
Perv(Yk), admitting a functorial morphism N : Ψu

f → Ψu
f (−1).

4 Duality

We keep the notation of the previous section.
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In section 4 of Autour du théorème de monodromie locale ([3]), Illusie shows that the func-
tor Ψf commutes with Verdier duality (up to a twist). We will show how to deduce this result
(at least for Ψu

f ) from Beilinson’s construction.

Proposition 4.1 Let K ∈ Perv(U). If a and b are big enough (more precisely, if
Na+1 = N b+1 = 0 on Ψu

fK), then there is a canonical isomorphism

Ker(j!(K ⊗ f ∗Lb)→ j∗(K ⊗ f ∗Lb))(−a− 1)
∼→ Coker(j!(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La)),

and the morphism
pH0i∗j∗(K ⊗La)→ pH0i∗j∗(K ⊗La+b+1)

induced by αa,a+b+1 is zero.

Corollary 4.2 For every K ∈ Perv(U), we have a canonical isomorphism
D(Ψu

fK) ' Ψu
f (DK)(−1).

Proof. Let a be big enough. Then Ψu
fK = Ker(j!(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La)), so

D(Ψu
fK) ' Coker(j!D(K ⊗ f ∗La)→ j∗D(K ⊗ f ∗La)).

We see easily that D(K ⊗ f ∗La) ' D(K) ⊗ f ∗La(a), and the proposition now gives the
result.

�

Corollary 4.3 The maps Ψu
fK → i∗j∗(K⊗La)[−1] of corollary 3.2 induce an isomorphisme

Ψu
fK

∼→ lim−→
a

i∗j∗(K ⊗La)[−1]

(where the transition morphisms are given by the αa,a+1).

Proof. We have already seen (in corollary 3.2 the map

Ψu
fK

∼→ lim−→
a

pH−1i∗j∗(K ⊗La)

is an isomorphism, so it remains to show that lim−→
a

pH0i∗j∗(K ⊗La) = 0. But this follows

immediately from the second statement of the proposition.

�

Proof of the proposition. We will write Kera(K) (resp Cokera(K)) for the kernel (resp the
cokernel) of the map j!(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La). As in the proof of the corollary above,
we see that there is a canonical isomorphism D(Kera(K)) ' Cokera(D(K))(a).
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Consider the following commutative diagram, where the rows are exact sequences :

0 // j!(K ⊗ f ∗La)
αa,a+b+1 //

��

j!(K ⊗ f ∗La+b+1)
βb,a+b+1 //

��

j!(K ⊗ f ∗Lb)(−a− 1) //

��

0

0 // j∗(K ⊗ f ∗La)
αa,a+b+1 // j∗(K ⊗ f ∗La+b+1)

βa,a+b+1 // j∗(K ⊗ f ∗Lb)(−a− 1) // 0

The snake lemma gives an exact sequence

0→ Kera(K)→ Kera+b+1(K)→ Kerb(K)(−a− 1)→

→ Cokera(K)→ Cokera+b+1(K)→ Cokerb(K)(−a− 1)→ 0.

By the results of the previous section, we have isomorphisms Kera(K) ' Ψu
fK,

Kera+b+1(K) ' Ψu
f (K) and Kerb(K)(−a − 1) ' Ψu

fK(−a − 1), that identify the first map
with the identity and the second map with Na+1 = 0. By duality, we also have isomor-
phisms Cokera(K) ' D(Ψu

fD(K))(−a), Cokera+b+1(K) ' D(Ψu
fD(K))(−a− b− 1)) and

Cokerb(K)(−a− 1) ' D(Ψu
fD(K))(−a− b− 1) that identify the last arrow with the identity

and the next to last arrow with D(N b+1)(−a) = 0. The last part gives the second statement of
the proposition, and the middle of the sequence gives the isomorphism of the first statement.

�

5 The maximal extension functor

The maximal extension functor is a functor Ξf : Perv(U) → Perv(X). It will be useful to
construct Φu

f and for gluing, though it will not appear in the statements.

Fix K ∈ Perv(U). For each a ≥ 1, we have a commutative diagram :

j!(K ⊗ f ∗La) //

βa,a+1

��

j∗(K ⊗ f ∗La)

βa,a+1

��
j!(K ⊗ f ∗La−1)(−1) // j∗(K ⊗ f ∗La−1)(−1)

We write γa,a−1 : j!(K⊗f ∗La)→ j∗(K⊗f ∗La−1)(−1) for the diagonal map in this diagram.

