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Conventions :

- Every ring is commutative.

- N is the set of nonnegative integers.
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I The valuation spectrum

I.1 Valuations

I.1.1 Valuations and valuation rings

Notation I.1.1.1. If R is a local ring, we denote its maximal ideal by mR.

Definition I.1.1.2. If A ⊂ B are local rings, we say that B dominates A if mA ⊂ mB (which is
equivalent to mA = A ∩mB).

Remark I.1.1.3. If K is a field, domination is an order relation on local subrings of K.

Proposition I.1.1.4. Let K be a field and R ⊂ K be a subring. The following are equivalent :

(a) R is local and it is maximal for the relation of domination (amnog local subrings of K);

(b) for every x ∈ K×, we have x ∈ R or x−1 ∈ R;

(c) Frac(R) = K, and the set of ideals of R is totally ordered for inclusion;

(c) Frac(R) = K, and the set of principal ideals of R is totally ordered for inclusion.

If these conditions are satisfied, we say that R is a valuation subring of K.

Remark I.1.1.5. We use the convention that K is a valuation subring of itself.

Now we define valuations.

Definition I.1.1.6. An ordered abelian group is an abelian group (Γ,+) with an order relation
≤ such that for all a, b, c ∈ Γ, a ≤ b⇒ a+ c ≤ b+ c.

We will only be interested in totally ordered abelian groups. Here are some examples.

Example I.1.1.7. - (R,+) with its usual order relation; more generally, any subgroup of
(R,+), for example (Z,+).

- (R>0,×) with its usual order relation. Note that this is isomorphic (as an ordered group)
to (R,+) by the map log.

- (R × R,+) with the lexicographic order; more generally, (Rn,+) with the lexicographic
order, for any positive integer n.
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I The valuation spectrum

Remark I.1.1.8. Let (Γ,×) be a totally ordered abelian group .

(1) Γ is torsionfree : Indeed, if γ ∈ Γ is a torsion element, then there is some positive integer
n such that γn = 1. If γ ≤ 1, then 1 ≤ γ ≤ γn = 1, so γ = 1. If γ ≤ 1, then
1 ≥ γ ≥ γ2 = 1, so γ = 1.

(2) Suppose that Γ is not the trivial group. Then, for every γ ∈ Γ, there exists γ′ ∈ Γ such
that γ′ < γ. Indeed, if γ > 1 then γ−1 < γ, if γ < 1 then γ2 < γ, and if γ = 1 then there
exists some δ ∈ Γ− {1} (because Γ is not trivial), and then either δ < 1 or δ−1 < 1.

Notation I.1.1.9. Let Γ be a totally ordered abelian group . We will want to add an element to Γ
that is bigger or smaller than all the elements of Γ. More precisely :

(a) If the group law of Γ is written additively, we denote the unit element of Γ by 0, and we
write Γ ∪ {∞} for the union of Γ and of an element∞, and we extend + and ≤ to this set
by the following rules : for every a ∈ Γ,

• a+∞ =∞+ a =∞;

• a ≤ ∞.

(b) If the group law of Γ is written multiplicatively, we denote the unit element of Γ by 1, and
we write Γ ∪ {0} for the union of Γ and of an element 0, and we extend × and ≤ to this
set by the following rules : for every a ∈ Γ,

• a× 0 = 0× a = 0;

• 0 ≤ a.

Definition I.1.1.10. Let R be a ring.

(i) An additive valuation on R is a map v : R → Γ ∪ {∞}, where (Γ,+) is a totally ordered
abelian group , satisfying the following conditions :

• v(0) =∞, v(1) = 0;

• ∀x, y ∈ R, v(xy) = v(x) + v(y);

• ∀x, y ∈ R, v(x+ y) ≥ min(v(x), v(y)).

The value group of v is the subgroup of Γ generated by Γ ∩ v(R). The kernel (or support)
of v is Ker(v) = {x ∈ R | v(x) =∞}; it is a prime ideal of R.

(ii) A multiplicative valuation (or non-Archimedean absolute value) on R is a map
|.| : R → Γ ∪ {0}, where (Γ,×) is a totally ordered abelian group , satisfying the fol-
lowing conditions :

• |0| = 0, |1| = 1;

• ∀x, y ∈ R, |xy| = |x||y|;

• ∀x, y ∈ R, |x+ y| ≤ max(|x|, |y|).

8



I.1 Valuations

The value group of |.| is the subgroup of Γ generated by Γ ∩ |R|. The kernel (or support)
of |.| is Ker(|.|) = {x ∈ R | |x| = 0}; it is a prime ideal of R.

Remark I.1.1.11. Of course, whether we write the group law of a given totally ordered
abelian group Γ additively or multiplicatively is an arbitrary choice. Fix Γ. Note that a map
v : R → Γ ∪ {∞} is an additive valuation if and only if −v is a multiplicative valuation (with
the obvious convention that minus the biggest element is a new smallest element). This is a
bit unfortunate, as both expressions “additive valuation” and “multiplicative valuation” are often
shortened to “valuation”, but hopefully the meaning is always clear from context. Modulo this
sign issue, both definitions are equivalent, and the notions of value group and kernel are the same
on both sides.

In these notes, we will eventually take all valuations to be multiplicative (as this is the usual
convention for adic spaces), and “valuation” will mean “multiplicative valuation”. Note however
that some commutative algebra references, Matsumura’s [21] or Bourbaki’s [5] for example, use
additive valuations.

Example I.1.1.12. (1) Let Γ = ({1},×). Suppose that R is an integral domain. Then there
is a valuation |.|triv : R → Γ ∪ {0}, called the trivial valuation, defined by : |0| = 0 and
|x| = 1 for every x 6= 0. Its value group is {1} and its kernel is {0}.

(2) More generally, ifR is a ring and ℘ is a prime ideal ofR, then composing the quotient map
R → R/℘ with the trivial valuation on R/℘ gives a valuation on R with value group {1}
and kernel ℘. We call this the trivial valuation on R with kernel ℘. We will often denote it
by |.|℘,triv.

(3) For every prime number `, the usual `-adic valuation v` : Q → Z ∪ {∞} is an additive
valuation on Q (and on all its subrings), and the `-adic absolute value |.|` : Q → R≥0 is a
multiplicative valuation on Q. They are related by |.|` = `−v` , and for our purposes they
are interchangeable.

(4) By Ostrowski’s theorem, every nontrivial valuation on Q is of the form |.|s` , for some prime
number ` and some s ∈ R>0. It is easy to deduce from this that the valuations on Z are the
trivial valuation, the valuation described in point (2) (one for each prime number `), and
the valuation |.|s` , for ` a prime number and s ∈ R>0.

Definition I.1.1.13. Let R be a ring and |.|1, |.|2 be two valuations on R. We denote by Γ1

and Γ2 their respective value groups. We say that |.|1 and |.|2 are equivalent if there exists an
isomorphism of ordered groups ϕ : Γ1

∼→ Γ2 such that ϕ ◦ |.|1 = |.|2 (with the convention that
ϕ(0) = 0).

We compare the notions of valuations on a field and of valuation subrings of this field.

Proposition I.1.1.14. Let K be a field.

(i) If v : K → Γ ∪ {0} is a valuation, then R := {x ∈ K | |x| ≤ 1} is a valuation subring of
K, and its maximal ideal is given by the formula mR = {x ∈ K | |x| < 1}.
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I The valuation spectrum

(ii) LetR be a valuation subring of K. Let Γ = K×/R×; for a, b ∈ K×, we write aR× ≤ bR×

if ab−1 ∈ R. Then this makes Γ into a totally ordered abelian group , and the map
|.| : K → Γ ∪ {0} defined by |0| = 0 and |a| = aR× if a 6= 0 is a valuation on K.

(iii) The constructions of (i) and (ii) induce inverse bijections between the set of valuation
subrings of K and the set of equivalence classes of valuations on K.

Notation I.1.1.15. IfK is a field andR ⊂ K is a valuation subring, we denote by ΓR = K×/R×

the value group of the corresponding valuation on K, and we call it the value group of R. We
also denote by |.|R : K → ΓR ∪ {0} the valuation defined by R.

Example I.1.1.16. The valuation subring of Q corresponding to the `-adic absolute value |.|` is
Z(`), with maximal ideal `Z(`).

I.1.2 Some properties of valuations and valuation rings

Proposition I.1.2.1. Let K be a field and R ⊂ K be a valuation subring. Then :

(i) R is integrally closed in K.

(ii) Every finitely generated ideal of R is principal (in other words, R is a Bézout domain).

(iii) If I ⊂ R is a finitely generated ideal, then ℘ =
√
I is a prime ideal of R, and it is minimal

among prime ideals of R containing I .

Theorem I.1.2.2. Let K be a field and A be a subring of K.

(i) ([21] Theorem 10.2) Let ℘ be a prime ideal of A. Then there exists a valuation subring
R ⊃ A of K such that ℘ = A ∩mR.

(ii) ([21] Theorem 10.4) Let B be the integral closure of A in K. Then B is the intersection of
all the valuation subrings of K containing A.

Proposition I.1.2.3. ([5] §2 No3 prop. 1 and prop. 2, and No4 prop. 4.) Let K be a field,
|.| : K → Γ ∪ {0} be a multiplicative valuation and K ′ be an extension of K. Then there exists
a multiplicative valuation |.|′ : K ′ → Γ′ ∪ {0} such that |.|′|K is equivalent to |.|.

Moreover, if x1, . . . , xn ∈ K ′ are algebraically independent over K and γ1, . . . , γn ∈ Γ, then
we can find such a |.|′ such that |xi|′ = γi for every i ∈ {1, . . . , n}.
Corollary I.1.2.4. (Proposition 2.25 of [26].) Let K ′/K be a field extension, let R′ be a valu-
ation subring of K ′, and set R = K ∩ R′. Then R is a valuation subring of K, and the map
S ′ 7−→ K ∩ S ′ induces surjections

{valuation subrings R′ ⊂ S ′ ⊂ K ′} → {valuation subrings R ⊂ S ⊂ K}

and
{valuation subrings S ′ ⊂ R′ ⊂ K ′} → {valuation subrings S ⊂ R ⊂ K}.

Moreover, if the extension K ′/K is algebraic, then these surjections are actually bijections.
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I.1 Valuations

I.1.3 Rank of a valuation

We first define the height of a totally ordered abelian group Γ.

Definition I.1.3.1. ([5] §4 No2 Définition 1 p. 108) Let Γ be a totally ordered abelian group . A
convex subgroup (or isolated subgroup) of Γ is a subgroup ∆ of Γ such that, for all a, b, c ∈ Γ,
if a ≤ b ≤ c and a, c ∈ ∆, then b ∈ ∆.

Remark I.1.3.2. The condition in definition I.1.3.1 is also equivalent to the following condition
(using additive conventions for Γ) : (*) for all a, b ∈ Γ such that 0 ≤ a ≤ b, if b ∈ ∆, then a ∈ ∆.
Indeed, the condition of definition I.1.3.1 is obviously stronger than (*). Conversely, suppose that
∆ satisfies (*), and let a, b, c ∈ Γ such that a ≤ b ≤ c and a, c ∈ ∆; then 0 ≤ b− a ≤ c− a and
c− a ∈ ∆, so b− a ∈ ∆ by (*), hence b = (b− a) + a ∈ ∆.

Example I.1.3.3. (1) {0} and Γ are convex subgroups of Γ.

(2) If Γ = R× R with the lexicogrpahic order, then {0} × R is a convex subgroup of Γ.

Proposition I.1.3.4. ([5] §4 No4 p. 110) The set of all convex subgroups of Γ, ordered by inclu-
sion, is a well-ordered set. Its ordinal is called the height of Γ and denoted by ht(Γ).

Example I.1.3.5. (1) If ht(Γ) = 0, then Γ has only one convex subgroup. As {0} and Γ are
always convex subgroups, this means that Γ is the trivial group.

(2) The condition ht(Γ) = 1 means that Γ is nontrivial and that the only convex subgroups of
Γ are the trivial subgroup and Γ itself. For example, if Γ is a nontrivial subgroup of (R,+),
then Γ has height 1. (We will see in proposition I.1.3.6 that the converse is true.)

(3) Γ = Rn (with the lexicographic order) has height n. (See proposition I.1.4.1.)

In these notes, we mostly care about the distinction “height ≤ 1” versus “height > 1”.

Proposition I.1.3.6. ([21] Theorem 10.6 or [5] §4 No5 proposition 8 p. 112) Let (Γ,+) be a
nontrivial totally ordered abelian group . The following are equivalent :

(i) ht(Γ) = 1;

(ii) for all a, b ∈ Γ such that a > 0 and b ≥ 0, there exists n ∈ N such that b ≤ na;

(iii) there exists an injective morphism of ordered groups Γ→ (R,+).

Proof.

(i)⇒(ii) Consider the smallest convex subgroup ∆ of Γ containing a. Condition (i) means that
∆ = {0} or ∆ = Γ, so ∆ = Γ. This obviously implies (ii).
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I The valuation spectrum

(ii)⇒(iii) We will just indicate the construction of the map ϕ : Γ → R. Fix some a ∈ Γ such that
a > 0. Let b ∈ Γ, and let n0 = min{n ∈ Z | na ≤ b} (this makes sense by (ii)) and
b1 = b − n0a. We define sequences (ni)i≥1 of N and (bi)i≥1 of Γ by induction on i in
the following way : Suppose that we have defined b1, . . . , bi and n1, . . . , ni−1, for some
i ≥ 1. Then we set ni = min{n ∈ N | nia ≤ 10bi} and bi+1 = 10bi − nia. Then we take
ϕ(b) = n0 +

∑
i≥1 ni10−i.

Definition I.1.3.7. The rank of a valuation (resp. of a valuation ring) if the height of its value
group.

I.1.4 Comparing valuation subrings of a field

Proposition I.1.4.1. ([5] §4 No2 proposition 3 p. 108 and §4 No4 Exemples p. 111) Let Γ be a
totally ordered abelian group .

(i) If ϕ : Γ→ Γ′ is a morphism of ordered groups, then Kerϕ is a convex subgroup of Γ.

(ii) Let ∆ be a convex subgroup of Γ. We define a relation ≤ on Γ/∆ in the following way : if
c, c′ ∈ Γ/∆, then c ≤ c′ if and only if there exists x ∈ c and x′ ∈ c′ such that x ≤ x′ in Γ.
Then this makes Γ/∆ into an ordered group (necessarily totally ordered) if and only if ∆
is a convex subgroup.

(iii) In the situation of (ii), we have ht(Γ) = ht(∆) + ht(Γ/∆).

Theorem I.1.4.2. ([21] theorem 10.1 or [5] §4 No1 p. 106) Let K be a field.

(i) Let B ⊂ A ⊂ K be two subrings of K, and suppose that B is a valuation subring of K.
Then :

(a) A is also a valuation subring of K.

(b) mA ⊂ mB, with equality if and only if A = B.

(c) mA is a prime ideal of B, and we have A = BmA
.

(d) B/mA is a valuation subring of the field A/mA.

(ii) Conversely, let A ⊂ K be a valuation subring, let B be a valuation subring of A/mA,
and denote by B the inverse image of B in A. Then B is a valuation subring of K (in
particular, K = Frac(B)), its maximal ideal is the inverse image of the maximal ideal of
B, and we have an exact sequence of ordered groups :

1→ ΓB → ΓB → ΓA → 1,

where the maps ΓB = (A/mA)×/(B/mA)× ' A×/B× → ΓB = K×/B× and
ΓB = K×/B× → ΓA = K×/A× are the obvious ones.

12



I.1 Valuations

Example I.1.4.3. Take K = k((u))((t)) and A = k((u))[[t]] (the valuation subring correspond-
ing to the t-adic valuation on K). Then A/mA = k((u)) has the u-adic valuation, and the
corresponding valuation subring is B = k[[u]]. Its inverse image in A is

B = {f =
∑
n≥0

fnt
n ∈ k((u))[[t]] | f0 ∈ k[[u]]}.

This is a valuation subring of rank 2 of K, and its value group is Z × Z (with the lexicographic
order).

Corollary I.1.4.4. ([5] §4 No1 proposition 1 p. 106 and §4 No3 proposition 4 p. 109) Let K be
a field and B ⊂ K be a valuation subring.

(i) The map ℘ 7−→ B℘ is an order-reversing bijection from the set of prime ideals of B to the
set of subrings of K containing B; its inverse is A 7−→ mA.

(ii) The map A 7−→ Ker(ΓB → ΓA) is an order-preserving bijection from the set of subrings
A ⊃ B of K to the set of convex subgroups of ΓB. Its inverse sends a convex subgroup H
of ΓB to the subring A := B℘, where ℘ = {x ∈ B | ∀δ ∈ H, |x|B < δ}.

Corollary I.1.4.5. Let K be a field and R ⊂ K be a valuation subring. Then the rank of R is
equal to the Krull dimension of R.

Corollary I.1.4.6. ([5] §4 No5 proposition 6 p. 111) Let K be a field and R ⊂ K be a valuation
subring. Then R has rank 1 if and only if it is maximal among all the subrings of K distinct from
K.

Note also the following result :

Proposition I.1.4.7. ([5] §3 No6 proposition 9 p. 105) LetK be a field andR ⊂ K be a valuation
subring. The following are equivalent :

(i) R is a principal ideal domain.

(ii) R is Noetherian.

(iii) The ordered group ΓR is isomorphic to (Z,+,≤).

(iv) The ideal mR is principal and
⋂
n≥0 Rn = (0).

If these conditions are satisfied, we say that R is a discrete valuation ring and that the corre-
sponding valuation on K is discrete.

I.1.5 Valuation topology and microbial valuations

Definition I.1.5.1. Let R be a ring and |.| : R → Γ ∪ {0} be a valuation on R. The
valuation topology on R associated to |.| is the topology given by the base of open subsets
B(a, γ) = {x ∈ R | |x− a| < γ}, for a ∈ R and γ ∈ Γ.

13



I The valuation spectrum

This makes R into a topological ring, and the map |.| is continuous if we put the discrete
topology on Γ ∪ {0}. (See [5] §5 No1 for the case of a field, the general case is similar.)

Remark I.1.5.2. Let R and |.| be as in definition I.1.5.1.

(1) The valuation topology is Hausdorff if and only Ker |.| = {0} (which implies that R is a
domain).

(2) If the value group of |.| is trivial, then the valuation topology is the discrete topology.

(3) For every a ∈ R and every γ ∈ Γ, let B(a, γ) = {x ∈ R | |x − a| ≤ γ}. This
is an open subset in the valuation topology; indeed, for every x ∈ B(a, γ), we have
B(x, γ) ⊂ B(a, γ).

Suppose that the value group of |.| is not trivial. Then the sets B(a, γ) also form a
base of the valuation topology. Indeed, for every a ∈ R and every γ ∈ Γ, we have
B(a, γ) =

⋃
δ<γ B(a, δ). (This uses remark I.1.1.8(2), and it is not true in general if the

value group is trivial, as then all the sets B(a, γ) are equal to R, so they cannot form a base
of the discrete topology unless R = {0}.)

Definition I.1.5.3. Let R be a topological ring. An element x ∈ R is called topologically
nilpotent if 0 is a limit of the sequence (xn)n≥0

Theorem I.1.5.4. Let K be a field, let |.| : K → Γ ∪ {0} be a valuation, and let R be the
corresponding valuation ring. We put the valuation topology on K.

Then the following are equivalent :

(i) The topology on K coincides with the valuation topology defined by a rank 1 valuation on
K.

(ii) There exists a nonzero topologically nilpotent element in K.

(iii) R has a prime ideal of height 1.1

If these conditions are satisfied, we say that the valuation |.| is microbial. Moreover, if the
valuation is microbial, then :

(a) If $ ∈ K× is topologically nilpotent, we have K = R[$−1], and, if $ ∈ R, then the
subspace topology on R coincides with the $R-adic topology and also with the $-adic
topology.

(b) If ℘ is a prime ideal of height 1 of R, then the valuation subring R℘ has rank 1, and the
corresponding valuation defines the same topology as |.|.

Note that, as the ideals of R are totally ordered by inclusion, R has at most one prime ideal of
height 1.

1That is, a prime ideal that is minimal among the set of nonzero prime ideals of R.
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I.1 Valuations

Example I.1.5.5. We use the notation of example I.1.4.3. We claim that the valuation subrings
A and B define the same topology on K = k((u))((t)). Indeed, the valuation corresponding to
A is the t-adic valuation, which has rank 1, so we can try to apply theorem I.1.5.4 toB. We know
that B has Krull dimension 2, so any prime ideal that is neither (0) not maximal has height 1;
this is the case for I := tB, which is prime and not maximal because B/I = k[[u]] by definition
of B. Also, we see easily that I = mA, so we are done by point (b) of the theorem.

Lemma I.1.5.6. Let K be a field and |.| be a valuation on K with valuation ring R. Then R and
mR are open for the valuation topology.

Proof. In the notation of definition I.1.5.1 and remark I.1.5.2, we have R = B(0, 1) and
mR = B(0, 1).

Lemma I.1.5.7. Let R be a ring and |.| be a valuation on R. If x ∈ R is topologically nilpotent
for the valuation topology, then |x| < 1. If moreover |.| has rank 1, then the converse is true.

Proof. Suppose that |x| ≥ 1. Then, for every integer n ≥ 1, we have |xn| ≥ 1, so xn 6∈ B(0, 1),
which implies that 0 is not a limit of the sequence (xn)n≥0.

Conversely, suppose that the valuation has rank 1 and that |x| < 1. Let Γ be the value group
of |.|, and let γ = |x|−1 > 1. Let δ ∈ Γ. By proposition I.1.3.6, there exists n ∈ N such that
δ−1 < γm for every m ≥ n, and then we have : for every m ≥ n, |xm| = γ−m < δ, that is,
xm ∈ B(0, δ). This shows that 0 is a limit of the sequence (xn)n≥0.

Remark I.1.5.8. The converse in lemma I.1.5.7 is not true for a valuation of rank > 1.

For example, take K = k((u))((t)) with the rank 2 valuation defined by the valuation ring B
of example I.1.4.3. Then u ∈ mB so it has valuation < 1, but it is not topologically nilpotent.
Indeed, by example I.1.5.5, the valuation topology on K coincides with the the t-adic topology,
and the sequence (un)n≥0 does not tend to 0 in the t-adic topology.

Lemma I.1.5.9. Let K be a field and |.| be a valuation on K with valuation ring R. If $ ∈ K×
is topologically nilpotent for the valuation topology, then K = R[$−1]. Moreover, there exists a
positive integer r such that $r ∈ R (or even $n ∈ mR), and then the subspace topology on R
coincides with the $rR-adic topology.

Proof. By lemma I.1.5.6,R and mR are open neighborhoods of 0 inK. As the sequence ($n)n≥0

converges to 0, we have $n ∈ mR for n big enough. So we may assume that $ ∈ R.

We first show that K = R[$−1]. Let x ∈ K. We want to prove that x$n ∈ R for n big
enough. This is obvious if x = 0, so we may assume x 6= 0. By definition of R, we have
x$n ∈ R if and only if |x$n| ≤ 1, i.e. if and only if |$n| ≤ |x|−1. As $ is topologically
nilpotent, we have $n ∈ B(0, |x|−1) for n big enough, which implies the desired result.

15



I The valuation spectrum

Now we prove that the subspace topology on R is the $R-adic topology. First, as $ ∈ K×,
multiplication by $ is a homeomorphism of K. So the subsets $nR are open for every n ∈ Z.
It remains to show that the family ($nR)n≥0 is a basis of neighborhoods of 0. Let γ ∈ Γ, where
γ is the value group of |.|. We want to find some n ≥ 0 such that $nR ⊂ B(0, γ). Let n ∈ N.
Then $nR ⊂ B(0, γ) if and only if, for every a ∈ R, |a$n| < γ. As every a ∈ R has valuation
≤ 1, this will hold if |$n| < γ. But $n → 0 as n→ +∞, so |$n| < γ for n big enough.

Proof of theorem I.1.5.4. Note that point (a) follows from lemma I.1.5.9.

(i)⇒(ii) Let |.|′ be a rank 1 valuation on K defining the same topology as |.|. Then any x ∈ K×
with |x|′ < 1 is topologically nilpotent by lemma I.1.5.7. (Such an element exists because
the value group of |.|′ has rank 1, so it is not trivial, so it at least one element < 1, and this
element must be the image of a nonzero element of K.)

(ii)⇒(iii) Let $ ∈ K× be a topologically nilpotent element. By lemma I.1.5.9, we may assume that
$ ∈ mR, and the subspace topology on R is the I-adic topology, where I = $R. Let
℘ =
√
I . By proposition I.1.2.1, ℘ is the smallest prime ideal of R containing I . We show

that ℘ has height 1. Let q ( ℘ be another prime ideal of R; we want to show that q = (0).
Note that q does not contain I (otherwise it would contain ℘), and so $ 6∈ q. As the ideals
of R are totally ordered by inclusion (see proposition I.1.1.4, we must have q ⊂ I . We
show by induction on n that q ⊂ In for every n ≥ 1 :

• We just did the case n = 1.

• Suppose that q ⊂ In = $nR. Let x ∈ q. As q ⊂ $R, we can write x = $y,
with y ∈ R. As q is prime and $ 6∈ q, this implies that y ∈ q, and so
x = $y ∈ $In = In+1.

But we have seen that the topology onR is the I-adic topology, and it is Hausdorff because
Ker |.| = {0} (remember that Ker |.| is an ideal of K). So

⋂
n≥1 I

n = (0), and q = (0).

(iii)⇒(i) Let ℘ be a height 1 prime ideal of R, and let R′ = R℘. Then R′ is also a valuation subring
of R. Also, the Krull dimension of R′ is the height of ℘, i.e. 1, so the rank of the valuation
corresponding to R′ is 1 by corollary I.1.4.5. So we need to show that the valuation topol-
ogy corresponding to R′ coincides with the valuation topology corresponding to R (this
will also prove point (b)). Let |.| (resp. |.|′) be the valuation corresponding to R (res. R′),
and Γ = K×/R× (resp. Γ′ = K×/R′×) be its value. We denote the obvious projection
Γ → Γ′ by π; this is order-preserving by theorem I.1.4.2(ii). Note that Γ is not trivial
(because R has a prime ideal of height 1, so it cannot be equal to K).

Let a ∈ R and γ ∈ Γ. If |x−a| ≤ γ, then |x−a|′ ≤ π(γ) (because π is order-preserving).
So

B(a, γ) ⊂ {x ∈ R | |x− a|′ ≤ π(γ)}.

16
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Also, if |x− a| ≥ γ, then |x− a|′ ≥ π(γ). So

B(a, γ) ⊃ {x ∈ R | |x− a|′ < π(γ)}.

Thanks to remark I.1.5.2(3), this implies that the two valuation topologies on K are equal.

I.1.6 The Riemann-Zariski space of a field

This is a simple example of valuation spectrum, and it will also be useful to understand the
general case.

Let K be a field and A ⊂ K be a subring.

Definition I.1.6.1. We say that a valuation subring R ⊂ K has a center in A if A ⊂ R; in that
case, the center of R in A is the prime ideal A ∩mR of A.

Definition I.1.6.2. The Riemann-Zariski space of K over A is the set RZ(K,A) of valuation
subrings R ⊃ A of K. We put the topology on it with the following base of open subsets
(sometimes called Zariski topology) : the sets

U(x1, . . . , xn) = RZ(K,A[x1, . . . , xn]) = {R ∈ RZ(K,A) | x1, . . . , xn ∈ R},

for x1, . . . , xn ∈ K. (If |.| is the valuation on K corresponding to R, the condition that R ⊃ A
becomes |a| ≤ 1 for every a ∈ A, and the condition that R ∈ RZ(K,A) becomes |xi| ≤ 1 for
1 ≤ i ≤ n.)

If A is the image of Z, we write RZ(K,Z) = RZ(K) and we call it the Riemann-Zariski
space of K; this is the set of all valuation subrings of K.

Note that U(x1, . . . , xn) ∩ U(y1, . . . , ym) = U(x1, . . . , xn, y1, . . . , ym), so this does define a
topology on RZ(K,A).

Example I.1.6.3. Let k be a field,X/k be a smooth projective geometrically connected curve and
K be the function field of X . Then RZ(K, k) is canonically isomorphic to X as a topological
space.

More generally, if K/k is a finitely generated field extension, then RZ(K, k) is isomorphic
(as a topological space) to the inverse limit of all the projective integral k-schemes with function
field K.

See also example I.2.1.6 for a description of RZ(Q).

Remark I.1.6.4. Let R,R′ ∈ RZ(K,A). Then R is a specialization of R′ in RZ(K,A) (i.e. R is
in the closure of {R′}) if and only if R ⊂ R′.

Indeed, R is a specialization of R′ if and only every open set of RZ(K,A) that contains R
also contains R′. This means that, for all a1, . . . , an ∈ K such that a1, . . . , an ∈ R, we must also
have a1, . . . , an ∈ R′, so it is equivalent to the fact that R ⊂ R′.
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Here is a particular case of the topological results to come.

Proposition I.1.6.5. ([21] theorem 10.5) RZ(K,A) is quasi-compact.

Proof. We write X = RZ(K,A). Let A be a family of closed subsets of X having the finite
intersection property. We must show that

⋂
F∈A F 6= ∅. Using Zorn’s lemma, we can replace

with a family of closed subsets of X having the finite intersection property and maximal among
all families of closed subsets of X having the finite intersection property. Then the following
hold (otherwise, we could enlarge A without losing the finite intersection property) :

(a) if F1, . . . , Fr ∈ A , then F1 ∩ . . . ∩ Fr ∈ A ;

(b) if Z1, . . . , Zr are closed subsets of X and Z1 ∪ . . .∪Zr ∈ A , then at least one of the Zi is
in A ;

(c) if F ∈ A and Z ⊃ F is a closed subset of X , then Z ∈ A .

We claim that ⋂
F∈A

F =
⋂

a∈K|X−U(a)∈A

(X − U(a)).

Indeed, it is obvious that the right hand side is contained in the left hand side. Conversely, let
x ∈ X , and suppose that x 6∈

⋂
F∈A F . Then there exists F ∈ A such that x 6∈ F . As X − F is

open, there exists a1, . . . , an ∈ K such that x ∈ U(a1, . . . , an) and U(a1, . . . , an)∩F = ∅. Then
F ⊂ X−U(a1, . . . , an) =

⋃n
i=1(X−U(ai)), so, by (b) and (c), there exists i ∈ {1, . . . , n} such

that X − U(ai) ∈ A . As x ∈ U(a1, . . . , an) ⊂ U(ai), we have x ∈ X − U(ai). This finishes
the proof of the claim.

Now let C = {a ∈ K× | X − U(a−1) ∈ A }. If a point x ∈ X corresponds to a valuation
subring A ⊂ R ⊂ K, then, for every a ∈ K× :

x ∈ X − U(a−1)⇔ a−1 6∈ R⇔ a ∈ mR.

So : ⋂
F∈A

F =
⋂
a∈C

(X − U(a−1)) = {R ∈ RZ(K,A) | mR ⊃ C}.

Let I be the ideal of A[C] generated by C. If 1 ∈ I , then there exist a1, . . . , an ∈ C such
that 1 ∈

∑n
i=1 aiA[C], and then

⋂n
i=1(X − U(a−1

i )) = ∅, which contradicts the fact that A
has the finite intersection property. So 1 6∈ I , hence I is contained in a prime ideal of A, so,
by theorem I.1.2.2(i), there exists a valuation subring A ⊂ R ⊂ K such that I ⊂ mR, and then
R ∈

⋂
F∈A F .
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I.2 The valuation spectrum of a ring

I.2 The valuation spectrum of a ring

I.2.1 Definition

Definition I.2.1.1. Let A be a commutative ring. The valuation spectrum Spv(A) of A is the set
of equivalence classes of valuations on A, equipped for the topology generated by the subsets

U

(
f1, . . . , fn

g

)
= {|.| ∈ Spv(A) | |f1|, . . . , |fn| ≤ |g| 6= 0},

for all f1, . . . , fn, g ∈ A. (Note that this subset is empty if g = 0.)

Note that

U

(
f1, . . . , fn

g

)
∩ U

(
f ′1, . . . , f

′
m

g′

)
= U

(
f1g
′, . . . , fng

′, f ′1g, . . . , f
′
mg

gg′

)
.

In particular, we can use the subsets U
(
f
g

)
, f, g ∈ A, to generate the topology of Spv(A).

Remark I.2.1.2. Let X be the set of pairs (℘,R), where ℘ is a prime ideal of A and R is a
valuation subring of Frac(A/℘). Then Spv(A) and X are naturally in bijection. Indeed, if
(℘,R) ∈ X , then we get a valuation on A by composing the quotient map A → A/℘ with
the valuation on Frac(A/℘) defined by R as in proposition I.1.1.14(ii). Conversely, if |.| is a
valuation on A, then ℘ := Ker |.| is a prime ideal of A, and |.| defines a valuation on the domain
A/℘, hence also on its fraction field; we take for R the valuation subring of that valuation, as in
proposition I.1.1.14(i). It follows easily from proposition I.1.1.14(iii) that these maps are inverse
bijections.

For f1, . . . , fn, g ∈ A, the image of the open subset U
(
f1,...,fn

g

)
by this bijection is

{(℘,R) ∈ X | g 6∈ ℘ and ∀i ∈ {1, . . . , n}, (fi + ℘)(g + ℘)−1 ∈ R},

where (fi + ℘)(g + ℘)−1 is an element of Frac(A/℘) (this makes sense because the image of g
in A/℘ is nonzero by the first condition).

In particular, we get a canonical map supp : Spv(A) → Spec(A) that sends a valuation to its
kernel or support.

Notation I.2.1.3. If x ∈ Spv(A) corresponds to the pair (℘,R), we write ℘x = ℘, Rx = R,
Γx = ΓR, K(x) = Frac(A/℘x), and we denote by |.|x : A → Γx ∪ {0} the composition of
A → A/℘x and of the valuation corresponding to Rx on K(x). For f ∈ A, we often write f(x)
for the image of f in A/℘x, and |f(x)| for the image of f(x) in Γx.

Proposition I.2.1.4. Let A be a commutative ring.
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I The valuation spectrum

(i) If A is a field, then Spv(A) = RZ(A) (as topological spaces).

(ii) In general, the map supp : Spv(A) → Spec(A) is continuous and surjective. For every
℘ ∈ Spec(A), the fiber of this map over ℘ is isomorphic (as a topological space) to
RZ(Frac(A/℘)).

Proof. (i) This is a particular case of (ii).

(ii) For every ℘ ∈ Spec(A), we have (℘,Frac(A/℘)) ∈ supp−1(℘), so supp is surjective.
Next, for every f ∈ A, we have

supp−1(D(f)) = {(℘,R) ∈ Spv(A) | f 6∈ ℘} = U

(
f

f

)
(where D(f) = {℘ ∈ Spec(A) | f 6∈ ℘}), so supp is continuous. Finally, fix
℘ ∈ Spec(A). Then supp−1(℘) = {(℘,R) | R ∈ Frac(A/℘)} is canonically in
bijection with RZ(Frac(A/℘)). Moreover, if f1, . . . , fn, g ∈ A, then the intersection
U
(
f1,...,fn

g

)
∩ supp−1(℘) is empty if g ∈ ℘, and, if g 6∈ ℘, it is equal to

{(℘,R) ∈ supp−1(℘) | (f1 + ℘)(g + ℘)−1, . . . , (fn + ℘)(g + ℘)−1 ∈ R},

which corresponds by the bijection supp−1(℘) ' RZ(Frac(A/℘)) to the open
subset U((f1 + ℘)(g + ℘)−1, . . . , (fn + ℘)(g + ℘)−1). So the bijection
supp−1(℘) ' RZ(Frac(A/℘)) is a homeomorphism.

Remark I.2.1.5. The map supp : Spv(A) → Spec(A) has an obvious section, sending a prime
ideal ℘ of A to the pair (℘,Frac(A/℘)) (in terms of valuations, this is the composition of the
quotient map A → A/℘ and of the trivial valuation on A/℘). This section is also a continuous
map, because the inverse image of the open set U

(
f1,...,fn

g

)
is {℘ ∈ Spec(A) | g 6∈ ℘}, which is

open in Spec(A).

Example I.2.1.6. (1) We have (see example I.1.1.12(4)

Spv(Q) = RZ(Q) = {|.|triv, |.|`, ` ∈ Z prime}.

By remark I.1.6.4, the trivial valuation |.|triv is the generic point of Spv(Q), and each |.|`
is a closed point. In fact, for all f1, . . . , fn, g ∈ Z such that g 6= 0, we have

U

(
f1, . . . , fn

g

)
= {|.|triv} ∪ {|.|`, for ` not dividing g}.

So Spv(Q) is isomorphic to Spec(Z) as a topological space.
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(2) We have
Spv(Z) = Spv(Q) ∪ {|.|`,triv, ` ∈ Z prime},

where |.|`,triv is the composition of Z → Z/`Z and of the trivial valuation on Z/`Z. Note
that Spv(Q) = supp−1((0)) and {|.|`,triv} = supp−1(`Z). The points |.|`,triv are all closed,
we have {|.|`} = {|.|`, |.||ell,triv} (so |.|` specializes to |.|`), and the point |.|triv is generic.

Indeed, note that, for x, y in a topological space X , y specializes to x if and only if ev-
ery open subset of X that contains x also contains y. Let f1, . . . , fn, g ∈ Z, and let
U = U

(
f1,...,fn

g

)
. As U = ∅ if g = 0, we assume that g 6= 0. Then |.|triv is always in U ,

|.|`,triv is in U if and only if g 6∈ `Z and |.|` is in U if and only if f1g
−1, . . . , fng

−1 ∈ Z(`)

(which is automatically true if g 6∈ `Z).

Definition I.2.1.7. Let ϕ : A → B be a morphism of rings. We denote by Spv(ϕ) the map
Spv(B)→ Spv(A), |.| 7−→ |.| ◦ ϕ.

Note that this is a continuous map, because, for all f1, . . . , fn, g ∈ A, we have

Spv(ϕ)−1

(
U

(
f1, . . . , fn

g

))
= U

(
ϕ(f1), . . . , ϕ(fn)

ϕ(g)

)
.

(This follows immediately from the definitions.)

Remark I.2.1.8. We get a commutative square

Spv(B) //

��

Spv(A)

��
Spec(B) // Spec(A)

This square is cartesian if B is a localization or a quotient of A, but not in general.

The goal of this section is to prove that Spv(A) is a spectral space (see definition I.2.2.7) and
that the continuous maps Spv(ϕ) are spectral (i.e. quasi-compact).

We will outline the strategy of the proof. First “remember” that a topological spaceX is called
spectral if it satisfies the following conditions :

(i) X is quasi-compact.

(ii) X has a collection of quasi-compact open subsets that is stable by finite intersections and
generates its topology.

(iii) X is quasi-separated (see definition I.2.2.1(iv)).

(iv) X is T0 (see definition I.2.2.4(v)).

(v) X is sober, that is, every closed irreducible subset of X has a unique generic point.
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We spelled out all these conditions because they are all important, but they are not indepen-
dent; indeed, (iii) follows from (ii) (see remark I.2.2.3(1)) and (iv) follows from (v) (see remark
I.2.2.5).

The main example of a spectral space (and the reason for the name) is Spec(A) with its Zariski
topology, for A a ring.2 We quickly indicate how to check conditions (i), (ii) and (v) in this case
:

(i) Remember that the closed subsets of Spec(A) are the V (I) = {℘ ∈ Spec(A) | I ⊂ ℘},
for I an ideal of A (and that we have a canonical isomorphism V (I) = Spec(A/I)). If
(Ij)j∈J is a family of ideals of A, then

⋂
j∈J

V (Ij) = ∅⇔ 1 ∈
√∑

j∈J

Ij ⇔ 1 ∈
∑
j∈J

Ij,

and this happens if and only if there is a finite subset J ′ of J such that 1 ∈
∑

j∈J ′ Ij . So
Spec(A) is quasi-compact.

(ii) We take as our generating family of open subsets the subsets
D(f1, . . . , fn) := Spec(A) − V ((f1, . . . , fn)), for f1, . . . , fn ∈ A. The fact that
D(f1, . . . , fn) is quasi-compact is proved in example I.2.2.2. (If n = 1, it follows from
the obvious isomorphism D(f) = Spec(A[f−1]).)

(v) It is easy to see that a closed subset V (I) of Spec(A) is irreducible if and only if ℘ :=
√
I

is a prime ideal of A. Then V (I) = V (℘) = Spec(A/℘) has a unique generic point, given
by the prime ideal (0) of A/℘.

In the case of Spv(A), the quasi-compactness is still not too hard to check directly (see propo-
sition I.1.6.5 for a particular case), but we cannot apply the same strategy afterwards : we want
to use the subsets U

(
f1,...,fn

g

)
as our generating family of quasi-compact open subsets, but they

are not isomorphic in general to valuation spectra even when n = 1, and neither are the closed
subsets of Spv(A). Instead, we take a more indirect route that uses the constructible topology of
Spv(A).

If X is a quasi-compact and quasi-separated space, the collection of constructible subsets
of X is the smallest collection of subsets of X that is stable by finite unions, finite intersec-
tions and complements and that contains all quasi-compact open subsets of X . (In general, we
need to replace “quasi-compact” with a different condition called “retrocompact”, see definitions
I.2.2.1(iii) and I.2.3.1). Constructible subsets form the base of a new topology on X , called the
constructible topology, in which quasi-compact open subsets of X are open and closed. The
constructible topology is Hausdorff and quasi-compact if X is spectral (proposition I.2.4.1). The
main technical tool is a partial converse of this result, due to Hochster (theorem I.2.5.1) : If X ′

is a quasi-compact topological space and if U is a collection of open and closed subsets of X ′,

2Indeed, Hochster has proved that every spectral space is homeomorphic to the spectrum of a ring, see theorem 6
in section 7 of [13].

22



I.2 The valuation spectrum of a ring

it gives a criterion for the topology generated by U to be spectral (and then the topology of X ′

will be the corresponding constructible topology).

To apply Hochster’s spectrality criterion to Spv(A), we still need to be able to check its hy-
potheses. The key point is the following (see the proof of theorem I.2.6.1 for details): Each
equivalence class of valuations on A defines a binary relation on A (“divisibility with respect to
the corresponding valuation ring”). This gives an injective map from Spv(A) to the set {0, 1}A×A
of binary relations onA, and if we put the product topology of {0, 1}A×A (which is Hausdorff and
quasi-compact by Tychonoff’s theorem), then this topology induces the constructible topology
on Spv(A) and every set U

(
f1,...,fn

g

)
is open and closed.

I.2.2 Some topological notions

First we fix some vocabulary : Let X be a topological space and U be a collection of open
subsets of X . We say that U is a base of the topology of X if every open subset of X is a union
of elements of U ; we say that U generates the topology of X or that U is a subbase of the
topology of X if the collection of finite intersections of elements of U is a base of the topology
(or, in other words, if the topology of X is the coarsest topology for which all the elements of U
are open subsets).

Definition I.2.2.1. (i) We say that a topological space X is quasi-compact if every open cov-
ering of X has a finite refinement.

(ii) We say that a continuous map f : X → Y is quasi-compact if the inverse image of any
quasi-compact open subset of Y is quasi-compact.

(iii) We say that X is quasi-separated if the diagonal embedding X → X × X is quasi-
compact. This means that, for any quasi-compact open subspaces U and V of X , the
intersection U ∩ V is still quasi-compact.

Example I.2.2.2. Let A be a ring. Then an open subset U of Spec(A) is quasi-compact if and
only if there exists a finitely generated ideal I of A such that U = Spec(A)− V (I).

Indeed, suppose that U = Spec(A)−V (I), with I finitely generated, say I = (f1, . . . , fr). Let
(Ij)j∈J be a family of ideals of A such that U ∩

⋂
j∈J V (Ij) = ∅, that is,

⋂
j∈J V (Ij) ⊂ V (I).

Then I ⊂
√∑

j∈J Ij , so there exists N ≥ 1 such that fN1 , . . . , f
N
r ∈

∑
j∈J Ij . Choose a finite

subset J ′ of J such that fN1 , . . . , f
N
r ∈

∑
j∈J ′ Ij . Then V (I) = V (fN1 , . . . , f

N
r ) ⊃

⋂
j∈J ′ V (Ij),

so U ∩
⋂
j∈J ′ V (Ij) = ∅.

Conversely, suppose that U is quasi-compact, and let I be an ideal of A such that
U = Spec(A) − V (I). We have U =

⋃
f∈I D(f), so, by the quasi-compactness assumption,

there exist f1, . . . , fr ∈ I such that U =
⋃r
i=1D(fi) = Spec(A)− V (f1, . . . , fr).

Remark I.2.2.3. To check that a continuous map f : X → Y is quasi-compact, it suffices to
check that f−1(U) is quasi-compact for U in a base of quasi-compact open subsets of Y . In
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I The valuation spectrum

particular, if the topology of X has a basis of quasi-compact open subsets which is stable by
finite intersections, then X is quasi-separated.

Definition I.2.2.4. Let X be a topological space.

(i) We say that X is irreducible if, whenever X = Y ∪ Z with Y and Z closed subsets of X ,
we have X = Y or X = Z.

(ii) If x, y ∈ X , we say that x is a specialization of y (or that y is a generization3 of x, or that
y specializes to x) if x ∈ {y}.

(iii) We say that a point x ∈ X is closed if {x} is closed.

(iv) We say that a point x ∈ X is generic if {x} is dense in X .

(v) We say that X is a Kolmogorov space (or a T0 space if, for all x 6= y in X , there exists an
open subset U of X such that x ∈ U and y 6∈ U , or that x 6∈ U and y ∈ U .

(vi) We say that X is sober if every irreducible closed subset of X has a unique generic point.

Remark I.2.2.5. A topological space X is T0 if and only every irreducible closed subset of X has
at most one generic point.

Indeed, note that X is T0 if and only, for all x, y ∈ X such that x 6= y, there exists a closed
subset of X that contains exactly one of x and y, which means that x 6∈ {y} or y 6∈ {x}. If X
is T0, let Z be an irreducible closed subset of X and let x, y ∈ Z be two generic points. Then
x ∈ {y} = Z and y ∈ {x} = Z, so x = y. Conversely, suppose that every irreducible closed
subset of X has at most one generic point, and let x, y ∈ X such that x 6= y. As {x} and {y} are
irreducible closed and have distinct generic points, we have {x} 6= {y}. So we have {x} 6⊂ {y},
and then x 6∈ {y}, or we have {y} 6⊂ {x}, and then y 6∈ {x}.

Example I.2.2.6. For every ring, Spv(A) is T0.

Indeed, let x, y ∈ Spv(A) such that x 6= y. If A is a field, then Spv(A) = RZ(A) and
x, y correspond to distinct valuation subrings Rx, Ry ⊂ K. We may assume without loss of
generality that there exists a ∈ Rx − Ry, and then the open subset U(a) of RZ(A) contains x
but not y.

In the general case, we have either supp(x) = supp(y) or supp(x) 6= supp(y). If
supp(x) = supp(y), then x and y are both in the same fiber of supp, which is a Riemann-
Zariski space, and so, by the first case treated above and proposition I.2.1.4(ii), we can find an
open subset of Spv(A) that contains exactly one of x and y. If supp(x) 6= supp(y), as Spec(A)
is T0, we may assume without loss of generality that there exists an open subset U of Spec(A)
such that supp(x) ∈ U and supp(y) 6∈ U . Then supp−1(U) is an open subset of Spv(A) that
contains x and not y.

3EGA says “générisation”, so I translated it as “generization”, but some English-language references (for example
the stacks project) use “generalization”.
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I.2 The valuation spectrum of a ring

Definition I.2.2.7. A topological spaceX is called spectral if it satisfies the following conditions
:

(a) X is quasi-compact and quasi-seperated;

(b) the topology of X has a base of quasi-compact open subsets;

(c) X is sober.

We say that X is a locally spectral space if it has an open covering by spectral spaces.

Example I.2.2.8. Any affine scheme is a spectral space, and any scheme is a locally spectral
space. (In fact, Hochster has proved that these are the only examples, see theorems 6 and 9 of
[13].)

Proposition I.2.2.9. ([26] remark 3.13)

(i) A sober space is T0.

(ii) A locally spectral space is sober.

(iii) A locally spectral space is spectral if and only if it is quasi-compact and quasi-separated.

(iv) Let X be a sober space. Then every locally closed subspace of X is sober.

(v) Let X be a spectral space. Then every quasi-compact open subspace (resp. every closed
subspace) of X is spectral.

(vi) Let X be a locally spectral space. Then every open subspace of X is locally spectral, and
the topology of X has a base consisting of spectral open subspaces.

Proof. (i) follows from remark I.2.2.5. (ii) follows from the fact that a space that has a covering
by sober open subspaces is sober (see (3) of [25, Lemma 06N9]). (iii) is obvious from the
definitions. (iv) is (3) of [25, Lemma 0B31]. (v) is a particular case of [25, Lemma 0902]. (vi) is
clear.

I.2.3 The constructible topology

We will only define the constructible topology on a quasi-compact and quasi-separated topolog-
ical space, because that is the only case when we will need it (at least for now). For the general
definition, see for example [25, Section 04ZC].

Definition I.2.3.1. Let X be a quasi-compact and quasi-separated topological space and Y be a
subset of X .

(i) We say that Y is constructible if it is a finite union of subsets of the form U ∩ (X − V ),
with U and V quasi-compact open subsets of X .

25

https://stacks.math.columbia.edu/tag/06N9
https://stacks.math.columbia.edu/tag/0B31
https://stacks.math.columbia.edu/tag/0902
https://stacks.math.columbia.edu/tag/04ZC


I The valuation spectrum

(ii) We say that Y is ind-conctructible (resp. pro-constructible) if it a union (resp. an inter-
section) of consrtuctible subsets of X .

Any finite union of quasi-compact open subsets is quasi-compact, and, ifX is quasi-separated,
so is any finite intersection of quasi-compact open subsets. This immediately implies the follow-
ing lemma.

Lemma I.2.3.2. Let X be a quasi-compact and quasi-separated topological space. The collec-
tion of constructible subsets of X is closed under finite unions, finite intersections and taking
complements.

So we could also have defined the collection of constructible subsets of X as the smallest
collection of subsets of X that is stable by finite unions, finite intersections and complements,
and contains the quasi-compact open subsets of X .

Definition I.2.3.3. Let X be a quasi-compact and quasi-separated topological space. The con-
structible topology on X is the topology with base the collection of the constructible subsets of
X . Equivalently, it is the topology generated by the quasi-compact open subsets of X and their
complements.

We denote by Xcons the space X equipped with its constructible topology.

It is clear from the definitions that the open (resp. closed) subsets for the constructible topology
are the ind-constructible (resp. pro-constructible) subsets of X .

Example I.2.3.4. Let X be a finite T0 space. Then X is spectral and every subset of X is
constructible.

Proof. Every subset of X is quasi-compact (because it is finite), so X is quasi-compact and
quasi-separated. As X is T0, we just need to prove that every closed irreducible subset of X has
at least one generic point. Let Z be a closed irreducible subset of X . Then Z is the union of the
finite family of closed subsets ({z})z∈Z , so there exists z ∈ Z such that Z = {z}. Finally, we
proved that every subset of X is constructible. It suffices to prove that {x} is constructible for
every x ∈ X . So let x ∈ X . As X if T0, for every y ∈ X − {x}, we can choose Yy open or
closed (and in particular constructible) such that x ∈ Yy and y 6∈ Yy. So {x} =

⋂
y∈X−{x} Yy is

constructible.

Proposition I.2.3.5. Let X be a quasi-compact and quasi-separated topological space. Then
any constructible subset of X is quasi-compact.

In particular, if Y is an open (resp. closed) subset of X , then Y is constructible if and only if
it is quasi-compact (resp. if and only if X − Y is quasi-compact).
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Proof. Let Y be a constructible subsets of X . We write Y =
⋃n
i=1(Ui − Vi), with

U1, . . . , Un, V1, . . . , Vn quasi-compact open subsets of X . For every i ∈ {1, . . . , n}, Ui − Vi
is a closed subset of the quasi-compact space Ui, so it is also quasi-compact. Hence Y is quasi-
compact.

I.2.4 The constructible topology on a spectral space

Proposition I.2.4.1. Let X be a spectral space. Then Xcons is Hausdorff, totally disconnected
and quasi-compact.

Proof. (See [25, Lemma 0901].) Let x, y ∈ X such that x 6= y. As X is T0, we may assume that
there exists an open subset U of X such that x ∈ U and y 6∈ U . As quasi-compact open subsets
form a base of the topology of X , we may assume that U is quasi-compact. Then U and X − U
are constructible, hence open and closed in the constructible topology, and we have x ∈ U and
y ∈ X − U . So Xcons is Hausdorff and totally disconnected.

We show that X is quasi-compact. Let B be the collection of quasi-compact open subsets of
X and of their complements. Then B generates the topology ofX , so, by the Alexander subbase
theorem ([25, Lemma 08ZP]), it suffices to show that every covering of X by elements of B has
a finite refinement. As the collection B is stable by taking complements, it also suffices to show
that every subcollection of B that has the finite intersection property has nontrivial intersection.

So let B′ ⊂ B, and suppose that B′ has the finite intersection property and that⋂
B∈B′ B = ∅. Using Zorn’s lemma, we may assume that B′ is maximal among all subcol-

lections that the finite intersection property and empty intersection. Let B′′ ⊂ B′ be the set of
B ∈ B′ that are closed, and let Z =

⋂
B∈B′′ B; this is a closed subset of X , and it is not empty

because X is quasi-compact.

Suppose first that Z is reducible. Then we can write Z = Z ′ ∪ Z ′′, with Z ′, Z ′′ 6= Z. In
particular, we have Z ′ 6⊂ Z ′′ and Z ′′ 6⊂ Z ′, so we can find quasi-compact open subsets U ′

and U ′′ of X such that U ′ ⊂ X − Z ′′, U ′′ ⊂ X − Z ′, U ′ ∩ Z ′ 6= ∅ and U ′′ ∩ Z ′′ 6= ∅.
Let B′ = X − U ′ ⊃ Z ′′ and B′′ = X − U ′′ ⊃ Z ′. We want to show that B′ ∪ {B′} or
B′ ∪ {B′′} has the finite intersection property, which will contradict the maximality of B′.
Suppose that this does not hold, then there exist there exist B′1, . . . , B

′
n, B

′′
1 , . . . , B

′′
m ∈ B′ such

that B′∩B′1∩ . . .∩B′n = B′′∩B′′1 ∩ . . .∩B′′m = ∅, then Z∩B′1∩ . . .∩B′n∩B′′1 ∩ . . .∩B′′m = ∅.
AsB′1∩. . .∩B′n∩B′′1∩. . .∩B′′m is quasi-compact and Z =

⋂
B∈B′′ B with everyB ∈ B′′ closed,

we can find B1, . . . , Br ∈ B′′ such that B1 ∩ . . .∩Br ∩B′1 ∩ . . .∩B′n ∩B′′1 ∩ . . .∩B′′m = ∅; but
this contradicts the fact that B′ has the finite intersection property. So Z cannot be reducible.

Suppose now that Z is irreducible. As X is sober, Z has a unique generic point, say η. Let
U ∈ B′ − B′′. Then U is quasi-compact and the family of closed subsets (B ∩ U)B∈B′′ has
the finite intersection property, so their intersection Z ∩ U is nonempty; as Z ∩ U is an open

27

https://stacks.math.columbia.edu/tag/0901
https://stacks.math.columbia.edu/tag/08ZP
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subset of Z, it contains its generic point η. But then η ∈
⋂
B∈B′ B, which contradicts the fact

that
⋂
B∈B′ B = ∅.

Corollary I.2.4.2. (See proposition 3.23 of [26].) Let X be a spectral space. Then :

(i) The constructible topology is finer than the original topology on X .

(ii) A subset of X is constructible if and only if it is open and closed in the constructible
topology (i.e. if and only if it is both ind-constructible and pro-constructible).

(iii) If U is an open subspace ofX , then the map Ucons → Xcons is open and continuous (i.e. the
subspace topology on U induced by the constructible topology on X is the constructible
topology on U ).

Proof. (i) Every open subset of X is the union of its quasi-compact open subsets, hence is
ind-constructible.

(ii) We already know that constructible subsets ofX are open and closed inXcons. Conversely,
let Y ⊂ X be open and closed in Xcons. Then Y is ind-constructible, so we can write
Y =

⋃
i∈I Yi, with the Yi constructible. Also, by I.2.4.1, Y is quasi-compact for the

constructible topology, so there exists a finite subset I ′ of I such that Y =
⋃
i∈I′ Yi, which

proves that Y is constructible.

(iii) LetU be an open subset ofX . By [25, Lemma 005J], the mapUcons → Xcons is continuous.

Conversely, let E be a constructible subset of U ; we want to show that E is ind-
constructible in X . We can write U =

⋃
i∈I Ui, with the Ui quasi-compact. For every

i ∈ I , the set E ∩ Ui is constructible in Ui, hence constructible in X by [25, Lemma
09YD]. So E =

⋃
i∈I(E ∩ Ui) is ind-constructible in X .

Corollary I.2.4.3. ([25, Lemma 0902].) Let X be a spectral space and Y ⊂ X be closed in the
constructible topology. Then Y is a spectral space for the subspace topology.

Definition I.2.4.4. A continuous map f : X → Y of locally spectral spaces is called spectral
if, for every open spectral subspace V of Y and every open spectral subspace U of f−1(V ), the
induced map U → V is quasi-compact.

Proposition I.2.4.5. (Proposition 3.27 of [26].) Let f : X → Y be a continuous map of spectral
spaces. Then the following are equivalent :

(i) f is spectral.

(ii) f : Xcons → Ycons is continuous.

(iii) f is quasi-compact.
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(iv) The inverse image by f of every constructible subset of Y is a constructible subset of X .

If these conditions are satisfied, then f : Xcons → Ycons is proper.

Proof. The implications (i)⇒(iii)⇒(iv)⇒(v)⇔(ii) are clear. By proposition I.2.3.5 and corollary
I.2.4.2(ii), an open subset of X is quasi-compact if and only if it is open and closed in the
constructible topology, so (ii) implies (iii). It remains to show that (iii) implies (i). Suppose that
f is quasi-compact. Let V ⊂ Y and U ⊂ f−1(V ) be open spectral subspaces, and let W be a
quasi-compact open subset of V . We want to show that f−1(W ) ∩ U is quasi-compact, but this
follows from the fact that f−1(W ) and U are quasi-compact and that X is quasi-separated.

Finally, as Xcons and Ycons are Hausdorff and quasi-compact by proposition I.2.4.1, if
f : Xcons → Ycons is continuous, then it is proper.

I.2.5 A criterion for spectrality

The goal of this section is to give a criterion for a topological space to be spectral, due to
Hochster.

Theorem I.2.5.1. (Proposition 3.31 of [26].) LetX ′ = (X0,T ′) be a quasi-compact topological
space, let U ⊂ T ′ be a collection of open and closed subsets of X ′, let T be the topology on
X0 generated by U , and set X = (X0,T ).

If X is T0, then it is spectral, every element of U is a quasi-compact open subset of X , and
X ′ = Xcons.

Proof. After replacing U by the collection of finite intersections of sets of U , we may assume
that U is stable by finite intersections. Note that the topology of X is coarser than the topology
of X ′. In particular, every quasi-compact subset of X ′ is also quasi-compact as a subset of X; in
particular, X itself is quasi-compact. As elements of U are closed in X ′, the previous sentence
also applies to them, and we see that they are all quasi-compact as subsets of X . So the topology
of X has a basis of quasi-compact open subsets which is stable by finite intersections. Let T ′′

be the topology on X generated by the quasi-compact open subsets and their complements. By
lemma I.2.5.2, it suffices to show that T ′′ = T ′.

First note that T ′′ is coarser than T ′, because T ′′ is generated by elements of U and their
complements, and every element of U is open and closed for T ′. We also claim that T ′′ is
Hausdorff : Indeed, let x, y ∈ X such that x 6= y; as X is T0, we may assume (up to switching x
and y) that there exists U ∈ U such that x ∈ U and y ∈ X−U , and U and X−U are both open
in T ′′ by definition of T ′′. So the identity map from X ′ to X ′′ := (X0,T ′′) is a continuous map
from a quasi-compact space from a Hausdorff space, which implies that it is a homeomorphism
(see [6] chapitre I §9 No4 corollaire 2 du théorème 2, p. 63).
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Lemma I.2.5.2. (Lemma 3.29 of [26].) Let X be a quasi-compact T0 space, and suppose that
its topology has a basis consisting of quasi-compact open subsets which is stable under finite
intersections. Let X ′ be the topological space with the same underlying set as X , and whose
topology is generated by the quasi-compact open subsets of X and their complements. Then the
following are equivalent :

(i) X is spectral.

(ii) X ′ is Hausdorff and quasi-compact, and its topology has a basis consisting of open and
closed subsets.

(iii) X ′ is quasi-compact.

Also, if these conditions are satisfied, then X ′ = Xcons.

Proof.

(i)⇒(ii) If X is spectral, then it is quasi-compact and quasi-separated, so X ′ = Xcons by defini-
tion of the constructible topology, and the fact that X ′ is Hausdorff and quasi-compact is
proposition I.2.4.1. Also, the topology of X ′ is generated by the consrtuctible subsets of
X , which are open and closed as subsets of X ′ corollary I.2.4.2(ii).

(ii)⇒(iii) Obvious.

(iii)⇒(i) We already know that X is quasi-separated and has a basis of quasi-compact open subsets.
So we just need to show that X is sober. By definition of the topology of X ′, this topology
is finer than the topology of X .

Let Z be a closed irreducible subset of X . As X is T0, this subset has at most one generic
point, and we want to show that it has at least one. Let Z ′ be the set with the topology
induced by the topology of X ′. As X ′ is quasi-compact and Z ′ is closed in X ′ (because
the topology ofX ′ is finer than that ofX), Z ′ is also quasi-compact. Suppose that Z has no
generic point. For every z ∈ Z, we have {z} ( Z, so there exists an open quasi-compact
subset Uz fo Z such that Uz ∩ {z} = ∅. We have Z =

⋃
z∈Z(Z \Uz), and each Z \Uz

is open in Z ′ by definition of the topology of X ′. As Z ′ is quasi-compact, there exists
z1, . . . , zn ∈ Z such that Z =

⋃n
i=1(Z\Uzi); but this contradicts the irreducibility of Z.
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I.2.6 Spectrality of Spv(A)

Theorem I.2.6.1. (Proposition 4.7 of [26].) Let A be a commutative ring. Then Spv(A) is
spectral. The open subsets

U

(
f1, . . . , fn

g

)
= {|.| ∈ Spv(A) | |f1|, . . . , |fn| ≤ |g| 6= 0},

for f1, . . . , fn, g ∈ A, are quasi-compact, and they and their complements generate the con-
structible topology of Spv(A).

Moreover, if ϕ : A → B is a morphism of rings, then the induced map
Spv(ϕ) : Spv(B)→ Spv(A) is spectral.

Remark I.2.6.2. The continuous map supp : Spv(A) → Spec(A) is also spectral, since
supp−1(D(g)) = U

(
g
g

)
for every g ∈ A.

Proof. Let X = Spv(A), and denote its topology by T . We want to apply theorem I.2.5.1 to the
family of subsets U

(
f1,...,fn

g

)
, for f1, . . . , fn, g ∈ A.

(A) For every x ∈ X , if (℘x, Rx) is the pair corresponding to x as in remark I.2.1.2, we define
a relation |x onA by : f |xg if there exists an element a ofRx such that a(f+℘x) = g+℘x.
(In other words, if |.|x is a valuation in the equivalence class corresponding to x, we have
f |xg if and only |f |x ≥ |g|x.)

This defines a map ρ from X to the set {0, 1}A×A of relations on A. It follows directly
from the definition that, for every x ∈ X , we have supp(x) is the set of f ∈ A such that
0|xf ; so ρ(x) determines supp(x).

(B) Claim : The map ρ : X → {0, 1}A×A is injective.

Indeed, let x, y ∈ X be such that ρ(x) = ρ(y), and let (℘x, Rx) and (℘y, Ry) be the
pairs corresponding to x and y. By the remark at the end of (A), we have ℘x = ℘y. Let
K = Frac(A/℘x). Let a ∈ K. Then we can find f, g ∈ A such that a = (f+℘x)(g+℘x)

−1,
and we have :

a ∈ Rx ⇔ g|xf ⇔ g|yf ⇔ a ∈ Ry.

So Rx = Ry.

(C) Claim : The image of ρ is the set of relations | on A satisfying the following conditions :
for all f, g, h ∈ A,

(a) f |g or g|f ;

(b) if f |g and g|h, then f |h;

(c) if f |g and f |h, then f |(g + h);
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(d) if f |g, then fh|gh;

(e) if fh|gh and 0 6 |h, then f |g;

(f) 0 6 |1.

Let’s prove this claim. It is easy to check that every element in the image of ρ satisfies
(a)-(f).

Conversely, let | be a relation on A satisfying (a)-(f). Note that we have f |0 for every
f ∈ R by (d). Let ℘ = {f ∈ A such that 0|f}. Then ℘ is an ideal of A by (c) and (d), it
does not contain 1 by (f), and it is a prime ideal by (e). Next we note that, for all f, f ′ ∈ A
such that f +℘ = f ′+℘, we have f |f ′ and f ′|f ; indeed, if f ′− f ∈ ℘, then 0|(f ′− f), so
f |(f ′ − f) by (b) (and the fact that f |0), hence f |f ′ by (c), and similarly f ′|f . Let’s check
that | induces a relation on A/℘. Let f, f ′, g, g′ ∈ A such that f − f ′, g− g′ ∈ ℘. We need
to show that f |g ⇒ f ′|g′; but we have just seen that f ′|f and g|g′, so this follows from
(b). Now let R be the set of a ∈ Frac(A/℘) that can be written a = (f + ℘)(g + ℘)−1,
with f, g ∈ A and g|f ; by (d) and (e), this condition is actually independent of the choice
of f and g. We see easily that R is a subring of Frac(A/℘), and it is a valuation subring
thanks to condition (a). So the pair (℘,R) defines a point x of X , and ρ(x) is equal to | by
definition of ℘ and R.

(D) We put the discrete topology on {0, 1} and the product topology on {0, 1}A×A. By Ty-
chonoff’s theorem, the space {0, 1}A×A is compact. Let T ′ be the topology on X induced
by the topology of {0, 1}A×A via ρ, and let X ′ = (X,T ′). Then X ′ is also compact.
Indeed, for f, g, h ∈ A fixed, each of the conditions (a)-(f) of (X) defines a closed subset
of {0, 1}A×A, so, by the conclusion (C), the subset ρ(X) of {0, 1}A×A is closed.

(E) Let f1, . . . , fn, g ∈ A. Then an element | of ρ(X) is in ρ
(
U
(
f1,...,fn

g

))
if and only g|fi

for every i ∈ {1, . . . , n} and 0 6 |g. Each of these conditions defines an open and closed
subset on {0, 1}A×A (which is the pullback by one of the projection maps {0, 1}A×A of a
subset of {0, 1}), so U

(
f1,...,fn

g

)
is open and closed in the topology T ′. Also, the space

X is T0 by remark I.2.2.6. Applying theorem I.2.5.1 to X ′ and to the collection of subsets
U
(
f1,...,fn

g

)
, for f1, . . . , fn, g ∈ A, we get that X is spectral, that the U

(
f1,...,fn

g

)
form a

basis of quasi-compact open subsets of X , and that X ′ = Xcons.

(F) Finally, we prove the last statement. Let ϕ : A → B be a morphism of rings. By propo-
sition I.2.4.5, to show that the continuous map Spv(f) : Spv(B) → Spv(A) is spectral, it
suffices to show that it is quasi-compact; but this follows from the fact that

Spv(ϕ)−1

(
U

(
f1, . . . , fn

g

))
= U

(
ϕ(f1), . . . , ϕ(fn)

ϕ(g)

)
for all f1, . . . , fn, g ∈ A.
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Remark I.2.6.3. It follows from the theorem that the collection of consrtuctible subsets of Spv(A)
is the smallest collection of subsets of Spv(A) that is stable by finite unions, finite intersections
and complements and that contains all subsets of the form U

(
f
g

)
, for f, g ∈ A. It is also the

smallest collection of subsets of Spv(A) that is stable by finite unions, finite intersections and
complements and that contains all subsets of the form U ′(f, g) := {|.| ∈ Spv(A) | |f | ≤ |g|},
for f, g ∈ A.

Indeed, we have for all f, g ∈ A :

U

(
f

g

)
= U ′(f, g) ∩ (Spv(A)− U ′(g, 0))

and

U ′(f, g) = U

(
f

g

)
∪
(

Spv(A)−
(
U

(
0

g

)
∪ U

(
0

f

)))
.

I.3 The specialization relation in Spv(A)

The goal of this section is to study the specialization relation in Spv(A). Here are the main points
:

(1) Specialization is an order relation on Spv(A) (and more generally on any T0 space), and it
tells us which constructible subsets are open or closed.

(2) Specialization in Spv(A) breaks into two simpler cases, horizontal specialization and ver-
tical specialization. More precisely (see theorem I.3.4.3), if x ∈ Spv(A), every specializa-
tion of x is a horizontal specialization of a vertical specialization of x; moreover, in many
cases (for example if |A|x 6⊂ Γx,≥1), every specialization of x is also a vertical specializa-
tion of a horizontal specialization of x.

(3) We say that a specialization y of x (in Spv(A)) is a vertical specialization if ℘y = ℘x. So
vertical specializations of x are parametrized by valuation subrings of K(x) contained
in Rx (i.e. by valuation subrings of of Rx/mRx), and vertical generizations of x are
parametrized by valuation subrings of K(x) containing Rx (i.e. by prime ideals of Rx).
See theorem I.1.4.2.

(4) Horizontal specialization changes the support of a valuation. Here are some facts about it.
Let x ∈ Spv(A).

(a) If H is any subgroup of Γx, we define a map |.|x|H : A → H ∪ {0} by

|a|x|H =

{
|a|x if |a|x ∈ H
0 otherwise. If this is a valuation, it is a specialization of x, and

we call this a horizontal specialization of x. Also, |.|x|H is a valuation if and only if
H is a convex subgroup of Γx and contains the convex subgroup cΓx generated by
|A|x ∩ Γx,≥1. (Note that |.|x|H does not determine H in general.)
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(b) Horizontal specializations of x are totally ordered (by specialization), and the mini-
mal horizontal specializaton of x is x|cΓx .

(c) A horizontal specialization y of x is uniquely determined by its support, and it is the
generic point of {x} ∩ supp−1(℘y).

(d) The possible supports of horizontal specializations of x are the x-convex prime ideals
of A (where ℘ ∈ Spec(A) is x-convex if 0 ≤ |a|x ≤ |b|x and b ∈ ℘ implies that
a ∈ ℘).

(e) If |A|x 6⊂ Γx,≤1, then every fiber of supp : {x} → Spec(A) contains a horizontal
specialization of x, which is its generic point.

I.3.1 Specialization in a spectral space

Notation I.3.1.1. Let X be a topological space, and let x, y ∈ X . Remember from definition
I.2.2.4(ii) that we say that y specializes to x (or that x is a specialization of y, or that y is a
generization of x) if x ∈ {x}.

If this is the case, we write y  x or x  y.

Lemma I.3.1.2. If X is T0, then specialization is an order relation on X .

Proof. Specialization is clearly reflexive and transitive (without any condition on X), so we just
need to check that it is antisymmetric. Let x, y ∈ X such that x y and y  x. Then x ∈ {y}
and y ∈ {x}, so x and y are both generic points of the irreducible closed subset {x}. By remark
I.2.2.5, this implies that x = y.

The following result is one of the reasons that it is useful to understand the specialization
relation in a spectral space.

Proposition I.3.1.3. (Proposition 3.30 of [26] and [25, Lemma 0903]). Let X be a spectral
space and Z ⊂ X be a subspace.

(i) The following are equivalent :

(a) Z is pro-constructible;

(b) Z is spectral, and the inclusion Z → X is spectral.

(ii) (a) Suppose that Z is pro-constructible. If x ∈ Z, then x is the specialization of a point
of Z. (In other words, Z is the set of specializations of points of Z.)

(b) If Z is pro-constructible, then Z is closed if and only if it is stable under specializa-
tion.
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I.3 The specialization relation in Spv(A)

(c) If Z is ind-constructible, then Z is open if and only if it is stable under generization.

Proof.

(i) Suppose that (b) holds. Then Z is closed in Xcons by proposition I.2.4.5, which means that
it is pro-constructible.

Suppose that (a) holds. Then Z is spectral by corollary I.2.4.3. We want to show that the
inclusion Z → X is spectral. By proposition I.2.4.5, this is equivalent to the fact that
it is quasi-compact. Let U be a quasi-compact open subsets of X . Then U ∩ Z is pro-
constructible. As Xcons is quasi-compact by proposition I.2.4.1, its closed subset U ∩ Z is
also quasi-compact, and so U ∩ Z is quasi-compact in the topology induced by X (which
is coarser than the constructible topology).

(ii) Note that (b) follows immediately from (a), and that (c) is just (b) applied to X − Z. So
we just need to prove (a). Let x ∈ Z. Let (Ui)i∈I be the family of all quasi-compact open
neighborhoods of x in X . Then (Ui)i∈I is cofinal in the set of all open neighborhoods of
x and stable by finite intersection, because X is spectral, and Ui ∩ Z 6= ∅ for every i ∈ I
because x ∈ Z. Also, for every i ∈ I , the intersection Z ∩ Ui is pro-constructible, hence
closed inXcons. AsXcons is quasi-compact (proposition I.2.4.1), we have Z∩

⋂
i∈I Ui 6= ∅.

Let z ∈ Z ∩
⋂
i∈U Ui. Then z is contained in every open neighborhood of x, so x ∈ {z}.

We easily see that this implies the following corollary.

Corollary I.3.1.4. ([25, Lemma 09XU].) Let f : X → Y be a bijective continuous spectral map
of spectral spaces. If generizations (resp. specializations) lift along f , then f is a homeomor-
phism.

I.3.2 Vertical specialization

We now fix a commutative ring A.

Remark I.3.2.1. (1) Let ℘, ℘′ ∈ Spec(A). Then ℘ is a specialization of ℘′ if and only if
℘ ⊃ ℘′. Indeed, the smallest closed subset of Spec(A) containing ℘′ is V (℘′), that is,
{℘′} = V (℘′).

(2) Let x, y ∈ Spv(A). If x is a specialization of y, then supp(x) ⊃ supp(y). (This just
follows from the fact that supp : Spv(A)→ Spec(A) is continuous.)

Definition I.3.2.2. Let x, y ∈ Spv(A). We say that x is a vertical specialization of y (or that y is
a vertical generization of x) if x is a specialization of y and supp(x) = supp(y).

35

https://stacks.math.columbia.edu/tag/09XU
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Remember that supp−1(℘) = RZ(Frac(A/℘)) for every ℘ ∈ Spec(A) (proposition I.2.1.4),
and that the specialization relation in RZ(K), for K a field, just corresponds to the inclusion of
valuation subrings (remark I.1.6.4). So points (i) and (ii) of the following proposition are a direct
consequence of corollary I.1.4.4, and point (ii) follows immediately from theorem I.1.4.2.

Proposition I.3.2.3. Let x ∈ Spv(A). Then :

(i) There is a canonical order-reversing bijection from the set of vertical generizations of x
(ordered by specialization, where we think of the specialization as the “smaller” element)
to Spec(Rx) (ordered by inclusion). If y = (℘x, Ry) is a vertical generization of x, then
the corresponding element of Spec(Rx) is mRy ; conversely, if ℘ is a prime ideal of Rx, the
corresponding vertical generization of x is (℘x, (Rx)℘).

(ii) There is a canonical order-preserving bijection from the set of vertical generizations of x
(ordered by specialization) to the set of convex subgroups of Γx (ordered by inclusion). If
y = (℘x, Ry) is a vertical generization of x, the corresponding convex subgroup of Γx is
Ker(Γx → ΓRy).

(iii) There is a canonical order-preserving bijection from the set of vertical specializations of
x (ordered by specialization) to Spv(Rx/mRx) = RZ(Rx/mRx) (also ordered by special-
ization).

Notation I.3.2.4. If x ∈ Spv(A) and H is a convex subgroup of Γx, we denote by x/H the
vertical generization of x corrseponding to H .

I.3.3 Horizontal specialization

Definition I.3.3.1. Let x ∈ Spv(A). The characteristic group of x is the convex subgroup cΓx
of Γx generated by Γx,≥1 ∩ |A|x.

Example I.3.3.2. (1) We have cΓx = {1} if and only if |a|x ≤ 1 for every a ∈ A. This does
not hold in general.

(2) If A = K is a field, then |K|x = {0} ∪ Γx, so cΓx = Γx.

(3) If K is a field, A is a valuation subring of K and x ∈ Spv(A) is the corresponding valua-
tion, then |a|x ≤ 1 for every a ∈ A, so cΓx = {1}.

Definition I.3.3.3. Let x ∈ Spv(A) and let H be a subgroup of Γx. We define a map
|.|x|H : A→ Γx ∪ {0} by setting

|f |x|H =

{
|f |x if |f |x ∈ H
0 otherwise.

If |.|x|H is a valuation on A, we denote the corresponding point of Spv(A) by x|H .
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Proposition I.3.3.4. (Remarks 4.15 and 4.16 of [26].) Let x ∈ Spv(A) and let H be a convex
subgroup of Γx. We denote the map A → A/℘x ⊂ Frac(A/℘x) by π. Then the following are
equivalent :

(i) |.|x|H is a valuation on A.

(ii) H ⊃ cΓx.

(iii) If we denote by ℘H = {a ∈ Rx | ∀δ ∈ H, |a|x < δ} the corresponding prime ideal of Rx

(see corollary I.1.4.4), then π(A) = A/℘x ⊂ Rx,℘H
.

Proof.

(i)⇒(ii) Suppose that |.|x|H is a valuation on A. To show that H contains cΓx, it suffices to show
that it contains Γx,≥1 ∩ |A|x. So let a ∈ A be such that |a|x ≥ 1. If |a|x = 1, we
have |a|x ∈ H , so assume that |a|x > 1. Then |a + 1|x = |a|x. If |a|x 6∈ H , then
0 = |a+ 1|x|H = max{|a|x|H , 1} = 1, contradiction. So |a|x ∈ H .

(ii)⇒(iii) Note that Rx,℘H
is the valuation subring of Frac(A/℘x) corresponding to the composition

of |.|x : Frac(A/℘x)→ Γx∪{0} and of the quotient map Γx∪{0} → (Γx/H)∪{0}, so an
element a of Frac(A/℘x) is in Rx,℘H

if and only if there exists γ ∈ H such that |a|x ≤ γ.

Now suppose that H ⊃ cΓx, and let a ∈ A. We want to show that there exists γ ∈ H such
that |a|x ≤ γ. If |a|x ≤ 1, then we can take γ = 1. If |a|x > 1, then |a|x ∈ cΓx ⊂ H , so
we can take γ = |a|x.

(iii)⇒(i) We have seen that (iii) implies that, for every a ∈ A, there exists γ ∈ H such that |a|x ≤ γ;
in particular, if |a|x ≥ 1, then |a|x ∈ H , because H is convex. (This proves (ii).)

We check that |.|x|H satisfies the conditions of definition I.1.1.10(ii). It is clear that
|0|x|H = 0 and |1|x|H = 1. Let a, b ∈ A. The only way we can have |ab|x|H 6= |a|x|H |b|x|H
is if |ab|x ∈ H but |a|x, |b|x 6∈ H ∪{0}. So suppose that |a|x, |b|x 6∈ H ∪{0}. This implies
that |a|x, |b|x < 1, and then |ab|x ≤ |a|x ≤ 1 and |ab|x ≤ |b|x ≤ 1, so the convexity of H
implies that |ab|x cannot be in H . Finally, we prove that |a+ b|x|H ≤ max{|a|x|H , |b|x|H}.
If |a + b|x 6∈ H , this obviously holds, so suppose that |a + b|x ∈ H . We may assume
that |a|x ≤ |b|x. If |b|x ∈ H , we are done, so we may assume that |b|x 6∈ H . But then
|a+ b|x ≤ |b|x ≤ 1 and H is convex, so this impossible.

Proposition I.3.3.5. (Remark 4.16 of [26].) We use the notation of proposition I.3.3.4, and we
denote the quotient map A→ A/℘x by π. If the conditions of this proposition hold, then :

(i) x|H is a specialization of x.

(ii) Ker(x) ⊂ Ker(x|H) = π−1(℘HRx,℘H
) = {a ∈ A | ∀γ ∈ H, |a|x < γ}, with equality if

and only if H = Γx (which is also equivalent to ℘H = 0, or to x = x|H).

37



I The valuation spectrum

(iii) Rx/℘H is a valuation subring of the field Rx,℘H
/℘H , and |.|x|H is the composition of

A
π→ Rx,℘H

→ Rx,℘H
/℘H and of the valuation corresponding to Rx/℘H .

Note that it is not easy in general to describe the valuation group of x|H (beyond the obvious
fact that it is included in H).

Proof. (i) Let f1, . . . , fn, g ∈ A such that x||H ∈ U := U
(
f1,...,fn

g

)
. We want to show

that x ∈ U . We have |fi|x|H ≤ |g|x|H 6= 0 for every i, so in particular |g|x ∈ H and
|g|x = |g|x|H . Suppose that we |fi|x > |g|x for some i. Then |fi|x 6∈ H , so |fi|x < 1
(because H ⊃ cΓx), so |g|x < |fi|x < 1, which implies that |fi|x ∈ H because H is
convex, contradiction. So x ∈ U .

(ii) The inclusion Ker(x) ⊂ Ker(x|H) is obvious.

As ℘HRx,℘H
is the maximal ideal of Rx,℘H

and Rx,℘H
is the valuation subring of

Frac(A/℘x) corresponding to the valuation Frac(A/℘x)
|.|x→ Γx ∪ {0} → (Γx/H) ∪ {0},

we have
℘HRx,℘H

= {a ∈ Frac(A/℘x) | ∀γ ∈ H, |a|x < γ}.
Let a ∈ A. We have a ∈ Ker(x|H) if and only if |a|x 6∈ H . As H ⊃ cΓx ⊃ Γx,≥1 ∩ |A|x,
this implies that |a|x < 1. So we have |a|x 6∈ H if and only if |a|x < γ for every γ ∈ H .
(Indeed, if |a|x 6∈ H and |a|x > γ for some γ ∈ H , then γ < |a|x < 1, contradicting the
convexity of H). This proves the formula for Ker(x|H).

We obviously have Ker(x) = Ker(x|H) if Γx = H . Conversely, suppose that
Ker(x) = Ker(x|H), and let’s prove that H = Γx. Let γ ∈ Γx. Write γ = |a|x/|b|x,
with a, b ∈ A. Then |a|x, |b|x 6= 0, so |a|x,H , |b|x,H 6= 0, so |a|x, |b|x ∈ H , so γ ∈ H .

(iii) In Frac(A/℘x), we have the valuation subring with valuation group Γx, and the bigger ring
Rx,℘H

with valuation group Γx/H and maximal ideal ℘H .. So we are in the situation of
theorem I.1.4.2, and we see that Rx/℘H is a valuation subring of Rx,℘H

/℘H with valuation
group Ker(Γx → Γx/H) = H . The second statement also follows easily from this theorem
and from (ii).

Definition I.3.3.6. Let x, y ∈ Spv(A). We say that y is a horizontal specialization of x (or that x
is a horizontal generization of y) if y is the form x|H , for H a convex subgroup of Γx containing
cΓx.

Remark I.3.3.7. Note that x is a horizontal specialization of itself (corresponding to the convex
subgroup H = Γx).

We now give a decription of the possible kernels of horizontal specializations of x.

Definition I.3.3.8. Let x ∈ Spv(A). A subset T of A is called x-convex if for all a1, a2, b ∈ A,
if |a1|x ≤ |b|x ≤ |a2|x and a1, a2 ∈ T , then b ∈ T .
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For example, if 0 ∈ T , then T is x-convex if and only if, for all a ∈ A and b ∈ T such that
|a|x ≤ |b|x, we have a ∈ T .

Proposition I.3.3.9. (Proposition 4.18 of [26].) Let x ∈ Spv(A). Let C be the set of x-convex
prime ideals of A, order by inclusion, and let S be the set of horizontal specializations of x,
ordered by specialization. Then y 7−→ Ker(y) induces an order-reversing bijection S ∼→ C, and
the sets S and C are totally ordered.

Remark I.3.3.10. So we have a commutative diagram :

S �
� //

o
��

{x} � � //

��

Spv(A)

supp

��
C �
� // Spec(A/℘x)

� � // Spec(A)

We will see in the next subsection (see corollary I.3.4.5) that, if |A|x 6⊂ Γx,≤1 (which occurs
for example if A contains a subfield on which the valuation |.|x is nontrivial), then C is actually
the image of {x} in Spec(A), so every x-convex prime ideal q of A lifts to a unique horizontal
specialization y of x, and moreover this y is the unique generic point of supp−1(q) ∩ {x}.

Proof of proposition I.3.3.9. The kernel of any horizontal specialization of x is x-convex by
proposition I.3.3.5(ii), so supp : S → C is well-defined, and it is clearly order-reversing.

We have seen in proposition I.3.3.4 that S is in bijection to the set P of prime ideals ℘ of Rx

such that A/℘x ⊂ Rx,℘, and this bijection is order-reversing. As the set of ideals of a valuation
ring is totally ordered (proposition I.1.1.4), this implies that S is totally ordered. If we identify
S and P , the map supp : S → C becomes ℘ 7−→ π−1(℘Rx,℘), where π : A → Frac(A/℘x) is
the quotient map (see proposition I.3.3.5(ii)).

Now we construct the inverse map. If q is a x-convex prime ideal of A, then we clearly have
q ⊃ ℘x, and |a|x < |b|x for every a ∈ q and every b ∈ A − q; in particular, |q|x ⊂ Γx,<1.
So, if H is the convex subgroup of Γx generated by |A − q|x, we have H ⊃ cΓx. We want
to prove that supp(x|H) = q, or equivalently that q = π−1(℘Rx,℘). But we know from
proposition I.3.3.5(ii) that Ker(x|H) = {a ∈ A|∀γ ∈ H, |a|x < γ}, and this is equal to
{a ∈ A|∀b ∈ A− q, |a|x < |b|x} by definition of H .

Proposition I.3.3.11. (Proposition 4.4.2 of [9].) Let x, y, z ∈ Spv(A). If y is a horizontal
specialization of x and z is a horizontal specialization of y, then z is a horizontal specialization
of x.