Proposition 5.1 For a big enough, the (injective) map Ker(γa,a−1) → Ker(γa+1,a) induced
by αa,a+1 : j!(K⊗f ∗La)→ j!(K⊗f ∗La+1) is an isomorphism. We write ΞfK for the direct
limit of the Ker(γa,a−1). This defines a left exact functor from Perv(U) to Perv(X), and we
have a functorial exact sequence

0→ j! → Ξf → i∗Ψ
u
f (−1)→ 0.
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Moreover, if a and b are big enough, then the map Coker(γa,a−1) → Coker(γa+b,a+b−1)
induced by αa−1,a+b−1(−1) is zero. In particular, we have

lim−→
a

Coker(γa−1,a) = 0.

Proof. Let a ≥ 1. Remember that the map αa,a−1 : La → La−1(−1) is surjective, and that
its kernel is FGm (in the abelian category of local systems on Gm). So we have a commutative
diagram with exact rows

0 // j!K //

��

j!(K ⊗ f ∗La) //

γa,a−1

��

j!(K ⊗ f ∗La−1)(−1) //

��

0

0 // j∗(K ⊗ f ∗La−1)(−1) // j∗(K ⊗ f ∗La−1)(−1) // 0

Applying the snake lemma, we get an exact sequence

0→ j!K → Ker(γa,a−1)→ i∗i
∗j!∗(K ⊗ f ∗La−1)(−1)[−1]→ 0

and an isomorphism

Coker(γa−1,a) = Coker(j!(K⊗f ∗La−1)(−1)→ j∗(K⊗f ∗La−1)(−1)) = pH0j∗(K⊗La−1)(−1).

It is clear that the following diagram is commutative (where the last two vertical maps are
induced by αa,a+1) :

0 // j!K // Ker(γa,a−1) //

��

i∗i
∗j!∗(K ⊗ f ∗La−1)(−1)[−1] //

��

0

0 // j!K // Ker(γa+1,a) // i∗i
∗j!∗(K ⊗ f ∗La)(−1)[−1] // 0

But, if a is big enough, the last terms on the two rows are isomorphic to Ψu
fK(−1), and the

last vertical arrow is an isomorphism. This proves the first assertion and the existence of the
exact sequence. The construction of ΞfK is obviously functorial in K, and the left exactness
follows from the snake lemma.

Finally, the last statement follows from the second statement of proposition 4.1.

�

Remark 5.2 For every a ≥ 1, we have a commutative diagram

j!(K ⊗ f ∗La+1)
γa+1,a //

βa,a+1

��

j∗(K ⊗ f ∗La)(−1)

βa−1,a(−1)
��

j!(K ⊗ f ∗La)(−1)
γa,a−1(−1)// j∗(K ⊗ f ∗La−1)(−2)
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This induces a map Ker(γa+1,a) → Ker(γa,a−1)(−1). By taking a big enough, we get a
functorial map Ξf → Ξf (−1), which we denote by N , and we see easily from the definition
that the following diagram is commutative :

0 // j!K

0

��

// ΞfK

N

��

// i∗Ψ
u
fK(−1) //

N(−1)
��

0

0 // j!K(−1) // ΞfK(−1) // i∗Ψ
u
fK(−2) // 0

Remark 5.3 Using the last statement of the proposition above, we see eas-
ily that we could have defined ΞfK as the inductive limit of the complexes
j!(K ⊗ La)

γa,a−1→ j∗(K ⊗ f ∗La−1)(−1), where the first term is in degree 0 and the
transition maps are given by the αa,a+1.

We will now show that the functor Ξf commutes with duality.

Fix K ∈ Perv(U). For each a ≥ 0, we have a commutative diagram :

j!(K ⊗ f ∗La) //

αa,a+1

��

j∗(K ⊗ f ∗La)

αa,a+1

��
j!(K ⊗ f ∗La+1) // j∗(K ⊗ f ∗La+1)

We write γa,a+1 : j!(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La+1) for the diagonal map in this diagram.

Proposition 5.4 For a big enough, the (surjective) map
Coker(γa+1,a+2)→ Coker(γa,a+1)(−1) induced by βa,a+1 : j∗(K⊗f ∗La+1)→ j∗(K⊗f ∗La)(−1)
is an isomorphism, and we have a canonical isomorphism
Coker(γa,a+1) ' Ker(γb,b−1)(−a− 1)(= ΞfK(−a− 1)) for a and b big enough.

Moreover, for a and b big enough, the map Ker(γa+b,a+b+1)→ Ker(γa,a+1)(−b) induced by
βa,a+b is zero.

Corollary 5.5 We have a canonical functorial isomorphism D ◦ Ξf ' Ξf ◦ D. The functor
Ξf is right exact (so it is exact), and there is a functorial exact sequence :

0→ i∗Ψ
u
f → Ξf → j∗ → 0,

that is dual to the exact sequence in the previous proposition.