Proof. Let H be a convex subgroup of Γx and G be a convex subgroup of Γy such that y = x|H
and z = y|G. In particular, we have Γy ⊂ H . We denote by G′ the smallest convex subgroup of
H containing G. Then :
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(a) G = G′ ∩ Γy : Indeed, we obviously have G ⊂ G′ ∩ Γy. Conversely, if δ ∈ G′, then, by
definition of G′, there exist γ1, γ2 ∈ G such that γ1 ≤ δγ2. If moreover δ ∈ Γy, then this
implies that δ ∈ G, because G is convex in Γy.

(b) G′ ⊃ cΓx : As G′ is convex, it suffices to show that G′ ⊃ |A|x ∩ Γx,≥1. Let a ∈ A such
that |a|x ≥ 1. Then |a|x ∈ H , so |a|y = |a|x|H = |a|x ≥ 1, so |a|x = |a|y ∈ G ⊂ G′.

(c) x|G′ (which makes sense by (b)) is equal to z : Indeed, this follows immediately from
definition I.3.3.3 and from (a).

I.3.4 Putting things together

Proposition I.3.4.1. (Lemma 4.19 of [26].)

(i) If x  y is a horizontal specialization and y  z is a vertical specialization, then there
exists a vertical specialization x y′ that admits z as a horizontal specialization.

x //

∃
��

y

��
y′ // z

(ii) If x  y is a horizontal specialization and x  y′ is a vertical specialization, then there
exists a unique horizontal specialization y′  z such that z is a vertical specialization of
y.

x //

��

y

∃!
��

y′ // z

Proof. (i) Let H ⊃ cΓx be a convex subgroup of Γx such that y = x|H , and
℘H be the corresponding prime ideal of Rx. Then |.|y is the composition of
A → A/℘x → Rx,℘H

→ Rx,℘H
/℘HRx,℘H

and of the valuation on Rx,℘H
/℘H corre-

sponding to the valuation subring Rx/℘H , so ℘y = Ker(A→ Rx,℘H
/℘H) and we have an

extension of fields K(y) ⊂ Rx,℘H
/℘H such that Ry = K(y) ∩ (Rx/℘H). Let Rz ⊂ Ry be

the valuation subring of K(y) corresponding to the vertical specialization y  z. Then,
by corollary I.1.2.4, there exists a valuation subring B ⊂ Rx/℘H of Rx,℘H

/℘H such that
Rz = K(y) ∩ B. Let B′ be the inverse image of B in Rx,℘H

. Then B′ is a valuation
subring of K(x) by theorem I.1.4.2(ii), and B′ ⊂ Rx by definition. Let y′ be the valuation
on A given by the composition of A → A/℘x ⊂ K(x) and of |.|B′ (so that ℘y′ = ℘x and
Ry′ = B′). Then y′ is a vertical specialization of x.
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It remains to show that z is a horizontal specialization of y′. Let q = Ry′∩℘H ∈ Spec(Ry′).
Then Ry′,q = Rx,℘H

by theorem I.1.4.2(i)(c), so Ry′,q contains the image of
A/℘y′ = A/℘x, so it defines a horizontal specialization of y′ by proposition
I.3.3.4. By proposition I.3.3.5, this horizontal specialization is the composition of
A → A/℘y′ ⊂ Ry′,q = Rx,℘H

→ Rx,℘H
/℘HRx,℘H

and of the valuation defined by the
valuation subring Ry′,q/q = B; in other words, it is the valuation z.

(ii) We have ℘z = ℘y for every vertical specialization z and y, and horizontal valuations of y′

are uniquely determined by their kernel (by proposition I.3.3.9), so z is unique if it exists.

Let H be the convex subgroup of Γy′ such that x = y′/H (so we have Γx = Γy′/H), let
G ⊃ cΓx be a convex subgroup of Γx such that y = x|G, and denote by G′ the inverse
image of G in Γy′ . Then G′ is a convex subgroup of Γy′ , and we have G′ ⊃ cΓy′ (indeed, if
a ∈ A is such that |a|y′ ≥ 1, then |a|x ≥ 1 because |a|x is the image of |a|y′ by the quotient
map Γy′ → Γx, so |a|x ∈ G, and finally |a|y′ ∈ G′). Let z = y′|G′ . Then it is easy to check
(from the formulas for |.|z and |.|y given in definition I.3.3.3) that z = y/H .

Corollary I.3.4.2. (Corollary 4.20 of [26].) Let x ∈ Spv(A), and let ℘ be a generization of ℘x
in Spec(A) (i.e. ℘ ⊂ ℘x). Then there exists a horizontal generization y of x such that ℘y = ℘.

Proof. Let R be the localization (A/℘)℘/℘x . Then R is a local ring and Frac(R) = Frac(A/℘),
so, by theorem I.1.2.2, there exists a valuation subring B of Frac(A/℘) such that mR = R∩mB.
Let y′ be the corresponding valuation on A (i.e. such that ℘y′ = ℘ and Ry′ = B). By def-
inition of y′, the image of A in K(y′) is included in Ry′ , so we can construction a horizontal
specialization z of y′ using the maximal ideal m of Ry′ . The valuation corresponding to z is the
composition of the map A → A/℘ → Ry′ → Ry′/m and of the trivial valuation on Ry′/m. As
mR = R ∩ m and R also contains the image of A in A/℘, this valuation is also the composition
of A → R → R/mR = Frac(A/℘x) and of the trivial valuation on Frac(A/℘x). In particular,
we have ℘z = ℘x, so x is a vertical specialization of z. By proposition I.3.4.1(i), there exists a
vertical specialization y of y′ such that x is a horizontal specialization of y; then ℘y = ℘y′ = ℘,
so we are done.

Theorem I.3.4.3. (Proposition 4.21 of [26].) Let x, y ∈ Spv(A) such that y is a specialization
of x. Then :

(i) There exists a vertical specialization x  x′ such that y is a horizontal specialization of
x′.

(ii) There exists a vertical generization y′ of y such that one of the following conditions holds
:

(a) y′ is a horizontal specialization of x;
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(b) |A|x ⊂ Γx,≤1, y′ induces the trivial valuation on K(y′) = K(y), and ℘y′ = ℘y
contains ℘x|{1} .

Note that the condition |A|x ⊂ Γx,≤1 is equivalent to the fact that cΓx = {1}.

Proof. (ii) We first assume that cΓx = {1} and that |A − ℘y|x = {1}. Let H be the triv-
ial subgroup of Γx. Then we can form the horizontal specialization x|H , and we have
Ker(x|H) = {a ∈ A | |a|x < 1} ⊂ ℘y. Let y′ be the composition of the map A → A/℘y
and of the trivial valuation on Frac(A/℘y). Then y is a vertical specialization of y′ and
℘y′ ⊃ Ker(x|H), so we are done. (And we are in case (b).)

Now assume that cΓx 6= {1} or |A − ℘y|x 6= {1}. We claim that the following relation
holds :

(∗) ∀a ∈ A− ℘y, ∀b ∈ ℘y, |a|x ≤ |b|x ⇒ |a|x = |b|x 6= 0.

Indeed, the hypothesis that a ∈ A− ℘y and b ∈ ℘y means that |b|y = 0 ≤ |a|y 6= 0, which
implies that y ∈ U

(
b
a

)
. As x is a generization of y, we must then also have x ∈ U

(
b
a

)
, i.e.

|b|x ≤ |a|x 6= 0. So, if |a|x ≤ |b|x, we get |a|x = |b|x 6= 0.

We prove that the ideal ℘y is x-convex. Let a, b ∈ A such that b ∈ ℘y and |a|x ≤ |b|x; we
need to prove that a ∈ ℘y. Suppose that a 6∈ ℘y; then, by (*), we have |a|x = |b|x 6= 0.
There are two cases:

(1) If |A|x 6⊂ Γx,≤1 : Then there exists c ∈ A such that |c|x > 1. We have |a|x < |bc|x,
a ∈ A− ℘y and bc ∈ ℘y, which contradicts (*).

(2) If |A|x ⊂ Γx,≤1 and |A − ℘y|x 6= {1} : Then there exists c ∈ A − ℘y such that
|c|x < 1. We have |ac|x < |b|x, ac ∈ A−℘y and b ∈ ℘y, which again contradicts (*).

So both cases are impossible, and this finishes the proof that ℘y is x-convex.

By proposition I.3.3.9, there exists a horizontal specialization y′ of x such that ℘y′ = ℘y.
To finish the proof, it suffices to show that y is a vertical specialization of y′; as ℘y = ℘y′ ,

it suffices to show that y is a specialization of y′. So let f, g ∈ A such that y ∈ U
(
f
g

)
; we

want to show that y′ ∈ U
(
f
g

)
. We have |f |y ≤ |g|y 6= 0. As x is a generization of y, this

implies that |f |x ≤ |g|x. We know that |a|y′ = |a|x or 0 for every a ∈ A, by the formula
in definition I.3.3.3. As ℘y = ℘y′ , we have g 6∈ ℘y′ , so |g|y′ 6= 0, hence |g|y′ = |g|x; so
|f |y′ ≤ |f |x ≤ |g|y′ , and we are done.

(i) Let y′ be the vertical generization of y given by (ii). If we are in case (ii)(a), then we get
(i) by proposition I.3.4.1(i). So we may assume that we are in case (ii)(b), that is, that
cΓx = {1}, that |.|y′ is trivial on K(y) and that ℘y ⊃ Ker(x|H), where H = {1} ⊂ Γx. By
corollary I.3.4.2, there exists a horizontal generization z of y such that ℘z = Ker(x|H). As
x|H induces the trivial valuation on K(x|H), it is generic in the fiber supp−1(Ker(x|H)),
and so z is a vertical specialization of x|H . By proposition I.3.4.1(i), there exists a vertical
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specialization x′ of x such that z is a horizontal specialization of x′. Finally, by proposition
I.3.3.11, y is a horizontal specialization of x′.

x //

��

x|H

��

y′

��
x′ //
_

supp

��

z //
_

supp

��

y
_

supp

��
℘x
� � // ℘x|H

� � // ℘y

Corollary I.3.4.4. Let x ∈ Spv(A). If |A|x 6⊂ Γx,≤1, then x|cΓx has only vertical specializations.

Proof. Let y be a specialization of x|cΓx . Then y is also a specialization of x, so, by theorem
I.3.4.3(ii), there exists a vertical generization y′ of y such that y′ is a horizontal specialization of
x. But x|cΓx is the minimal horizontal specialization of x (remember that the set of horizontal
specializations of x is totally ordered by proposition I.3.3.9), so it is a horizontal specialization
of y′. As ℘y′ = ℘y ⊃ ℘x|cΓx

(because y is a specialization of x|cΓx), we must have ℘y′ = ℘x|cΓx
,

hence y′ = x|cΓx by proposition I.3.3.9 again, so y is a vertical specialization of x|cΓx .

Corollary I.3.4.5. Let x ∈ Spv(A). If |A|x 6⊂ Γx,≤1, then supp({x}) ⊂ Spec(A) coincides with
the set of x-convex prime ideals q of A, and, for every such q, the intersection supp−1(q) ∩ {x}
has a unique generic point, which is the horizontal specialization of x corresponding to q by
proposition I.3.3.9.

Proof. Let y be a specialization of x. We want to show that ℘y is x-convex. By theorem
I.3.4.3(ii), there exists a horizontal specialization y′ of x such that y is a vertical specialization
of y′, and then ℘y = ℘y′ , so ℘y is x-convex.

Now let q be a x-convex prime ideal of A, and let z be the unique horizontal specialization
of x such that ℘z = q. and let y be a specialization of x such that ℘y = q. Then, by theorem
I.3.4.3(ii), there exists a vertical specialization of y′ that is also a horizontal specialization of x.
As ℘y′ = q, we must have z = y′. So z is dense in {x} ∩ supp−1(q).

Remark I.3.4.6. Let x ∈ Spv(A). Suppose that A has a subfield k such that |.|x is not trivial on
k. Then |A|x 6⊂ Γx,≤1. Indeed, let a ∈ k be such that |a|x 6= 1. Then either |a|x > 1 and we are
done, or |a|x < 1 and then |a−1|x > 1.
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I.3.5 Examples

Note the following useful remark to recognize specializations :

Remark I.3.5.1. If x, y ∈ Spv(A), then y is a specialization of x if and only if, for every f, g ∈ A
:

(|f |y ≤ |g|y 6= 0)⇒ (|f |x ≤ |g|x 6= 0).

Indeed, y is a specialization of x if and only every open subset of Spv(A) that contains y also
contains x, and the sets U

(
f
g

)
generate the topology of Spv(A).

I.3.5.1 A = Q`[T ]:

For every r ∈ (0,+∞), we define a valuation |.|r on A by the following formula : if
f =

∑
n≥0 anT

n ∈ A, then

|f |r = max
n≥0
{|an|`rn}.

It is not too hard to prove that

|f |r = sup
x∈Q`, |x|`≤r

|f(x)|`.

We have Ker |.|r = (0) and cΓ|.|r = Γ|.|r = 〈`, r〉 ⊂ R>0. In particular, the valuation |.|r has no
proper horizontal specialization.

Claim: The map (0,+∞) → Spv(A), r 7−→ |.|r is continuous exactly at the points of
(0,+∞)− `Q.

For every a ∈ Q`, we define a valuation |.|a on A by |f |a = |f(a)|`. The kernel of this
valuation is (Pa), where Pa is the minimal polynomial of a over Q`; its valuation group is the
subgroup of R>0 generated by ` and |a|` (so it is a subgroup of `Q), and we have cΓ|.|a = Γ|.|a .

We can also consider the T -valuation on A. Take Γ = γZ, with the convention that γ < 1,
and define |.|T by f |T = γord0(f), where ord0(f) is the order of vanishing of f at 0 (and with
the convention that ord0(0) = +∞ and γ+∞ = 0). We have Ker |.|T = (0), Γ|.|T = γZ and
cΓ|.|T = {1}. So we can form the horizontal specialization |.|T |{1}. It sends f ∈ A to 1 if
ord0(f) = 0 and to 0 otherwise, so it is the trivial valuation on A with support (T ).

These are all rank 1 valuations. The rank 0 valuations are all of the form
|.|℘,triv : A→ A/℘

|.|triv→ {0, 1}, where ℘ ∈ Spec(A). For example, if ℘ = (0), we get the trivial
valuation of A, which is the generic point of Spv(A). We have seen in the previous paragraph
that |.|(T ),triv is a horizontal specialization of |.|T and that |.|T is a vertical specialization of |.|triv.
Does there exist a horizontal specialization of |.|triv that has |.|(T ),triv as a vertical specialization
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?
|.|triv //

��

?

��
|.|T // |.|(T ),triv

Let’s construct some rank 2 valuations. Consider the group Γ = R+
>0 × {1−}Z with the

lexicographic order (here “1−” is just a symbol that we use to denote a generator of the second
factor); in other words, we have r < 1− < 1 for every r ∈ (0, 1), where we abbreviate (r, 1) to
r for every r ∈ R>0. Let r ∈ (0,+∞), set r− = r · 1− ∈ Γ (so we have s < r− < r for every
s ∈ (0, r)), and define a valuation |.|r− on A by the following formula : if f =

∑
n≥0 anT

n ∈ A,
then

|f |r = max
n≥0
{|an|`(r−)n}.

We have Ker |.|r− = (0) and cΓ|.|r− = Γ|.|r− = 〈`, r−〉 ⊂ Γ. It is easy to see that |.|r− is a vertical
specialization of |.|r.

I.3.5.2 A = Z[T ]:

We can restrict all the valuations of the previous example to Z[T ] (and we will use the same
notation for them). But note that the groups cΓx can change.

For example, if r ∈ (0, 1], we now have have cΓ|.|r = {1}, so we can form the horizontal
specialization |.|′r of |.|r corresponding to H = {1}. This is the trivial valuation on A with kernel
{f ∈ A | |f |r < 1}. If for example r = 1, this kernel is `A. If r = `−1, then Ker |.|′r is equal to

{
∑
n≥0

anT
n | ∀n ∈ N, |an|` < `n} = (`, T ).

By proposition I.3.4.1(ii), there exists a unique horizontal specialization of |.|r− that is also a
vertical specialization of |.|′r. What is it ?

|.|r //

��

|.|′r

��
|.|r− // ?

Remember that we also have the T -adic valuation |.|T : A → γZ ∪ {0}. We can consider
the mod ` T -adic valuation |.|`,T defined by |f |`,T = γord0(f mod `). This is a rank 1 valuation
with kernel `A. It is a vertical specialization of the trivial valuation with kernel `A, which
is a horizontal specialization of |.|r for r = 1 (it is equal to |.|′1). So there exists a vertical
specialization of |.|1 that has |.|`,T as a horizontal specialization. Question : what is this valuation
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?
|.|1 //

��

|.|′1 = |.|(`),triv

��
? // |.|`,T

I.4 Valuations with support conditions

Let A be commutative ring and J be an ideal of A such that Spec(A)− V (J) is quasi-compact.
The goal of this section is to study a subset of Spv(A) that we will denote by Spv(A, J). This
subset will turn out to be the set of valuations on A that either have support in V (J), or that
have support in Spec(A)−V (J) and have every proper horizontal specialization with support in
V (J).

Our reason for studying this subset is that, if A is a topological ring of the type used by Huber
(in Huber’s terminology, a f -adic ring), and if A00 is the set of topologically nilpotent elements
of A, then the set Cont(A) of continuous valuations on A is a closed subset of Spv(A,A00 · A);
in fact, it is the subset of valuations x such that |A00|x ⊂ Γx,<1. So we will be able to deduce
properties of Cont(A) from properties of the Spv(A, J). (Our reason for studying Cont(A) is
that the space we are really interested in, the adic spectrum Spa(A,A+) of an affinoid ring, is a
pro-constructible subset of Cont(A).)

In this section, we will do the following things :

- Give a more explicit definition of Spv(A, J).

- Prove that Spv(A, J) is spectral, and give an explicit base of quasi-compact open subsets
(they are of the form Spv(A, J) ∩ U

(
f1,...,fn

g

)
for well-chosen sets {f1, . . . , fn} ⊂ A).

- Construct a continuous and spectral retraction from Spv(A) onto Spv(A, J).

From now on, we fix a ring A an ideal J of A such that Spec(A) − V (J) is quasi-compact;
remember that this last condition is equivalent to the fact that

√
J is equal to the radical of a

finitely generated ideal of A (see remark I.2.2.2).

Here is a summary of the section. In the first subsection, we want to construct a (somewhat
explicit) retraction r : Spv(A)→ Spv(A, J) such that r(x) is a horizontal specialization of x for
evey x ∈ Spv(A). Let x ∈ Spv(A). There are three possibilities :

(1) If supp(x) ∈ V (J) (i.e. if |J |x = {0}), then we take r(x) = x.

(2) If supp(x) 6∈ V (J) and if x has no horizontal specialization with support in V (J),
we take r(x) = x|cΓx (the minimal horizontal specialization of x; note that this is
Spv(A, J), because it has no proper horizontal specializations). This happens if and only
if |J |x ∩ cΓx 6= ∅. (See proposition I.4.1.1.)
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(3) If supp(x) 6∈ V (J) but x has at least one horizontal specialization with support in V (J),
we want to take for r(x) the minimal horizontal specialization of x with support in
Spec(A) − V (J). Proposition I.4.1.3 (and its corollaries) shows that such a specializa-
tion exists and gives a construction of a convex subgroup HJ of Γx such that r(x) = x|HJ

.
This is where we need the hypothesis on

√
J : if

√
J =

√
(a1, . . . , an), then HJ is the

convex subgroup of Γx generated by max1≤i≤n{|ai|x}.

In the second subsection, we show that Spv(A, J) is spectral and give an explicit base of quasi-
compact open subsets of its topology. This is a pretty straightforward application of Hochster’s
spectrality criterion (theorem I.2.5.1) and of the spectrality of Spv(A) (theorem I.2.6.1).

I.4.1 Supports of horizontal specializations

Proposition I.4.1.1. 4 ([9] Lemma 9.1.11 and Remark 9.1.12.) Let x ∈ Spv(A). Then the
following are equivalent :

(i) |J |x ∩ cΓx 6= ∅.

(ii) |J |x ∩ Γx,≥1 6= ∅.

(iii) Every horizontal specialization of x has support in Spec(A)− V (J).

(iv) The valuation x|cΓx has support in Spec(A)− V (J).

Proof. As x|cΓx is the horizontal specialization of x with minimal support (for the specialization
relation in Spec(A)), (iii) and (iv) are equivalent. Also, as cΓx contains |A|x ∩ Γx,≥1, (ii) implies
(i).

Let’s prove that (i) implies (ii). Assume that (i) holds, and choose a ∈ J such that |a|x ∈ cΓx.
If |a|x ≥ 1, then (ii) holds, so we assume that |a|x < 1. By definition of cΓx, we can find
b, b′ ∈ A such that |b|x, |b′|x ≥ 1 and |b|x|b′|−1

x ≤ |a|x < 1. Then 1 ≤ |b|x ≤ |ab′|x and ab′ ∈ J ,
so |J |x ∩ Γx,≥1 6= ∅.

Finally, we prove that (ii) and (iv) are equivalent. If |J |x ∩ cΓx 6= ∅, then there exists
a ∈ J such that |a|x ∈ cΓx, and then we have |a|x|cΓx

= |a|x 6= 0, so a 6∈ supp(x|cΓx), i.e.
supp(x|cΓx) 6∈ V (J). Conversely, if supp(x|cΓx) 6∈ V (J), then J 6⊂ supp(x|cΓx), so there exists
a ∈ J such that |a|x|cΓx

6= 0, and then we have |a|x = |a|x|cΓx
∈ cΓx.

We now turn to the case where |J |x ∩ cΓx = ∅. The following definition will be useful.

Definition I.4.1.2. If (Γ,×) is a totally ordered abelian group and H is a subgroup of Γ, we say
that γ ∈ Γ ∪ {0} is cofinal for H if for all h ∈ H there exists n ∈ N such that γn < h.

4This result holds for an ideal J of A, without the extra condition on
√
J .
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Proposition I.4.1.3. ([9] Proposition 9.1.13.) Let x ∈ Spv(A), and suppose that |J |x∩cΓx = ∅.
Then :

(i) The set of convex subgroups H of Γx such that cΓx ⊂ H and that every element of |J |x is
cofinal for H is nonempty, and it has a maximal element (for the inclusion), which we will
denote by HJ .

(ii) If moreover |J |x 6= {0} (i.e. if supp(x) ∈ Spec(A) − V (J)), then HJ 6= cΓx,
|J |x ∩ HJ 6= ∅, and HJ is contained in every convex subgroup H of Γx satisfying
|J |x ∩ H 6= ∅. In particular, x|HJ

has support in Spec(A) − V (J), and it is the mini-
mal horizontal specialization of x with that property.

Proof. If |J |x = {0}, then the elements of |J |x are cofinal for every subgroup of Γx, so every
convex subgroup H ⊃ cΓx satisfies the conditions of (i), and we can take HJ = Γx.

From now on, we assume that |J |x 6= {0}, i.e. that supp(x) 6∈ V (J). By lemma I.4.1.4,
none of the statements change if we replace J by its radical, so we may assume that J is finitely
generated, say J = (a1, . . . , an). Let δ = max{|ai|x, 1 ≤ i ≤ n}. As |J |x 6= {0}, we have
δ 6= 0, i.e. δ ∈ Γx; also, as |J |x ∩ cΓx = ∅, we have δ 6∈ cΓx and δ < 1. Let HJ be the convex
subgroup of Γx generated by δ, that is,

HJ = {γ ∈ Γx|∃n ∈ N, δn ≤ γ ≤ δ−n}.

Note that δ ∈ HJ , and so we have HJ ∩ |J |x 6= ∅. We will show that this group HJ satisfies the
properties of (i) and (ii).

First we show that HJ strictly contains cΓx. As convex subgroups of Γx are totally ordered
by inclusion (see proposition I.1.3.4), we have cΓx ⊂ HJ or HJ ⊂ cΓx. As δ ∈ HJ − cΓx, the
second case is impossible, so cΓx ( HJ .

Next we show that every element of |J |x is cofinal for HJ . Let
I = {a ∈ A | |a|x is cofinal for HJ}. Note that a1, . . . , an ∈ I . Indeed, for every
i ∈ {1, . . . , n}, we have |ai|x ≤ δ, and δ is cofinal for HJ by definition of HJ . By lemma I.4.1.4,
I is a radical ideal of A, and in particular I ⊃ J .

We have shown that HJ satisfies the properties of (i). Let’s show that it is maximal for these
properties. Let H be a subgroup of Γx such that every element of |J |x is cofinal for H . In
particular, the generator δ of HJ (which is an element of J |x) is cofinal for H . Let γ ∈ H . There
exists n ∈ N such that δn < γ; as δ < 1, this means that δn < γ for every n big enough. As
γ−1 ∈ H , a similar property holds for γ−1, so we can find n ∈ N such that δn < γ and δn < γ−1,
and then we have δn < γ < δ−n, hence γ ∈ HJ .

Finally, we prove (ii). We have already shown that cΓx ( HJ , and we have |J |x ∩HJ 6= ∅ by
definition of HJ . Let H be a convex subgroup of Γx such that |J |x ∩H 6= ∅. As before, using
the fact that convex subgroups of Γx are totally ordered by inclusion, we see that cΓx ( H . To
prove that HJ ⊂ H , it suffices to show that δ ∈ H . Let a ∈ J such that |a|x ∈ H . We write
a =

∑n
i=1 biai, with b1, . . . , bn ∈ A. Then |a|x ≤ max{|bi|x|ai|x, 1 ≤ i ≤ n}, and we choose
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i ∈ {1, . . . , n} such that |a|x ≤ |bi|x|ai|x; note that |ai|x ≤ δ by definition of δ. If |bi|x ≤ 1, then
H 3 |a|x ≤ |ai|x ≤ δ < 1, so δ ∈ H because H is convex. If |bi|x ≥ 1, then |bi|x ∈ cΓx, so
H 3 |bi|−1

x |a|x ≤ |ai|x ≤ δ < 1, and again we deduce that δ ∈ H .

The last sentence of (ii) follows from the fact that, for any convex subgroup H ⊃ cΓx of Γx,
the valuation x|H has support in Spec(A)− V (J) if and only if |J |x ∩H 6= ∅. (See for example
the end of the proof of proposition I.4.1.1.)

Lemma I.4.1.4. Let x ∈ Spv(A).

(i) For every subgroup H of Γx, we have : |J |x ∩H = ∅⇔ |
√
J |x ∩H = ∅.

(ii) For every subgroup H of Γx, the following are equivalent :

(a) every element of |J |x is cofinal for H;

(b) every element of |
√
J |x is cofinal for H .

Proof. (i) We obviously have |J |x ∩H ⊂ |
√
J |x ∩H , so |J |x ∩H = ∅ if |

√
J |x ∩H = ∅.

Conversely, suppose that |
√
J |x∩H 6= ∅, and let a ∈

√
J such that |a|x ∈ H . There exists

N ≥ 1 such that aN ∈ J , and then |a|Nx ∈ |J |x ∩H , so |J |x ∩H 6= ∅.

(ii) Obviously (b) implies (a). If (a) holds, let a ∈
√
J . Then aN ∈ I for some N ≥ 1. Let

γ ∈ H . Then there exists n ∈ N such that |aN |nx < γ, i.e. |a|nNx < γ. So |a|x is cofinal for
H .

Lemma I.4.1.5. Let x ∈ Spv(A), and let H be a subgroup of Γx such that cΓx ( H . Then

I = {a ∈ A | |a|x is cofinal for H}

is a radical ideal of A.

Proof. Let a, b ∈ I . As |a + b|x ≤ max(|a|x, |b|x), and as both |a|x and |b|x is cofinal for H , so
is |a+ b|x, hence a+ b ∈ I .

Let a ∈ I and c ∈ A. If |c|x ≤ 1, then |ca|x ≤ |a|x, so |ca|x is cofinal for H , and ca ∈ I .
Suppose that |c|x > 1, then |c|x ∈ cΓx ⊂ H . Let γ ∈ H − cΓx. As cΓx is convex, γ is either
smaller than all the elements of cΓx, or bigger than all the elements of cΓx; replacing γ by γ−1

if necessary, we may assume that we are in the first case. So δ < γ−1 for every δ ∈ cΓx, and in
particular |c|nx < γ−1 for every n ∈ N. Let n ∈ N such that |a|nx < γ. Then we have, for every
N ∈ N,

|ca|n+N
x = |c|n+N

x |a|nx|a|Nx < γ−1|a|nx|a|Nx < |a|Nx ,

so |ca|x is cofinal for H (because |a|x is), and finally ca ∈ I .
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So we have shown that I is an ideal. The fact that I is radical follows immediately from (ii) of
lemma I.4.1.4.

Definition I.4.1.6. (i) Let x ∈ Spv(A). We define a convex subgroup cΓx(J) of Γx by the
following formula

cΓx(J) =

{
HJ if |J |x ∩ cΓx = ∅;
cΓx if |J |x ∩ cΓx 6= ∅.

(Where HJ is defined in (i) of proposition I.4.1.3.)

(ii) We define a map r : Spv(A)→ Spv(A) by r(x) = x|cΓx(J).

Remark I.4.1.7. For x ∈ Spv(A), the subgroup cΓx(J) of Γx depends only on
√
J . Hence the

map r depends only on
√
J . (We actually showed this at the beginning of the proof of proposition

I.4.1.3.)

These objects satisfy the following properties.

Corollary I.4.1.8. ([9] Proposition 9.2.2.) Let x ∈ Spv(A). Then :

(i) cΓx(J) is a convex subgroup of Γx, and cΓx ⊂ cΓx(J).

(ii) cΓx(J) = Γx if and only if every proper horizontal specialization of x has support in V (J).

(iii) If |J |x 6= {0}, then cΓx(J) is minimal among all the convex subgroups H of Γx such that
H ⊃ cΓx and H ∩ |J |x 6= ∅.

(iv) If |J |x ∩ cΓx = ∅, then cΓx(J) is maximal among all the convex subgroups H of Γx such
that H ⊃ cΓx and that every element of |J |x is cofinal for H .

(v) We have r(x) = x if and only if cΓx(J) = Γx.

Proof. (i) This follows immediately from the definition of cΓx(J).

(iii) This is point (ii) of proposition I.4.1.3.

(iv) This is point (i) of proposition I.4.1.3.

(ii) If |J |x = {0}, then cΓx(J) = HJ = Γx and x has support in V (J) (hence all its special-
izations also do).

Suppose that |J |x 6= {0}. If cΓx(J) = Γx, let y be a proper horizontal specialization of x,
and write y = x|H , with cΓx ⊂ H ( Γx = cΓx(J); by (iii), we have H ∩ |J |x = ∅, hence
supp(y) 6∈ V (J). Conversely, suppose that supp(y) 6∈ V (J) for every proper horizontal
specialization y of x (in particular, supp(x) 6∈ V (J)). Then H∩|J |x = ∅ for every proper
convex subgroup H ⊃ cΓx of Γx, so Γx is the only convex subgroup of Γx containing cΓx
and meeting |J |x, hence Γx = cΓx(J) by (iii).
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(v) If cΓx(J) = Γx, then obviously r(x) = x. Conversely, suppose that r(x) = x. Then
|A|x ⊂ cΓx(J). As |A|x generates Γx, this implies that cΓx(J) = Γx.

I.4.2 The subspace Spv(A, J)

Definition I.4.2.1. We define a subset Spv(A, J) of Spv(A) by

Spv(A, J) = {x ∈ Spv(A) | r(x) = x} = {x ∈ Spv(A) | cΓx(J) = Γx}.

Remark I.4.2.2. (1) We have supp−1(V (J)) = {x ∈ Spv(A) | |J |x = {0}} ⊂ Spv(A, J).

(2) If J = A, then Spv(A,A) is the set of x ∈ Spv(A) having no proper horizontal specializa-
tions. (This follows from corollary I.4.1.8(ii).)

(3) By remark I.4.1.7, we have Spv(A, J) = Spv(A,
√
J) (in other words, Spv(A, J) only

depends on
√
J).

(4) By definition, the map r is a retraction from Spv(A) onto Spv(A, J) (i.e.
Im(r) = Spv(A, J) and r2 = r).

Lemma I.4.2.3. ([9] Lemma 9.2.4) Let a1, . . . , an ∈ J such that
√

(a1, . . . , an) =
√
J , and let

x ∈ Spv(A). The following are equivalent :

(i) x ∈ Spv(A, J).

(ii) Γx = cΓx, or |a|x is cofinal for Γx for every a ∈ J .

(iii) Γx = cΓx, or |ai|x is cofinal for Γx for every i ∈ {1, . . . , n}.

Proof. If (i) holds and cΓx 6= Γx, then cΓx(J) 6= cΓx, so Γx = cΓx(J) = HJ , and the second part
of (ii) holds by proposition I.4.1.1(i). Suppose that (ii) holds. If cΓx = Γx, then cΓx(J) = Γx. If
every element of |J |x is cofinal for Γx, then |J |x ∩ Γx,≥1 = ∅, so |J |x ∩ cΓx = ∅ by proposition
I.4.1.1. So, by corollary I.4.1.8(iv), cΓx(J) is maximal among all the convex subgroup H ⊃ cΓx
of Γx such that every element of |J |x is cofinal for H; as Γx itself satisfies these properties by
assumption, we have cΓx(J) = Γx.

As (ii) obviously implies (iii), it remains to show that (iii) implies (ii). Suppose that (iii) holds,
and that Γx 6= cΓx. By lemma I.4.1.5, the set of elements of a such that |a|x is cofinal for Γx is a
radical ideal of A, so, if it contains a1, . . . , an, it also contains J .

We come to the main theorem of this section.

Theorem I.4.2.4. (Proposition 9.2.5 of [9], lemma 7.5 of [26].)
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(i) Spv(A, J) is a spectral space (for the topology induced by the topology of Spv(A)).

(ii) A base of quasi-compact open subsets for the topology of Spv(A, J) is given by the sets

UJ

(
f1, . . . , fn

g

)
= {x ∈ Spv(A, J) | ∀i ∈ {1, . . . , n}, |fi|x ≤ |g|x 6= 0},

for nonempty finite sets {f1, . . . , fn} such that J ⊂
√

(f1, . . . , fn).

(iii) The retraction r : Spv(A)→ Spv(A, J) is a continuous and spectral map.

(iv) If x ∈ Spv(A) has support in Spec(A)− V (J), so does r(x).

Note that the inclusion Spv(A, J)→ Spv(A) is not spectral in general.

Proof. We may assume that J is finitely generated.

We proceed in several steps.

(1) Let U be the family of subsets defined in (ii). First, as the elements of U are the intersec-
tion with Spv(A, J) of open subsets of Spv(A), they are all open in Spv(A, J). Also, if
f1, . . . , fn ∈ A are such that J ⊂

√
(f1, . . . , fn) and g ∈ A, then clearly

UJ

(
f1, . . . , fn

g

)
= UJ

(
f1, . . . , fn, g

g

)
.

(2) We show that U is stable by finite intersections. Let T, T ′ be two finite subsets of A
such that J ⊂

√
(T ) and J ⊂

√
(T ′), and let g, g′ ∈ A. We want to show that

UJ

(
T
g

)
∩ UJ

(
T ′

g′

)
∈ U . By (1), we may assume that g ∈ T and g′ ∈ T ′. Let

T ′′ = {ab, a ∈ T, b ∈ T ′}. Then J ⊂
√

(T ′′), and we have

UJ

(
T

g

)
∩ UJ

(
T ′

g′

)
= UJ

(
T ′′

gg′

)
.

(3) We show that U is a base of the topology of Spv(A, J). Let x ∈ Spv(A, J), and let U be
an open neighborhood of x in Spv(A). We want to find an element of U that is contained
in U . Choose f1, . . . , fn, g ∈ A such that x ∈ U

(
f1,...,fn

g

)
⊂ U .

Suppose that Γx = cΓx. Then there exists a ∈ A such that |g|−1
x ≤ |a|x, i.e., |ag|x ≥ 1,

and then

x ∈ UJ
(
af1, . . . , afn, 1

ag

)
⊂ U

(
f1,...,fn

g

)
.

Suppose that Γx 6= cΓx. Let a1, . . . , am be a set of generators of J . By lemma I.4.2.3,
there exists r ∈ N such that |ai|rx < |g|x for every i ∈ {1, . . . ,m}, and then

x ∈ UJ
(
f1, . . . , fn, a

r
1, . . . , a

r
m

g

)
⊂ U

(
f1,...,fn

g

)
.
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(4) Let T be a finite subset of A such that J ⊂
√

(T ), and let g ∈ A. We write V = UJ

(
T
g

)
and W = U

(
T
g

)
We claim that r−1(V ) = W .

We obviously have V ⊂ W . As every point of r−1(V ) is a (horizontal) generization of a
point of V and as W is open, this implies that r−1(V ) ⊂ W . Conversely, let x ∈ W ; we
want to show that y := r(x) ∈ V . If |J |x = {0}, then cΓx(J) = Γx, so r(x) = x ∈ V .
So we may assume that |J |x 6= {0}, i.e. that supp(x) 6∈ V (J). Then |J |x ∩ cΓx(J) 6= ∅
(indeed, if |J |x ∩ cΓx = ∅, then cΓx(J) = HJ , and HJ ∩ |J |x 6= ∅ by definition); in
particular, supp(y) 6∈ V (J), so (iv) holds. Let H = cΓx(J), so that y = x|H . Suppose
that g ∈ Ker(y). As Ker(y) is x-convex, this implies that a ∈ Ker(y) for every a ∈ T ,
so Ker(y) ⊃

√
(T ) ⊃ J , which contradicts the fact that |J |x ∩ H 6= ∅. So g 6∈ Ker(y),

and in particular |g|y = |g|x 6= 0. As |a|y ≤ |a|x for every a ∈ A, we deduce that y ∈ W ,
hence that y ∈ V = W ∩ Spv(A, J).

(5) Let C be the smallest collection of subsets of Spv(A, J) that contains U and is stable
by finite unions, finite intersections and complements, and let X ′ be Spv(A, J) with the
topology generated by C . By (4), for every Y ∈ C , r−1(Y ) is a constructible subset of
Spv(A). Hence r : Spv(A)cons → X ′ is a continuous map. Since Spv(A)cons is quasi-
compact (proposition I.2.4.1) and r is surjective, X ′ is also quasi-compact. By definition
of the topology of X ′, every element of U is open and closed in X ′. Also, Spv(A, J)
is T0, because it is a subspace of the T0 space Spv(A), and U is a base of the topology
of Spv(A, J) by (3). So Hochster’s spectrality criterion (theorem I.2.5.1) implies that
Spv(A, J) is spectral, that X ′ = Spv(A, J)cons and that U is a base of quasi-compact
open subsets of Spv(A, J). This shows (i) and (ii), and (iii) follows from (4).
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II.1 Topological rings

II.1.1 Definitions and first properties

Definition II.1.1.1. Let A be a topological ring.

(i) We say that A is non-Archimedean if 0 has a basis of neighborhoods consisting of sub-
groups of the underlying additive group of A.

(ii) We say that A is adic if there exists an ideal I of A such that (In)n≥0 is a fundamental
system of neighborhoods of 0 in A. In that case, we call the topology on A the I-adic
topology and we say that I is an ideal of definition.

If M is a A-module, the topology on M for which (InM)n≥0 is a fundamental system of
neighborhoods of 0 is also called the I-adic topology on M .

(iii) We say thatA if a f-adic ring (or a Huber ring) if there exists an open subringA0 ofA and a
finitely generated ideal I ofA0 such that (In)n≥0 is a fundamental system of neighborhoods
of 0 in A0. In that case, we say that A0 is a ring of definition (for the topology of A), that
I is an ideal of definitin of A0 and that (A0, I) is a couple of definition.

(iv) We say that A is a Tate ring if it is a f-adic ring and has a topologically nilpotent unit.

Note that A0 and I in point (iii) are far from unique in general. (See for example corollary
II.1.1.8.)

Remark II.1.1.2. (1) Note that we are not assuming thatA is separated and/or complete for the
I-adic topology.

(2) If I and J are two ideals of A, then J-adic topology on A is finer than the I-adic topology
if and only if there exists a positive integer n such that Jn ⊂ I .

Definition II.1.1.3. Let A be a topological ring. A subset E of A is called bounded (in A) if for
every neighborhood U of 0 in A there exists an open neighborhood V of 0 such that ax ∈ U for
every a ∈ E and x ∈ V .
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Remark II.1.1.4. Let A be a topological ring and A0 be an open adic subring of A. Then A0 is
bounded in A. Indeed, let I be an ideal of A0 such that the topology on A0 is the I-adic topology.
As A0 is open in A, the family (In)n≥0 is a fundamental system of neighborhoods of 0 in A. Let
U be an open subset of A such that 0 ∈ U . Then there exists n ≥ 0 such that In ⊂ U , so, if we
take V = In, then ax ∈ U for every a ∈ A0 and every x ∈ V .

Notation II.1.1.5. Let A be a ring. If U , U1, . . . , Ur are subsets of A (with r ≥ 2) and n is a
positive integer, we write U1 · . . . ·Ur for the set of finite sums of products a1 . . . ar with ai ∈ Ui,
and U(n) = {a1 . . . an, a1, . . . , an ∈ U}. If U1 = . . . = Ur = U , we write U r instead of
U · . . . · U .

Proposition II.1.1.6. (Proposition 6.1 of [26].) Let A be a topological ring. Then the following
are equivalent :

(i) A is a f-adic ring.

(ii) There exists an additive subgroup U of A and a finite subset T of U such that (Un)n≥1 is a
fundamental system of neighborhoods of 0 in A and such that T · U = U2 ⊂ U .

The proof rests on the following lemma.

Lemma II.1.1.7. (Lemma 6.2 of [26].) Let A be a topological ring and A0 be a subring of A
(with the subspace topology). The following are equivalent :

(a) A is f-adic and A0 is a ring of definition.

(b) A is f-adic, and A0 is open in A and adic.

(c) A satisfies condition (ii) of proposition II.1.1.6, and A0 is open in A and bounded.

Proof. Note that (a) trivially implies (b). Also, (b) implies (c) by remark II.1.1.4. So it remains
to show that (c) implies (a).

Let U and T be as in condition (ii) of proposition II.1.1.6, and suppose that A0 is open
and bounded in A. Then there exists a positive integer r such that U r ⊂ A0, and we have
T (r) ⊂ U r ⊂ A0. Let I be the ideal of A0 generated by T (r); note that I is finitely generated,
because T (r) is finite. For every n ≥ 1, we have

In = T (nr)A0 ⊃ T (nr)U r = U r+nr,

so In is an open neighborhood of 0 in A0. Let U be any open neighborhood of 0 in A0. As
A0 is bounded and (Um)m≥1 is a fundamental system of neighborhoods of 0, there exists a
positive integer m such that UmA0 ⊂ U , hence Im ⊂ U . So (In)n≥1 is a fundamental system of
neighborhoods of 0 in A0, i.e. the topology on A0 is the I-adic topology. As A0 is open in A, we
are done.
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Proof of proposition II.1.1.6. It is easy to see that (i) implies (ii) (take U = I and take for T a
finite system of generators of I).

Conversely, suppose that A satisfies (ii). Let A0 = Z + U . This is open in A because U is,
and it is a subring because Un ⊂ U for every n ≥ 1. If we show that A0 is bounded, we will be
done thanks to lemma II.1.1.7. Let V be a neighborhood of 0 in A. By assumption, there exists
a positive integer m such that Um ⊂ V . As Um is open and A0 ·Um = Um +Um+1 ⊂ Um ⊂ V ,
we are done.

Corollary II.1.1.8. (Corollary 6.4 of [26].) Let A be a f-adic ring.

(i) If A0 and A1 are two rings of definition of A, then so are A0 ∩ A1 and A0 · A1.

(ii) Every open subring of A is f-adic.

(iii) If B ⊂ C are subrings of A with B bounded and C open, then there exists a ring of
definition A0 of A such that B ⊂ A0 ⊂ C.

(iv) A is adic if and only if it is bounded (in itself).

Proof. (i) If A0 and A1 are rings of definition, they are open and bounded, hence so are
A0 ∩A1 and A0 ·A1, so A0 ∩A1 and A0 ·A1 are also rings of definition by lemma II.1.1.7.

(ii) Let B be an open subring of A, and let (A0, I) be a couple of definition in A. Then there
exists a positive integer n such that In ⊂ B, and (B ∩ A0, I

n) is a couple of definition in
B.

(iii) By (ii), we may assume that C = A. Let A0 be a ring of definition of A. Then A0 · B is
open and bounded, hence is a ring of definition by lemma II.1.1.7.

(iv) If A is bounded, then it is a ring of definition of itself by lemma II.1.1.7, so it is adic.
Conversely, if A is adic, then it is bounded by remark II.1.1.4.

Remark II.1.1.9. Suppose that A is f-adic and that (A0, I0) and (A1, I1) are couples of definition.
Then we know that A0 · A1 is a ring of definition, and it is easy to see that I0 · A1 and I1 · A0

both are ideals of definition in it. On the other hand, we also know that A0 ∩ A1 is a ring of
definition, but there is no reason for I0 ∩ I1 to be an ideal of definition (because we don’t know
if it is finitely generated).

II.1.2 Boundedness

Recall that bounded subsets of topological rings are introduced in definition II.1.1.3.
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Definition II.1.2.1. LetA be a topological ring. We say that a subsetE ofA is power-bounded if
the set

⋃
n≥1E(n) is bounded, where (as in notation II.1.1.5E(n) = {e1 . . . en, e1, . . . , en ∈ E}.

We say that E is topologicall nilpotent if, for every neighborhood W of 0 in A, there exists a
positive integer N such that E(n) ⊂ W for n ≥ N .

If E is a singleton {a}, we say that a is power-bounded (resp. topologically nilpotent) if E is.
1

Notation II.1.2.2. LetA be a topological ring. We denote byA0 the subset of its power-bounded
elements, and by A00 the subset of its topologically nilpotent elements.

Lemma II.1.2.3. (Remark 5.26 of [26].) Let A be an adic ring. If x ∈ A, the following are
equivalent :

(i) x is topologically nilpotent.

(ii) There exists an ideal of definition I such that the image of x in A/I is nilpotent.

(iii) There exists an ideal of definition I such that x ∈ I .

In particular, A00 is an open radical ideal of A and it is the union of all the ideals of definition.
Moreover, A00 itself is an ideal of definition if and only if there exists an ideal of definition I such
that the nilradical of A/I is nilpotent (and then this condition holds for all ideals of definition).

Proof. We first prove the equivalence of (i), (ii) and (iii), for x ∈ A. It is clear that (iii) implies
(i). Suppose that (i) holds. Let I be an ideal of definition of A. As I is a neighborhood of 0, there
exists N ∈ N such that xn ∈ I for n ≥ N ; so the image of x in A/I is nilpotent, and (ii) holds.
Finally, suppose that (ii) holds, and let I be an ideal of definition such that x + I is nilpotent in
A/I . Let n be a positive integer such that xn ∈ I , and let J = I + xA. Then J is an open ideal
of A, I ⊂ J , and Jn ⊂ I , so the I-adic and J-adic topologies on A coincide, which means that
J is an ideal of definition; this shows that (iii) holds.

We now prove the rest of the lemma. The fact thatA00 is the union of all the ideals of definition
follows from the equivalence of (i) and (iii); in particular, as ideals of definition are open, A00 is
also open; it is clear that A00 is radical. If A00 is an ideal of definition, then there exists an ideal
of definition I such that the nilradical of A/I is nilpotent (just take I = A00, and observe that the
nilradical ofA/A00 is (0)). Conversely, suppose that there exists an ideal of definition I such that
the nilradical of A/I is nilpotent. Then there exists a positive integer n such that (A00)n ⊂ I , so
the I-adic and A00-adic topologies on A coincide, i.e., A00 is an ideal of definition.

Proposition II.1.2.4. (Corollary 6.4 of [26].) Let A be a f-adic ring. Then the set of power-
bounded elements A0 is an open and integrally closed subring of A, and it is the union of all the
rings of definition of A. Moreover, A00 is a radical ideal of A0.

1Note that this agrees with definition I.1.5.3.
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Note that A00 is not an ideal of A in general.

Remark II.1.2.5. (See proposition 5.30 of [26], or adapt the proof below.) All the assertions
remain true for a non-Archimedean ring A, except the fact that A0 is open and the union of all
the rings of definition of A.

Proof of the proposition. By (iii) of corollary II.1.1.8, every bounded subring of A is contained
in a ring of definition; by (ii) of lemma II.1.2.6, this implies that every power-bounded element of
A is contained in a ring of definition, so A0 is contained in the union of all the rings of definition
of A. Conversely, if A0 is a ring of definition of A, then it is bounded by remark II.1.1.4, so all
its elements are power-bounded by lemma II.1.2.6(ii), so A0 ⊂ A0. This proves that A0 is the
union of all the rings of definition of A, so it is a subring of A; as rings of definition are open, A0

is open.

We show that A0 is integrally closed in A. Let a ∈ A be integral over A0. By the previous
paragraph, there exists a ring of definition A0 such that a is integral over A0; in particular, A0

is bounded. So there exists n ∈ N such that A0[a] = A0 + A0a + . . . + A0a
n, hence A0[a] is

bounded, which implies that a is power-bounded, i.e., a ∈ A0.

We prove that A00 is a radical ideal of A0. Let a, a′ ∈ A00 and b ∈ A0. We prove that
a+ a′, ab ∈ A00. Let U be a neighborhood of 0 in A; as A is non-Archimedean, we may assume
that U is an additive subgroup of A. Let V ⊂ U be a neighborhood of 0 such that bnV ⊂ U
for every n ≥ 1, and let N be a positive integer such that an, (a′)n ∈ V for n ≥ N . Then
(a+a′)n ∈ U for n ≥ 2N by the binomial formula, and (ab)n = bnan ∈ bnV ⊂ U for n ≥ N . It
remains to show that A00 is a radical ideal of A0. Let a ∈ A0, and suppose that we have ar ∈ A00

for some positive integer r. Let U be a neighborhood of 0 in A, and let V be a neighborhood of 0
such that anV ⊂ U for every n ≥ 1. Choose a positive integer N such that (ar)n ∈ V for every
n ≥ N . Then we have an ∈ U for every n ≥ rN . This shows that a ∈ A00.

Lemma II.1.2.6. (Proposition 5.30 of [26].) Let A be a non-Archimedean topological ring.

(i) Let T be a subset of A, and let T ′ be the subgroup generated by T . Then T ′ is bounded
(resp. power-bounded, resp. topologically nilpotent) if and only if T is.

(ii) Let T be a subset of A. Then T is power-bounded if and only if the subring generated by
T is bounded.

Proof. (i) We prove the non-obvious direction. Suppose that T is bounded. Let U be a neigh-
borhood of 0, and let V be a neighborhood of 0 such that ax ∈ U for every a ∈ T and
x ∈ V . As A is non-Archimedean, we may assume that U and V are additive subgroups
of A, and then we have T ′ · V ⊂ U . So T ′ is bounded. The proofs are similar for T
power-bounded and T topologically nilpotent.

(ii) Let B be the subring generated by T . Then B is the subgroup generated {1}∪
⋃
n≥1 T (n),

so, by (i), it is bounded if and only if {1} ∪
⋃
n≥1 T (n) is bounded; we see easily that this
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equivalent to the fact that
⋃
n≥1 T (n) is bounded, i.e. that T is power-bounded.

Note the following useful lemma characterizing open ideals of A.

Lemma II.1.2.7. Let A be a f-adic ring and J be an ideal of A. Then J is open if and only if
A00 ⊂

√
J .

Proof. Suppose that J is open. Then it is a neighborhood of 0 in A, so, for every a ∈ A00, we
have an ∈ J for n big enough, which means that A00 ⊂

√
J .

Conversely, suppose that A00 ⊂
√
J . Let (A0, I) be a couple of definition of A. Then I ⊂ A00

by lemma II.1.2.3, so I ⊂
√
J . Write I = (a1, . . . , ar) with a1, . . . , ar ∈ A0, and choose N ∈ N

such that aN1 , . . . , a
N
r ∈ J . Then J contains IrN , and IrN is open, so J is open.

II.1.3 Bounded sets and continuous maps

A continuous map of f-adic rings does not necessarily send bounded sets to bounded sets. We
want to introduce a condition that will guarantee this property.

Definition II.1.3.1. Let A and B be f-adic rings. A morphism of rings f : A → B is called
adic if there exist a couple of definition (A0, I) of A and a ring of definition B0 of B such that
f(A0) ⊂ B0 and that f(I)B0 is an ideal of definition of B.

Example II.1.3.2. (1) A continuous, surjective and open morphism of f-adic rings is adic.

(2) Let A be Q` with the discrete topology and B be Q` with the topology given by the `-adic
valuation. Then the identity f : A→ B is continuous, and A is bounded in A, but f(A) is
not bounded in B. By proposition II.1.3.3, this implies that f is not adic.

(3) Let f : Z` → Z`[[X]] be the inclusion, where Z` has the `-adic topology and Z`[[X]] has
the (`,X)-adic topology. Then f is not adic.

Proposition II.1.3.3. Let A and B be f-adic rings and f : A→ B be an adic morphism of rings.
Then :

(i) f is continuous.

(ii) If A0 andB0 are rings of definition of A andB such that f(A0) ⊂ B0, then, for every ideal
of definition I of A0, the ideal f(I)B0 is an ideal of definition of B.

(iii) For every bounded subset E of A, the set f(E) is bounded in B.

Proof. Let (A0, I) and B0 be as in definition II.1.3.1, and write J = f(I)B0.
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(i) For every n ≥ 1, we have f−1(Jn) = f−1(f(In)B0) ⊃ In. So f is continuous.

(ii) Let (A′0, I
′) be a couple of definition of A and B′0 be a ring of definition of B such that

f(A′0) ⊂ B′0. We want to show that J := f(I ′)B′0 is an ideal of definition of B′0.

(iii) Let U be a neighborhood of 0 in B. We may assume that U = Jn for some n ≥ 1. Let V
be a neighborhood of 0 in A such that ax ∈ In for every a ∈ E and every x ∈ V ; we may
assume that V = Im for some m ≥ 1. Then f(E) · f(I)m = f(E · Im) ⊂ f(In) ⊂ Jn, so
f(E)Jm ⊂ Jn.

Proposition II.1.3.4. (Proposition 6.25 of [26].) Let A and B be f-adic rings and f : A→ B be
a continuous morphism of rings. Suppose that A is a Tate ring. Then B is a Tate ring, f is adic,
and, for every ring of definition B0 of B, we have f(A) ·B0 = B.

Proof. Let B0 be a ring of definition of B. By lemma II.1.3.5, we can find a ring of definition
A0 of A such that f(A0) ⊂ B0. Let $ ∈ A be a topologically nilpotent unit. After replacing
replacing $ by some $r, we may assume that $ ∈ A0. As f is a continuous morphism of rings,
f($) ∈ B0 is a topologically nilpotent unit of B. In particular, B is a Tate ring. By proposition
II.2.5.2, I := $A0 is an ideal of definition of A0, and f(I)B0 = f($)B0 is an ideal of definition
of B0. So f is adic. Also, by the same lemma, we have B = B0[f($)−1], so B = f(A) ·B.

Lemma II.1.3.5. Let f : A → B be a continuous morphism of f-adic rings. For every ring of
definition B0 of B, there exists a ring of definition A0 of A such that f(A0) ⊂ B0.

Proof. Let A′0 and B0 be rings of definition of A and B. Then f−1(B0) is an open subring of
A and A′0 ∩ f−1(B0) is a bounded subring, so, by corollary II.1.1.8(iii), there exists a ring of
definition A0 of A such that A′0 ∩ f−1(B0) ⊂ A0 ⊂ f−1(B0), and we clearly have f(A0) ⊂ B0.

II.1.4 Examples

Some of these will be particular cases of constructions that we will see later, I’ll add references
later for the others.

1. Any ring is a topological ring for the discrete topology. It is f-adic but not Tate.

2. The rings R and C (with the usual topology) are topological rings. They are not non-
Archimedean. A subset of C (or R) is bounded if and only if it is bounded in the usual
sense. We have

C0 = {z ∈ C | |z| ≤ 1}
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and
C00 = {z ∈ C | |z| < 1}.

Note that these are not additive subgroups.

3. Z` with the `-adic topology is an adic topological ring (any power of `Z` is an ideal of
definition), and Q` with the `-adic topology is an f-adic topological ring (with Z` as a ring
of definition). We have Q0

` = Z` and Q00
` = `Z`.

4. Q` (with the topology coming from the unique extension of the `-adic valuation on Q`) is
a f-adic ring. We have Q0

` = Z`, the integral closure of Z` in Q`; this is a ring of definition,
and it is adic with ideal of definition `Z` (for example). Also, Q00

` is the maximal ideal
of Z`; it is not an ideal of definition, because it is equal to its own square (also, it is not
finitely generated).

Note that Z + `Z` is also a ring of definition of Q`, because it is open and bounded.

5. Let A be a Noetherian ring and I an ideal of A. The I-adic topology on A is Hausdorff if
I is contained in the Jacobson radical of A (for example if A is local and I 6= A), or if A
is a domain and I 6= A.

6. Let A be a ring with the topology induced by a rank 1 valuation |.|, and let Γ be the
valuation group of |.|. Then :

- a subset E of A is bounded if and only if there exists γ ∈ Γ such that
E ⊂ {a ∈ A | |a| ≤ γ}.

- A0 = {a ∈ A | |a| ≤ 1};

- A00 = {a ∈ A | |a| < 1}.

These statements are all false if |.| has rank≥ 2. Indeed, in that case Γ has a proper convex
subgroup ∆, and an element ofA that has valuation in ∆ cannot be topologically nilpotent,
because there exists γ ∈ Γ such that γ < δ for every δ ∈ ∆.

7. Let A = k((t))((u)), with the valuation |.| corresponding to the valuation subring
R := {f =

∑
n≥0 anu

n | an ∈ k((t)) and a0 ∈ k[[t]]}. More explicitly, take Γ = Z×Z; if
f =

∑
n≥r anu

n ∈ A with an ∈ k((t)) and ar 6= 0, and if ar =
∑

m≥s bmt
m with bm ∈ k

and bs 6= 0, then |f | = (−r,−s). 2 Note that the valuation topology on A coincides
with the topology defined by the u-adic valuation (see example I.1.5.5). So t ∈ A is not
topologically nilpotent, even though it has valuation < (0, 0).

8. Let k be a field with the topology induced by a rank 1 valuation |.|. Then
k0 = {x ∈ k | |x| ≤ 1} is a ring of definition of k (often called the ring of integers
of k); it is a local ring with maximal ideal k00 = {x ∈ k | |x| < 1}. A nonzero topologi-
cally nilpotent in k, i.e. an element of k00−{0} is called a pseudo-uniformizer. k is a Tate
ring; a ring of definition is k0, and any pseudo-uniformizer generates an ideal of definition

2We put the minus signs so that |.| will be a multiplicative valuation; see remark I.1.1.11.

62



II.1 Topological rings

of k0.

The Tate algebra in n indeterminates over k is the subalgebra Tn = Tn,k = l〈X1, . . . , Xn〉
of k[[X1, . . . , Xn]] whose elements are power series f =

∑
ν∈Nn aνX

ν such that
|aν | → 0 as ν1 + . . . + νn → +∞ (where ν = (ν1, . . . , νn)). The Gauss norm
‖.‖ on Tn is defined by ‖

∑
ν aνX

ν‖ = supν∈Nn |aν |. With the topology induced
by this norm, Tn is a Tate ring, and contains k[X1, . . . , Xn] as a dense subring. We
have T 0

n = k0〈X1, . . . , Xn〉 := Tn ∩ k0[[X1, . . . , Xn]], and this is a ring of defi-
nition. Any pseudo-uniformizer of k generates an ideal of definition of T 0

n . Also,
T 00
n = k00〈X1, . . . , Xn〉.

9. We keep the notation of the previous example, and we suppose that k is complete.3

The algebra k〈X1, . . . , Xn〉 is a Banach k-algebra, it is Noetherian and all
its ideals are closed. Alors, if Bn(k) is the closed unit ball in k

n
(i.e.

Bn(k) = {(x1, . . . , xn) ∈ k
n | ∀i ∈ {1, . . . , n}, |xi| ≤ 1}, where we denote by |.| the

uniaue extension of the valuation |.| to k), then a formal power series f ∈ k[[X1, . . . , Xn]]
is in k〈X1, . . . , Xn〉 if and only if, for every x ∈ Bn(k), the series f(x) converges in the
completion of k.

An affinoid k-algebra is a quotient of an algebra k〈X1, . . . , Xn〉. These are also called
topologically finitely generated k-algebras. . Such an algebra is also a Tate ring, it is
Noetherian, and all its ideals are closed. Also, if A is an affinoid k-algebra, then A0 is a
ring of definition ofA (i.e. bounded) if and only ifA is reduced. (The fact thatA is reduced
if A0 is bounded is proved in remark IV.1.1.3, and the converse follows immediately from
Theorem 1 of section 6.2.4 of [3].)

For example, A = Q`[T ]/(T 2) is an affinoid Q`-algebra (note that A is also equal to
Q`〈T 〉/(T 2)), but A0 = Z` ⊕Q`T is not bounded (neither is A00 = `Z` ⊕Q`T ).

10. Another important class of examples are perfectoid algebras. These are always Tate rings.
For example, C` is a perfectoid field, and the `-adic completion of

⋃
n≥1 C`〈X1/`n〉 is a

perfectoid C`-algebra.

11. A = Z`[[T ]] with the (`, T )-adic topology is an adic and f-adic ring, but it is not a Tate
ring. This type of f-adic ring is also very useful, because their adic spectra will be formal
schemes.

3Some of the results are still true under weaker conditions.
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II.2 Continuous valuations

II.2.1 Definition

Definition II.2.1.1. Let A be a topological ring. We say that a valuation |.| on A is continuous if
the valuation topology on A is coarser than its original topology.

In other words, a valuation |.| : A → Γ ∪ {0} is continuous on A if and only if, for every
γ ∈ Γ, the set {a ∈ A | |a| < γ} is an open subset of A. By remark I.1.5.2(3), if the value group
of |.| is not trivial, then |.| is continuous if and only if, for every γ ∈ Γ, the set {a ∈ A | |a| ≤ γ}
is an open subset of A.

Definition II.2.1.2. If A is a topological ring, the set of continuous valuations of A is called the
continuous valuation spectrum of A and denoted by Cont(A). We see it as a topological space
with the topology induced by the topology of Spv(A).

II.2.2 Spectrality of the continuous valuation spectrum

Theorem II.2.2.1. (Theorem 7.10 of [26].) Let A be a f-adic ring. Then

Cont(A) = {x ∈ Spv(A,A00 · A) | ∀a ∈ A00, |a|x < 1}.

If I is an ideal of definition of a ring of definition of A, we also have

Cont(A) = {x ∈ Spv(A, I · A) | ∀a ∈ I, |a|x < 1}.

Proof. By lemma II.2.2.2 and remark I.4.2.2(3), we have

{x ∈ Spv(A,A00 · A) | ∀a ∈ A00, |a|x < 1} = {x ∈ Spv(A, I · A) | ∀a ∈ I, |a|x < 1}.

Let x ∈ Cont(A). Let a ∈ A00 and let γ ∈ Γ. As a is topologically nilpotent and
{b ∈ A | |b|x < γ} is a neighborhood of 0 in A, there exists a positive integer n such that
|an|x = |a|nx < γ. This shows that every element of |A00|x is cofinal for Γx, and so, by lemma
I.4.2.3, x ∈ Spv(A,A00 · A). Also, we have |a|x < 1 for every a ∈ A00 by lemma I.1.5.7.

Conversely, let x ∈ {x ∈ Spv(A,A00 · A) | ∀a ∈ A00, |a|x < 1}. If cΓx 6= Γx, then |a|x is
cofinal for Γx for every a ∈ A00 by lemma I.4.2.3. Suppose that cΓx = Γx. Let a ∈ A00 and
γ ∈ Γx. As Γx = cΓx, there exists b ∈ A such that |b|x 6= 0 and |b|−1

x ≤ γ. We can find n ≥ 1
such that ban ∈ A00 (because A00is open in A), and then |ban|x < 1 by the assumption on x, so
|a|nx < |b|−1

x ≤ γ. So we see again that every element of |A00|x is cofinal for Γx.

We finally show that x is continuous. Write I = (a1, . . . , ar) with a1, . . . , ar ∈ A0, and set
δ = max{|ai|x, 1 ≤ i ≤ n}. Let γ ∈ Γx. By the previous paragraph, there exists n ≥ 1 such that
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δn < γ. As |a|x < 1 for every a ∈ I , this implies that |a|x < δn < γ for every a ∈ In · I = In+1,
so the open neighborhood In+1 of 0 is included in {a ∈ A | |a|x < γ}. This implies that |.|x is
continuous.

Lemma II.2.2.2. Let A be a f-adic ring, and let I be an ideal of definition of a ring of definition
of A. Then

√
A00 · A =

√
I · A.

Also, if x ∈ Spv(A), the following are equivalent :

(a) |a|x < 1 for every a ∈ I;

(b) |a|x < 1 for every a ∈ A00.

Proof. We prove both statements at the same time. Let x ∈ Spv(A). Let A0 be the ring of
definition in which I is an ideal of definition. We have A00 ∩ A0 ⊃ I by lemma II.1.2.3. So (b)
implies (a), and alsoA00·A ⊃ I ·A, hence

√
A00 · A ⊃

√
I · A. Conversely, if a ∈ A00, then there

exists r ≥ 1 such that ar ∈ I . This shows that (a) implies (b), and also that A00 · A ⊂
√
I · A,

and hence that
√
A00 · A ⊂

√
I · A.

Corollary II.2.2.3. For every f-adic ring A, the continuous valuation spectrum Cont(A) is a
spectral space.

Moreover, the sets

Ucont

(
f1, . . . , fn

g

)
= {x ∈ Cont(A) | ∀i ∈ {1, . . . , n}, |fi|x ≤ |g|x 6= 0},

for f1, . . . , fn, g ∈ A such thatA00 ⊂
√

(f1, . . . , fn), form a base of quasi-compact open subsets
of Cont(A).

Note that the condition A00 ⊂
√

(f1, . . . , fn) is equivalent to saying that the ideal (f1, . . . , fn)
is open. (See lemma II.1.2.7.)

Proof. Let J = A00 · A. We have

Cont(A) = Spv(A, J)−
⋃
g∈A00

UJ

(
1

g

)
,

so Cont(A) is a closed subset of Spv(A, J). As
√
J is the radical of the ideal of A generated by

an ideal of definition of a subring of definition, which is finitely generated, the theorem follows
from theorem I.4.2.4 and corollary I.2.4.3.
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II.2.3 Specializations

The subset Cont(A) of Spv(A) is not stable by general specializations (or generizations), but we
do have the following result.

Proposition II.2.3.1. Let A be a f-adic ring and x ∈ Cont(A). Then :

(i) Every horizontal specialization of x is continuous.

(ii) Every vertical generization y of x such that Γy 6= {1} is continuous.

Remark II.2.3.2. If Γy = {1}, then y is the trivial valuation with support ℘y, and it is continuous
if and only if ℘y is an open ideal of A. This might or might not be the case in general.

Proof of the proposition. (i) Let y be a horizontal specialization of x. Then we have
|a|y ≤ |a|x for every a ∈ A (by the formula of definition I.3.3.3). So, if γ ∈ Γ, the
subgroup {a ∈ A | |a|y < γ} of (A,+) contains the open subgroup {a ∈ A | |a|x < γ};
this implies that {a ∈ A | |a|y < γ} is open.

(ii) Let y be a vertical generization of x. By proposition I.3.2.3(ii), there exists a convex
subgroup H of Γx such that Γy = Γx/H and |.|y is the composition of |.|x and of the
quotient map π : Γx ∪ {0} → Γy ∪ {0}. Let γ ∈ Γx. Then

{a ∈ A | |a|x ≤ γ} ⊂ {a ∈ A | |a|y = π(|a|x) ≤ π(γ)}.

As both these sets are additive subgroups of A, and as the smaller one is open, the bigger
one is also open. By remark I.1.5.2(3), if Γy 6= {1}, this implies that y is a continuous
valuation.

II.2.4 Analytic points

In this section, A is a f-adic ring.

Definition II.2.4.1. A point x ∈ Cont(A) is called analytic if ℘x is not open.

We denote by Cont(A)an the subset of analytic points in Cont(A).

Proposition II.2.4.2. Let x ∈ Cont(A). The following are equivalent :

(i) x is analytic.

(ii) |A00|x 6= {0}.

(iii) For every couple of definition (A0, I) of A, we have |I|x 6= 0.

(iv) There exists a couple of definition (A0, I) of A such that we have |I|x 6= 0.
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Proof. (ii) implies (iii) because A00 contains every ideal of definition of a ring of definition of A,
and (iii) obvisouly implies (iv). Suppose that (i) holds. As ℘x is not open, it cannot contain the
open additive subgroup A00 of A, so (ii) holds. Suppose that (iv) holds, and let a ∈ I such that
|a|x 6= 0. Then |an|x 6= 0 for every n ≥ 1, so ℘x does not contain any of the sets In, so it cannot
be open.

Remark II.2.4.3. Remember that

Cont(A) = {x ∈ Spv(A,A00 · A) | ∀a ∈ A00, |a|x < 1}

by theorem II.2.2.1. So, by proposition II.2.4.2, Cont(A)an is the set of points of x of Spv(A)
such that

- the support of x is not in V (A00 · A);

- every proper horizontal specialization of x has support in V (A00 · A);

- |a|x < 1 for every a ∈ A00.

Remark II.2.4.4. It is easy to show (see lemma 6.6 of [26]) that an ideal a of A is open if and
only

√
a contains the ideal A00 · A.

Corollary II.2.4.5. Let I be an ideal of definition of a ring of definition of A, and let f1, . . . , fn
be generators of I . Then

Cont(A)an =
n⋃
i=1

Ucont

(
f1, . . . , fn

fi

)
.

In particular, Cont(A)an is a quasi-compact open subset of Cont(A).

Proof. Let x ∈ Cont(A). For i ∈ {1, . . . , n}, we have x ∈ Ucont

(
f1,...,fn
fi

)
if and only if

0 6= |fi|x = max1≤j≤n{|fj|x}. So x is in
⋃n
i=1 Ucont

(
f1,...,fn
fi

)
if and only if there exists

i ∈ {1, . . . , n} such that |fi|x 6= 0. This is equivalent to the fact that |I|x 6= {0}, so it is
equivalent to x ∈ Cont(A)an by proposition II.2.4.2.

Proposition II.2.4.6. Let x ∈ Cont(A)an. Then x has rank ≥ 1, and the valuation |.|x on K(x)
is microbial.

Proof. If x ∈ Cont(A) and Γx = {1}, then ℘x = {a ∈ A | |a|x < 1} is open, so x cannot be
analytic. So analytic points of Cont(A) must have positive rank.

We prove the second statement. Let x ∈ Cont(A)an. By proposition II.2.4.2, there exists
a ∈ A00 such that |a|x 6= 0. So the image of a in Frac(A/℘x) ⊂ K(x) is topologically nilpotent
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(for the valuation topology on K(x)) and invertible. By theorem I.1.5.4, this implies that the
valuation |.|x on K(x) is microbial.

Finally, we show that specializations among analytic points are particularly simple.

Proposition II.2.4.7. Every specialization inside Cont(A)an is vertical.

In particular, if A is a Tate ring, then every specialization in Cont(A) is vertical.

The second part follows from the first and from remark II.2.5.7.

Proof. Let x, y ∈ Cont(A)an such that y is a specialization of x. Let y′ be the vertical generiza-
tion of y (in Spv(A)). given by theorem I.3.4.3(ii). If we were in case (b) of theorem I.3.4.3(ii),
then we would have ℘y ⊃ ℘x|{1} ⊃ {a ∈ A | |a|x < 1}; but this would imply that ℘y is open
and contradict the condition y ∈ Cont(A)an. So we are in case (a) of theorem I.3.4.3(ii), which
means that y′ is a horizontal specialization of x. In particular, y′ is continuous by proposition
II.2.3.1(i), and it is analytic because ℘y′ = ℘y is not open.

Let H ⊃ cΓx be a convex subgroup of Γx such that y′ = x|H . We want to show that H = Γx,
which will imply that y is a vertical specialization of x = y′. Suppose that H 6= Γx. Then we
can find γ ∈ Γx−H such that γ < 1. Let a ∈ A such that |a|x < γ. Then |a|x 6∈ H (otherwise γ
would be in H , because H is convex), so |a|y′ = 0. This shows that ℘y′ contains the open subset
{a ∈ A | |a|x < γ} and contradicts the fact that y′ is analytic.

Corollary II.2.4.8. For every x ∈ Cont(A)an, the set of generizations of x in Cont(A)an is to-
tally ordered and admits an order-preserving bijection with the set of proper convex subgroups of
Γx. In particular, the continuous rank 1 valuations are exactly the maximal points of Cont(A)an

for the order given by specialization (i.e. the x ∈ Cont(A)an such that {x} is an irreducible
component of Cont(A)an).

Moreover, every x ∈ Cont(A)an has a unique rank 1 generization, which is its maximal gener-
ization.

Proof. All generizations of x in Cont(A)an is vertical by proposition II.2.4.7. As every nontrivial
vertical generization of x is continuous by proposition II.2.3.1(ii), and as vertical generizations
of x have the same support as x, we see that generizations of x in Cont(A)an are exactly the non-
trivial vertical generizations of x. By proposition I.3.2.3, these are in order-preserving bijection
with proper convex subgroups of Γx, and in order-reversing bijection with the nonzero prime
ideals of Rx. In particular, x is maximal if and only Γx has no nonzero proper convex subgroups,
i.e. if and only if Γx has height 1.

To finish the proof, we must show that x has a maximal vertical generization. By proposition
II.2.4.6, the valuation |.|x onK(x) is microbial, soRx has a prime ideal of height 1. As the ideals
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of Rx are totally ordered by inclusion, this implies that Rx has a unique prime ideal of height 1.
The corresponding generization of x is the maximal generization of x in Cont(A), and also the
unique rank 1 generization of x in Cont(A).

II.2.5 Tate rings

In this section, we gather some results that are specific to Tate rings. In general, Tate rings behave
more nicely than general f-adic rings.

Definition II.2.5.1. If A is a Tate ring, a topologically nilpotent unit of A is called a pseudo-
uniformizer.

Proposition II.2.5.2. Let A be a Tate ring, let A0 be a ring of definition of A, and let $ be a
topologically nilpotent unit of A. Suppose that $ ∈ A0. Then $A0 is an ideal of definition of
A0, and A = A0[$−1].

Proof. Let I = $A0. As $ is a unit in A, multiplication by $ is continuous, so In = $nA0

is an open subset of A0 for every n ≥ 1. So we just need to show that every neighborhood
of 0 contains some In. Let U be an open neighborhood of 0 in A. As A0 is bounded, there
exists an open neighborhood of 0 such that ax ∈ U for every a ∈ A0 and every x ∈ V . As
$ is topologically nilpotent, there exists a positive integer n such that $n ∈ V . Then we have
In = $nA0 ⊂ U .

We show the last statement. Let a ∈ A. As multiplication by a is continuous and $ is
topologically nilpotent, 0 is a limit of the sequence (a$n)n≥0. So there exists N ∈ N such that
a$n ∈ A0 for every n ≥ N , and a ∈ A0[$−1].

Conversely, if a f-adic ring A has a pair of definition (A0, I) with I principal, then any gen-
erator of I is topologically nilpotent in A, so A is a Tate ring if I is generated by a unit of
A.
Remark II.2.5.3. (Proposition 6.2.6 of [9].) IfA0 is an adic ring with a principal ideal of definition
I := $A0, then A := A0[$−1] is a Tate ring for the topology for which the image of A0 is a ring
of definition and the image of I an ideal of definition.

Proof. Let u : A0 → A be the canonical map. We check that the subgroups (u($nA0))n≥0

of A satisfy the conditions of lemma II.3.3.8, hence are a fundamental system of neighbor-
hood for a topological ring structure on A. Conditions (a) and (c) of the lemma are clear. Let
a ∈ A and n ∈ N. We write a = u(b)u($)−r, with b ∈ A0 and r ∈ N. Then we have
au($n+rA0) ⊂ u($nA0).
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Example II.2.5.4. Take A0 = Z[X] with the X-adic topology. Then A = A0[X−1] is a Tate
ring. Note that this ring does not contain a field.

Corollary II.2.5.5. Let A be a Tate ring, let A0 be a ring of definition of A, and let $ be a
topologically nilpotent unit of A. Then a subset E of A is bounded if and only there exists n ∈ Z
such that E ⊂ $nA0.

Remember proposition II.1.3.4.

Proposition II.2.5.6. Let f : A → B be a continuous ring morphism between f-adic ring. If A
is a Tate ring, then so is B, and f is adic.

Remark II.2.5.7. If A is a Tate ring, then Contan(A) = Cont(A).

This follows immediately from the definition and from the next lemma.

Lemma II.2.5.8. Let A be a Tate ring. Then the only open ideal of A is A itself.

Proof. Let $ be a topologically nilpotent unit of A, and let J be an open ideal of A. Then there
exists r ≥ 1 such that $r ∈ J , so J contains a unit and J = A.

So proposition II.2.4.7 implies that, if A is a Tate ring, every specialization in Cont(A) is
vertical. Also, corollary II.2.4.8 says that each point of Cont(A) has a unique rank 1 generization
in Cont(A), which is also its maximal generization in Cont(A).

Definition II.2.5.9. A non-Archimedean field is a topological field K whose topology is given
by a rank 1 valuation.

Note that we do not assume that K is complete.

The following result is an immediate consequence of theorem I.1.5.4.

Corollary II.2.5.10. Let K be a topological field whose topology is given by a valuation. Then
K is a non-Archimedean field if and only if it is a Tate ring.

Corollary II.2.5.11. LetK be a non-Archimedean field, and let |.| be a rank 1 valuation defining
its topology.

(i) The ring K0 is local with maximal ideal K00.

(ii) Let x ∈ Cont(A). Then |.|x is microbial and its valuation topology coincides with the
original topology of K; moreover, we have K00 ⊂ Rx ⊂ K0.

(iii) If R is a valuation subring of K such that K00 ⊂ R ⊂ K0, then the corresponding
valuation is continuous.
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In other words, we get a canonical bijection Cont(K)
∼→ Spv(K0/K00).

Proof. (ii) It suffices to show that every element of K0−K00 is invertible in K0. This follows
immediately from the fact that K0 = {a ∈ K | |a| ≤ 1}, K00 = {a ∈ K | |a| < 1} and
(K0)× = {a ∈ K | |a| = 1}.

(ii) Any topologically nilpotent unit of K is also topologically nilpotent for the valuation
topology, so |.|x is microbial by theorem I.1.5.4, that is, it admits a rank 1 generiza-
tion y ∈ Cont(K) such that |.|x and |.|y define the same topology. We obviously have
K00 ⊂ Rx ⊂ Ry, so it suffices to prove the result for y. In that case, the statement
is equivalent to the fact that |.|y and |.| are equivalent. As y has rank 1, we must have
|a|y ≤ 1 for every power-bounded element a ∈ K, so we have K0 ⊂ Ry. This means
that y is a vertical generization of |.|; but, as |.|y and |.| have the same rank, they must be
equivalent.

(iii) The ring K0 is maximal among all proper valuation subrings of K containing R, so, by
corollary I.1.4.4, its maximal idealK00 is a height 1 prime ideal ofR. Now theorem I.1.5.4
implies that |.|R and |.| define the same topology on K, and in particular |.|R is continuous.

II.3 Constructions with f-adic rings

II.3.1 Completions

Remember the following definitions from general topology.

Definition II.3.1.1. Let X be a set. A filter of subsets of X (or filter on X) is a nonempty family
F of subsets of X that is stable by finite intersection and such that, if A ∈ F and B ⊃ A, then
B ∈ F .

If X is a topological space and x ∈ X , we say that x is a limit of the filter F if every
neighborhood of x is in F .

In a metric space (or more generally in a first-countable topological space), we can characterize
many topological properties using sequences. This does not work in a general topological space,
but we can use filters (or their cousins nets) instead, and everything adapts quite easily.
Remark II.3.1.2. A topological space X is Hausdorff if and only if every filter on X has at most
one limit.
Remark II.3.1.3. If (xn)n≥0 is a sequence in X , the associated filter is

F := {E ∈ A | ∃n ∈ N, xm ∈ E for m ≥ n}.

Then x is a limit of (xn)n≥0 if and only if it is a limit of F .
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Remark II.3.1.4. Any f-adic ring is a first-countable topological space, so we are being somewhat
pedantic here.

Definition II.3.1.5. Let A be a commutative topological group (for example the additive sub-
group of a topological ring).

(i) We say that a filter F onA is a Cauchy filter if, for every neighborhood U of 0, there exists
E ∈ F such that x− y ∈ U for all x, y ∈ E.

(ii) We say that A is complete if it is Hausdorff and if every Cauchy filter on A has a limit.

Remark II.3.1.6. Note that Bourbaki does not require complete commutative topological groups
to be Hausdorff.

Remark II.3.1.7. If (xn)n≥0 is a sequence in A, we say that it is a Cauchy sequence if, for every
neighborhood U of 0, there exists n ∈ N such that xm − xp ∈ U for all m, p ≥ n. So (xn)n≥0 is
a Cauchy sequence if and only if the associated filter (see remark II.3.1.3) is a Cauchy filter.

Completions of abelian topological groups and topological rings always exist, and they satisfy
the obvious universal property. (See for example [6] Chapitre III §3 No5 Théorème 2 and §6
No5 Théorème 1.) For f-adic rings, these completions take a more explicit form, thanks to the
following theorem.

Theorem II.3.1.8. Let A0 be a ring and I be an ideal of A0. For every A0-module M , we set
M̂ = lim←−n≥0

M/InM and denote the obvious map M → M̂ by f .

Suppose that the ideal I is finitely generated. Then :

(i) The abelian group M̂ is Hausdorff and complete for the f(I)M̂ -adic topology.

(ii) For every n ≥ 0, the map f induces an isomorphism M/InM
∼→ M̂/f(I)nM̂ .

(iii) If A0 is Noetherian, then Â0 is a flat A0-algebra.

Points (i) and (ii) are proved in [25, Lemma 05GG], and point (iii) in [25, Lemma 00MB].
Note that (i) and (ii) are false in general if I is not finitely generated (see [25, Section 05JA]),
and that (iii) is false in general if A0 is not Noetherian, even for a finitely generated ideal (see
[25, Example 0BNU] and [25, Section 0AL8]).

In particular, if A0 is an adic ring and I is a finitely generated ideal of definition of A0, then
Â0 is the completion of A0. It is easy to see that Â0 does not depend on the choice of the ideal of
definition (see remark II.1.1.2(2)).

Corollary II.3.1.9. Let A be a f-adic ring, let (A0, I) be a couple of definition of A, and set
Â = lim←−n≥0

A/In (as an abelian group; note that we take the quotient of A by the ideal In of A0

and not by the ideal that In generates in A). Then :
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II.3 Constructions with f-adic rings

(i) The canonical map Â0 → Â is injective, and the square

A0
//

��

Â0

��

A // Â

is cartesian.

(ii) If we put the unique topology on Â for which Â0 is an open subgroup, then the abelian
topological group Â is complete.

(iii) There is a unique ring structure on Â that makes the canonical map A → Â continuous,
and Â is a topological ring.

(iv) The ring Â is f-adic and (Â0, IÂ0) is a couple of definition of Â. Moreover, the canonical
map A→ Â is adic.

(v) The canonical map Â0 ⊗A0 A→ Â is an isomorphism.

(vi) If A0 is Noetherian, then Â is a flat A-algebra.

(vii) If A0 is Noetherian and A is a finitely generated A0-algebra, then Â is Noetherian.

It is easy to see that Â does not depend on the choice of the pair of definition (A0, I).

Proof. (i) For every n ≥ 0, the map A0/I
n → A/In is injective. As projective limits are left

exact, the morphism Â0 → Â is injective.

Let i : A → Â be the canonical map. To prove the second statement, we must show that
i(A) ∩ Â0 = i(A0). The fact that i(A0) ⊂ i(A) ∩ Â0 is obvious. Conversely, let a ∈ A
such that i(a) ∈ Â0. Then, for every n ≥ 1, there exists bn ∈ A0 such that a ∈ bn + In;
in other words, a is in the closure of A0 in A. As A0 is an open subgroup of A, it is also
closed, so a ∈ A0.

(ii) It is easy to see that Â is Hausdorff (because 0 has a Hausdorff neighborhood, i.e. Â0). Let
F be a Cauchy filter on Â. As Â0 is a neighborhood of 0 in Â, there exists F ∈ F such
that x− y ∈ Â0 for all x, y ∈ F . Let x0 ∈ F , and define a family F0 of subsets of Â0 by :
G ∈ F0 ⇔ x0 +G ∈ F . Then F0 is not empty because F − x0 ∈ F0, and it is clearly a
Cauchy filter on Â0. As Â0 is complete, F0 has a limit a, and then a+ x0 is a limit of F .

(iii) As A0 is dense in Â0, A is dense in Â. This implies uniqueness. The existence of the
product on Â follows from Théorème 1 of [6] Chapitre III §6 No5.

(iv) Â0 is an open subring of Â by (i), and it has the IÂ0-adic topology by theorem II.3.1.8, so
Â is f-adic. The fact that the map A→ Â follows immediately from the definition.

(v) This is lemma 1.6 of [14]. Let us explain the proof. Consider the commutative diagram
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II Topological rings and continuous valuations

(where all the maps are the obvious ones) :

A0
i //

� _

��

Â0� _

��

g

{{

Â0 ⊗A0 A

j

$$
A

f
::

i
// Â

We want to show that the map j is an isomorphism. We will do this by constructing an
inverse.

First note that, by proposition II.3.2.1, Â0 ⊗A0 A has a natural structure of f-adic ring and
that f , g and j are continuous. Indeed, the maps A0 → Â0 and A0 → A are adic.

We now turn to the construction of an inverse h of j : Â0⊗A0 A→ Â. Let a ∈ Â. As i(A)

is dense in Â, we can find a0 ∈ Â0 and b ∈ A such that a = a0 + i(b), and we want to set
h(a) = f(b) + g(a0). We have to check that this does not depend on the choices. Suppose
that a = a0 + i(b) = a′0 + i(b′), with a0, a

′
0 ∈ Â0 and b, b′ ∈ A. Then a0 − a′0 = i(b′ − b),

so b′ − b ∈ A0 by (i), and

f(b) + g(a0) = f(b′) + f(b− b′) + g(a0) = f(b′) + g(i(b− b′)) + g(a0) = f(b′) + g(a′0).