Proof of the proposition. All the proofs are the duals of what we already did, except for the
isomorphism Coker(γa,a+1) ' Ker(γb,b−1)(−a− 1).

Fix K ∈ Perv(U), and a, b ∈ N with b ≥ 1. Then we have a commutative diagram with

10



exact rows

0 // j!(K ⊗ f ∗La)
αa,a+b+1//

γa,a+1

��

j!(K ⊗ f ∗La+b+1)
βb,a+b+1//

��

j!(K ⊗ f ∗Lb)(−a− 1) //

γb,b−1(−a−1)
��

0

0 // j∗(K ⊗ f ∗La+1)
αa+1,a+b+1// j∗(K ⊗ f ∗La+b+1)

βb−1,a+b+1// j∗(K ⊗ f ∗Lb−1)(−a− 2) // 0

Note that αa,a+1 : j∗(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La+1) is injective, so

Ker(j!(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La+1) = Ker(j!(K ⊗ f ∗La)→ j∗(K ⊗ f ∗La)).

Similarly (or dually),

Coker(j!(K ⊗ f ∗Lb))→ j∗(K ⊗ f ∗Lb−1)) = Coker(j!(K ⊗ f ∗Lb−1)→ j∗(K ⊗ f ∗Lb−1)).

So, applying the snake lemma to the diagram above and taking a and b big enough, we get an
exact sequence

0→ Ψu
fK = Ψu

fK → Ker(γb,b−1)(−a− 1)→ Coker(γa,a+1)→

→ Ψu
fK(−a− b− 1) = Ψu

fK(−a− 2)(−b+ 1)→ 0.

This gives the isomorphism that we were looking for.

�

Remark 5.6 As before, we have a commutative diagram :

0 // i∗Ψ
u
fK

//

N
��

ΞfK //

N
��

j∗K //

0

��

0

0 // i∗Ψ
u
fK(−1) // ΞfK(−1) // j∗K(−1) // 0

Remark 5.7 It is clear from the definitions that the composition of the two functorial mor-
phisms i∗Ψu

f → Ξf and Ξf → i∗Ψ
u
f (−1) is just N : i∗Ψ

u
f → i∗Ψ

u
f (−1), and that the com-

position of the two functorial morphisms j!K → ΞfK and ΞfK → j∗K is the canonical
morphism j!K → j∗K.

6 The unipotent vanishing cycles functor

We keep the situation of the preceding section.
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Exposés I and XIII of SGA 7 also explain the construction of a vanishing cycles functor
Φf : Db

c(X)→ Db
c(Yk) such that there is a functorial exact triangle

Ψfj
∗ can→ Φf → i∗

+1→ .

(We have shifted Φf by −1, like we did for Ψf .) This functor actually takes K ∈ Db
c(X)

to a complex of sheaves with an action of π1(Gm, 1) compatible with its action on Yk, so
in particular we get an action of T on it. Let I = πgeom

1 (Gm, 1) (the inertia subgroup of
π1(Gm, 1)). In addition to the functorial morphism can : Ψf → Φf in the triangle above,
we can construct, for each σ ∈ I , a functorial morphism Var(σ) : Φf → Ψf such that
can ◦Var(σ) = σ − 1 and Var(σ) ◦ can = σ − 1 (this works because I acts trivially on i∗K,
for every K ∈ Db

c(X)). The finiteness theorem for Ψf (cf SGA 4 1/2 [Th. finitude]) gives a
finiteness theorem for Φf , so we can define the direct factor Φu

f where T acts unipotently like
we did for Ψu

f , and we can also define a nilpotent functorial morphism N : Φu
f → Φu

f (−1) by
“taking the logarithm of T ”.

The goal of this section is to define Φu
f directly as a functor Perv(X) → Perv(Y ) and to

establish some of its basic properties. We will not need the results recalled in the preceding
paragraph.

Recall that we have functorial morphisms δ : j! → Ξf and ε : Ξf → j∗, with δ injective and
ε surjective. We will denote by adj the adjunction morphisms j!j∗ → id and id→ j∗j

∗.

For K ∈ Perv(X), we define a complex C•(K) of objects of Perv(X) by

C•(K) = (j!j
∗K

δ⊕adj→ Ξfj
∗K ⊕K ε−adj→ j∗j

∗K),

where j!j∗K is in degree −1. This construction is obviously functorial in K. Note that the
only nonzero cohomology object of C•(K) is in degree 0, and that it is a perverse sheaf with
support in Y .