So h is well-defined, and it is clear that h is additive and that f = h ◦ i and g = h|Â0
.

The last property implies that h is continuous in a neighborhood of 0, hence that h is
continuous. As f = h ◦ i, i has dense image and f is a morphism of rings, h is also a
morphism of rings. By construction of h, we have h ◦ j = id. Also, if a ∈ f(A) or
a ∈ g(Â0), then j(h(a)) = a, also by construction of h; as h is a morphism or rings, this
implies that j ◦ h = id.

(vi) and (vii) These follow immediately from (v) (and from theorem II.3.1.8(iii) for (vi)).

Definition II.3.1.10. If A is a f-adic ring, the f-adic ring Â defined in corollary II.3.1.9 is called
the completion of A.

Lemma II.3.1.11. Let A be an abelian topological group and i : A → Â be its completion.
Then there is a bijection between the set of open subgroups of A and the set of open subgroups
of Â; it sends an open subgroup G of A to i(G) = Ĝ, and its inverse sends an open subgroup H
of Â to i−1(H).

Proof. If Y is a subset of A, then i(Y ) is canonically isomorphic to the completion of Y by [6]
Chapitre II §3 No9 corollaire 1 de la proposition 18.
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Note also that Ker i = {0} and that i(A) is dense in Â (for example by [6] Chapitre II §3 No7
proposition 12). If G is an open subgroup of A, it is also closed, hence contains Ker i, and so we
have G = i−1(i(G)). Conversely, if H is an open subgroup of Â, then H ∩ i(A) is dense in H ,
so H is the closure of i(i−1(H)).

Proposition II.3.1.12. Let A be a f-adic ring.

(i) We have Â0 = Â0 and Â00 = Â00. (That is, A0 (resp. A00 is sent to Â0 (resp. Â00) by the
bijection of lemma II.3.1.11.)

(ii) If we have open sugroups of G and H of A and Â that correspond to each other by the
bijection of lemma II.3.1.11, then G is a ring of definition of A if and only if H is a ring of
definition of Â.

(iii) The map i : A→ Â induces a bijective map Cont(Â)→ Cont(A).

In fact, the bijection of (iii) is a homeomorphism, and this is not so obvious and quite impor-
tant. We will prove this later, after we introduce adic spectra. (See corollary III.4.2.2.)

Proof. (i) Let i : A→ Â be the obvious map. By lemma II.3.1.11, a subsetE ofA is bounded
if and only if i(E) is bounded in Â, and an element x ∈ A is topologically nilpotent if and
only if i(x) ∈ Â is topologically nilpotent. In particular, i−1(Â0) (resp. i−1(Â00)) is
contained in A0 (resp. A00), so Â0 ⊂ Â0 (resp. Â00 ⊂ Â00).

Conversely, as i(A0) ⊂ Â0 ⊂ Â0, Â0 is dense in Â0; but Â0 is open in Â, hence closed, so
Â0 = Â0. The case of Â00 is similar.

(ii) As i(G) is dense in H and i(A) is a subring of Â, H is a subring if and only if G is a
subring. Also, we have seen in (i) that G is bounded if i(G) is, so G is a ring of definition
if H is. Conversely, suppose that G is a bounded subring of A. Then i(G) is bounded. As
Â has a fundamental system of open bounded neighborhoods of 0 (for example the powers
of an ideal of definition of a ring of definition), we can find an open bounded subgroup
U ⊂ H . We have H = i(G) + U because i(G) is dense in U , and so H is bounded.

(iii) Let |.| : A → Γ ∪ {0} be a continuous valuation, and let F be a Cauchy filter on A. We
claim that :

(a) either, for every γ ∈ Γ, there exists F ∈ F such that |a| < γ for every a ∈ F ;

(b) otherwise there exists F ∈ F such that |.| is constant on F .

Indeed, suppose that (a) does not hold. Then there exists γ0 ∈ Γ such that, for every
F ∈ F , there exists a ∈ F with |a| ≥ γ0. As |.| is continuous, the set {a ∈ A | |a| < γ0}
is an open neighborhood of 0. So, as F is a Cauchy filter, there exists F ∈ F such that
|a − b| < γ0 for all a, b ∈ F . Fix a0 ∈ F such that |a0| ≥ γ0. Then, for every a ∈ F , we
have |a− a0| < γ0 ≤ |a0|, so the strong triangle inequality implies that |a| = |a|0.
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Let i : A → Â be the canonical map. Applying the result of the previous paragraph
to Â and using the fact that i(A) is dense in Â, we see that a continuous valuation on
Â is uniquely determined by its restriction to i(A), so the map Cont(Â) → Cont(A) is
injective.

We now show that Cont(Â) → Cont(A) is surjective. Let |.| : A → Γ ∪ {0} be a
continuous valuation. Let a ∈ Ker i, and let F be the filter of neighborhoods of a in A;
this is clearly a Cauchy filter. If it satisfies condition (a) above, then |a| < γ for every
γ ∈ Γ, so |a| = 0. Otherwise, F satisfies condition (b), so there exists F ∈ F such
that |.| is constant on F ; but we have a ∈ F and 0 ∈ F (because i(A) is the maximal
Hausdorff quotient of A), so again |a| = 0. This shows that |.| factors through i(A), so we
may assume that i is injective.

We now extend |.| to a map |.|′ : Â → Γ ∪ {0}. Let a ∈ Â. Then there exists a Cauchy
filter F on A that converges to a. If F satifies condition (a) above, then we set |a|′ = 0.
Otherwise, we choose F ∈ F such that |.| is constant on F , and we set |a|′ = |b|, for any
b ∈ F . It is easy to check that this does not depend on the choices and defines a valuation
on Â. We finally show that |.|′ is continuous. Let γ ∈ Γ, and let G = {a ∈ A | |a| < γ}.
This is an open subgroup of A and, by the definition of |.|′, its closure in Â is contained in
the group {a ∈ Â | |a|′ < γ}; so {a ∈ Â | |a|′ < γ} is open.

II.3.2 Tensor products

We have to be a bit careful with tensor products of f-adic rings, because they don’t make sense
in general. This corresponds to the fact that fiber products of adic spaces don’t always exist, and
has a simple geometric explanation, that is given in the remark below. However, if we assume
that all the maps are adic, then there is no problem; in particular, we can always define tensor
products of Tate rings.

Proposition II.3.2.1. (See theorem 5.5.4 of [9].) Let f : A → B and f : A → C be two adic
morphisms of f-adic rings. Choose a couple of definition (A0, I) of A and rings of definition B0

and C0 of B and C such that f(A0) ⊂ B0 and g(A0) ⊂ C0. Let D0 be the image of B0 ⊗A0 C0

in D := B ⊗A C, and let J be the ideal of D0 generated by the image of I .

We put the J-adic topology on D0 and equip D with the unique structure of topological group
that makes D0 an open subgroup. Then D is a f-adic ring with couple of definition (D0, J), and
the obvious ring morphisms u : B → D and v : C → D are continuous and adic.

Moreover, for every non-Archimedean topological ring D′ and every pair of continuous ring
morphisms (u′ : B → D′, v′ : C → D′) such that u ◦ f = v ◦ g, there exists a unique continuous
ring morphism ϕ : D → D′ such that u′ = ϕ ◦ u and v′ = ϕ ◦ v. If D′ if f-adic and u′ and v′ are
adic maps, then ϕ is also an adic map.
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Proof. The ideal J of D0 if of finite type because I is, so the only thing we need to prove to
get the first statement is that D is a topological ring. By [6] Chapitre III §6 No3 Remarque, it
suffices to prove that the multiplication of D is continuous in a neighborhood of 0 and that the
map x 7−→ ax is continuous for every a ∈ D. The first statement follows from the fact that D0

is a topological ring, and it suffices to prove the second statement for pure tensors. So let b ∈ B
and c ∈ C, and let U be a neighborhood of 0 in D. We may assume that U is of the form Jr,
for some r ≥ 0. Let s ≥ 0 such that b(f(I)B0)s ⊂ (f(I)B0)r and c(g(I)C0)s ⊂ (g(I)C0)r. If
x ∈ (f(I)B0)s ⊗A0 (g(I)C0)s, then we have (b⊗ c)x ∈ Jr; as J2s = (f(I)B0)s ⊗A0 (g(I)C0)s,
this shows that (b⊗ c)J2s ⊂ Jr.

We now turn to the second statement. By the usual property of the tensor product, there exists
a unique morphism of rings ϕ : D → D′ such that u′ = ϕ ◦ u and v′ = ϕ ◦ v. We want to
show that ϕ is continuous. Let U be an open subgroup of D′. As u′ and v′ are continuous, there
exists r ≥ 1 such that u′−1(U) ⊃ (f(I)B0)r and v′−1(U) ⊃ (f(I)C0)r. Then ϕ−1(U) ⊃ Jr, so
ϕ−1(U) is open. The last statement is easy.

Example II.3.2.2. (See example 5.5.5 of [9].) Here is an example where things don’t work. Take
A = A0 = Z` with the `-adic topology, B = B0 = Z`[[X]] with the (`,X)-adic topology and
C = Q` ⊃ C0 = Z` with the `-adic topology. Note that the obvious map A→ C is adic, but the
obvious map A→ B is not. We have D = Z`[[X]][`−1] and D0 = Z`[[X]].

Suppose that there is an ideal J of D0 such that D is f-adic with couple of definition (D0, J)
and such that the canonical maps B → D and C → D are continuous. Suppose that 1 6∈ J . In
particular, the map B0 → D0 is continuous, so J must contain a power of the ideal (`,X). As
Z`[[X]] is a local ring with maximal ideal (`,X), we must also have J ⊂ (`,X). So the topology
on D0 is the (`,X)-adic topology. But then there is no structure of topological ring on D that
makes D0 an open subring; indeed, ` is invertible in D, so multiplication by ` would have to be
a homeomorphism, and this not possible because `D0 is not an open subset of D0 (for example
because it contains no power of X even though X is topologically nilpotent for the (`,X)-adic
topology).

So we must have 1 ∈ J , which means that the only open subsets of D0 are ∅ and D0. But
then there can be no topological ring structure on D that makes D0 an open subring, for the same
reason as before : ` is invertible in D, so `D0 would have to be an open subset of D0.

Remark II.3.2.3. We keep the notation of example II.3.2.2. We temporarily write Spa(R) for
“the affinoid adic space of R”, even though that is not quite correct because we need an extra
piece of data to define this space. The geometric interpretation of the previous example is that
Spa(Z`[[X]][`−1]), if it made sense, would be the fiber product Spa(Z`[[X]]) ×Spa(Z`) Spa(Q`),
that is, the generci fiber of of the “formal affine line” Spa(Z`[[X]]). But this generic fiber should
be the open unit disc, which is not an affinoid space.
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II.3.3 Rings of polynomials

If A is a f-adic ring, we want to define topologies on rings of polynomials over A that make
them f-adic rings. The model is the Tate algebra over a non-Archimedean field k. For example,
if k = Q`, we defined in section II.1.4 the Tate algebra Tn = k〈X1, . . . , Xn〉 and saw (or at
least claimed) that it is complete and contains the polynomial ring k[X1, . . . , Xn]. So another
way to define Tn would be to say that it is the completion of k[X1, . . . , Xn] for the Gauss norm.
Remember also that Tn is the ring of convergent power series on the closed unit ball in Cn

` . Of
course, the choice of 1 as the radius of the ball was arbitrary, and in general we will want to allow
a different radius for each indeterminate (this makes a real difference if the radius is not in `Q).
This will modify the norm on k[X1, . . . , Xn] for which we take the completion. In the case of a
general f-adic ring A, it does not make sense to talk of radii in R≥0, and they will be replaced by
the family (Ti)i∈I in the next proposition.

We start with the case of general non-Archimedean rings and specialize to the case of f-adic
rings at the end.

Proposition II.3.3.1. (Remark 5.47 of [26].) Let A be a non-Archimedean topological ring, let
X = (Xi)i∈I be a family of indeterminates (not necessarily finite) and let T = (Ti)i∈I be a
family of subsets of A. Suppose that, for every i ∈ I , every n ∈ N and every neighborhood U of
0 in A, the subgroup T ni U is open. 4

For every function ν : I → N with finite support, we set T ν =
∏

i∈I T
ν(i)
i . For every open

subgroup U of A, we set

U[X,T ] = {
∑
ν∈N(I)

aνX
ν ∈ A[(Xi)i∈I ] | aν ∈ T νU for all ν ∈ N(I)}.

Then :

(i) For every open neighborhood U of 0 in A and every ν ∈ N(I), T νU is an open subgroup
of A.

(ii) There is a unique structure of topological ring on A[X] := A[(Xi)i∈I ] for which the sub-
groups U[X,T ], for U running through the open subgroups of A, form a fundamental system
of neighborhoods of 0.

We denote the resulting topological ring by A[X]T .

(iii) The inclusion ι : A → A[X]T is continuous and the set {ι(t)Xi, i ∈ I, t ∈ Ti} is power-
bounded.

(iv) For every non-Archimedean topological ring B, every continuous ring morphism
f : A → B and every family (xi)i∈I of elements of B such that {f(t)xi, i ∈ I, t ∈ Ti}
is power-bounded, there exists a unique continuous ring morphism g : A[X]T → B such
that f = g ◦ ι and g(Xi) = xi for every i ∈ I .

4Where we denote by Tni U the subgroup generated by products of n elements of Ti and of one element of U .
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II.3 Constructions with f-adic rings

Proof. (i) Let ν ∈ N(I). Let i1, . . . , ir be the elements of I on which ν takes nonzero values,
and let U be an open neighborhood of 0 in A. We know that T ni ◦ V is an open subgroup
of A for every i ∈ I , every n ≥ 0 and every open subgroup V of A, so

T n ◦ U = T
νi1
i1
· . . . · T νirir

· U

is an open subgroup of A.

(ii) If U and V are two open subgroups of A, then U[X,T ] ∩ V[X,T ] = (U ∩ V )[X,T ] and
U[X,T ] · V[X,T ] = (U · V )[X,T ]. So the family of the U[X,T ], for U an open subgroup of
A, satisfies all the conditions of lemma II.3.3.8.

(iii) The map ι is continuous by definition on the topology on A[X]T . Let E be the subgroup
generated by all the products ι(t1)Xi1 . . . ι(tn)Xin , for n ∈ N, i1, . . . , in ∈ I and tis ∈ Tis ,
1 ≤ s ≤ n. We want to show that E is bounded in A[X]T . Let G be an open subgroup
of A[X]T . Then there exists an open subgroup U of A such that U[X,T ] ⊂ G. But we have
E · U[X,T ] = U[X,T ], so E · U[X,T ] ⊂ G.

(iv) By the universal property of the polynomial ring, there exists a unique morphism of rings
g : A[X]T → B such that g ◦ i = f and that g(Xi) = xi for every i ∈ I . So we just need
to show that this g is continuous. Let E be the subgroup of B generated by all the products
f(t1)Xi1 . . . f(tn)Xin , for n ∈ N, i1, . . . , in ∈ I and tis ∈ Tis , 1 ≤ s ≤ n. We know that
E is bounded. Let H be an open subgroup of B. Then there exists an open subgroup G
of B such that E ◦ G ⊂ H . As f is continuous, U := f−1(G) is an open subgroup of A.
Then U[X,T ] ⊂ g−1(H); as g−1(H) is a subgroup of A[X]T , this implies that it is open.

Proposition II.3.3.2. (Remark 5.38 of [26].) Let A, X and T be as in proposition II.3.3.1 (with
the same condition on T ). We denote by A[[T ]] the formal power series ring A[[(Ti)i∈I ]]. Then :

(i) The set

A〈X〉T := {
∑
ν∈N(I)

aνX
ν ∈ A[[X]] | for all open subgroups U of A, aν ∈ T νU for almost all ν}

(here “almost all” means “all but a finite number”) is a subring of A[[X]].

(ii) There is a unique structure of topological ring on A〈X〉T for which the subgroups

U〈X,T 〉 = {
∑
ν∈N(I)

aνT
ν ∈ A〈X〉T | aν ∈ T νU for all ν ∈ N(I)},

for U running through all the open subgroups of A, form a fundmental system of neigh-
borhoods of 0.

Proof. (i) First, it is easy to see that A〈X〉T is stable by multiplication by all the elements of
A and all the Xi, i ∈ I : Let f =

∑
ν∈N(I) aνX

ν ∈ A〈X〉T , let a ∈ A and i ∈ I . Let U be
an open subgroup of A.
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(a) Choose an open subgroup V of A such that aV ⊂ U . Then aνT ν · V for almost all ν,
so (aaν) ∈ T ν · U for almost all ν.

(b) By assumption, Ti · U is an open subgroup of A, so aν ∈ T ν · Ti · U for almost all ν.

So A〈X〉T is a A[X]-submodule of A[[X]].

Let f, g ∈ A〈X〉T . We want to check that fg ∈ A〈X〉T . Write fg =
∑

ν cνX
ν . Let U

be an open subgroup of A, and choose an open subgroup V of A such that V · V ⊂ U .
As f, g ∈ A〈X〉T , we can write f = f0 + f1 and g = g0 + g1, with f0, g0 ∈ A[X] and
f1, g1 ∈ V〈X,T 〉. If f0g0 +f1g0 +f0g1 =

∑
ν aνX

ν and f1g1 =
∑

ν bνX
ν , then cν = aν+bν .

We now that f0g0 + f1g0 + f0g1 by the first paragraph, so aν ∈ T ν ·U for almost all ν. On
the other hand, bν ∈ T ν ·U for every ν by the choice of V . So cν ∈ T ν ·U for almost all ν.

(ii) Again, we have U〈X,T 〉 ∩ V〈X,T 〉 = (U ∩ V )〈X,T 〉 and U〈X,T 〉 ∩ V〈X,T 〉 ⊂ (U · V )〈X,T 〉 for all
open subgroups U, V ⊂ A, so lemma II.3.3.8 applies.

Proposition II.3.3.3. (See proposition 5.49 of [26].) Let A, X and T be as in propositions
II.3.3.1 and II.3.3.2. Then :

(i) A[X]T is a dense subring of A〈X〉T , and the topology on A[X]T is the one induced by the
topology on A〈X〉T .

(ii) If A is Hausdorff and Ti is bounded for every i ∈ I , the topological rings A[X]T and
A〈X〉T are Hausdorff.

(iii) If A is complete and Ti is bounded for every i ∈ I , the topological ring A〈X〉T is complete
(so it is the completion of A[X]T ).

Proof. (i) As we already noted in the proof of proposition II.3.3.2(i), for every open subgroup
U of A, every element of A〈X〉T is the sum of a polynomial and of an element of U〈X,T 〉
(by the very definition of A〈X〉T ). So A[X]T is dense in A〈X〉T . The second statement
just follows from the fact that A[X]T ∩ U〈X,T 〉 = U[X,T ] for every open subgroup U of A.

(ii) By (i), it suffices to show thatA〈X〉T is Hausdorff. Let ν ∈ N(I). As all the Ti are bounded,
T ν is bounded. So the intersection of all the T ν ·U , for U ⊂ A an open subgroup, is equal
to the intersection of all the open neighborhoods of 0 inA, i.e. {0} becauseA is Hausdorff.
This shows that

⋂
U U〈X,T 〉 = {0}.

(iii) It suffices to show that A〈X〉T is complete. If E is a subset of A〈X〉T , let Eν ⊂ A be the
set of all the ν-coefficients of elements of E. Let F be a Cauchy filter on A〈X〉T . For
every ν ∈ N(I), let Fν = {Eν , E ∈ F}. As each T ν is bounded, all the Fν are Cauchy
filters on A, so they converge because A is complete. Let aν be the limit of Fν . We want
to show that f :=

∑
ν∈N(I) aνX

ν ∈ A[[X]] is in A〈X〉T , and that F converges to f .

Let U be an open subgroup of A. Choose E ∈ F such that g − h ∈ U〈X,T 〉 for all
g, h ∈ E. In other words, if g =

∑
ν∈N(I) gνX

ν and h =
∑

ν∈N(I) hνX
ν are in E, we
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II.3 Constructions with f-adic rings

have gν − hν ∈ T ν ◦ U for every ν; fixing ν and going to the limit on h, we get that
gν−aν ∈ T ν ◦U ; in particular, this implies that aν ∈ T ν ◦U for almost every ν. As U was
arbitrary, this shows first that f ∈ A〈X〉T , and then that, for every open subgroup U of A,
we can find E ∈ F such that g− f ∈ U〈X,T 〉 for every g ∈ E, i.e. that f is the limit of F .

Corollary II.3.3.4. Suppose that A is complete and Ti is bounded for every i ∈ I . For every
complete non-Archimedean topological ringB, every continuous ring morphism f : A→ B and
every family (xi)i∈I of elements of B such that {f(t)xi, i ∈ I, t ∈ Ti} is power-bounded, there
exists a unique continuous ring morphism g : A〈X〉T → B such that f = g ◦ ι and g(Xi) = xi
for every i ∈ I .

Proof. We already know that there exists a unique continuous ring morphism g : A[X]T → B
satisfying the two conditiions of the statement (by proposition II.3.3.1(iv)). By [6] Chapitre III
§3 No5 corollaire de la proposition 8, g has a unique extension to a continuous morphism of
topological groups from A〈X〉T to B, and this extension is clearly a morphism of rings.

We now specialize to the case of interest of us, i.e. that of f-adic rings.

First we note the following useful fact.

Lemma II.3.3.5. (Lemma 6.20 of [26].) Let A be a f-adic ring and T be a subset of A. If T
generates an open ideal of A, then, for any open subgroup U of A and any n ≥ 0, the subgroup
T n · U is open.

Proof. Let U and n be as in the statement, and let (A0, I) be a couple of definition of A. By
assumption, the ideal J of A generated by T is open, so it contains some power of I . Hence
Jn also contains a power of I . After changing the ideal of definition, we may assume that
I ⊂ Jn = T n · A. Let L be a finite set of generators of I , and let M be a finite set such that
L ⊂ T n ·M . As M is finite, it is bounded, so we can find an integer r ∈ N such that M · Ir ⊂ U .
Then we have Ir+1 = L · Ir ⊂ T n ·M · Ir ⊂ T n · U , so T n · U is open.

Proposition II.3.3.6. (Proposition 6.21 of [26].) Let A be a non-Archimedean topological ring,
let X = (Xλ)λ∈L be a family of indeterminates (not necessarily finite) and let T = (Tλ)λ∈L be a
family of subsets of A.

Let (A0, I) be a couple of definition of A. Suppose that, for every λ ∈ L, the subset Tλ
generates an open ideal of A. Then :

(i) The ring A[X]T is f-adic, with couple of definition (A0[X,T ], I[X,T ]). In particular, the
canonical map A → A[X]T is adic. Moreover, if A is a Tate ring, then A[X]T is also a
Tate ring.

81



II Topological rings and continuous valuations

(ii) Suppose that the family of indeterminates (Xλ)λ∈L is finite. 5 Then the ring A〈X〉T is
f-adic, with couple of definition (A0〈X,T 〉, I〈X,T 〉), and the canonical map A → A〈X〉T is
adic. Moreover, if A is a Tate ring, then A〈X〉T is also a Tate ring.

Proof. (i) It is clear that A0[X,T ] is an open subring of A[X]T , and that I[X,T ] = I ·A0[X,T ] is a
finitely generated ideal ofA0[X,T ]. As (I[X,T ])

n = (In)[X,T ] for every n ≥ 1, we see that the
topology on A0[X,T ] is the I[X,T ]-adic topology, so A[X]T is adic. The map A→ A[X]T is
clearly adic, and the last statement is also clear.

(ii) First note that A0〈X,T 〉 is an open subring of A〈X〉T .

Let J be an ideal of definition of A0; we claim that J〈X,T 〉 = JA0〈X,T 〉. The inclusion
J〈X,T 〉 ⊃ JA0〈X,T 〉 is clear. Conversely, let f =

∑
ν aνX

ν ∈ J〈X,T 〉. Let x1, . . . , xr ∈ A0

be generators of J . We write NL =
⋃+∞
k=1Nk, with all the Nk finite and with aν ∈ T ν · Jk

for every k ∈ N and every ν ∈ Nk. If k ∈ N and aν ∈ Nk, we write aν =
∑r

i=1 xiaν,i, with
the aν,i ∈ T ν · Ik−1. Let fi =

∑
ν∈NL aν,iX

ν , for 1 ≤ i ≤ s. Then f1, . . . , fs ∈ A0〈X,T 〉,
and so f = x1f1 + . . . xsfs ∈ JA0〈X,T 〉.

In particular, we have I〈X,T 〉 = IA0〈X,T 〉. Hence, for every n ≥ 1, ap-
plying the previous paragraph to the ideal of definition In of A0, we get that
(I〈X,T 〉)

n = InA0〈X,T 〉 = (In)〈X,T 〉. This shows that the topology on A0〈X,T 〉 is the
IA0〈X,T 〉-adic topology, and so A〈X〉T is f-adic. The map A → A〈X〉T is clearly adic,
and the last statement is also clear.

Example II.3.3.7. Take A = Z`, I = {1} and T1 = {`}. We get a f-adic ring

Z`〈X〉T = {
∑
n≥0

anX
n ∈ Z`[[X]] | `−nan → 0 as n→ +∞},

with ring of definition

Z`〈X,T 〉 = {
∑
n≥0

anX
n ∈ Z`〈X〉T | ∀n ∈ N, `−nan ∈ Z`}.

The topology on Z`〈X,T 〉 is the `Z`〈X,T 〉-adic topology. Note in particular that Z`〈X〉T is strictly
bigger than Z`〈X,T 〉, and that the ring Z`〈X〉T is not adic, even though Z` is. For example, ` is
topologically nilpotent in Z`〈X〉T , but `X is not, because `nXn 6∈ `Z`〈X,T 〉 for n ≥ 0. (This
could not happen in an adic ring, in which all elements are power-bounded.)

Lemma II.3.3.8. (Remark 5.24 of [26].) Let A be a ring and G be a set of additive subgroups of
A. Then requiring G to be a fundamental system of neighborhoods of 0 makes A a topological
ring if and only the following conditions hold :

(a) For all G,G′ ∈ G , there exists H ∈ G such that H ⊂ G ∩G′.
5We would get the same conclusion if we assumed instead that A is Hausdorff and that all the Tλ are bounded.
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(b) For every a ∈ A and every G ∈ G , there exists H ∈ G such that aH ⊂ G.

(c) For every G ∈ G , there exists H ∈ G such that H ·H ⊂ G.

Proof. The conditions are obviously necessary. Conversely, suppose that they hold. Condition
(a) says that G does give a fundamental system of neighborhoods for a topological group struc-
ture on A (see [6] Chapitre III §1 No2 proposition 1). Conditions (b) and (c) now say that A is a
topological ring (see [6] Chapitre III §6 No3 Remarque).

Notation II.3.3.9. If Ti = {1} for every i ∈ I , we write A[X]T = A[X] and A〈X〉T = A〈X〉.

II.3.4 Localizations

Proposition II.3.4.1. (Proposition 5.51 of [26].) Let A be a non-Archimedean topological ring
and T = (Ti)i∈I be a family of subsets of A satisfying the condition of proposition II.3.3.1.
Let S = (si)i∈I be a family of elements of A, and denote by R the multiplicative subset of A
generated by {si, i ∈ I}.

Then there exists a unique non-Archimedean topological ring structure on R−1A, making it
into a topological ring that we will denote by A

(
T
S

)
= A

(
Ti
si
| i ∈ I

)
, satisfying the following

properties :

(i) The canonical morphism ϕ : A → A
(
T
S

)
is continuous and the set { ϕ(t)

ϕ(si)
, i ∈ I, t ∈ Ti}

is power-bounded in A
(
T
S

)
.

(ii) For every non-Archimedean topological ring B and every continuous map f : A → B
such that f(si) is invertible in B for every i ∈ I and that the set { f(t)

f(si)
, i ∈ I, t ∈ Ti}

is power-bounded in B, there exists a unique continuous ring morphism g : A
(
T
S

)
→ B

such that f = gϕ.

Proof. Let D be the subring of R−1A generated by all the ϕ(t)
ϕ(si)

, for i ∈ I and t ∈ Ti. Then the
family of subsets D · ϕ(U) ⊂ R−1A, for U an open subgroup of A, satisfies the conditions of
lemma II.3.3.8, which implies that there is a unique structure of topological ring on R−1A that
makes this family a fundamental system of neighborhoods of 0. It is clear that ϕ : A→ R−1A is
continuous for this topology, because ϕ−1(D · ϕ(U)) ⊃ U .

As D is a subring of R−1A, and as it is bounded by definition of the topology, the se
t{ ϕ(t)
ϕ(si)

, i ∈ I, t ∈ Ti} is power-bounded.

We check that ϕ : A → R−1A satisfies the universal property of (ii) (which will also im-
ply uniqueness). Let f : A → B be as in (ii). By the universal property of the localization,
there exists a unique ring morphism g : R−1A → B such that f = g ◦ ϕ, so we just need to
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check that this g is continuous. Let E be the subring of B generated by the power-bounded
set { f(t)

f(si)
, i ∈ I, t ∈ Ti}; then E is bounded by lemma II.1.2.6(ii), and we have g(D) ⊂ E.

Let U be an open subgroup of B. As E is bounded, there exists an open subgroup V of B
such that E · V ⊂ U . As f is continuous, W := f−1(V ) is an open subgroup of A. As
g(ϕ(W ) ·D) = f(W ) · f(D) ⊂ V · E ⊂ U , g−1(U) contains the open subgroup ϕ(W ) ·D, so
it is open.

Remark II.3.4.2. (Remark 5.52 of [26].)

(1) We have

A

(
Ti
si
| i ∈ I

)
= A

(
Ti ∪ {si}

si
| i ∈ I

)
,

so we can always assume that si ∈ Ti for every i ∈ I .

(2) Let J be the ideal of A[X]T generated by the set {1 − siXi, i ∈ I}. Then A[X]T/J ,
with the quotient topology, satifies the same universal property as A

(
T
S

)
, so we have a

canonical isomorphism
A[X]T/J = A

(
T
S

)
.

Proposition II.3.4.3. (Proposition 6.21 of [26].) Let A, T = (Ti)i∈I and S = (si)i∈I be as in
proposition II.3.4.1, and suppose that A is f-adic.

Then A
(
T
S

)
is also f-adic, and the canonical map A→ A

(
T
S

)
is adic.

If I = {1} is a singleton and T1 = {t1, . . . , tn} is finite, we also write A
(
T
S

)
= A

(
t1,...,tn
s0

)
.

Proof. This follows immediately from remark II.3.4.2 and from proposition II.3.3.6(i).

Remark II.3.4.4. Let us give an explicit ring of definition of B := A
(
T
S

)
(the notation is that of

proposition of II.3.4.3). Let A0 be a ring of definition of A. Then A0[X,T ] is a ring of definition of
A[X]T , so its image by the surjective mapA[X]T → B is a ring of definition ofB. By definition,
we have

A0[X,T ] = {
∑
ν∈N(I)

aνX
ν ∈ A[(Xi)i∈I ] | aν ∈ T νA0 for all ν ∈ N(I)}.

So its image B0 in B is the A0-submodule of B generated by the sets
∏

i∈I T
νi
i s
−νi
i , for

(νi)i∈I ∈ NI . In other words, B0 is the A0-subalgebra of B generated by the elements ts−1
i ,

for i ∈ I and t ∈ Ti.

In particular, if I = {1} is a singleton, s = s1 and T1 = {t1, . . . , tn}, then
B0 = A0[t1s

−1, . . . , tns
−1].
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Definition II.3.4.5. If A is a f-adic ring and T and S are as in proposition II.3.4.1, we denote the
completion of A

(
T
S

)
by A

〈
T
S

〉
. This is also a f-adic ring, and the canonical map A → A〈T

S
〉 is

adic.

If A is complete, we can also see A〈T
S
〉 as the quotient of A〈X〉T by the closure of the ideal

generated by {1− siXi, i ∈ I}.

Putting the universal properties of proposition II.3.4.1 and of the completion together, we get
the following result :

Proposition II.3.4.6. Let A be a f-adic ring and T and S be as in proposition II.3.4.1. Then,
for every complete non-Archimedean topological ring B and every continuous map f : A → B
such that f(si) is invertible in B for every i ∈ I and that the set { f(t)

f(si)
, i ∈ I, t ∈ Ti} is

power-bounded in B, there exists a unique continuous ring morphism g : A〈T
S
〉 → B such that

f = gϕ.

Example II.3.4.7. Take A = A0 = Z`[[u]], with ideal of definition J = (`,X). Take I = {1}
and T1 = {`, u}.

Let B = A[X]T and B0 = A[X,T ]. Note that B0 is strictly contained in B, because a poly-
nomial

∑
n≥0 anX

n is in B0 if and only if an ∈ (`, u)nA for every n ≥ 0, so for example
X ∈ B −B0. We have B̂ = A〈X〉T and B̂0 = A〈X,T 〉, and again B̂0 ( B̂.

We now consider the localizations A
(
`,u
`

)
and A

(
`,u
u

)
as f-adic rings, and in particular we

want to write down rings of definition. As rings, we have

A
(
T
s

)
= Z`[[u]][`−1]

and
A
(
T
s

)
= Z`[[u]][u−1].

We get rings of definition by using the description of remark II.3.4.4. As A is a ring of definition
of itself, this remark shows that A[u

`
] is a ring of definition of A

(
`,u
`

)
and A[ `

u
] is a ring of

definition of A
(
`,u
u

)
. Note that ` is not invertible in A[u

`
], even though it is of course invertible in

A
(
`,u
`

)
; similarly, u is not invertible in the ring of definition A[ `

u
] of A

(
`,u
u

)
. Note also that the

completed localizations are not adic rings, even though we started from an adic ring.

In A〈 `,u
`
〉, a ring of definition is A〈X,T 〉/(1− `X)A〈X,T 〉, which is isomorphic to

A〈u
`
〉 := {

∑
n≥0

an

(u
`

)n
, an ∈ A, an → 0 as n→ +∞}.

II.4 The Banach open mapping theorem

The reference for this section is Henkel’s note [12], where Henkel explains how to adapt the
proof of [7] chapitre I §3 No3 Théorème 1.
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II.4.1 Statement and proof of the theorem

Theorem II.4.1.1. (Theorem 1.6 of [12]) Let A be a topological ring that has a sequence of
units converging to 0. Let M and N be Hausdorff topological A-modules that have countable
topological systems of open neighborhoods of 0, and let u : M → N be a continuous A-linear
map. Suppose that M is complete. Then the following properties are equivalent :

(i) N is complete and u is surjective;

(ii) N is complete and u(M) is open in N ;

(iii) for every neighborhood U of 0 in M , u(U) is a neighborhood of 0 in N ;

(iv) u is open.

Proof. Note that the conditions on M and N imply that their topology is defined by translation-
invariant metrics (see theorem II.4.1.7).

Condition (i) clearly implies (ii), and (iii) implies (iv) by theorem II.4.1.7 and lemma II.4.1.4.

We show that (ii) implies (iii). Choose a sequence of units (an)n≥0 of A that converges to 0.
Let U be a neighborhood of 0 inM , and let V be a neighborhood of 0 inM such that V −V ⊂ U .
By lemma II.4.1.2, we have M =

⋃
n≥0 a

−1
n · V , so

u(M) =
⋃
n≥0

a−1
n · u(V ) ⊂

⋃
n≥0

a−1
n · u(V ).

As the elements an are units, multiplication by an and a−1
n is a homeomorphism of N . In par-

ticular, all the sets a−1
n · u(V ) are closed in N . As u(M) is open, the Baire category theo-

rem implies that at least one of the a−1
n · u(V ) has nonempty interior, so u(V ) has nonempty

interior. Let y be an interiot point of u(V ). Then 0 = y − y is an interior point of
u(V ) − u(V ) ⊂ u(V − V ) ⊂ u(U), which means that u(U) is a neighborhood of 0, as de-
sired.

Finally, we show that (iv) implies (i). If u is open, then u(M) is open, and this implies that u is
surjective by lemma II.4.1.3. As u is open, it induces an isomorphism of topological A-modules
M/Ker(u)

∼→ N (i.e. an isomorphism of A-modules that is also a homeomorphism). As N is
Hausdorff, Ker(u) is a closed subgroup of M by [6] chapitre III §2 No6 proposition 18, and then
M/Ker(u) is complete by [6] chapitre IX §3 No1 proposition 4.

Lemma II.4.1.2. (Lemma 1.7 of [12].) Let A be a topological ring, let (ai)i∈I be a family
of elements of A whose closure contains 0, let M be a topological A-module, and let U be a
neighborhood of 0 in M . Then, for every x ∈M , there exists i ∈ I such that ai · x ∈ U .

Proof. Let x ∈ M . As the action map A×M → M is continuous, there exists a neighborhood
V of 0 in A such that V · x ⊂ U . If i ∈ I is such that ai ∈ V , we have ai · x ∈ U .
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Lemma II.4.1.3. (Lemma 1.13 of [12].) LetA be a topological ring in which each neighborhood
of 0 contains a unit, let N be a topological A-module, and let N ′ be a A-submodule of N . Then
N ′ = N if and only if N ′ contains a nonempty open subset of N .

Proof. Suppose that N ′ contains a nonempty open subset U of N . Translating U by an element
of N ′, we may assume that 0 ∈ U . Applying lemma II.4.1.2 to the family of all units of A, we
get N =

⋃
a∈A× a

−1 · U ⊂ N ′.

Lemma II.4.1.4. (Proposition 1.12 of [12].) Let M and N be commutative topological groups
whose topology comes from a translation-invariant metric, and let u : M → N be a continuous
morphism of groups such that, for every neighborhood U of 0 in M , u(U) is a neighborhood of
0 in N . Suppose that M is complete. Then u is open.

Proof. We fix translation-invariant metrics giving the topologies of M and N , and denote by
BM(x, r) (resp. BN(x, r)) the open ball with center x and radius r for both the metric on M
(resp. N ).

The hypothesis says that, for every r > 0, there exists ρ(r) > 0 such that
BN(0, ρ(r)) ⊂ u(BM(0, r)). Using the fact that the metrics are translation-invariant, we eas-
ily get BN(u(x), ρ(r)) ⊂ u(BM(x, r)) for every x ∈M and every r > 0.

Fix r > 0 and a > r. We want to show that BN(0, ρ(r)) ⊂ u(BM(0, a)). (This will clearly
finish the proof.) The argument is that of [7] chapitre I §3 No3 lemme 2. Choose a sequence
(rn)n≥1 of positive real numbers such that r1 = r and

∑
n≥1 rn = a, and a sequence of positive

real numbers (ρn)n≥1 such that ρn ≤ ρ(rn) and that limn→+∞ ρn = 0. Let y ∈ BN(0, r). We
want to show that y ∈ u(BM(0, a)). We define a sequence (xn)n≥0 of elements of M such that
xn ∈ BM(xn−1, rn) and u(xn) ∈ BN(y, ρn+1) for n ≥ 1 in the following way :

- x0 = 0;

- if n ≥ 1 and x0, . . . , xn−1 have been chosen to satisfy the two required conditions, then we
have y ∈ BN(u(xn−1), ρn) ⊂ u(BM(xn−1, rn)), so BN(y, ρn+2)∩ u(BM(xn−1, rn)) is not
empty, and we choose xn in this set.

The sequence (xn)n≥1 is a Cauchy sequence because
∑

n≥1 rn converges, so
∑

n≥N rn tends to
0 as N → +∞. As M is complete, (xn)n≥1 has a limit x. We have x ∈ BM(0, a) by the triangle
inequality, and u(x) = limn→+∞ u(xn) = y because u is continuous. So we are done.

Corollary II.4.1.5. (Theorem 1.17 of [12].) Let A be a topological ring that has a sequence of
units converging to 0. Let M and N be topological A-modules such that M is finitely generated,
Hausdorff, complete and has a countable fundamental system of open neighborhoods of 0. Then
any A-linear map u : M → N is continuous.
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Proof. Let π : An →M be a surjective A-linear map. Then the u ◦ π : An → N is given by the
formula

(u ◦ π)(a1, . . . , an) =
n∑
i=1

ai · u(π(ei)),

where (e1, . . . , en) is the canonical basis of An, so it is continuous. Similarly, π is continuous.
By theorem II.4.1.1, π is open, so, for open subset U ofN , the subset u−1(U) = π((u◦π)−1(U))
of M is open. This shows that u is continuous.

Corollary II.4.1.6. Let A be a complete Tate ring, let M and N be topological A-modules, and
let u : M → N be a surjective A-linear map. Suppose that M and N are quotients of finite free
A-modules by closed submodules. Then u is open.

Proof. If $ is a topologically nilpotent unit of A, then ($n)n≥0 is a sequence of units of 0
converging to 0. Also, as A has a countable system of neighborhoods of 0, its topology comes
from a translation-invariant metric by theorem II.4.1.7. By [6] chapitre IX §3 No1 proposition
4, the A-modules M and N are Hausdorff, complete and metrizable. Also, u is continuous by
corollary II.4.1.5. So we can apply theorem II.4.1.1 to get the conclusion.

Theorem II.4.1.7. ([6] chapitre IX §3 No1 propositions 1 and 2) Let G be a commutative topo-
logical group. Then the topology of G is given by a translation-invariant pseudometric if and
only if G has a countable fundamental system of neighborhoods of 0.

II.4.2 Applications

Proposition II.4.2.1. (Proposition 2.11 of [12].) Let A be a complete Tate ring, and let M be a
complete topological A-module that has a countable fundamental system of neighborhoods of 0.
Then the following conditions are equivalent :

(i) M is a Noetherian A-module;

(ii) every A-submodule of M is closed.

In particular, the ring A is Noetherian if and only if every ideal of A is closed.

Proposition II.4.2.2. (Theorems 1.17 and 2.12 of [12].) Let A be a complete Noetherian Tate
ring. Then :

(i) Every finitely generated A-module has a unique topology that makes it a Hausdorff com-
plete topological A-module having a countable fundamental system of neighborhoods of
0.
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II.4 The Banach open mapping theorem

(ii) Let M and N be finitely generated A-modules endowed with the topology of (i). If
u : M → N is a A-linear map, then u is continuous, Imu is closed in N and
u : M → Imu is open.

We call the topology of point (i) of the proposition the canonical topology on M .
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III The adic spectrum

In all this chapter, A is a f-adic ring.

III.1 Rings of integral elements

We will be interested in subsets of Cont(A) defined by conditions of the type |a|x ≤ 1, for a in
some fixed subset Σ of A. We will see in this section that we can only assume that Σ is an open
an integrally closed subring of A, and that the case of most interest is when Σ ⊂ A0.

Remark III.1.1. Let x ∈ Cont(A) and let a ∈ A0 (i.e. a is power-bounded). If x is a rank 1
valuation, then we necessarily have |a|x ≤ 1. In general, this is not true. See the next example.

Example III.1.2. Let k a field, and let A = k((t))((u)), with the rank 2 valuation x of example
I.1.4.3 (so we have Rx = {f =

∑
n≥0 fnt

n ∈ k((t))[[u]] | f0 ∈ k[[u]]}). Let y be the u-adic
valuation on A. Then we have seen in example I.1.5.5 that |.|x and |.|y define the same topology
on A. If we put this topology on A, then x and y are in Cont(A). As y has rank 1, we have

A0 = {f ∈ A | |f |x ≤ 1} = k((t))[[u]]

and
A00 = {f ∈ A | |f |x < 1} = uA0.

If a is any element of A0 −Rx (for example a = 1
t
), then a is power-bounded but |a|x > 1.

Definition III.1.3. Let Σ be a subset of A. We write

Spa(A,Σ) = {x ∈ Cont(A) | ∀a ∈ Σ, |a|x ≤ 1}.

Note that we obviously have Spa(A,Σ) ⊃ Spa(A,Σ′) if Σ ⊂ Σ′.

Proposition III.1.4. (Lemma 3.3 of [14].) Let Σ be a subset of A. We denote by AΣ the smallest
open and integrally closed subring of A containing Σ. Then :

(i) Spa(A,Σ) is a pro-constructible subset of Cont(A);

(ii) we have
AΣ = {f ∈ A | ∀x ∈ Spa(A,Σ), |f |x ≤ 1}

and Spa(A,Σ) = Spa(A,AΣ).
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III The adic spectrum

Proof. (i) If a ∈ A, then

Spa(A, {a}) = {x ∈ Cont(A) | |a|x ≤ 1} = Ucont

(
1, a

1

)
is a quasi-compact open subset of Cont(A), and in particular it is constructible. So
Spa(A,Σ) =

⋂
a∈Σ Spa(A, {a}) is pro-constructible.

(ii) Let
A′ = {f ∈ A | ∀x ∈ Spa(A,Σ), |f |x ≤ 1}.

Then A′ is clearly a subring of A, and it is open because it contains the open subgroup A00.
We claim that A′ is integrally closed in A. Indeed, let f ∈ A, and suppose that we have an
equation fn + a1f

n−1 + . . . + an = 0, with n ≥ 1 and a1, . . . , an ∈ A′. Then, for every
x ∈ Spa(A,Σ), we have

|f |nx ≤ max
1≤i≤n

|ai|x|f |n−1
x ≤ max(1, |f |x, . . . , |f |n−1

x ),

and this is only possible if |f |x ≤ 1.

AsA′ contains Σ, it also containsAΣ. Note also that Spa(A,Σ) = Spa(A,A′) by definition
of A′. So it just remains to show that A′ ⊂ AΣ.

So suppose that we have an element a ∈ A − AΣ. We want to construct a continuous
valuation x on A such that |a|x > 1. Consider the element a−1 of AΣ[a−1] ⊂ A[a−1];
this is not a unit, because otherwise a would be an element of AΣ[a−1], so it would be
integral over AΣ, which is impossible because AΣ is integrally closed in A and a 6∈ AΣ.
So there exists a prime ideal ℘ of AΣ[a−1] such that a−1 ∈ ℘. Let q ⊂ ℘ be a mini-
mal prime ideal of AΣ[a−1]. Then B := (AΣ[a−1]/q)℘/q is a local subring of the field
K := Frac(AΣ[a−1/q]), so, by theorem I.1.2.2(i), there exists a valuation subring R ⊃ B
of K such that mB = B ∩mR. This valuation subring defines a valuation |.|R on K, hence
a valuation |.| on AΣ[a−1] via the obvious map AΣ[a−1] → AΣ[a−1]/q ⊂ K, and we have
Ker |.| = q. Also, by the choice of R, we have |f | ≤ 1 for every f ∈ AΣ[a−1] and |f | < 1
for every f ∈ ℘, and in particular |a−1| < 1.

Let S = AΣ[a−1] − q. As S−1AΣ[a−1] is flat over AΣ[a−1], the map
S−1AΣ[a−1] → S−1A[a−1] is injective, so S−aA[a−1] 6= {0}, and there exists a prime
ideal q′ of A[a−1] such that q ∩ S = ∅. In particular, we have q′ ∩ AΣ[a−1] ⊂ q, which
implies that q′ ∩ AΣ[a−1] = q because q is a minimal prime ideal, and we get a field
extension K ⊂ K ′ := Frac(A[a−1]/q′). By proposition I.1.2.3, there exists a valuation
subring R′ of K ′ such that R′ ∩K = R. Let v ∈ Spv(A) correspond to the composition
of A → A[a−1]/q′ ⊂ K ′ and of |.|R′ . Then we have |f |v ≤ 1 for every f ∈ AΣ and
|a|v > 1. Note also that |f |v < 1 for every f ∈ A00. Indeed, if f ∈ A00, then there exists
an integer r ≥ 1 such that f ra ∈ AΣ (because AΣ is an open subring of A), and then
|f |rv|a|v = |f ra|v ≤ 1 and |a|v > 1, which implies that |f |v < 1.

We would be done if the valuation v was continuous, but this has no reason to be true.
So let w = v|cΓv be the minimal horizontal specialization of v. We obviously have
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w ∈ Spv(A,A00 · A). Also, |f |w ≤ |f |v for every f ∈ A, so we have |f |w ≤ 1 for
every f ∈ AΣ and |f |w ≤ |f |v < 1 for every f ∈ A00. In particular, v ∈ Cont(A) by
theorem II.2.2.1. Also, we have |a|v > 1, so |a|v ∈ cΓv, hence |a|w = |a|v > 1. Finally,
we have found w ∈ Cont(A) such that w ∈ Spa(A,AΣ) and |a|w > 1, which means that
a 6∈ A′.

Proposition III.1.5. (Lemma 3.3 of [14].) LetA+ ⊂ A be an open and integrally closed subring.

(i) If A+ ⊂ A0, then Spa(A,A+) is dense in Cont(A) and contains all the trivial valuations
in Cont(A) and all the rank 1 points of Cont(A). More precisely, every x ∈ Cont(A) is a
vertical specialization of a point y of Spa(A,A+), and we can choose y to be of rank 1 if
x is analytic.

(ii) Suppose that A is a Tate ring and has a Noetherian ring of definition. If Spa(A,A+) is
dense in Cont(A), then A+ ⊂ A0.

Proof. (i) We first prove that the continuous trivial valuations and the continuous rank 1 val-
uations are in Spa(A,A+). Let x ∈ Cont(A). If Γx = {1}, then obviously |a|x ≤ 1 for
every A+, so x ∈ Spa(A,A+). If x has rank 1, then |a|x ≤ 1 for every x ∈ A0 ⊃ A+, so
again x ∈ Spa(A,A+).

Now we prove the last sentence. Let x ∈ Cont(A). If supp(x) is open, then every vertical
generization (or specialization) of x is continuous, and in particular the maximal vertical
generization y = x/Γx of x is in Cont(A). As |f |y ∈ {0, 1} for every f ∈ A, we clearly
have y ∈ Spa(A,A+).

Suppose that supp(x) is not open, i.e. that x ∈ Cont(A)an. By corollary II.2.4.8, x has
a rank 1 generization y ∈ Cont(A)an. We have already seen that such a y has to be in
Spa(A,A+).

(ii) Suppose that A+ 6⊂ A0, and choose a ∈ A+ − A0. By proposition III.1.4(ii), there
exists x ∈ Spa(A,A0) such that |a|x > 1. Let L be as in lemma III.1.6, and let
S = {x ∈ L | |a|x > 1}; by what we just wrote, we have S 6= ∅. As S is the intersec-
tion of L and of a constructible subset of Spv(A), lemma III.1.6 implies that there exists
a maximal element y ∈ Cont(A) such that |a|y > 1. In particular, y is not in Spa(A,A+)
and, as it is maximal, it cannot be a proper specialization of a point of Spa(A,A+). As
Spa(A,A+) is pro-constructible in Cont(A), proposition I.3.1.3(ii) implies that y is not in
the closure of Spa(A,A+). So Spa(A,A+) is not dense in Cont(A).

Lemma III.1.6. Let A be a Tate ring which has a Noetherian ring of definition. Let

L = {x ∈ Spv(A) | ∀a ∈ A0, |a|x ≤ 1 and ∀a ∈ A00, |a|x < 1},

and let Cont(A)max be the set of maximal points of Cont(A) (for the order given by specializa-
tion).
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Then Cont(A)max is the set of rank 1 points of Cont(A), Cont(A)max ⊂ L, and Cont(A)max

is dense in L for the constructible topology of Spv(A).

Proof. As A is a Tate ring, we have Cont(A) = Cont(A)an (see remark II.2.5.7). So, by II.2.4.8,
Cont(A)max is the set of rank 1 valuations in Cont(A), and in particular Cont(A)max ⊂ L.

Fix a pair of definition (A0, I) of A with A0 Noetherian, and let $ be a topologically nilpotent
unit in A. To show that Cont(A)max is dense in L for the constructible topology, we must show
that every ind-constructible subset of Spv(A) that intersects L also intersects Cont(A)an. So let
E be a ind-constructible subset of Spv(A) such that E ∩ L 6= ∅. It suffices to treat the case
where there exist a1, . . . , an, b1, . . . , bn, c1, . . . , cm, d1, . . . , dm ∈ A such that

E = {x ∈ Spv(A) | ∀i ∈ {1, . . . , n}, |ai|x ≤ |bi|x and ∀j ∈ {1, . . . ,m}, |cj|x < |dj|x}

(these sets form a base of the constructible topology). Let x ∈ E ∩ L, and denote the canonical
map A → A/℘x ⊂ K(x) by f . We may assume that there exists r ∈ {0, . . . , n} such that
f(b1), . . . , f(br) 6= 0 and f(br+1) = . . . = f(bn) = 0. Let B be the subring of K(x) generated
by f(A0), the f(ai)

f(bi)
for 1 ≤ i ≤ r and the f(cj)

f(dj)
for 1 ≤ j ≤ m. Then B is Noetherian, B ⊂ Rx

and B ∩ mRx contains the f(cj)

f(dj)
for 1 ≤ j ≤ m and f(I) (because I ⊂ A00). As the prime ideal

℘x is not open (because A is Tate, so its only open ideal is A itself), it does not contain I , so
f(I) 6= {0} and so ℘ := B ∩ mRx 6= {0}. The Noetherian local ring B℘ is not a field, and K is
a finitely generated extension of Frac(B℘) (it is generated by f($−1), by proposition II.2.5.2),
so, by EGA II 7.1.7, there exists a discrete valuation subring R of K such that B℘ ⊂ R and
mR ∩ B℘ = ℘B℘. Let y be the corresponding valuation on A (i.e. the composition of f and of
|.|R). We have ℘y = ℘x, and Ry = R contains B, so |ai|y ≤ |bi|y for 1 ≤ i ≤ r, |ai|y = |bi|y = 0
for r + 1 ≤ i ≤ n, |cj|y < |dj|y for 1 ≤ j ≤ m and |f |y ≤ 1 for every f ∈ A0. In particular,
y ∈ E. We want to show that y ∈ Cont(A)max. As y has rank 1, it suffices to show that y is
continuous by the first paragraph of the proof. As y is discrete, it is continuous if and only if
{a ∈ A | |a|y ≤ 1} is open; but this subring contains A0 and A0 is open, so we are done.

Propositions III.1.4 and III.1.5 suggest that it reasonable to consider the sets Spa(A,Σ) when
Σ is an open and integrally closed subring ofA contained inA0 (because then Spa(A,Σ) is dense
in Cont(A) and determines Σ). We give a special name to these rings.

Definition III.1.7. A ring of integral elements inA is an open and integrally closed subringA+ of
A such that A+ ⊂ A0. We also say that (A,A+) is an affinoid ring (in Huber’s terminology) or a
Huber pair (in other people’s terminology). A morphism of Huber pairs ϕ : (A,A+)→ (B,B+)
is a continuous ring morphism ϕ : A → B such that ϕ(A+) ⊂ B+; it is called adic if the
morphism A→ B is adic.

We say that the Huber pair (A,A+) is Tate (resp. adic, resp. complete) if A is.
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Example III.1.8. (1) The biggest ring of integral elements is A0, and the smallest one in the
integral closure of Z · 1 + A00. More generally, if A′ ⊂ A0 is an open subring of A, then
its integral closure (in A) is a ring of integral elements.

(2) IfK is a topological field whose topology is defined by a valuation x, then, for any vertical
specialization y of x, Ry is a ring of integral elements in K. Indeed, Ry is integrally closed
in K because it is a valuation subring, and it contains the maximal ideal of Rx by theorem
I.1.4.2(i), so it is open.

For example, if we take K = k((t))((u)) with the topology given by the u-adic valuation,
then {f ∈ k((t))[[u]] | f(0) ∈ k[[t]]} is a ring of integral elements in K.

III.2 The adic spectrum of a Huber pair

Definition III.2.1. Let (A,A+) be a Huber pair. Then its adic spectrum is the topological space
Spa(A,A+).

A rational subset of Spa(A,A+) is a subset of the form

R

(
f1, . . . , fn

g

)
= {x ∈ Spa(A,A+) | ∀i ∈ {1, . . . , n}, |fi|x ≤ |g|x 6= 0},

with f1, . . . , fn, g ∈ A such that f1, . . . , fn generate an open ideal of A.

We also write Spa(A,A+)an = Spa(A,A+) ∩ Cont(A)an for the set of analytic points of
Spa(A,A+).

Remark III.2.0.1. Let f1, . . . , fn, g, f
′
1, . . . , f

′
m, g

′ ∈ A such that the ideals (f1, . . . , fn) and
(f ′1, . . . , f

′
m) are open. Then

Example III.2.2. If A+ is the integral closure of Z · 1 + A00, then Spa(A,A+) = Cont(A).

Remark III.2.3. Suppose that (A,A+) is a Huber pair, with A a Tate ring, and let R
(
f1,...,fn

g

)
be a rational subset of Spa(A,A+). As the only open ideal of A is A itself, there exist
a1, . . . , an ∈ A such that a1f1 + . . . + anfn = 1. In particular, for every x ∈ Spv(A), we
have 1 = |1|x = max1≤i≤n |ai|x|fi|x, so there exists i ∈ {1, . . . , n} such that |fi|x 6= 0. So we
have

R

(
f1, . . . , fn

g

)
= {x ∈ Spa(A,A+) | ∀i ∈ {1, . . . , n}, |fi|x ≤ |g|x}.

(That is, we can delete the condition “|g|x 6= 0” from the definition, because it follows from the
other conditions.)

Corollary III.2.4. Let (A,A+) be a Huber pair. Then Spa(A,A+) is a spectral space, and the
rational subsets are open quasi-compact and form a base of the topology of Spa(A,A+).
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Proof. By proposition III.1.4(i), Spa(A,A+) is a pro-constructible subset of Cont(A). By corol-
lary II.2.2.3, Cont(A) is spectral, and it has base of quasi-compact open subsets given by the

Ucont

(
f1, . . . , fn

g

)
= {x ∈ Cont(A) | ∀i ∈ {1, . . . , n}, |fi|x ≤ |g|x 6= 0},

for f1, . . . , fn, g ∈ A such that f1, . . . , fn generate an open ideal of A. By propo-
sition I.3.1.3(i), Spa(A,A+) is spectral, and the inclusion Spa(A,A+) → Cont(A) is
spectral (i.e. quasi-compact). The result follows from this and from the fact that
R
(
f1,...,fn

g

)
= Spa(A,A+) ∩ Ucont

(
f1,...,fn

g

)
.

Let ϕ : (A,A+) → (B,B+) be a morphism of Huber pairs. Then the continuous map
Spv(B) → Spv(A) restricts to a continuous map Spa(B,B+) → Spa(A,A+), which we will
denote by Spa(ϕ). The basic properties of these maps are given in the next proposition.

Proposition III.2.5. (Proposition 3.8 of [14].) Let ϕ : (A,A+) → (B,B+) be a morphism of
Huber pairs. Then

(i) If x ∈ Spa(B,B+) is not analytic, then Spa(ϕ)(x) is not analytic.

(ii) If ϕ is adic, then Spa(ϕ) sends Spa(B,B+)an to Spa(A,A+)an.

(iii) If B is complete and Spa(ϕ) sends Spa(B,B+)an to Spa(A,A+)an, then ϕ is adic.

(iv) If ϕ is adic, then the inverse image by Spa(ϕ) of any rational domain of Spa(A,A+) is a
rational domain of Spa(B,B+). In particular, Spa(ϕ) is spectral.

Proof. We write f = Spa(ϕ).

(i) We have supp(f(x)) = ϕ−1(supp(x)), so supp(f(x)) is open if supp(x) is open.

(ii) Let (A0, I) be a couple of definition of A and B0 be a ring of definition of B such that
ϕ(A0) ⊂ B0 and ϕ(I)B0 is an ideal of definition of B0. Let x ∈ Spa(B,B+). If f(x) is
not analytic, then supp(f(x)) = ϕ−1(supp(x)) is an open prime ideal of A, so it contains
I , so supp(x) contains f(I), which implies that supp(x) is an open ideal of B and that x
is not analytic.

(iii) Suppose that ϕ is not adic. Choose a couple of definition (A0, I) and (B0, J) of A and
B such that ϕ(A0) ⊂ B0 and ϕ(I) ⊂ J . As ϕ is not adic, we have

√
ϕ(I)B0 6=

√
J ,

so there exists a prime ideal ℘ of B0 such that ϕ(I) ⊂ ℘ and J 6⊂ ℘. Since B0 is J-
adically complete, J is contained in the Jacobson radical of B0 by [5] Chapitre III §2
No13 lemma 3 (the idea is that every a ∈ J is topologically nilpotent, so 1 − a is in-
vertible with inverse

∑
n≥0 a

n). So there exists a prime ideal q of B0 containing both
J and ℘ (take for example any maximal ideal of B0). Let R be a valuation subring
of Frac(B0/℘) dominating the local subring (B0/℘)q/℘, and let x be the corresponding
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valuation on B0; in particular, we have supp(x) = ℘ and |a|x < 1 for every a ∈ J .
Let r : Spv(B0) → Spv(B0, J) be the retraction introduced in definition I.4.1.6. As
J 6⊂ supp(x), we have J 6⊂ supp(r(x)) by theorem I.4.2.4(iv). Also, as r(x) is a horizon-
tal specialization of x, we have |a|r(x) ≤ |a|x < 1 for every a ∈ J . So r(x) ∈ Cont(B0) by
theorem II.2.2.1. Let y be the unique point of Cont(B)an such that the restriction of |.|y to
B0 is |.|r(x) (see lemma III.2.6). Let z ∈ Cont(B)an be the unique rank 1 vertical generiza-
tion of y (see corollary II.2.4.8). Then z ∈ Spa(B,B+) because z has rank 1. On the other
hand, supp(z) = supp(y) ⊃ supp(r(x)) ⊃ supp(x) = ℘, so supp(f(z)) = ϕ−1(℘) ⊃ I
is open and so f(z) is not analytic.

(iv) Let f1, . . . , fn, g ∈ A such that f1, . . . , fn generate an open ideal a of A. Then
a contains any ideal of definition of a ring of definition of B, and, as ϕ is adic,
ϕ(a) = (ϕ(f1), . . . , ϕ(fn)) is an open ideal of B. As we clearly have

f−1
(
R
(
f1,...,fn

g

))
= R

(
ϕ(f1),...,ϕ(fn)

ϕ(g)

)
,

this proves the result.

Lemma III.2.6. (Lemma 3.7 of [14], lemma 7.44 of [26].) Let B be an open subring of A.
Remember that B is f-adic by corollary II.1.1.8(ii). We consider the commutative square

Spv(A)
g //

��

Spv(B)

��
Spec(A)

f
// Spec(B)

where the horizontal maps are induced by the inclusion B ⊂ A.

(i) If T ⊂ Spec(B) is the subset of open prime ideals, then f−1(T ) ⊂ Spec(A) is the subset of
open prime ideals, and f induces a homeomorphism Spec(A)− f−1(T )

∼→ Spec(B)− T .

(ii) Cont(A) = g−1(Cont(B)).

(iii) The restriction of g to Cont(A)an induces a homeomorphism Cont(A)an
∼→ Cont(B)an,

and, for every x ∈ Cont(A)an, the canonical injection Γg(x) → Γx is an isomorphism.

Proof. (i) Let ℘ ∈ Spec(A). AsB is an open subring of A, ℘ is open in A if and only if ℘∩B
is open (in B or A). This proves the first statement.

Let q ∈ Spec(B) − T . Then q does not contains B00; we fix s ∈ B00 − q. As B is open
in A, for every a ∈ A, we have sna ∈ B for n big enough. So the injective ring morphism
Bs → As is also surjective, and the map Spec(Bs)→ Spec(As) is a homeomorphism. As
Spec(B) − T =

⋃
s∈B00 Spec(Bs) and Spec(A) − f−1(T ) =

⋃
s∈B00 Spec(As) (as B is

open in A, so is B00, so it cannot be contained in a non-open prime ideal of A), we get the
second statement.
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(iii) If x ∈ Cont(A)an, then g(x) ∈ Cont(B), and the support of g(x) is not open by (i), so
g(x) ∈ Cont(B)an.

Let x ∈ Cont(A)an and y ∈ Spv(A) such that g(x) = g(y) (that is, such that |.|x and |.|y re-
strict to the same valuation onB). As x is analytic andB00 is an open subgroup ofA (hence
not contained in supp(x)), there exists b ∈ B00 such that |b|x = |b|y 6= 0. Let a ∈ A. Then
there exists n ≥ 1 such that bna ∈ B, and we get |a|x = |bna|x|b|−nx = |bna|y|b|−ny = |a|y.
So x = y.

Let x ∈ Cont(B)an. By (i), there exists a non-open prime ideal ℘ of A such
that ℘ ∩ B = ℘x. By proposition I.1.2.3, we can extend the valuation |.|x on
K(x) = Frac(B/℘x) to a valuation on Frac(A/℘); by composing with A → A/℘, we
get an element y of Spv(A) such that g(y) = x. Also, it follows from the proof of (i)
that B℘x → A℘ is an isomorphism, so K(x)→ K(y) is an isomorphism and the injection
Γx → Γy is an isomorphism. Also, for every γ ∈ Γy, the group {a ∈ A | |a|y < γ} con-
tains the open subgroup {b ∈ B | |a|x < γ}, so it is open; this shows that y ∈ Cont(A).
Finally, we have constructed an element y ∈ Cont(A)an such that g(y) = x.

We have shown that g : Cont(A)an → Cont(B)an is bijective and continuous. Also, if
R is a rational subset of Cont(B), then g(R) is a rational subset of Cont(A) (because, if
f1, . . . , fn ∈ B generate an open ideal of B, they also generate an open ideal of A); so g is
open, hence g : Cont(A)an → Cont(B)an is a homeomorphism.

(ii) If x ∈ Cont(A), then we clearly have g(x) ∈ Cont(B). Let x ∈ Spv(A) such that
y := g(x) ∈ Cont(B). We want to show that x ∈ Cont(A). If y ∈ Cont(B)an, then there
exists x′ ∈ Cont(A)an such that g(x′) = y (by (ii)), and we have in the beginning of the
proof of (ii) that this implies that x = x′ ∈ Cont(A)an. If y 6∈ Cont(B)an, then supp(y) is
open, so supp(x) ⊃ supp(y) is also open, and x is continuous (because {a ∈ A | |a|x < γ}
contains supp(x), hence is open, for every γ ∈ Γx).

III.3 Perturbing the equations of a rational domain

The goal of this section is to show that a rational domain R
(
f1,...,fn

g

)
is not affected by a small

perturbation of f1, . . . , fn, g. This result is very important in many parts of the theory (for exam-
ple the proof that rational domain are preserved when we complete the Huber pair or, if it is a
perfectoid Huber pair, when we tilt it).

Theorem III.3.1. (Lemma 3.10 of [14].) Let A be a complete f-adic ring and let f1, . . . , fn, g be
elements ofA such that f1, . . . , fn generate an open ideal ofA. Then there exists a neighborhood
V of 0 in A such that, for all f ′1, . . . , f

′
n, g
′ ∈ A, if f ′i ∈ fi+U for i ∈ {1, . . . , n} and g′ ∈ g+U ,
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then the ideal of A generated by f ′1, . . . , f
′
n is open and

Ucont

(
f1, . . . , fn

g

)
= Ucont

(
f ′1, . . . , f

′
n

g′

)
.

Proof. Let U = Ucont

(
f1,...,fn

g

)
.

Let A0 be a ring of definition of A, and let J be the ideal of A generated by f1, . . . , fn. As
A0 ∩ J is open, it contains an ideal of definition I of A0. Choose generators a1, . . . , ar of I . By
lemma III.3.2, if a′1 ∈ a1 + I, . . . , a′r ∈ ar + I2, then I = a′1A0 + . . .+ a′rA0. For j ∈ {, . . . , r},
write aj =

∑n
i=1 aijfi, with a1j, . . . , anj ∈ A. Let W be a neighborhood of 0 in A such that,

for every b ∈ W and every (i, j) ∈ {1, . . . , n} × {1, . . . , r}, we have aijb ∈ I2. Then, if
f ′1, . . . , f

′
n ∈ A are such that f ′i ∈ fi + W for every i, the elements

∑n
i=1 aijf

′
i , 1 ≤ j ≤ r, of A

are in A0 and generate the ideal I; in particular, the ideal of A generated by f ′1, . . . , f
′
n contains

I , so it is open.

Set f0 = g. For every i ∈ {0, . . . , n}, we write Ui = Ucont

(
f0,...,fn
fi

)
; note that U0 = U , that

U0, . . . , Un are open quasi-compact, and that, for every i ∈ {0, . . . , n} and every x ∈ Ui, we
have |fi|x 6= 0. By lemma III.3.3, for every i ∈ {0, . . . , n}, there exists a neighborhood Vi of 0
in A such that, for every x ∈ Ui and every f ∈ Vi, we have |f |x < |fi|x.

Let V = A00∩W ∩V0∩ . . .∩Vn. This is a neighborhood of 0 in A. Let f ′1, . . . , f
′
n, g ∈ A such

that f ′i ∈ fi + V for every i ∈ {0, . . . , n} and g′ ∈ g + V . We have already seen that f ′1, . . . , f
′
n

generate an open ideal of A. Let U ′ = Ucont

(
f ′1,...,f

′
n

g′

)
. We want to show that U0 = U ′. Write

f ′0 = g′.

We first prove that U0 ⊂ U ′. Let x ∈ U0. For i ∈ {0, . . . , n}, we have f ′i − fi ∈ V0, so
|f ′i − fi|x < |f0|x. In particular, taking i = 0 we get |f ′0|x = |f0|x. If i ∈ {1, . . . , n}, then
|fi|x ≤ |f0|x = |f ′0|x and |f ′i − fi|x < |f0|x imply that |f ′i |x ≤ max(|fi|x, |f ′i − fi|x) ≤ |f ′0|x. So
x ∈ U ′.

Conversely, we prove that U ′ ⊂ U0. Let x ∈ Cont(A) − U0. If |fi|x = 0 for every
i ∈ {0, . . . , n}, then supp(x) ⊃ (f1, . . . , fn) is open, so it contains A00, so f ′0 − f0 ∈ supp(x),
so |f ′0|x = 0 and x 6∈ U ′. From now on, we assume that there exists i ∈ {0, . . . , n} such that
|fi|x 6= 0. Choose j ∈ {0, . . . , n} such that |fj|x = max0≤i≤n |fi|x; in particular, we have
|fj|x 6= 0. As x 6∈ U0, we have |f0|x < |fj|x. Note also that x ∈ Uj . For every i ∈ {0, . . . , n},
we have f ′i − fi ∈ Vj , so |f ′i − fi|x < |fj|x. In particular, |f ′j − fj|x < |fj|x, so |fj|x = |f ′j|x. On
the other hand, |f ′0|x ≤ max(|f0|x, |f ′0 − f0|x) < |fj|x = |f ′j|x, so x 6∈ U ′.

Lemma III.3.2. LetA0 be a complete adic ring, let I be an ideal of definition ofA0, and suppose
that we have elements a1, . . . , ar ∈ I such that I = (a1, . . . , ar). Then, for all a′1, . . . , a

′
r ∈ A

such that a′i − ai ∈ I2 for every i ∈ {1, . . . , r}, we have I = (a′1, . . . , a
′
r).
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Proof. As I2 ⊂ I , we have a′1, . . . , a
′
r ∈ I , so (a′1, . . . , a

′
r) ⊂ I . Consider the A-linear map

u′ : Ar → I , (b1, . . . , br) 7−→ b1a
′
1 + . . .+ bra

′
r. We want to show that u′ is surjective. For every

n ≥ 0, we have u′(InAr) ⊂ In+1. So, by [5] Chapitre III §2 No8 corollaire 2 du théorème 1, it
suffices to show that, for every n ≥ 0, the map

grn(u′) : (InAr)/(In+1Ar)→ In+1/In+2

induced by u′ is surjective. But we have grn(u′) = grn(u), where u is the map Ar → I ,
(b1, . . . , br) 7−→ b1a1 + . . .+ brar, and all the grn(u) are surjective because I = (a1, . . . , ar).

Lemma III.3.3. (Lemma 3.11 of [14].) Let (A,A+) be a Huber pair,X be quasi-compact subset
of Spa(A,A+) and s be an element of A such that |s|x 6= 0 for every x ∈ X . Then there exists a
neighborhood V of 0 in A such that, for every x ∈ X and a ∈ U , we have |a|x < |s|x.

In particular, there exists a finite subset T of A such that the ideal T · A is open and that, for
every t ∈ T , we have |t|x < |s|x.

Proof. Let T be a finite subset of A00 such that T ◦ A00 is open (for example a set of generators
of an ideal of definition of a ring of definition of A). For every n ≥ 1, the group T n ◦A00 is open
by lemma II.3.3.5, so

Xn = {x ∈ Spa(A,A+) | ∀t ∈ T n, |t|x ≤ |s|x 6= 0}

is a rational subset of Spa(A,A+), and in particular it is open and quasi-compact. Also, as every
element of T is topologically nilpotent and T is finite, for every x ∈ Spa(A,A+) such that
|s|x 6= 0, we have x ∈ Xn for n big enough. In particular, we have X ⊂

⋃
n≥1Xn. But X is

quasi-compact, so there exists n ≥ 1 such that X ⊂ Xn. If we take V = T n · A00, then V is an
open subgroup of A and |a|x < |s|x for every x ∈ Xn ⊃ X .

We prove the second statement. Let (A0, I) be a couple of definition of A. As V is open, it
contains some power of I . Replacing I by this power, we may assume that I ⊂ V . Then we can
take for T a finite set of generators of I .

III.4 First properties of the adic spectrum

III.4.1 Quotients

Notation III.4.1.1. Let (A,A+) be a Huber pair, and let a be an ideal of A. The quotient Hu-
ber pair (A,A+)/a = (A/a, (A/a)+) is defined by taking (A/a)+ to be the integral closure of
A+/(A+ ∩ a) in A/a.
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Proposition III.4.1.2. Let (A,A+) be a Huber pair, and let a be an ideal of A. We denote
the canonical map (A,A+) → (A,A+)/a by ϕ. Then Spa(ϕ) induces a homeomorphism from
Spa((A,A+)/a) to the closed subset

Spa(A,A+) ∩ supp−1(V (a)) = {x ∈ Spa(A,A+) | supp(x) ⊃ a}.

A closed subset of Spa(A,A+) as in the proposition is called a Zariski closed subset of
Spa(A,A+). Not every closed subset of Spa(A,A+) is Zariski closed.

Proof. It is easy to see that Spa(ϕ) is injective with image Spa(A,A+)∩ supp−1(V (a)). Also, if
f1, . . . , fn, g are such that f1, . . . , fn generate an open ideal J of A and if f 1, . . . , fn, g are their
images in A/a, then f 1, . . . , fn generate the ideal (J + a)/a of A/a, which is clearly open, and
the image by Spa(ϕ) of R

(
f1,...,fn

g

)
is R

(
f1,...,fn

g

)
∩ supp−1(V (a)). This finishes the proof.

III.4.2 Spa and completion

Definition III.4.2.1. Let (A,A+) be a Huber pair. Its completion is the pair (Â, Â+), where Â+

is the closure of the image of A+ in Â.

By lemma III.4.2.3, the completion of a Huber pair is a Huber pair.

Corollary III.4.2.2. (Proposition 3.9 of [14].) Let (A,A+) be a Huber pair. Then the canonical
map Spa(Â, Â+)→ Spa(A,A+) is a homeomorphism, and a subset of Spa(Â, Â+) is a rational
domain if and only if its image in Spa(A,A+) is a rational domain.

Proof. Let ϕ : A→ Â be the canonical map. By proposition II.3.1.12(iii), ϕ induces a bijection
Cont(Â) → Cont(A). It follows immediately from the definition of Â+ that ϕ induces a mor-
phism of Huber pairs (A,A+) → (Â, Â+) and that Spa(ϕ) : Spa(Â, Â+) → Spa(A,A+) is a
bijection. Also, as ϕ is adic, the inverse image by Spa(ϕ) of a rational domain of Spa(A,A+)
is a rational domain by proposition III.2.5(iv). It remains to show that Spa(ϕ) maps rational
subsets to rational subsets.

Let R be a rational subset of Spa(Â, Â+). As ϕ(A) is dense in Â, by theorem III.3.1, there
exist f1, . . . , fn, g ∈ A such that ϕ(f1), . . . , ϕ(fn) generate an open ideal of Â and

R = R

(
ϕ(f1), . . . , ϕ(fn)

ϕ(g)

)
.

We would be done if we knew that f1, . . . , fn generate an open ideal of A, but we don’t. On
the other hand, as Spa(ϕ)(R) is a quasi-compact subset of Spa(A,A+) and |g|x 6= 0 for every
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x ∈ Spa(ϕ)(R), we know by lemma III.3.3 that there exists f ′1, . . . , f
′
m ∈ A generating an open

ideal of A and such that |f ′j|x < |g|x for every j ∈ {1, . . . ,m}. Then

Spa(ϕ)(R) = R

(
f1, . . . , fn, f

′
1, . . . , f

′
m

g

)
.

Lemma III.4.2.3. Let A be a f-adic ring. If we have open sugroups of G and H of A and Â
that correspond to each other by the bijection of lemma II.3.1.11, then G is a ring of integral
elements of A if and only if H is a ring of integral elements of Â.

Proof. Let i : A → Â be the canonical map. As i(A) is dense in Â, it is easy to see that G is a
subring of A if and only if H is a subring of Â. By proposition II.3.1.12(i), we have G ⊂ A0 if
and only H ⊂ Â0.

Suppose that G is an open and integrally closed subring of A. We want to prove
that H is integrally closed in Â. Let x ∈ Â be integral over H , and write
xd + a1x

d−1 + . . . + ad = 0, with d ≥ 1 and a1, . . . , ad ∈ H . As H is an open neigh-
borhood of 0 in Â, we can find x′ ∈ A and a′1, . . . , a

′
d ∈ G such that x − i(x′) ∈ H

and (xd + a1x
d−1 + . . . + ad) − (i(x′)d + i(a′1)i(x′)d−1 + . . . + i(a′d)) ∈ H . But then

x′d+a′1x
′d−1 +. . .+ad ∈ G, so x′ ∈ G asG is integrally closed, and x = (x−i(x′))+i(x′) ∈ H .

Conversely, suppose that H is an open and integrally closed subring of Â. Then, if x ∈ A
is integral over G, then i(x) is integral over H , so i(x) ∈ H , so x ∈ G. Hence G is integrally
closed.

III.4.3 Rational domains and localizations

Notation III.4.3.1. Let (A,A+) be a Huber pair, let X = (Xi)i∈I be a family of indeterminates,
and let T = (Ti)i∈I be a family of subsets of A such that Ti generates an open ideal of A for
every i ∈ I .

(1) Remember that A[X]T is f-adic by proposition II.3.3.6. We denote by A[X]+T the integral
closure in A[X]T of the open subring A+

[X,T ]. So we get a Huber pair (A[X]T , A[X]+T ).

(2) If A is complete and I is finite, we denote by A〈X〉+T the integral closure in A〈X〉T of the
open subring A+

〈X,T 〉. We get a complete Huber pair (A〈X〉T , A〈X〉+T ).

Now suppose that I is a singleton, so T is a subset of A that generates an open ideal, and let
s ∈ A.
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(3) Denote by A
(
T
s

)+ the integral closure in A
(
T
s

)
of the A+-subalgebra generated by all the

ts−1, for t ∈ T (this A+-algebra is open in A
(
T
s

)
by definition of the topology in the proof

of proposition II.3.4.1). Then (A
(
T
s

)
, A
(
T
s

)+
) is a Huber pair.

It is also canonically isomorphic to the Huber pair (A[X]T , A[X]+T )/(1 − sX) (see
III.4.1.1).

(4) By combining (3) and definition III.4.2.1, we get a Huber pair (A〈T
s
〉, A〈T

s
〉+).

Corollary III.4.3.2. Let (A,A+) be a Huber pair, and let f1, . . . , fn, g ∈ A such that f1, . . . , fn

generate an open ideal of A. Let ϕ : (A,A+) → (A
(
f1,...,fn

g

)
, A
(
f1,...,fn

g

)+

) be the canonical
map.

Then Spa(ϕ) induces a homeomorphism Spa(A
(
f1,...,fn

g

)
, A
(
f1,...,fn

g

)+

)
∼→ R

(
f1,...,fn

g

)
,

and a subset R of Spa(A
(
f1,...,fn

g

)
, A
(
f1,...,fn

g

)+

) is a rational domain if and only if Spa(ϕ)(R)

is a rational domain (in Spa(A,A+)).

Proof. We write f = Spa(ϕ), (B,B+) = (A
(
f1,...,fn

g

)
, A
(
f1,...,fn

g

)+

) and U = R
(
f1,...,fn

g

)
.

As ϕ is spectral, the inverse image by f of a rational domain of Spa(A,A+) is a rational domain
of Spa(B,B+) (proposition III.2.5(iv)). So it suffices to prove that f sends rational domain to
rational domains and induces a bijection from Spa(B,B+) to U .

As the underlying ring of B is just A[g−1], if we have two valuations on B that coincide on
the image of A, then they coincide on B. So f is injective.

Let x ∈ Spa(B,B+), and let y = f(x). Then |g|x = |g|y 6= 0 because g is invertible in B. For
every i ∈ {1, . . . , n}, we have fig−1 ∈ B+, so |fig−1|x ≤ 1, and |fi|y = |fi|x ≤ |g|x = |g|y 6= 0.
So y ∈ U .

Let y ∈ U . Then |g|y 6= 0, so |.|y extends to a valuation on A[g−1], hence gives a point x of
Spv(B); note that Γx = Γy. We want to show that x ∈ Spa(B,B+). Let D be the subring of B
generated by f1g

−1, . . . , fng
−1; as y ∈ U , we have |b|x ≤ 1 for every b ∈ D. Let γ ∈ Γx. Then

V := {a ∈ A | |a|y < γ} is an open subgroup of A, and V ·D ⊂ {b ∈ B | |b|x < γ}; as V ·D
is open by definition of the topology on B (see the proof of proposition II.3.4.1), this shows that
x is continuous. Also, B+ is the integral closure of A+ ·D, and |b|x ≤ 1 for every b ∈ A+ ·D,
so x ∈ Spa(B,B+) (see proposition III.1.4(ii)).

It remains to show that f sends rational domains of Spa(B,B+) to rational domains of
Spa(A,A+). Let t1, . . . , tm, s ∈ B such that t1, . . . , tm generate an open ideal of B, and let
E = R

(
t1,...,tm

s

)
⊂ Spa(B,B+). After multiplying t1, . . . , tm, s by a high enough power of g

(which does not affect the condition on (t1, . . . , tm) because g is a unit in B), we may assume
that t1, . . . , tm, s ∈ A. Of course, we don’t know that t1, . . . , tm generate an open ideal, because
it has no reason to be true. But, as g(E) ⊂ Spa(A,A+) is quasi-compact and |s|x 6= 0 for every
x ∈ g(E), we can find by lemma III.3.3 elements t′1, . . . , t

′
p ∈ A generating an open ideal and

103



III The adic spectrum

such that |t′j|x < |s|x for every j ∈ {1, . . . , p}. Then

g(E) = R

(
t1, . . . , tm, t

′
1, . . . , t

′
p

s

)
,

so g(E) is a rational domain of Spa(A,A+).

Using corollary III.4.2.2, we also get :

Corollary III.4.3.3. We can replace (A
(
f1,...,fn

g

)
, A
(
f1,...,fn

g

)+

) with (A〈f1,...,fn
g
〉, A〈f1,...,fn

g
〉+)

in the statement of corollary III.4.3.2.

III.4.4 Non-emptiness

In this section, we give a crierion for Spa(A,A+) to be non-empty, and some consequences.

Proposition III.4.4.1. Let (A,A+) be a Huber pair.

(i) The following are equivalent :

(a) Spa(A,A+) = ∅;

(b) Cont(A) = ∅;

(c) A/{0} = {0}.

(ii) The following are equivalent :

(a) Spa(A,A+)an = ∅;

(b) Cont(A)an = ∅;

(c) A/{0} has the discrete topology.

Proof. Note that the support of a continuous valuation x is always a closed prime ideal of A
(because it is the intersection of the open and closed subgroups {a ∈ A | |a|x < γ}, for γ ∈ Γx).
In particular, for every x ∈ Cont(A), we have {0} ⊂ supp(x).

(ii) If (c) holds, then {0} is open, so supp(x) is open for every x ∈ Cont(A), and so (b)
holds. Also, Spa(A,A+)an is dense in Cont(A)an by proposition III.1.5(i), so (a) and (b)
are equivalent.

Suppose that (b) holds. We want to prove (c). Let (A0, I) be a couple of definition of A.

We claim that, if ℘ ⊂ q are prime ideals of A0 and I ⊂ q, then I ⊂ ℘. Indeed, assume that
I 6⊂ ℘. Let x ∈ Spv(A0) such that supp(x) = ℘ and that Rx dominates the local subring
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(A0/℘)q/℘ of K(x) = Frac(A0,x/℘). Let r : Spv(A0) → Spv(A0, I) be the retraction
of definition I.4.1.6. Then r(x) ∈ Spv(A0, I) and |a|r(x) < 1 for every a ∈ q ⊃ I , so
r(x) ∈ Cont(A0) by theorem II.2.2.1. As I 6⊂ supp(x), we have I 6⊂ supp(r(x)) by
theorem I.4.2.4(iv), so supp(r(x)) is not open, which means that r(x) is analytic. By
lemma III.2.6(iii), x extends to an analytic point y of Cont(A), which contradicts the
assumption that Cont(A)an = ∅.

Now we prove that (c) holds. Let S = 1 + I , let B = S−1A0 and let ϕ : A0 → B be the
canonical map. Then ϕ(I) is contained in the Jacobson radical of B, so, if ℘ ∈ Spec(B),
then we can find q ⊃ ℘ in Spec(B) such that ϕ(I) ⊂ q (just take q to be a maximal ideal
containing ℘). By the claim, this implies that every prime ideal of B contains ϕ(I), i.e.
that ϕ(I) is contained in the nilradical of B. As I is finitely generated, there exists n ≥ 1
such that ϕ(I)n = {0}. So there exists a ∈ I such that (1 + a)In = {0} (in A0 this time).
This implies that In ⊂ In+1, hence that In = In+r for every r ≥ 0. So {0} = In and the
topology on A/{0} is discrete.

(i) We again have that (a) and (b) are equivalent because Spa(A,A+) is dense in Cont(A)
(proposition III.1.5). Also, (c) clearly implies (b). Assume that (b) holds. Then, by (ii),
the topology on A/{0} is discrete. If {0} 6= A, then we can find a prime ideal ℘ of A
containing {0}, and then ℘ is open and the trivial valuation with support ℘ is an element
of Cont(A), contradicting (b). So A = {0}.

Corollary III.4.4.2. Let (A,A+) be a complete Huber pair. If Spa(A,A+)an = ∅, then A is a
discrete ring.

Corollary III.4.4.3. Let (A,A+) be a complete Huber pair, and let T be a subset of A. Then the
following are equivalent :

(a) The ideal generated by T is A.