We define a functor Φu
f : Perv(X)→ Perv(Y ) by Φu

f (K) = i∗H0(C•(K)). By the remarks
above (and the long exact sequence of cohomology for C•(K)), Φu

f does send Perv(X) to
Perv(Y ), and it is an exact functor.

The map i∗Ψu
fj
∗K → Ξfj

∗K sends i∗Ψu
fj
∗K to Z0(C•(K)), so it defines a functorial map

can : Ψu
fj
∗K → Φu

fK. Similarly, the map Ξfj
∗K → Ψu

fK(−1) defines a functorial map
var : Φu

fK → Ψu
fj
∗K(−1). We obviously have var ◦ can = N . On the other hand, the mor-

phism
(
N 0
0 0

)
: Ξfj

∗K ⊕K → ΞfK(−1)⊕K(−1) sends Z0(C•(K)) (resp. B0(C•(K)))

to Z0(C•(K))(−1) (resp. B0(C•(K))(−1)), because ε(−1) ◦ N = 0 and N ◦ δ = 0, so it
induces a functorial morphism N : Φu

fK → Φu
fK(−1), and it is an easy exercise to show that

can(−1) ◦ var = N .

Remark 6.1 The automorphism
(

id 0
0 −1

)
of Ξfj

∗K⊕K induces a functorial isomorphism

between Φu
fK and H0(C ′•(K)), where

C ′
•
(K) = (j!j

∗K
δ⊕(−adj)→ Ξfj

∗K ⊕K ε+adj→ j∗j
∗K),

12



with j!j∗K in degree −1. As D(C•(K)) is canonically isomorphic to C ′•(D(K)), we get a
functorial isomorphism D ◦ Φu

f ' Φu
f ◦D, and the duality exchanges can and var.

Proposition 6.2 There are canonical isomorphisms Ker(can) = pH−1i∗K and
Coker(can) = pH0i∗K.

Dually, we have canonical isomorphisms Ker(var) = pH0i!K and Coker(var) = pH1i!K.

Proof. We have a commutative diagram with exact rows and injective columns :

0 // i∗
pH−1i∗K //

u

��

j!j
∗K

adj //

δ⊕adj
��

K

0⊕id
��

0 // i∗Ψ
u
fj
∗K // Ξfj

∗K ⊕K v // j∗j
∗K ⊕K // 0

where v is the map
(
ε −adj
0 id

)
. This induces an injective map u : i∗

pH−1i∗K → i∗Ψ
u
fj
∗K,

and an map Coker(u) → Coker(δ ⊕ adj), which is also injective by the snake lemma. But
we have seen that the map i∗Ψu

fj
∗K → Ξfj

∗K ⊕ K → Coker(δ ⊕ adj) sends i∗Ψu
fj
∗K to

i∗Φ
u
fK and induces the map can, so we get a factorization i∗Ψu

fj
∗K � Coker(u) ↪→ i∗Φ

u
fK

of i∗ can, hence an isomorphism Ker(i∗ can) ' Im(u) ' i∗
pH−1i∗K.

We denote the maps in C•(K) by d−1 and d0. As ε : Ξfj
∗K → j∗j

∗K is surjective,
applying the snake lemma to the following diagram with exact rows

0 //

��

Ξfj
∗K ⊕K

ε+idK
��

Ξfj
∗K ⊕K

d0

��

// 0

0 // K
(0,idK)

// j∗j
∗K ⊕K pr1

// j∗j
∗K // 0

gives an exact sequence

0→ i∗Ψ
u
fj
∗K → Ker(d0)→ K → 0.

Moreover, the composition i∗Ψu
fj
∗K → Ker(d0)→ i∗Φ

u
fK is the map i∗ can, by definition of

can.
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Consider the commutative diagram with exact columns :

0

��
j!j
∗K

d0

��

j!j
∗K

adj

��
Ker(d0) //

��

K //

��

0

i∗Φ
u
fK

��

v // i∗
pH0i∗K

��
0 0

It induces a surjection v : i∗Φ
u
fK → i∗

pH0i∗K, and so the map

i∗Ψ
u
fj
∗K = Ker(Ker(d0)→ K)→ Ker(v)

is an isomorphism, and it identifies i∗pH0i∗K with i∗Coker(can).

�

7 The functor Ωf

This is inspired by a similar construction of Morihiko Saito in the case of mixed Hodge mod-
ules.

Definition 7.1 Let Ωf : Perv(X) → Perv(X) be the functor sending K to
Ker(ε+ adj : Ξfj

∗K ⊕K → j∗j
∗K).