(b) For every x ∈ Spa(A,A+), there exists t ∈ T such that |t|x 6= 0.

If these conditions are satisfied and T is finite, then (R
(
T
t

)
)t∈T is an open covering of

Spa(A,A+).

Proof. If (a) holds, we can write 1 = a1t1 + . . .+ antn with a1, . . . , an ∈ A and t1, . . . , tn ∈ T .
For every x ∈ Spa(A,A+), we have 1 = |1|x ≤ max1≤i≤n |ai|x|ti|x, so there exists
i ∈ {1, . . . , n} such that |ti|x 6= 0.

Suppose that (a) does not holds, and let m be a maximal ideal of A such that T ⊂ m. By
lemma III.4.4.5, m is a closed ideal of A, hence A/m is Hausdorff, so Spa((A,A+)/m) 6= ∅
by proposition III.4.4.1(i). As Spa((A,A+)/m) ' Spa(A,A+) ∩ supp(V (m)) by proposition
III.4.1.2, there exists x ∈ Spa(A,A+) such that supp(x) = m. As T ⊂ m, we have |t|x = 0 for
every t ∈ T . So (b) does not hold.
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III The adic spectrum

We prove the last statement. Let x ∈ Spa(A,A+). Choose t0 ∈ T such that
|t0|x = maxt∈T |t|x. Then |t0|x 6= 0 by condition (b), so x ∈ R

(
T
t0

)
.

Corollary III.4.4.4. Let (A,A+) be a Huber pair, and let f ∈ A.

(i) We have f ∈ A+ if and only if |f |x ≤ 1 for every x ∈ Spa(A,A+).

(ii) If A is complete, we have f ∈ A× if and only if |f |x 6= 0 for every x ∈ Spa(A,A+).

(iii) If A is a Tate ring, then f is topologically nilpotent if and only if |f |nx → 0 as n → +∞ 1

for every x ∈ Spa(A,A+).

Proof. Point (i) is just proposition III.1.4(ii), and point (ii) is corollary III.4.4.3 applied to
T = {f}.

We prove (iii). Assume that f ∈ A00, and let x ∈ Spa(A,A+). Let γ ∈ Γx. As 0 is a limit
of (fn)n≥0, there exists n ∈ N such that, for every m ≥ n, fm is in the open neighborhood
{a ∈ A | |a|x < γ} of 0. Conversely, suppose that |f |nx → 0 for every x ∈ Spa(A,A+). Let
$ ∈ A be a topologically nilpotent unit. We have Spa(A,A+) =

⋃
n≥0R

(
fn,$
$

)
by hypothesis.

As Spa(A,A+) is quasi-compact, there exists n ∈ N such that Spa(A,A+) = R
(
fn,$
$

)
. This

means that |fn/$|x ≤ 1 for every x ∈ Spa(A,A+), hence fn ∈ $A+ by (i). As A+ ⊂ A0, we
get that fn = $a for some power-bounded a ∈ A, and so f is topologically nilpotent.

Lemma III.4.4.5. Let A be a complete f-adic ring. Then A× is open in A and every maximal
ideal of A is closed.

Proof. For every a ∈ A00, we have 1 − a ∈ A× (because
∑

n≥0 a
n is an inverse of a, see [5]

Chapitre III §2 No13 lemma 3). So 1 + A00 ⊂ A×. As A00 is open, this implies that A× is open
in A (if a ∈ A×, then multiplication by a is a homeomorphism of A, so a(1 + A00) is an open
neighborhood of a).

Let m be a maximal ideal ofA. Then m is contained in the closed subsetA−A×, so its closure
is also contained in A − A×, and in particular it does not contains 1. But the closure of m is an
ideal of A and m is maximal, so m is equal to its closure.

Example III.4.4.6. Let k be a non-Archimedean field whose topology is given by the rank 1
valuation |.|, and let (A,A+) = (k[X], k0[X]), where k[X] = k[X]{1}. Let $ ∈ k such that
0 < |$| < 1. Then f = 1 + $X ∈ A satisfies |f |x 6= 0 for every x ∈ Spa(A,A+) (see section
III.5.2), but f 6∈ A×. So some hypothesis is necessary in corollary III.4.4.4(ii). (We can get away
with less than completeness, see [1] proposition 7.3.10(6).)

1That is, for every γ ∈ Γx, there exists n ∈ N such that |f |mx < γ for m ≥ n.
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III.5 Examples

III.5.1 Completed residue fields and adic Points

Definition III.5.1.1. Let (A,A+) be a Huber pair and let x ∈ Spa(A,A+). Remember that
we denote by K(x) the fraction field of A/ supp(x). If x is not analytic, we put the discrete
topology on K(x) and we set κ(x) = K(x) and K(x)+ = κ(x)+ = Rx. If x is analytic, we put
the topology defined by the valuation |.|x on K(x), we denote by κ(x) the completion of K(x)
and by κ(x)+ the completion of K(x)+ := Rx.

We call κ(x) the completed residue field of Spa(A,A+) at x.

We also denote by |.|x the valuation induced by |.|x on K(x) (resp. κ(x)). It is a continuous
valuation, with valuation subring K(x)+ (resp. κ(x)+), and it defines the topology of K(x) and
κ(x) if x is analytic.

Note that (κ(x), κ(x)+) is a Huber pair, and that κ(x)+ is a valuation subring of κ(x).

Proposition III.5.1.2. Let x ∈ Spa(A,A+). Then :

(i) x is analytic if and only if κ(x) is microbial.

(iii) The map Spa(κ(x), κ(x)+) → Spa(A,A+) (coming from the canonical map
(A,A+) → (κ(x), κ(x)+)) induces a homeomorphism between Spa(κ(x), κ(x)+) and the
set of vertical generizations of x.

Proof. (i) If x is not analytic, then κ(x) is discrete, so is is not microbial. Conversely, suppose
that x is analytic. Then, by corollary II.2.4.8, Rx has a prime ideal of height 1, so K(x) is
microbial, and so is its completion κ(x).

(ii) Suppose that x is analytic. Then, by corollary III.4.2.2, the map
Spa(κ(x), κ(x)+) → Spa(K(x), Rx) is a homeomorphism. So, in both cases, we
have to show that the map Spa(K(x), Rx) → Spa(A,A+) induces a homeomorphism
from Spa(K(x), Rx) to the set of vertical generizations of x in Spa(A,A+), where we put
the valuation topology on K(x) to define Spa(K(x), Rx). We already know that the set of
valuations rings of R of K(x) such that Rx ⊂ R (i.e. RZ(K(x), Rx)) is homeomorphic to
the set of vertical generizations of x in Spv(A), and every vertical generization of x is au-
tomatically ≤ 1 on A+, so we just need to check that, if R ∈ RZ(K(x), Rx) corresponds
to y, then |.|R is continuous if and only if |.|y is. As |.|R and |.|y have the same valuation
group and as vertical generizations with nontrivial valuation group of a continuous valua-
tion are automatically continuous (proposition II.2.3.1(ii)), the only nontrivial case is the
case R = K(x). In that case, |.|y is not continuous because {a ∈ A | |a|y < 1} = supp(x)
is not open in A, and neither is |.|R because {a ∈ K(x) | |a|R < 1} = {0} is not open in
K(x).
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III The adic spectrum

If x is not analytic, then κ(x) has the discrete topology, so
Spa(κ(x), κ(x)+) = RZ(K(x), Rx). On the other hand, every vertical generization
of x is continuous because it has open kernel. So we also get the result.

Here is a good reason to use the completed residue field κ(x) instead of K(x).

Proposition III.5.1.3. Let U := R
(
T
s

)
be a rational domain of X := Spa(A,A+), and let

f : Y := Spa(A〈T
s
〉, A〈T

s
〉+)

∼→ U be the homeomorphism of corollary III.4.3.2. We fix a
point y ∈ Y and let x = f(y). The canonical morphism ϕ : (A,A+) → (A〈T

s
〉, A〈T

s
〉+)

induces a morphism (K(x), K(x)+) → (K(y), K(y)+), and this gives an isomorphism
(κ(x), κ(x)+)

∼→ (κ(y), κ(y)+) on the completions of these Huber pairs.

Note that the inclusion K(x) ⊂ K(y) is strict in general.

Proof. We have |.|x = |.|y ◦ϕ, so ϕ−1(supp(y)) = supp(x), which gives the first statement, and
also the fact that K(x)+ is the inverse image of K(y)+ in K(x). To prove the second statement,
we must show that the image of K(x) in K(y) is dense.

First note that, as the canonical mapA→ A〈T
s
〉 is adic, x is analytic if and only if y is analytic

(see proposition III.2.5).

As |s|x = |s|y 6= 0, K(x) is also the fraction field of A[s−1]/(A[s−1] ∩ supp(y)). Also, we
know that A[s−1] = A

(
T
s

)
is dense in A′ := A〈T

s
〉 (by definition of the second ring), and that

the valuation topology on A induced by |.|y is weaker than the original topology of A′; so A[s−1]
is dense in A′ for the valuation topology, and this implies that K(x) is dense in K(y) is x and y
are analytic.

If x and y are not analytic, then the open subgroup supp(y) of A′ is the completion of
supp(y)∩A[s−1], and the morphism of discrete ringsA[s−1]/(A[s−1]∩supp(y))→ A′/ supp(y)
is an isomorphism. So the morphism K(x)→ K(y) is an isomorphism.

Definition III.5.1.4. An affinoid field is a pair (k, k+), where k is a complete non-Archimedean
field and k+ ⊂ k0 is an open valuation subring of k.

Example III.5.1.5. If (A,A+) is a Huber pair and x ∈ Spa(A,A+)an, then (κ(x), κ(x)+) is an
affinoid field.

Remark III.5.1.6. Let (k, k+) be an affinoid field. Then k+ is a ring of integral elements and a
ring of definition of k. In particular, (k, k+) is a Huber pair.

Indeed, the open subring k+ of k is also integrally closed because it is a valuation subring (see
proposition I.1.2.1(i)). So it is a ring of integral elements. On the other hand, k+ is open and
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bounded in k (it is bounded because it is contained in k0, and k0 is bounded because the topology
of k is defined by a rank 1 valuation), so it is a ring of definition by lemma II.1.1.7.

Note also that the topology defined by the valuation corresponding to k+ is equal to the original
topology on k. Indeed, the maximal ideal k00 is a height 1 prime ideal in k+, so we can apply
theorem I.1.5.4.

Definition III.5.1.7. An adic Point is the adic spectrum of an affinoid field.

Note that an adic Point is not a point in general. In fact :

Lemma III.5.1.8. Let (k, k+) be an affinoid field. Then Spa(k, k+) is totally ordered by special-
ization. It has a unique closed point (the minimal element) corresponding to k+, and a unique
generic point (the maximal element) corresponding to k0.

Proof. By remark III.5.1.6, any valuation subring R ⊂ k0 of k defines a continuous valuation
on k, this valuation is in Spa(k, k+) if and only if k+ ⊂ R. So Spa(k, k+) is in order-reversing
bijection with the set of valuation subringsR of k such that k+ ⊂ R ⊂ k0 (a locally closed subset
ofRZ(k)). By theorem I.1.4.2, it is also in order-preserving bijection with the set of prime ideals
℘ of k+ such that ℘ ⊂ k00. (Note that k00 is the prime ideal of k+ corresponding to the valuation
ring k0, see theorem I.1.5.4.) As the set of ideals of k+ is totally ordered by inclusion, this shows
the first statement. The second statement is clear.

Proposition III.5.1.9. Let (A,A+) be a Huber pair. Consider the following sets :

(a) Σ is the set of maps of Huber pairs ϕ : (A,A+) → (k, k+), where (k, k+) is an affi-
noid field and Frac(ϕ(A)) is dense in k, modulo the following equivalence relation :
ϕ1 : (A,A+) → (k1, k

+
1 ) and ϕ2 : (A,A+) → (k2, k

+
2 ) are equivalent if there exists

an isomorphism of Huber pairs u : (k1, k
+
1 )

∼→ (k2, k
+
2 ) such that u ◦ ϕ1 = ϕ2.

(b) Σ′ is the set of equivalence classes of continuous valuations x ∈ Spa(A,A+) such that
κ(x) is microbial.

Then the map Σ′ → Σ sending x to the canonical map (A,A+) → (κ(x), κ(x)+) and the
map Σ → Spa(A,A+)an sending ϕ : (A,A+) → (k, k+) to the image of the closed point of
Spa(k, k+) by Spa(ϕ) are both well-defined and bijective.

Note that we have a similar statement for an affine scheme Spec(A), where we use actual
points (i.e. Spec(k)) and we get all the points of Spec(A).

Proof. If x ∈ Spa(A,A+) and κ(x) is microbial, then (κ(x), κ(x)+) is an affinoid field; so
the first map is well-defined. We show that it is a bijection by constructing an inverse. Let
ϕ : (A,A+) → (k, k+) be an element of Σ. Then composing the valuation on k corre-
sponding to k+ with ϕ gives a continuous valuation x on A such that supp(x) = Ker(ϕ) and
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A+/ supp(x) ⊂ Rx; note that x is the image of the closed point of Spa(k, k+). We get a map
K(x) → k such that Rx = K(x) ∩ k+, and that has dense image by assumption, hence induces
an isomorphism (κ(x), κ(x)+)

∼→ (k, k+). It is easy to check that this defined an inverse of the
map Σ′ → Σ.

Now we consider the second map. By the first paragraph, we just need to show that an element
x ∈ Spa(A,A+) is analytic if and only if κ(x) is microbial; but this is proposition III.5.1.2(i).

III.5.2 The closed unit ball

Let k be a complete and algebraically closed non-Archimedean field, and denote its rank 1 val-
uation by |.| : k → R≥0. Remember that k00 is the maximal ideal of k0 (this is true for any
non-Archimedean field). We denote the residue field k0/k00 by κ; it is also algebraically closed.

Let A = k〈t〉 (see II.3.3.9), and let A+ = A0 = k0〈t〉. The points of X := Spa(A,A+) are
usually divided into 5 types :

(1) Classical points : Let x ∈ k0 (i.e. a point of the closed unit disk in k). Then the map
A→ R≥0, f 7−→ |f(x)| is an element of Spa(A,A+), and its support is the maximal ideal
(t− x) of A. We will often denote this point by x.

Note that every maximal ideal of A is of the form (t − x) for x ∈ k0 (cf. [4] section 2.2
corollary 13), so classical points are in bijection with the maximal spectrum of A.

(2),(3) Let r ∈ [0, 1] and let x ∈ k0. Let xr be the point of Spv(A) corresponding to the valuation

f =
∑
n≥0

an(t− x)n 7−→ sup
n≥0
|an|rn = sup

y∈k0,
|y−x|≤r

|f(y)|.

Then xr ∈ Spa(A,A+), and it only depends on D(x, r) := {y ∈ k0 | |x − y| ≤ r}. If
r = 0 then xr = x is a classical point, and if r = 1 then xr is independent of x and is
called the Gauss norm.

If x ∈ k0 is fixed, then the map [0, 1] → Spa(A,A+), r 7−→ xr is continuous precisely at
the points of [0, 1]− |k×|.

If r ∈ |k×|, then we say that the pointn xr is of type (2); otherwise, we say that it is of type
(3).

(4) Let D1 ⊃ D2 ⊃ . . . be an infinite sequence of closed disks in k0 such that
⋂
n≥1Dn = ∅.

2 Then the valuation
f 7−→ inf

n≥1
sup
x∈Dn

|f(x)|

2Such sequences exist if and only if k is not spherically complete. For example, C` = Q̂` is not spherically
complete.
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defines a rank 1 point of X , which is not of type (1), (2) or (3).

(5) Rank 2 valuations : Let x ∈ k0 and r ∈ (0, 1]. We denote by Γ<r the abelian group
R>0 × γZ, with the unique order such that r′ < γ < r for every r′ < r. (With the notation
of section I.3.5.1, this is the group Γ and γ = r−.) Denote by x<r the point of Spv(A)
corresponding to the valuation

f =
∑
n≥0

an(t− x)n 7−→ max
n≥0
|an|γn ∈ Γ<r ∪ {0}.

Then x<r is a point of Spa(A,A+), and it only depends on
D0(x, r) := {y ∈ k0 | |x− y| < r}.

Similarly, if r ∈ (0, 1), let Γ>r the abelian group R>0 × γZ, with the unique order such
that r′ > γ > r for every r′ > r. Denote by x>r the point of Spv(A) corresponding to the
valuation

f =
∑
n≥0

an(t− x)n 7−→ max
n≥0
|an|γn ∈ Γ>r ∪ {0}.

Then x>r is a point of Spa(A,A+), and it only depends on D(x, r). (So x>r = x′>r if
xr = x′r.)

If r 6∈ |k×|, then x<r = x>r = xr. But if r ∈ |k×|, we get two new points of Spa(A,A+),
which are called points of type (5).

If we think of Spa(A,A+) as a tree, then points of (1) are end points, points of type (2) and (3)
are points on the limbs of the tree (and type (2) points are exactly the branching points), points
of type (4) are “dead ends”. Points of type (5) are in the closure of points of type (2) (so they are
less easy to visualize).

Points of type (1), (3), (4) and (5) are closed. If x ∈ k0 and r ∈ |k|× ∩ (0, 1], then the closure
of the corresponding point of type (2) xr is {xr, x<r, x>r} (where x>r appears only if r < 1).

Remark III.5.2.1. We could also have defined a point x>1 of Spv(A), for x ∈ k0. This is a
continuous valuation on A, but it is not a point of Spa(A,A+), because it is not ≤ 1 on A+. In
fact, if A′+ is the integral closure of k0 + A00 in A, then Spa(A,A′+) = Spa(A,A+) ∪ {x>1}.
Remark III.5.2.2. We get the Berkovich space of A by identifying the points of type (5) x<r
and x>r with xr. Note that this is a Hausdorff space. In general, if k is a complete non-
Archimedean field, the Berkovich space of an affinoid k-algebra A is the maximal Hausdorff
quotient of Spa(A,A0).

III.5.3 Formal schemes

Let A be an adic ring with a finitely generated ideal of definition I . Let

X = Spa(A,A) = {x ∈ Cont(A) | ∀a ∈ A, |a|x ≤ 1}.
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Remember that a valuation is called trivial if it has rank 0, i.e. if its value group is the trivial
group. A trivial valuation is continuous if and only if it has open support, so the subset Xtriv of
trivial valuation is in bijection with the set of open prime ideal ideals of A, i.e. Spf(A). It is easy
to see that this is a homeomorphism.

We also have a retraction Spa(A,A)→ Spa(A,A)triv given by x 7−→ x|cΓx , and it is a spectral
map. If OX is the structure presheaf of X to be defined shortly, then we have an isomorphism of
locally ringed spaces Spf(A) ' (Xtriv, r∗OX).

This will give a fully faithful functor from the category of Noetherian formal affine schemes
to the category of adic spaces.

III.6 The structure presheaf

In this section, (A,A+) is a Huber pair.

III.6.1 Universal property of rational domains

Proposition III.6.1.1. (Lemma 8.1 and proposition 8.2 of [26].) Let T be a finite subset of A
such that the ideal T · A is open, let s ∈ A, and let U = R

(
T
s

)
⊂ Spa(A,A+).

(i) The canonical map ι : (A,A+) → (A〈T
s
〉, A〈T

s
〉+) induces a spectral homeomorphism

Spa(A〈T
s
〉, A〈T

s
〉+)

∼→ U sending rational domains to rational domains.

(ii) For every continuous morphism ϕ : (A,A+) → (B,B+) to a complete Huber pair such
that Spaϕ : Spa(B,B+) → Spa(A,A+) factors through U , there is a unique continuous
ring morphism ψ : A〈T

s
〉 → B such that ψ ◦ ι = ϕ, and we have ψ(A〈T

s
〉+) ⊂ B+.

(iii) Let T ′ be another finite subset of A such that the ideal T ′ · A is open, let s′ ∈ A, and
let U ′ = R

(
T ′

s′

)
⊂ Spa(A,A+). If U ′ ⊂ U , then there exists a unique continuous ring

morphism ρ : A〈T
s
〉 → A〈T ′

s′
〉 such that ι′ = ρ ◦ ι, where ι′ : A → A〈T ′

s′
〉 is the canonical

map.

Proof. (i) This is corollary III.4.3.3.

(ii) The assumption on Spa(ϕ) means that, for every x ∈ Spa(B,B+) and every t ∈ T , we
have |ϕ(t)|x ≤ |ϕ(s)|x 6= 0. By points (ii) and (i) of corollary III.4.4.4, this implies that
ϕ(s) ∈ B×, and then that ϕ(t)ϕ(s)−1 ∈ B+ for every t ∈ T . In particular, ϕ(t)ϕ(s)−1

is power-bounded for every t ∈ T , so the existence and uniqueness of ψ follow from the
universal property of A〈T

s
〉 (proposition II.3.4.6), and the fact that ψ preserves the rings

of integral elements follows immediately from the fact that ψ(t)ψ(s)−1 ∈ B+ for every
t ∈ T .
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(iii) This follows immediately from (i) and (ii).

Corollary III.6.1.2. Let T, T ′ ⊂ A be finite subsets such that the ideals T · A and T ′ · A are
open, and let s, s′ ∈ A. If R

(
T
s

)
= R

(
T ′

s′

)
, then there is a canonical isomorphism of Huber

pairs (A〈T
s
〉, A〈T

s
〉+)

∼→ (A〈T ′
s′
〉, A〈T ′

s′
〉+) making the following diagram commute :

A //

  

A〈T
s
〉

o
��

A〈T ′
s′
〉

In other words, the rational domainR
(
T
s

)
uniquely determines the Huber pair (A〈T

s
〉, A〈T

s
〉+)

as a Huber pair over (A,A+).

III.6.2 Definition of the structure presheaf

Definition III.6.2.1. Let (A,A+) be a Huber pair, and let X = Spa(A,X+). The structure
presheaf OX on X is the presheaf with values in the category of complete topological rings and
continuous ring morphisms defined by the following formulas :

- if U = R
(
T
s

)
is a rational domain of X , then OX(U) = A〈T

s
〉;

- if U is an arbitrary open subset of X , then

OX(U) = lim←−
U ′⊂U

OX(U ′),

where U ′ ranges over rational domains of X contained in U and the transition maps
are given by proposition III.6.1.1(iii), and where we put the projective limit topology on
OX(U).

Note that the definition of OX(U) for U a rational domain makes sense because U determines
the topological A-algebra A〈T

s
〉 by corollary III.6.1.2. Also, the presheaf does take its value in

the category of complete topological rings, because a projective limit of complete topological
rings is complete by [6] Chapitre II §3 No9 corollaires 1 et 2 de la proposition 18.

Remark III.6.2.2. In particular, we have OX(X) = Â.

Definition III.6.2.3. We use the notation of definition III.6.2.1. We define a subpresheaf O+
X of

OX by the formula
O+
X(U) = {f ∈ OX(U) | ∀x ∈ U, |f |x ≤ 1},

for every open subset U of X .
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III The adic spectrum

This is also a presheaf of complete topological rings.

Lemma III.6.2.4. If U = R
(
T
s

)
is a rational domain, then

(OX(U),O+
X(U)) = (A〈T

s
〉, A〈T

s
〉+).

Proof. The formula for OX(U) is just its definition. For O+
X(U), we use the fact that

U = Spa(A〈T
s
〉, A〈T

s
〉+) (corollary III.4.3.2) and proposition III.1.4(ii).

Let ϕ : (A,A+) → (B,B+) be a morphism of Huber pairs, and let
f = Spa(ϕ) : Y := Spa(B,B+) → X := Spa(A,A+). If U ⊂ X and V ⊂ Y are ratio-
nal domains such that f(V ) ⊂ U , then proposition III.6.1.1 (and III.4.3.2) gives a continuous
ring morphism OX(U) → OY (V ). So, if U ⊂ X is an open subset, we get a morphism of rings
f [U : OX(U) → OY (f−1(U)) = f∗OX(U), and this is clearly a morphism of presheaves. It also
follows immediately from the definitions that f [ sends O+

X to f∗O+
Y .

Lemma III.6.2.5. Let T ⊂ A is a finite subset generating an open ideal, s ∈ A, and let
ϕ : (A,A+) → (A〈T

s
〉, A〈T

s
〉+) be the obvious morphism. We get as before a continuous spec-

tral map f : U := Spa(A〈T
s
〉, A〈T

s
〉+) → X := Spa(A,A+) and a morphism of presheaves

f [ : OX → f∗OU .

Then, for every open subset V ofX such that V ⊂ f(U), the map f [V : OX(V )→ OU(f−1(V ))
is an isomorphism.

Proof. We know that f is a homeomorphism from U to R
(
T
s

)
by corollary III.4.3.2, and that an

open subset V ⊂ f(U) of X is a rational domain if and only if f−1(V ) is a rational domain of
U . Moreover, if V is a rational domain, it is easy to see that f [V : OX(V ) → OU(f−1(X)) is an
isomorphism (using the explicit formulas for these rings). The lemma follows immediately from
this.

III.6.3 Stalks

Let (A,A+) be a Huber pair, and let X = Spa(A,A+). If x ∈ X , we consider the stalk

OX,x = lim−→
U3x open

OX(U) = lim−→
U3x rational

OX(U)

(the equality follows from the fact that rational domains are a base of the topology of X) as
an abstract ring without a topology. For every rational domain U 3 x of X , the valuation |.|x
extends to a unique continuous valuation on OX(U) (by corollary III.4.3.2). So we get a valuation
|.|x : OX,x → Γx ∪ {0}.
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III.6 The structure presheaf

Proposition III.6.3.1. (i) The ring OX,x is local, with maximal ideal
mx := {f ∈ OX,x | |f |x = 0}.

We denote by k(x) the residue field of OX,x, and we still write |.|x for the valuation induced on
k(x) by |.|x. Let k(x)+ be the valuation subring of k(x).

(ii) The stalk O+
X,x of O+

X at x is given by the formula

O+
X,x = {f ∈ OX,x | |f |x ≤ 1}.

In other words, O+
X,x is the inverse image of k(x)+ in OX,x.

(iii) The ring O+
X,x is also local, with maximal ideal m+

x := {f ∈ OX,x | |f |x < 1}. In
particular, we have a canonical isomorphism between the residue fields of O+

X,x and k(x)+.

(iv) Let u : A → OX,x be the morphism coming from the restriction morphisms
A→ Â = OX(X)→ OX(U), for U 3 x an open subset ofX . Then we have |.|x◦u = |.|x,
so u gives a morphism (K(x), K(x)+) → (k(x), k(x)+), which induces an isomorphism
on the completions. In other words, the completion of (k(x), k(x)+) is canonically iso-
morphic to (κ(x), κ(x)+).

(v) If ϕ : (A,A+) → (B,B+) is a morphism of Huber pair and y is a point
of Y := Spa(B,B+) such that Spa(ϕ)(y) = x, then the morphism of rings
Spa(ϕ)[x : OX,x → OY,y induced by Spa(ϕ)[ is such that |.|x ◦ Spa(ϕ)[x = |.|y. In par-
ticular, Spa(ϕ)[x is a morphism of local rings, it sends O+

X,x to O+
Y,y and also induces a

morphism of local rings O+
X,x → O+

Y,y.

Proof. (i) It is clear that mx is an ideal of OX,x, so it suffices to show that every element of
OX,x − mx is a unit. Let U 3 x be an open subset of X and let f ∈ OX(U) such that
|f |x 6= 0. We want to show that the image of f in OX,x is invertible. After shrinking U , we
may assume that U is a rational domain of X . Then we have U = Spa(OX(U),OX(U)+)
and x defines a continuous valuation on OX(U). As |f |x 6= 0, there exists by lemma III.3.3
a finite subset T of OX(U) such that the ideal T · OX(U) is open and that |t|x < |f |x for
every t ∈ T . Let V be the rational domain R

(
T
f

)
of Spa(OX(U),OX(U)+). Then x ∈ V ,

V is open in X , and f is invertible in OX(V ) = OU(V ).

(ii) We have an injective morphism O+
X,x → OX,x induced by the injections

OX(U)+ → OX(U), and it is obvious that its image is contained in {f ∈ O+
X,x | |f |x ≤ 1}

(because, for every open subset U of X , OX(U)+ = {f ∈ OX(U) | ∀y ∈ U, |f |y ≤ 1}).
Conversely, let U 3 X be an open subset of X , and let f ∈ OX(U) such that |f |x ≤ 1.
We want to show that the image of f in OX,x is in O+

X,x. By lemma III.6.3.2, the set
V := {y ∈ U | |f |y ≤ 1} is an open subset of X , and we obviously have x ∈ X and
f|V ∈ OX(V )+; this implies the desired result.

(iii) As m+
x is clearly an ideal of O+

X,x, it suffices to show that every element of O+
X,x − m+

x is
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III The adic spectrum

invertible. Let f ∈ O+
X,x, and suppose that f 6∈ mx, i.e. that |f |x = 1. Then f ∈ O×X,x by

(i), and |f−1|x = 1, so f−1 ∈ O+
X,x.

(iv) The fact that |.|x ◦ u = |.|x follows immediately from the definition of the valuation |.|x on
OX,x. By (i), we have

k(x) = lim−→
U3x

OX(U)/{f ∈ OX(U) | |f |x = 0}

and
k(x)+ = lim−→

U3x
OX(U)+/{f ∈ OX(U)+ | |f |x = 0},

where U runs through all rational domains of X containing x. By proposition III.5.1.3, if
U ′ ⊂ U are two rational domains of X containing x, then the restriction maps

OX(U)/{f ∈ OX(U) | |f |x = 0} → OX(U ′)/{f ∈ OX(U ′) | |f |x = 0}

and

OX(U)+/{f ∈ OX(U)+ | |f |x = 0} → OX(U ′)+/{f ∈ OX(U ′)+ | |f |x = 0}

have dense image. So the image of K(x) (resp. K(x)+) in k(x) (resp. k(x)+) is dense,
which implies the result.

(v) The fact that |.|x ◦ Spa(ϕ)[x = |.|y follows immediately from the definitions, and the other
statements follow from this.

Lemma III.6.3.2. (Remark 8.12 of [26].) Let U be an open subset of X := Spa(A,A+) and
f, g ∈ OX(U). Then V := {x ∈ U | |f |x ≤ |g|x 6= 0} is an open subset of X .

Proof. We know that U is a union of rational domains of X , and it suffices to show that the
intersection of V with each of these rational domains is open. So we may assume that U is a
rational domain, U = R

(
T
s

)
= Spa(A〈T

s
〉, A〈T

s
〉+). It also suffices to show that V is open in U ,

so we may assume that U = X , i.e. f, g ∈ A. Then V is open by definition of the topology on
Spa(A,A+) as the topology induced by that of Spv(A). 3

If A is a Tate ring, then we can show that the categories of finite étale covers of O+
X,x and

k(x)+ are equivalent. First we need a definition.

Definition III.6.3.3. (See [25, Definition 09XE].) Let R be a ring and I be an ideal of R. We
say that the pair (R, I) is henselian (or I-adically henselian) if :

3Note that V is not a rational domain in general, because we did not assume that f generates an open ideal of A.
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(a) I is contained in the Jacobson radical of A;

(b) for any monic polynomial f ∈ A[X] and any factorization f = g0h0 in A/I[X], where f
is the image of f in A/I[X], if g0 and h0 are monic and generate the unit ideal of A/I[X],
then there exists a factorization f = gh in A[X] with g, h monic and such that g0 = g
mod I and h0 = g mod I .

If R is local and I is its maximal ideal, we also say that R is henselian.

Theorem III.6.3.4. ([25, Lemma 0ALJ].) Let R be a ring and I be an ideal of R. If R is I-
adically complete, then the pair (R, I) is henselian.

Theorem III.6.3.5. ([25, Lemma 09XI].) Let R be a ring and I be an ideal of R. The following
are equivalent :

(i) The pair (R, I) is henselian.

(ii) For every étale map of rings R → R′ and every map of R-algebras σ : R′ → R/I , there
exists an map of R-algebras R′ → R lifting σ.

R′

		

σ

!!
R

OO

// R/I

(iii) For any finite R-algebra S, the map S → S/IS induces a bijection on idempotent ele-
ments.

(iv) For any integral R-algebra S, the map S → S/IS induces a bijection on idempotent
elements.

(v) I is contained in the Jacobson radical of R and every monic polynomial f ∈ R[X] of the
form

f(X) = Xn(X − 1) + anX
n + . . .+ a1X + a0,

with a0, . . . , an ∈ I and n ≥ 1, has a root in 1 + I .

Moreover, if these conditions hold, then the root in point (v) is unique.

Theorem III.6.3.6. ([25, Lemma 09ZL].) Let (R, I) be a henselian pair. Then the functor
S 7−→ S/IS induces an equivalence between the category of finite étale R-algebras and the
category of finite étale R/I-algebras.

Proposition III.6.3.7. (See proposition 7.5.5 of [1].) We use the notation of proposition III.6.3.1,
and we suppose that A is a Tate ring. Let $ ∈ A be a topologically nilpotent element.

(i) The ring O+
X,x is $-adically henselian, and the map O+

X,x → k(x)+ induces an isomor-
phism on $-adic completions.
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III The adic spectrum

(ii) The pairs (OX,x,mx) and (O+
X,x,mx) are henselian.

Proof. (i) An inductive limit of henselian pairs is henselian by [25, Lemma 0A04]. So it
suffices to show that OX(U)+ is $-adically henselian for every rational domain U of X .
Let U be a rational domain of X . Then (B,B+) := (OX(U),OX(U)+) is a complete
Huber pair by lemma III.6.2.4, and it is a Tate pair because A is a Tate ring. Let B0 ⊂ B+

be a ring of definition of B. By proposition II.2.5.2, $B0 is an ideal of definition of B0, so
B0 is $-adically complete, hence $-adically henselian by theorem III.6.3.4. As B+ is the
union of all the rings of definition of B contained in it (by corollary II.1.1.8(iii)), anotehr
application of [25, Lemma 0A04] shows that B+ is $-adically henselian.

We prove the second statement. Note that mx ⊂ O+
X,x and that O+

X,x/mx = k(x)+. Also,
we have $mx = mx because $ is a unit in A, so mx = $nmx ⊂ $nO+

X,x for every n ∈ N.
This implies that the map O+

X,x → k(x)+ induces an isomorphism on $-adic completions.

(ii) As mx = $mx ⊂ $O+
X,x, the fact that (O+

X,x,mx) is henselian follows from the first
statement of (i) and from [25, Lemma 0DYD].

To prove that (OX,x,mx) is henselian, it suffices to note that mx is contained in the Jacobson
readical of OX,x, and that it satisfies the property of theorem III.6.3.5(v) (because it does
in O+

X,x).

III.6.4 The category V pre

Definition III.6.4.1. We denote by V pre the category of triples (X,OX , (|.|x)x∈X), where :

- X is a topological space;

- OX is a presheaf of complete topological rings on X such that, for every x ∈ X , the stalk
OX,x (seen as an abstract ring) is a local ring;

- for every x ∈ X , |.|x is an equivalence class of valuations on OX,x whose support is equal
to the maximal ideal of OX,x.

A morphism (X,OX , (|.|x)x∈X) → (Y,OY , (|.|y)y∈Y ) is a pair (f, f [), where f : X → Y is
a continuous map and f [ : OX → f∗OY is a morphism of presheaves of topological rings such
that, for every x ∈ X , the morphism f [x : OX,x → OY,f(x) induced by f [ is compatible with the
valuations (i.e. |.|f(x) ◦ f [x = |.|x). Note that this implies that f [x is a local morphism.

Example III.6.4.2. If (A,A+) is a Huber pair, then Spa(A,A+) is an object of V pre,
and any morphism of Huber pairs ϕ : (A,A+) → (B,B+) induces a morphism
Spa(ϕ) : Spa(B,B+)→ Spa(A,A+) in V pre.

Corollary III.6.4.3. Let (A,A+) be a Huber pair, and let ϕ : (A,A+) → (Â, Â+) be the
canonical morphism. Then Spa(ϕ) is an isomorphism in V pre.
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Proof. By corollary III.4.2.2, the map Spa(ϕ) : Spa(Â, Â+) → Spa(A,A+) is a homeomor-
phism preserving rational domains. Also, if T ⊂ A is a finite subset such that T · A is open and
if s ∈ A, we have (A〈T

s
〉, A〈T

s
〉+) = (Â〈T

s
〉, Â〈T

s
〉+). This implies the result.

Proposition III.6.4.4. Let (A,A+) and (B,B+) be Huber pairs, and suppose thatB is complete.
Then ϕ 7−→ Spa(ϕ) induces a bijection

Hom((A,A+), (B,B+))→ HomV pre(Spa(B,B+), Spa(A,A+)),

where the first Hom is taken in the category of Huber pairs. The inverse of this bijections sends
a morphism (f, f [) : Y := Spa(B,B+)→ X := Spa(A,A+)) to the morphism

(A,A+)→ (Â, Â+) = (OX(X),OX(X)+)
f[X→ (OY (Y ),OY (Y )+) = (B,B+).

Proof. If ϕ : (A,A+)→ (B,B+) is a morphism of Huber pairs, then the composition of Spa(ϕ)[

and of the canonical map A→ Â is ϕ by definition of Spa(ϕ)[.

Conversely, let (f, f [) : Y → X be a morphism in V pre, and letϕ : A→ B be the composition
of f [X and of A → Â. We want to show that (f, f [) = (Spa(ϕ), Spa(ϕ)[). Let U = R

(
T
s

)
be a

rational domain in X , and let V = f−1(U). We have

V = {y ∈ Y | ∀t ∈ T, |t|f(y) ≤ |s|f(y) 6= 0} = {y ∈ Y | ∀t ∈ T, |ϕ(t)|y ≤ |ϕ(s)|y 6= 0},

where the second equality comes from the fact that |a|f(y) = |f [y(a)|y = |ϕ(a)|y for every a ∈ A.
If W is a quasi-compact open subset of V , then, by lemma III.3.3, we can find a finite subset TW
of B generating an open ideal of B and such that |t|y ≤ |ϕ(s)|y for every y ∈ W and t ∈ TW .

Then we have W ⊂ W ′ := R
(
ϕ(T ),TW
ϕ(s)

)
⊂ V , so the map f [U : OX(U) → OY (W ) factors

through OY (W ′) = B〈ϕ(T ),T ′W
ϕ(s)

〉. We know that f [U is equal to ϕ on the image of A, that ϕ is

continuous and that the rings A〈T
s
〉 and B〈ϕ(T ),T ′W

ϕ(s)
〉 are completions of localizations of A and B,

so this implies that f [U : OX(U) → OX(W ) is equal to Spa(ϕ)[U . Going to the limit on W ⊂ V
open quasi-compact, we see that f [U : OX(U) → OY (V ) is also equal to Spa(ϕ)[. This implies
the analogous statement for an arbitrary open subset U of X by the definition of the presheaf
OX .

III.6.5 Adic spaces

Definition III.6.5.1. An open immersion in V pre is a morphism
(f, f [) : (X,OX , (|.|x)x∈X) → (Y,OY , (|.|y)y∈Y ) such that f : X → Y is
a homeomorphism onto an open subset U of Y and that the induced morphism
(X,OX , (|.|x)x∈X)→ (U,OY |U , (|.|y)y∈U) is an isomorphism in V pre.
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Example III.6.5.2. Let (A,A+) be a Huber pair. If T ⊂ A generates an open ideal and s ∈ A,
and if ϕ : (A,A+)→ (A〈T

s
〉, A〈T

s
〉+) is the obvious map, then Spa(ϕ) is an open immersion in

V pre by lemma III.6.2.5.

Definition III.6.5.3. We denote by V the full subcategory of V pre whose objects are the triples
(X,OX , (|.|x)x∈X) such that OX is a sheaf.

An affinoid adic space is an object of V that is isomorphic to Spa(A,A+), for (A,A+) a Huber
pair.

An adic space is an object (X,OX , (|.|x)x∈X) of V such that there exists an open covering
(Ui)i∈I such that, for every i ∈ I , the triple (Ui,OX|Ui

, (|.|x)x∈Ui
) such that is an affinoid adic

space.

A morphism of adic spaces is a morphism of V .

The next natural question is : which Huber pairs give rise to affinoid adic spaces ? (It is not
true that the structural presheaf of Spa(A,A+) is always a sheaf.) We will give some criteria in
the next chapter.
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sheaf ?

The goal of this chapter is to give sufficient conditions on the Huber pair (A,A+) for
X = Spa(A,A+) to be an adic space, i.e. for the structure presheaf OX to be a sheaf. As
we will see, these conditions also imply that the cohomology of OX on any rational domain of
X is concentrated in degree 0, as we would expect from the cohomology of the structural sheaf
of an affinoid adic space. 1

IV.1 The main theorem

IV.1.1 Statement

Before we can state the main theorem of this chapter, we need some definitions.

Definition IV.1.1.1. LetA be a Tate ring. We say thatA is strongly Noetherian if Â〈X1, . . . , Xn〉
2 is Noetherian for every n ≥ 0.

Definition IV.1.1.2. A non-Archimedean topological ring A is called uniform if A0 is bounded
in A.

Note that, if A is f-adic, this is equivalent to the fact that A0 is a ring of definition of A.

Remark IV.1.1.3. Any Hausdorff uniform Tate ring is reduced. Indeed, let A be a Tate ring, and
let $ ∈ A be a topologically nilpotent unit. Suppose that A is uniform, so that A0 is a ring
of definition of A. Let a ∈ A be a nilpotent element. For every n ∈ N, the element $−na is
nilpotent, hence power-bounded, so a ∈ $nA0. As the topology of A0 is the $A0-adic topology
by proposition II.2.5.2, and as A0 is Hausdorff by hypothesis, we have

⋂
n≥0$

nA0 = {0}. So
a = 0.

Definition IV.1.1.4. Let (A,A+) be a Huber pair. Then we say that (A,A+) is stably uniform if,
for every rational subset U of Spa(A,A+), the f-adic ring OSpa(A,A+)(U) is uniform.

1Note however that, unlike the case of schemes, there is no cohomological characterization of affinoid adic spaces.
2See notation II.3.3.9.

121
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Theorem IV.1.1.5. (Theorem 2.2 of [15], theorem 8.27 of [26], theorem 7 of [8].) Let (A,A+)
be a Huber pair, and let X = Spa(A,A+). Suppose that (A,A+) satisfies one of the following
conditions :

(a) the completion Â is discrete;

(b) the completion Â has a Noetherian ring of definition;

(c) A is a strongly Noetherian Tate ring;

(d) the Huber pair (A,A+) is Tate and stably uniform.

Then OX is a sheaf, and, for every rational domain U of X and every i ≥ 1, we have
Hi(U,OX) = 0.

See section IV.3 for the proof in cases (c) and (d).

Remark IV.1.1.6. Case (a) of the theorem applies to discrete rings A, and we get that Spv(A)
and Riemann-Zariski spaces are adic spaces.

Case (b) applies for example to a complete Noetherian adic ring A, and gives (with some
more work) a fully faithful embedding of the category of locally Noetherian formal schemes
over Spf(A) into the category of adic spaces over Spa(A,A). Note that adic rings are not Tate,
so we cannot apply (c) or (d).

Case (c) applies for example to affinoid algebras over a complete non-Archimedean field k,
and gives a fully faithful embedding of the category of rigid analytic varieties over k into the
category of adic spaces over Spa(k, k0). Note that these affinoid algebras (even k itself) do not
have a Noetherian ring of definition unless the valuation defining the topology of k is discrete,
so we cannot apply case (b) in general.