As ε + adj is surjective, we can also think of Ωf as the functor Perv(X) → Db Perv(X)
sendingK to the complex Ξfj

∗K⊕K → j∗j
∗K. In particular, we have functorial morphisms

Ωf → i∗Φ
u
f and Ωf → C•, whereC• : Perv(X)→ Db Perv(X) is the functorK 7−→ C•(K).

By definition of Φu
f and by the calculations of the previous section, we get two functorial

exact sequences
0→ j!j

∗ δ−adj→ Ωf → i∗Φ
u
f → 0

and
0→ i∗Ψ

u
fj
∗ → Ωf → idPerv(X) → 0.

The first exact sequence gives an isomorphism i∗Ωf
∼→ Φu

f , which, combined with the second
exact sequence, gives a quasi-isomorphism (Ψu

fj
∗ can→ Φu

f ) → i∗ (the source is seen as a
complex concentrated in degrees −1 and 0).
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Corollary 7.2 The functor Φfj! : Perv(U)→ Perv(Y ) is canonically isomorphic to Ψu
f , and

this induces a functorial exact sequence

0→ Ψu
f → Φu

fΞf → Ψu
f (−1)→ 0.

Proof. We get the isomorphism by applying the quasi-isomorphism (Ψu
fj
∗ can→ Φu

f ) → i∗

above to j!, and the exact sequence by applying Φu
f to the exact sequence

0→ j! → Ξf → i∗Ψ
u
f (−1)→ 0 of proposition 5.1.

�

8 Gluing

We keep the situation of section 6. We consider the category GD(X) of gluing data of X ,
whose objects are quadruples (KU , KY , u, v), with :

- KU ∈ Perv(U);

- KY ∈ Perv(Y );

- u : Ψu
fKU → KY ;

- v : KY → Ψu
fKU(−1),

such that vu = N : Ψu
fKU → Ψu

fKU(−1). Morphisms from (KU , KY , u, v) to
(K ′U , K

′
Y , u

′, v′) are couples of morphisms (KU → K ′U , KY → K ′Y ) that make the obvious
diagrams commute.

We define a functor F : Perv(X) → GD(X) by sending K ∈ Perv(X) to
(j∗K,Φu

fK, can, var). We define a functor G : GD(X) → Perv(X) by sending
c = (KU , KV , u, v) to H0(D•(c)), where D•(c) is the complex

i∗Ψ
u
fKU

α→ ΞfKU ⊕ i∗KY
β→ i∗Ψ

u
fKU(−1)

with i∗Ψu
fKU in degree −1, α equal to the sum of the canonical injection i∗Ψu

fKU → ΞfKU

and of u, and β equal to the difference of the canonical surjection ΞfKU → i∗Ψ
u
fKU(−1) and

of v. Note that α is injective and β is surjective.

We can now state the main theorem of these note.

Theorem 8.1 The functors F and G are equivalences quasi-inverse to each other.

Proof. We show that F ◦G ' idGD(X). Let c = (KU , KY , u, v) be an object ofGD(X). Write
K = G(c) and (LU , LY , w, x) = F (K). Remember also the exact sequence

0→ Ψu
fKU

a→ Φu
fΞfKU

b→ Ψu
fKU(−1)→ 0
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of corollary 7.2. We have
j∗D•(c) = (0→ KU ⊕ 0→ 0),

so we get a canonical isomorphism LU = KU . On the other hand,

Φu
fD
•(c) = (Ψu

fKU
a+u→ Φu

fΞfKU ⊕KY
b−v→ Ψu

fKU(−1)),

so LY = Φu
fH

0D•(c) = H0Φu
fD
•(c) = KY , and this identifies u and w (resp. v and x).

Now let’s show thatG◦F ' idPerv(X). Let c = F (K) and L = G(c). Then L isH0(D•(c)),
with

D•(c) = (i∗Ψ
u
fj
∗K

α→ Ξfj
∗K ⊕ i∗ΦfK

β→ i∗Ψ
u
fj
∗K(−1)).

Applying the snake lemma to the commutative diagram (with exact rows)

0 // ΩfK //

γ

��

Ξfj
∗K ⊕ ΩfK

pr1 //

��

Ξfj
∗K //

��

0

0 // Ker β // Ξfj
∗K ⊕ i∗Φu

fK β
// i∗Ψ

u
fj
∗K(−1) // 0

where γ is induced by the middle vertical map, we get an exact sequence

0→ Ker(γ)→ j!j
∗K

id→ j!j
∗K → Coker(γ)→ 0.

Hence γ : ΩfK → Ker(β) is an isomorphism. By the second exact sequence of section 7,
the cokernel of α : i∗Ψ

u
fj
∗K → Ker(β) is thus identified with K, and this gives the desired

isomorphism K = L.

�
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