Finally, case (d) typically applies to perfectoid algebras. Note that, if k is a complete non-
Archimedean field and A is an affinoid k-algebra, then A is uniform if and only if it is reduced
(see section II.1.4 for a reference); in particular, case (d) is not sufficient if we are interested in
non-reduced rigid analytic varieties.

IV.1.2 Examples of strongly Noetherian Tate rings

Proposition IV.1.2.1. (Proposition 6.29 of [26].) Let ϕ : A → B be a morphisms of ring.
Suppose that A and B are f-adic rings, and that B is complete. Then the following conditions
are equivalent :

(i) There exists a positive integer n, finite subsets T1, . . . , Tn such that Ti · A is open in A for
every i and a surjective continuous open A-algebra morphism

π : A〈X1, . . . , Xn〉T1,...,Tn → B.
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(ii) The morphism ϕ is adic, there exists a finite subset M of B such that the A-subalgebra
ϕ(A)[M ] of B is dense in B, and there exist rings of definition A0 of A and B0 of B and a
finite subset N of B0 such that ϕ(A0) ⊂ B0 and that ϕ(A0)[N ] is dense in B0.

(iii) There exists rings of definition A0 of A and B0 of B such that :

(a) ϕ(A0) ⊂ B0;

(b) B is finitely generated (as an algebra) over ϕ(A) ·B0;

(c) there exists a surjective continuous open A0-algebra morphism
Â0〈X1, . . . , Xn〉 → B0, for some n ∈ N.

(iv) For every open subring A0 of A, there exists an open subring B0 of B such that conditions
(a), (b) and (c) of (iii) hold.

Definition IV.1.2.2. If a morphism ϕ : A→ B satisfies the equivalent conditions of proposition
IV.1.2.1, we say that the A-algebra B is topologically of finite type.

Proposition IV.1.2.3. (Propositions 6.33, 6.35 and 6.36 of [26].) LetA be a strongly Noetherian
f-adic ring, and letB be a A-algebra that is topologically of finite type (soB is a complete f-adic
ring). Then :

(i) B is strongly Noetherian (in particular, it is Noetherian).

(ii) If A has a Noetherian ring of definition, so does B.

Theorem IV.1.2.4. (Theorem 1 of section 5.2.6 of [3].) Any complete non-Archimedean field is
strongly Noetherian.

IV.1.3 Examples of stably uniform Tate rings

We fix a prime number `.

Definition IV.1.3.1. We say that a ringA is of characteristic ` if `·1A = 0. IfA is of characteristic
`, then the map FrobA : A → A, a 7−→ a` is a ring endormophism called the Frobenius
endomorphism of A; we say that A is perfect (resp. semiperfect) if FrobA is bijective (resp.
injective).

Notation IV.1.3.2. If A is perfect, we often write a 7−→ a1/` for the inverse of FrobA.

Remark IV.1.3.3. Unfortunately, there is another definition of perfect and semiperfect rings (for
example, a not necessarily commutative ring R is called left perfect if every left module has a
projective cover); it is totally unrelated to the previous definition. We will only use definition
IV.1.3.1 in these notes.

Remark IV.1.3.4. Let A be a ring of characteristic `. If A is reduced, then Ker(FrobA) = {0},
so A is perfect if and only if it is semiperfect.
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Theorem IV.1.3.5. (Lemma 7.1.6 of [1].) Let A be a complete Tate ring of characteristic `.
Suppose that A is perfect. Then A has a perfect ring of definition and is stably uniform.

We will see later that these rings are exactly the perfectoid Tate rings of characteristic `.

Proof. Suppose that we have shown that A has a perfect ring of definition. By lemmas IV.1.3.8
and IV.1.3.9, for every finite subset T of A generating an open ideal and every s ∈ A, the ring
A〈T

s
〉 is also a complete and perfect Tate ring. So it suffices to prove that A has a perfect ring of

definition and is uniform.

Let A0 be a ring of definition of A and $ ∈ A be a topologically nilpotent unit. For every
n ≥ 1, let An = A

1/`n

0 , and let A∞ =
⋃
n≥0An. Then A∞ is a perfect subring of A and

A0 ⊂ A∞ ⊂ A0.

We first show that A∞ is bounded, hence a ring of definition of A. Note that FrobA : A → A
is continuous and surjective, and it is A-linear if we put the obvious A-module structure on its
source and the A-module structure given by a · b = a`b (a, b ∈ A) on its target. So, by the
Banach open mapping theorem (see corollary II.4.1.6), FrobA is open. In particular, the subring
FrobA(A0) of A is open, so there exists r ∈ N such that $rA0 ⊂ FrobA(A0). Applying Frob−1

A ,
we see that we have s ∈ N such that $sA1 ⊂ A0 (any s ≥ r`−1 will do). As in the proof
of lemma IV.1.3.8, this implies that $s+s/`+...+s/`n−1

An ⊂ A0 for every n ≥ 1, hence that
$2sA∞ ⊂ A0. So A∞ is bounded.

Now we show that $A0 ⊂ A∞, which will imply that A0 is bounded. Let a ∈ A0. As a is
power-bounded, there exists r ∈ N such that {$ran, n ∈ N} ⊂ A∞. As A∞ is closed in A
under taking `th roots, this implies that $r/`na ∈ A∞ for every n ≥ 0. In particular, taking n
such that r ≤ `n, we get $a ∈ A∞.

Lemma IV.1.3.6. Let A be a ring of characteristic ` and S ⊂ A be a multiplicative system. If A
is perfect (resp. semiperfect), so is S−1A.

Proof. Let B = S−1A. Suppose that A is semiperfect. Let b ∈ B, and write b = as−1, with
a ∈ A and s ∈ S. As A is semiperfect, we can find c, t ∈ A such that c` = a and t` = s. Then
ct`−1s−1 ∈ B, and (ct`−1s−1)` = b. So B is semiperfect.

We now assume that A is perfect, and we want to show that Ker(FrobB) = {0}. So let a ∈ A
and s ∈ S such that (as−1)` = 0 in B. This means that there exists t ∈ S such that ta` = 0 in A.
Then ta ∈ Ker(FrobA), so ta = 0 in A, so as−1 = 0 in B.

Lemma IV.1.3.7. Let A be a topological ring, N be a positive integer and T be a finite subset of
A. Then T is power-bounded if and only the set {tN , t ∈ T} is power-bounded.
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Proof. Write T ′ = {tN , t ∈ T}.

Remember that T is power-bounded is and only if the set
⋃
n≥1 T (n) is bounded, where, for

every n ≥ 1, T (n) = {t1 . . . tn, t1, . . . , tn ∈ T}. As
⋃
n≥1 T (n) ⊃

⋃
n≥1(T ′)(n), T ′ is power-

bounded if T is. On the other hand, we have⋃
n≥1

T (n) =
⋃

(mt)t∈T∈{0,...,N−1}T

(∏
t∈T

tnt/N

)(⋃
n≥1

(T ′)(n)

)
,

so
⋃
n≥1 T (n) is a finite union of translates of

⋃
n≥1(T ′)(n). This shows that T is power-bounded

if T ′ is.

Lemma IV.1.3.8. Let A be a f-adic ring, T be a finite subset of A that generates an open ideal
and s ∈ A. Suppose that A is perfect. Then we have a canonical isomorphism of A-algebras
A
(
T
s

)
= A

(
T 1/`

s1/`

)
.

If moreover A is a Tate ring and has a perfect ring of definition, then A
(
T
s

)
also has a perfect

ring of definition.

Proof. Write B = A
(
T
s

)
. As an abstract ring, the f-adic ring B is isomorphic to A[s−1]. So, by

lemma IV.1.3.6, we know that B is perfect.

The first statement follows immediately from the universal property of the localization (see
proposition II.3.4.1) and from lemma IV.1.3.7 : the topological rings A

(
T
s

)
and A

(
T 1/`

s1/`

)
satisfy

the same universal property.

Let A0 be a ring of definition of A, and let B0 be the A0-subalgebra of B generated by the
elements ts−1, t ∈ T . Then B0 is a ring of definition of B by remark II.3.4.4.

Suppose that A is a Tate ring, let $ ∈ A be a topologically nilpotent unit, and suppose that
A0 is perfect. Then B1/`

0 is the A0-subalgebra of B generated by the t1/`s−1/`, t ∈ T , so it is
also a ring of definition of B by the first statement of the lemma and the previous paragraph. In
particular, B1/`

0 is bounded, so there exists a positive integer r such that $rB
1/`
0 ⊂ B0. An easy

induction on n then shows that $r+r/`+...+r/`n−1
B

1/`n

0 ⊂ B0 for every n ≥ 1. In particular, we
have $2B

1/`n

0 ⊂ B0 for every n ≥ 1. Let B′0 =
⋃
n≥1B

1/`n

0 . This is a perfect subring of B, it is
open because it contains B0, and it is bounded because $2rB′0 ⊂ B0. So B′0 is a perfect ring of
definition of B, and we are done.

Lemma IV.1.3.9. LetA be a Tate ring with a perfect ring of definition. ThenA and Â are perfect,
and Â also has a perfect ring of definition.

Proof. Let A0 be a perfect ring of definition of A, and let $ ∈ A0 a topologically nilpotent unit.
Then A = A0[$−1] by proposition II.2.5.2, so A is perfect by lemma IV.1.3.6.
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Let Â0 = lim←−n≥1
A0/$

nA0. As Â = Â0[$−1] by (v) of corollary II.3.1.9, it suffices to prove

that Â0 is perfect. As $1/` is also a topologically nilpotent element of A0, the canonical map
lim←−n≥1

A0/$
n`A0 → Â0 (sending (xn) ∈ lim←−n≥1

A0/$
n/`A0 to (x`n)n≥1) is an isomorphism,

and this implies immediately that Â0 is perfect.

IV.2 Some preliminary results

In this section, we fix a Huber pair (A,A+) with A a Tate ring, and we set X = Spa(A,A+).

IV.2.1 Strictness and completion

Definition IV.2.1.1. ([6] chapitre III §2 No8 définition 1.) Let ϕ : M → M ′ be a continuous
morphism of topological groups. We say that ϕ is strict if the following two topologies on ϕ(M)
coincide :

- the quotient topology given by the isomorphism ϕ(M) 'M/Kerϕ;

- the subspace topology given by the inclusion ϕ(M) ⊂M ′.

Proposition IV.2.1.2. ([5] chapitre III §2 No12 lemme 2.) LetM ,M ′,M ′′ be abelian topological
groups that have countable fundamental systems of neighborhoods of 0, and let ϕ : M → M ′

and ψ : M ′ →M ′′ be continuous group morphisms. Suppose that :

- the sequenceM
ϕ→M ′ ψ→M ′′ is exact as a sequence of abstract group, i.e. Kerψ = Imϕ;

- the morphisms ϕ and ψ are strict.

Then the sequence

M̂
ϕ̂→ M̂ ′ ψ̂→ M̂ ′′

is exact and ϕ̂ and ψ̂ are strict.

IV.2.2 The Čech complex for a special cover

Let t ∈ A. We consider the rational domains U = R
(

1,t
1

)
= {x ∈ X | |t|x ≤ 1} and

V = R
(

1
t

)
= {x ∈ X | |t|x ≥ 1}. Note that U ∩V = {x ∈ X | |t|x = 1} is the rational domain

R
(

1,t,t2

t

)
.

Let B = A
(

1,t
1

)
, C = A

(
1
t

)
and D = A

(
1,t,t2

t

)
. We have canonical adic maps ϕB : A→ B,

ϕC : A→ C, ψB : B → D and ψC : C → D such that ψB ◦ϕB = ψC ◦ϕC is the canonical map
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from A to D. Note that ϕB and ψC are continuous and bijective maps of topological rings, but
they are not homeomorphisms in general. For example, B is just A as an abstract ring, but with
a topology that makes t power-bounded.

We denote the map ϕB ⊕ ϕC : A → B ⊕ C by ε and the map ψB − ψC : B ⊕ C → D

by δ. Then A
ε→ B ⊕ C

δ→ D is a complex, whose completion is the Čech complex
OX(X) → OX(U) ⊕ OX(V ) → OX(U ∩ V ) of the open cover (U, V ) of X . We want to
know when this Čech complex is exact. This is the goal of the following proposition.

Proposition IV.2.2.1. (See Lemma 2 of [8] and the discussion preceding it.)

(i) The complex 0 → A
ε→ B ⊕ C δ→ D → 0 is exact as a complex of abstract commutative

groups.

(ii) The map δ : B ⊕ C → D is strict.

(iii) The map OX(U)⊕OX(V )→ O(U∩V ) sending (f, g) to f|U∩V−g|U∩V (i.e. the completion
of δ) is surjective.

(iv) The following conditions are equivalent :

(a) the map ε : A→ B ⊕ C is strict;

(b) the complex 0→ OX(X)→ OX(U)⊕ OX(V )→ OX(U ∩ V ) is exact;

(c) the complex 0→ OX(X)→ OX(U)⊕ OX(V )→ OX(U ∩ V )→ 0 is exact;

(d) there exists rings of definition A0 ⊂ A, B0 ⊂ B and C0 ⊂ C, a topologically
nilpotent unit $ ∈ A and n ∈ N such that $n(ϕ−1

B (B0) ∩ ϕ−1
C (C0)) ⊂ A0.

Remember that a morphism of topological groups u : G → H is called strict if the quotient
topology on u(G) ' G/Keru coincides with the subspace topology induced by the topology of
H .

Proof. Let A0 be a ring of definition of A, and let $ ∈ A be a topologically nilpotent unit such
that $ ∈ A0. Then, by remark II.3.4.2, A0[t] is a ring of definition of B, A0[t−1] is a ring of
definition of C and A0[t, t−1] is a ring of definition of D. Also, as the f-adic rings A, B, C and D
are Tate, the topology on these rings of definition is the $-adic topology by proposition II.2.5.2.

(i) The fact that ε is injective and δ surjective follows from the fact that ϕB and ψC are iso-
morphisms of abstract rings. Let (b, c) ∈ B ⊕ C such that δ(b, c) = 0, i.e. b − c = 0 in
A[t−1]. We have b ∈ A, so (b, c) = ε(b).

(ii) The map δ is surjective by (i), so we just need to check that δ is open. This follows from
the obvious fact that δ($nA0[t]⊕$nA0[t−1]) = $nA0[t, t−1] for every n ∈ N.

(iii) This follows from (ii) and from [5] chapitre III §2 No12 lemme 2.

(iv) The map ε is strict if and only, for all rings of definition B0 ⊂ B and C0 ⊂ C0, the groups
$n(ϕ−1

B (B0) ∩ ϕ−1
C (C0)) = ε−1($nB0 ⊕ $nC0), n ≥ 0, form a fundamental system of
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neighborhoods of 0 in A. This shows that (a) and (d) are equivalent. Also, (c) obviously
implies (b), and (b) implies (c) by (iii).

Suppose that (a) holds. Then all the maps in the exact sequence of (i) are strict, so its
completion is still exact by [5] chapitre III §2 No12 lemme 2. This shows that (a) implies
(c).

It remains to show that (c) implies (d). Fix rings of definition B0 ⊂ B and C0 ⊂ C such
that A0 ⊂ ϕ−1

B (B0)∩ϕ−1
C (C0) := A′0, and let A′ be the ring A with the topology for which

($nA′0)n≥0 is a fundamental system of neighborhoods of 0. (This does define a structure of
topological ring on A′ by lemma II.3.3.8.) The identity A→ A′ is continuous (because A′0
is an open subring of A), and (d) is equivalent to the fact that it is an open map. Note that
A′ is isomorphic as a topological ring to ε(A) with the subspace topology, so the obvious
sequence 0→ A′ → B ⊕ C → D → 0 is exact and all the maps in it are strict. Using [5]
chapitre III §2 No12 lemme 2 again, we see that the sequence 0→ Â′ → B̂⊕Ĉ → D̂ → 0
is exact. As we are assuming that 0 → Â′ → B̂ ⊕ Ĉ → D̂ → 0 is exact, this implies that
the canonical map Â → Â′ is bijective. By the open mapping theorem (theorem II.4.1.1),
the map Â→ Â′ is open. Using lemma II.3.1.11, we see that this implies the openness of
A→ A′, hence condition (d).

IV.2.3 Refining coverings

In this section, we fix a Huber pair (A,A+), with A a f-adic ring. We want show the existence of
enough manageable covers of X = Spa(A,A+).

Definition IV.2.3.1. (i) Let t1, . . . , tn ∈ A generating the ideal (1) of A. The stan-
dard rational covering of X generated by t1, . . . , tn is the covering (Ui)1≤i≤n, where
Ui = R

(
t1,...,tn
ti

)
. We say that this standard rational covering is generated by units if

t1, . . . , tn ∈ A×.

(ii) Let t1, . . . , tn ∈ A. For every I ⊂ {1, . . . , n}, let

VI = {x ∈ X | |ti|x ≤ 1 ∀i ∈ I and |ti|x ≥ 1 ∀i 6∈ I};

note that VI is the rational domain R
(
TI
sI

)
, where sI =

∏
j 6∈I ti and

TI = {1} ∪ {tisI , i ∈ I} ∪ {
∏

j 6∈I∪{i}

ti, i 6∈ I}.

The family (VI)I⊂{1,...,n} is an open covering of X , which we call the standard Laurent
covering generated by t1, . . . , tn. Again, we say that the covering is generated by units if
t1, . . . , tn ∈ A×.
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(iii) A simple Laurent covering is a standard Laurent covering generated one element.

(iv) A rational covering of X is a covering of X by rational domains.

Note that the covering of proposition IV.2.2.1 is a simple Laurent. Note also that we diverge
from the vocabulary of [8] when defining rational coverings and follow [19] instead.

Remark IV.2.3.2. Note that, if t1, . . . , tn ∈ A are such that (t1, . . . , tn) = A, the standard rational
covering generated by t1, . . . , tn is a covering of X . Indeed, we have

n⋃
i=1

R
(
t1,...,tn
ti

)
=

n⋃
i=1

{x ∈ X| max
1≤j≤n

|tj|x = |ti|x 6= 0} = {x ∈ X | max
1≤j≤n

|tj|x 6= 0},

which is also the set of x ∈ X such that at least one of the |ti|x is nonzero; but this is all of X ,
because 1 ∈

∑n
i=1Ati (and |1|x = 1 6= 0 for every x ∈ X). The same observation also shows

that, for every i ∈ {1, . . . , n},

R

(
t1, . . . , tn

ti

)
= {x ∈ X | ∀j ∈ {1, . . . , n}, |tj|x ≤ |ti|x}.

(If we have |tj|x ≤ |ti|x for every j and |ti|x = 0, then |t1|x = . . . = |tn|x = 0, and we have just
seen that this implies |1|x = 0, which is impossible.)

Proposition IV.2.3.3. (Lemma 8 of [8] and lemma 2.4.19 of [19].)

(i) For every open covering U of X , there exists a rational covering refining U . If moreover
A is complete, then, for every open covering U of X , there exists a standard rational
covering V of X refining U .

(ii) Suppose that A is a Tate ring. Then, for every standard rational covering U of X , there
exists a standard Laurent covering V of X such that for every V ∈ V , the covering
(V ∩ U)U∈U of V is a standard rational covering generated by units.

(iii) For every standard rational covering generated by units U of X , there exists a standard
Laurent covering V of X generated by units refining U .

Proof. (i) This is lemma 2.6 of [15]. First we construct a rational covering refining U . Let
x ∈ X , and let y = x|cΓx (so y is the minimal horizontal specialization of x). Note that y
is still in Spa(A,A+) : y is continuous by proposition II.2.3.1(i), and, for every a ∈ A+,
we have |a|y ≤ |a|x ≤ 1. Let U ∈ U such that y ∈ U . As y has no proper horizontal
specialization, we have y ∈ Spv(A,A) (see remark I.4.2.2(2)). So, by point (3) in the
proof of theorem I.4.2.4, there exists a finite subset Tx of A such that Tx · A = A and
sx ∈ A such that y ∈ R

(
Tx
sx

)
⊂ U ; after replacing Tx by Tx ∪ {sx}, we may assume that

sx ∈ Tx. As x is a generization of y, we also have x ∈ R
(
Tx
sx

)
. So X =

⋃
x∈X R

(
Tx
sx

)
.

As X is quasi-compact, we can find x1, . . . , xn ∈ X such that X =
⋃
x∈X R

(
Txi
sxi

)
. This

is a finite rational covering of X refining U .
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We now assume that A is complete and refine this rational covering forther to a standard
rational covering. We write Txi = Ti and sxi = si. Let

T = {t1 . . . tn, ti ∈ Ti ∀i ∈ {1, . . . , n}}

and

S = {t1 . . . tn, ti ∈ Ti ∀i ∈ {1, . . . , n} and ∃i ∈ {1, . . . , n} such that ti = si}.

As each Ti · A = A for every i, we have S · A = s1A + . . . snA. As X is the union of
the R

(
Ti
si

)
, for every x ∈ X , there exists i ∈ {1, . . . , n} such that |si|x 6= 0. By corollary

III.4.4.3, this implies that S · A = A.

We want to show that the standard rational covering generated by S refines the cover-
ing (R

(
Ti
si

)
)1≤i≤n, hence U . Let s ∈ S, and write s = t1 . . . tn, with ti ∈ Ti. Pick

j ∈ {1, . . . , n} such that tj = sj . We claim that R
(
S
s

)
⊂ R

(
Tj
sj

)
. Indeed, let x ∈ R

(
S
s

)
,

and let t ∈ Tj . Then |t1 . . . ti−1tti+1 . . . tn|x ≤ |s|x 6= 0, and this implies |t|x ≤ |sj|x 6= 0.

(ii) Let t1, . . . , tn ∈ A such that (t1, . . . , tn), and let (U1, . . . , Un) be the standard rational
covering generated by t1, . . . , tn. Let $ ∈ A be a topologically nilpotent unit. We choose
a1, . . . , an ∈ A such that a1t1 + . . . + antn = 1. As A+ is open, there exists N ∈ N such
that $Nai ∈ A+ for every i ∈ {1, . . . , n}. Then, if x ∈ X = Spa(A,A+) and we have
|$Nai|x ≤ 1 for every i, so |$N |x = |$Na1t1 + . . . + $Nantn|x ≤ max1≤i≤n |ti|x, and
finally |$N+1|x < max1≤i≤n |ti|x (because |$|x < 1). Let (VI)I⊂{1,...,n} be the standard
Laurent covering generated by$−(N+1)t1, . . . , $

−(N+1)tn. We will show that this covering
works.

Let I ⊂ {1, . . . , n}. We have

VI = {x ∈ X | |ti|x ≤ |$N+1|x ∀i ∈ I and |ti|x ≥ |$N+1|x ∀i 6∈ I}.

In particular, by the choice of N , V{1,...,n} = ∅. Suppose that I ( {1, . . . , n}. By the
description of VI as a rational subset in definition IV.2.3.1, we have ti ∈ OX(VI)

× for
i 6∈ I . If x ∈ VI ,

max
i∈I
|ti|x ≤ |$N+1|x < max

1≤i≤n
|ti|x,

so
max
1≤i≤n

|ti|x = max
i 6∈I
|ti|x.

In particular, VI ∩ Ui = ∅ if i ∈ I , and VI ∩ Ui = VI ∩ R
(
tj , j 6∈I
ti

)
if i 6∈ I . This shows

the statement.

(iii) Let t1, . . . , tn ∈ A×, and let (U1, . . . , Un) be the standard rational covering generated by
t1, . . . , tn. Let I = {(i, j) ∈ {1, . . . , n} | i < j}, and let t(i,j) = tit

−1
j for (i, j) ∈ I .
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We claim that the standard Laurent covering generated by the family (t(i,j))(i,j)∈I works.
Denote this covering by (VJ)J⊂I . For J ⊂ I , we have

VJ = {x ∈ X | |ti|x ≤ |tj|x if (i, j) ∈ J and |ti|x ≥ |tj|x if (i, j) 6∈ J}.

Choose a finite sequence (i1, . . . , ir) of elements of {1, . . . , n} such that (is, is+1) ∈ J
for 1 ≤ s ≤ r − 1 and of maximal length for that property. (Such a chain exists, be-
cause the condition implies that i1 < . . . < ir, so we must have r ≤ n.) Then, if
i ∈ {1, . . . , n} − {ir}, we cannot have (ir, i) ∈ J because this would contradict the
maximality of (i1, . . . , ir), so |ti|x ≤ |tir |x for every x ∈ VJ . This shows that VJ ⊂ Uir .

Corollary IV.2.3.4. (Proposition 2.4.20 of [19].) Suppose that A is a complete Tate ring. Let
P be a property of rational coverings of rational domains of X . Suppose that P satisfies the
following conditions :

(a) P is local, i.e. if it holds for a refinement of a covering then it also holds for the original
covering.

(b) P is transitive : let U be a rational domain of X , (Ui)i∈I be a rational covering of U and
(Uij)j∈Ji be a rational covering of Ui for every i ∈ I; if P holds for the covering (Ui)i∈I
of U and for each covering (Uij)j∈Ji of Ui, i ∈ I , then it holds for the covering (Uij)i∈I,j∈Ji
of U .

(c) P holds for every simple Laurent covering of a rational domain of X .

Then P holds for any rational covering of every rational domain of X .

We will see examples of properties P satisfies (a), (b) and (c) in corollary IV.3.2.1.

Proof. (1) IfU is a rational domain ofX and U is a standard Laurent covering ofU of OX(U),
then P holds for U : We prove this by induction on the number n of elements generating
the Laurent covering. If n = 1, this is condition (c). Suppose that n ≥ 2 and that we know
the result for n − 1 (and for every rational domain of X). Let t1, . . . , tn ∈ OX(U), and
consider the standard Laurent covering U = (VI)I⊂{1,...,n} of U that they generate. We
also set W = {x ∈ U | ||t1|x ≤ 1} and W ′ = {x ∈ U | ||t1|x ≥ 1}; this is a simple
Laurent covering of U , so P holds for this covering by (c). Then (W ∩ VI)1∈I (resp.
(W ′ ∩ VI)i 6∈I) is the standard Laurent covering of W (resp. W ′) generated by t2, . . . , tn.
By the assumption hypothesis, P holds for these two coverings, so it holds for U by
condition (b).

(2) By (1), property (a) and proposition IV.2.3.3(iii), P holds for any standard rational cover-
ing generated by units of a rational domain of X .

(3) Let U be a standard rational covering of a rational domain U of X . By proposition
IV.2.3.3(ii), there exists a standard Laurent covering V of U such that, for every V ∈ V ,
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(V ∩ U)U∈U is a standard rational covering generated by units of V . By (2), property P
holds for each covering (V ∩ U)U∈U , and by (1), it holds for V . So, by property (b), P
holds for U .

(4) Let U be a rational covering of a rational domain U ofX . By proposition IV.2.3.3(i), there
exists a standard rational covering V of U refining U . Property P holds for V by (3), so
it holds for U by (a).

IV.3 Proof of theorem IV.1.1.5 in cases (a), (c) and (d)

In this section, we fix a Huber pair (A,A+) such that A is a Tate ring, and we write
X = Spa(A,A+). We also fix a ring of definition A0 of A and a topologically nilpotent unit
$ of A such that $ ∈ A0.

IV.3.1 A local criterion for power-boundedness

Proposition IV.3.1.1. (Lemma 3 of [8].) Let t1, . . . , tn ∈ A, and suppose that the ideal
(t1, . . . , tn) is A itself. For every i ∈ {1, . . . , n}, let ϕi : A → Ai := A

(
t1,...,tn
ti

)
be the

canonical map. Let Ai,0 = A0[ t1
ti
, . . . , tn

t0
] ⊂ Ai; this is a ring of definition of Ai.

Then
A0 ⊃

⋂
1≤i≤n

ϕ−1
i (Ai,0).

In other words, an element a ∈ A such that ϕi(a) ∈ Ai,0 for every i is power-bounded.

Proof. Let a ∈
⋂

1≤i≤n ϕ
−1
i (Ai,0). For each i ∈ {1, . . . , n}, the image of a in A[t−1

i ] is in
the subring A0[t1t

−1
i , . . . , tnt

−1
i ]. Choose a homogeneous polynomial fi ∈ A0[X1, . . . , Xn]

such that ai = t
− deg(fi)
i fi(t1, . . . , tn) in A[t−1

i ]. Then we can find ci ∈ N such that
tcii (t

deg(fi)
i a− fi(t1, . . . , tn)) = 0 in A. If we set gi = Xci

i fi ∈ A0[X1, . . . , Xn], then gi is homo-
geneous of degree di := ci + deg(fi) and tdii a− gi(t1, . . . , tn) = 0 in A for every i ∈ {1, . . . , n}.

Let N = d1 + . . . + dn, and choose A ∈ N such that $Ati ∈ A0 for every i ∈ {1, . . . , n}.
We show by induction on m that $NAh(t1, . . . , tn)am ∈ A0 for every homogeneous polynomial
h ∈ A0[X1, . . . , Xn] of degreeN and everym ∈ N. The statement is clear ifm = 0, because then
$NAh(t1, . . . , tn)rm = $NAh(t1, . . . , tn) is a polynomial in $At1,. . . , $Atn with coefficients
in A0. Suppose that m ≥ 1 and that we know the result for m − 1. It suffices to prove the
statement for h a monomial of degree N , i.e. h = Xe1

1 . . . Xen
n with e1 + . . . + en = N . Since

N = d1 + . . .+ dn, there is at least one i such that ei ≥ di, and we may assume that i = 1. Then

$NAte11 . . . tenn a
m = $NAte1−d1

1 te22 . . . tenn g1(t1, . . . , tn)am−1,
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and the right hand side is in A0 by the induction hypothesis.

Now we show that a ∈ A0. Choose a1, . . . , an ∈ A such that a1t1 + . . . + antn = 1,
and choose B ∈ N such that $Bai ∈ A0 for every i ∈ {1, . . . , n}. Then
h = ($Ba1X1 + . . . + $BanXn)N ∈ A0[X1, . . . , Xn] is homogeneous of degree N , so, by
the previous paragraph, $NAh(t1, . . . , tn)am = $N(A+B)am is in A0 for every m ∈ N. This
shows that {am, m ∈ N} is bounded.

Corollary IV.3.1.2. We keep the notation of proposition IV.3.1.1, and we suppose that A is uni-
form. Then the morphism ϕ : A→

∏n
i=1Ai, a 7−→ (ϕi(a))1≤i≤n is strict.

Proof. As A is uniform, we may assume that A0 = A0. The subspace topology on ϕ(A) has the
sets ϕ(A) ∩ (

∏n
i=1$

NAi,0), N ∈ N, as a fundamental system of neighborhoods of 0, and the
quotient topology has the sets ϕ($NA0) as a fundamental system of neighborhoods of 0. We
already know that the quotient topology is finer than the subspace topology because ϕ is contin-
uous. On the other hand, proposition IV.3.1.1 says that ϕ($NA0) ⊃ ϕ(A) ∩ (

∏n
i=1$

NAi,0) for
every N ∈ N, so the subspace topology is finer than the quotient topology, and we are done.

Corollary IV.3.1.3. (Corollary 4 of [8].) Suppose that A is uniform. Let t ∈ A, and consider
the open cover (U = R

(
1,t
1

)
, V = R

(
1
t

)
of X . Then the Čech complex

0→ OX(X)→ OX(U)⊕ OX(V )→ OX(U ∩ V )→ 0

is exact.

Proof. We are in the situation of proposition IV.2.2.1, so it suffices to check that condition (iv)(d)
of this proposition holds. Applying proposition IV.3.1.1 with t1 = 1 and t2 = t shows that,
with the notation of proposition IV.2.2.1, ϕ−1

B (B0) ∩ ϕ−1
C (C0) ⊃ A0, where B0 = A0[t] and

C0 = A0[t−1]. As A is uniform, A0 is bounded, so there exists n ∈ N such that $nA0 ⊂ A0.
This shows condition (iv)(d) of proposition IV.2.2.1.

IV.3.2 Calculation of the Čech cohomology

If F is a presheaf of abelian groups on X , U is an open subset of X and U is an open covering
of U , we denote by Č

•
(U ,F ) the associated Čech complex and by Ȟ

i
(U ,F ) its cohomology,

i.e., the Čech cohomology groups of F on U for the covering U . (See [25, Definition 01EF].)

Corollary IV.3.2.1. (Proposition 2.4.21 of [19].) Let F be a presheaf of abelian groups on
X . Consider the following property P of rational coverings U of a rational domain U of
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X : for every rational domain V of U , if V ∩ U = (V ∩ W )W∈U , then the canonical map
F (V )→ Ȟ

0
(V ∩U ,F is an isomorphism and Ȟ

i
(V ,F ) = 0 for i ≥ 1.

Then property P satisfies conditions (a) and (b) of corollary IV.2.3.4, so in particular, it holds
for every rational covering of every rational domain of X if and only if it satisfies property (c) of
that corollary.

Proof. We check (a). Suppose that U = (Ui)i∈I and V = (Vj)j∈J are rational coverings of a
ratinal domain U of X , that V refines U , and that P holds for V . We want to apply corollary
IV.3.2.3 to show that Ȟ

•
(U ,OX) ' Ȟ

•
(V ,OX) (which will imply that P holds for U ), so we

need to check that the hypotheses of this corollary hold. For all i0, . . . , ip, the fact that the map

OX(Ui0 ∩ . . . ∩ Uip)→ Č
•
(Ui0 ∩ . . . ∩ Uip ∩ V ,OX)

is a quasi-isomorphism follows immediately from the fact that property P holds for V . Let
j0, . . . , jq, and let V ′ = Vj0∩. . .∩Vjq . We want to show that the map OX(V ′)→ Č

•
(V ′∩U ,OX)

is a quasi-isomorphism. But this follows from proposition IV.3.2.4 and from the fact that the
coverings V ′ ∩U and {V ′} of V ′ refine each other.

We now check (b). Let U be a rational domain ofX , consider a rational covering U = (Ui)i∈I
of U and a rational covering Ui = (Uij)j∈Ji of Ui for every i ∈ I . Suppose that P holds
for U and for every covering Ui, i ∈ I . We want to show that it holds for the covering
V = (Uij)i∈I,j∈Ji of U . First note that, for every i ∈ I , the covering Ui of Ui refines Ui ∩ V .
As P satisfies condition (a), this implies that P holds for Ui ∩ V . As before, we want to ap-
ply corollary IV.3.2.3 to show that Ȟ

•
(U ,OX) ' Ȟ

•
(V ,OX) (which will imply that P holds

for V ). By the beginning of the paragraph, we already know that, for all i0, . . . , ip ∈ I , the
map F (Ui0 ∩ . . . ∩ Uip) → Č

•
(Ui0 ∩ . . . ∩ Uip ∩ V ,F ) is a quasi-isomorphism. Moreover, if

V ∈ V , then the coverings V ∩ U and {V } of V refine each other, so they have isomorphic
Čech complexes by proposition IV.3.2.4. So the hypotheses of corollary IV.3.2.3 are satisfied.

In the end of this section, we give some auxiliary results that are used in the proof of corollary
IV.3.2.1. We need a way to compare Čech cohomology for two different covers. This is done in
section 8.1.4 of [3]. We review their construction.

Let X be a topological space, F be a presheaf of abelian groups on X and U = (Ui)i∈I ,
V = (Vj)j∈J be two open coverings of X . 3 For all i0, . . . , ip ∈ I (resp. j0, . . . , jq ∈ J), we
write Ui0,...,ip = Ui0 ∩ . . . ∩ Uip (resp. Vj0,...,jq = Vj0 ∩ . . . ∩ Vjq ). We define a double complex
Č
•,•

(U ,V ; F ) by

Č
p,q

(U ,V ; F ) =
∏

i0,...,ip∈I
j0,...,jq∈J

F (Ui0,...,ip ∩ Vj0,...,jq),

3This would work just as well for X a site and F a presheaf with values in an abelian category.
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with differentials
′dp,q : Č

p,q
(U ,V ; F )→ Č

p+1,q
(U ,V ; F )

′′dp,q : Č
p,q

(U ,V ; F )→ Č
p,q+1

(U ,V ; F )

such that, if f ∈ Č
p,q

(U ,V ; F ), then the (i0, . . . , ip+1, j0, . . . , jq)-component of ′dp,q(f) is
given by

p+1∑
r=0

(−1)r+qfi0,...,ir−1,ir+1,...,ip,j0,...,jq |Ui0,...,ip+1
∩Vj0,...,jq

and the (i0, . . . , ip, j0, . . . , jq+1)-component of ′′dp,q(f) is given by

q+1∑
s=0

(−1)r+qfi0,...,ip,j0,...,js−1,js+1,...,jq |Ui0,...,ip
∩Vj0,...,jq+1

.

We also denote by Č
•
(U ,V ; F ) the associated simple complex.

The obvious maps
F (Vj0,...,jq)→ Č

0
(Vj0,...,jq ∩U , F )

induce a morphism of complexes

Č
•
(V ,F )→ Č

•
(U ,V ; F ).

The following result is Lemma 1 of [3] 8.1.4.

Proposition IV.3.2.2. Suppose that, for all j0, . . . , jq ∈ J , the obvious morphism

F (Vj0,...,jq)→ Č
•
(Vj0,...,jq ∩U ,F )

is a quasi-isomorphism. Then the morphism Č
•
(V ,F ) → Č

•
(U ,V ; F ) defined above is a

quasi-isomorphism.

Proof. This is a general result for double complexes. See for example corollary 12.5.5 of [17].

We obviously have a similar result if we switch the roles of U and V , so we get the following
corollary.

Corollary IV.3.2.3. ([3] 8.2 Theorem 2.) Assume, for i0, . . . , ip ∈ I (resp. j0, . . . , jq ∈ J), the
obvious morphism

F (Ui0,...,ip)→ Č
•
(Ui0,...,ip ∩ V ,F )

(resp. F (Vj0,...,jq)→ Č
•
(Vj0,...,jq ∩U ,F ))
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is a quasi-isomorphism. Then the two morphisms

Č
•
(V ,F )→ Č

•
(U ,V ; F )← Č

•
(U ,F )

defined above are quasi-isomorphisms.

In particular, we get canonical isomorphisms Ȟ
r
(U ,F ) ' Ȟ

r
(V ,F ), for all r ∈ N.

We note another and simpler way to compare the Čech complexes under extra hypotheses.
Suppose that V refines U . For every j ∈ J , we choose c(j) ∈ I such that Vj ⊂ Uc(j). Then we
get restriction morphisms

F (Uc(j0),...,c(jq))→ F (Vj0,...,jq),

for all j0, . . . , jq ∈ J , and these induce a morphism of complexes

Č
•
(U ,F )→ Č

•
(V ,F ).

This morphism of complexes depends on the choice of c : J → I , but the maps it induces on
cohomology do not (see for example [25, Section 09UY] for details). This immediately implies
the following result.

Proposition IV.3.2.4. If U refines V and V refines U , then the maps Č
•
(V ,F )→ Č

•
(U ,F )

and Č
•
(U ,F )→ Č

•
(V ,F ) are quasi-isomorphisms quasi-inverse of each other.

IV.3.3 The strongly Noetherian case

In this section, we explain what happens in the strongly Noetherian case. For now, we assume
that A is a Tate ring.

Definition IV.3.3.1. Let M be a finitely generated A-module, endowed with its canonical topol-
ogy (see proposition II.4.2.2). We denote byM〈X〉 theA〈X〉-submodule ofM [[X]] of elements
f =

∑
ν≥0mνX

ν such that, for every neighborhood U of 0 in M , we have mν ∈ U for all but
finitely many ν.

Proposition IV.3.3.2. ([26] remark 8.28 and lemma 8.30) Suppose that A is complete and
Noetherian.

(i) For every finitely generated A-module M , if we put the canonical topology on M , then the
morphism

M ⊗A A〈X〉 →M〈X〉, m⊗ a 7−→ ma

is an isomorphism of A〈X〉-modules.

(ii) The ring A〈X〉 is faithfully flat over A.

(iii) For every f ∈ A, the ring A〈X〉/(f −X) and A〈X〉/(1− fX) are flat over A.
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Corollary IV.3.3.3. (Proposition 8.29 of [26].) Suppose that A is strongly Noetherian, and
let U ⊂ V be two rational domains of X = Spa(A,A+). Then the restriction map
OX(V )→ OX(U) is flat.

Corollary IV.3.3.4. (Corollary 8.31 of [26].) Suppose that A is strongly Noetherian, and let
(Ui)1≤i≤n be a finite rational covering of X . Then the morphism

OX(X)→
n∏
i=1

OX(Ui)

is faithfully flat.

Corollary IV.3.3.5. (Lemma 8.32 of [26].) Suppose that A is strongly Noetherian. Then, for
every simple Laurent covering (U, V ) of X , the sequence

0→ OX(X)→ OX(U)⊕ OX(V )→ OX(U ∩ V )→ 0

of proposition IV.2.2.1 is exact.

IV.3.4 Cases (c) and (d)

We now finish the proof of theorem IV.1.1.5 in cases (c) and (d). We assume that A is a Tate ring
and fix a topologically nilpotent unit $ of A. By corollary III.6.4.3, we can (and will) assume
that A is complete.

Consider property P of corollary IV.3.2.1 for the presheaf OX . If A is stably uniform (resp.
strongly Noetherian), then, by corollary IV.3.1.3 (resp. IV.3.3.5), P holds for every simple
Laurent covering of every rational domain of X . By corollary IV.3.2.1, this implies that P holds
for every rational covering of every rational domain of X . Let B be the set of rational domains
of X; this is a base of the topology of X , and we have just shown that OX is a sheaf of abelian
groups, hence of abstract rings, on B (i.e. it satisfies the sheaf condition for every covering of a
rational domain by rational domains).

We want to prove that OX is a sheaf of topological rings. We use the criterion of EGA I
chapitre 0 (3.2.2); if we combine it with the observations of EGA I chapitre 0 (3.1.4), it says that
it suffices to check that, for every U ∈ B and every rational covering (Ui)i∈I of U , the sequence

(∗) 0→ OX(U)→
∏
i∈I

OX(Ui)→
∏
i,j∈I

OX(Ui ∩ Uj)

is exact (as a sequence of abelian groups) and the morphism

ϕ : OX(U)→
∏
i∈I

OX(Ui)

is strict. We already know that (*) is exact.
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We show the strictness of ϕ. For A stably uniform, this is corollary IV.3.1.2, but this does not
work forA stronly Noetherian. Here is an argument that works in both cases : First, asX is quasi-
compact, we may assume that I is finite. By the exactness of (*), the image of ϕ is the kernel
of the continuous map

∏
i∈I OX(Ui)→

∏
i,j∈I OX(Ui ∩Uj), so it is closed in

∏
i∈I OX(Ui), and

in particular it is a complete OX(U)-module. So the fact that ϕ : OX(U) → Imϕ is open just
follows from the open mapping theorem (theorem II.4.1.1).

Finally, we need to prove that Hi(U,OX) = 0 for every rational domain U of X and every
i ≥ 1. But this follows immediately from the similar property for Čech cohomology (with
respect to rational coverings) and from [25, Lemma 01EW].

Let us outline the proof given in that referece. We see OX as a sheaf of abstract rings in
this paragraph. Consider the category A of sheaves of (abstract) abelian groups F such that,
for every rational domain U of X and every rational covering U of U , the canonical map
F (U) → Č

•
(U ,F ) is a quasi-isomorphism (i.e. the augmented Čech complex associated

to U is acyclic). By the beginning of the proof, OX is an object of A . We claim that, for every
object F of A , every rational domain U of X and every i ≥ 1, we have Hi(U,F ) = 0. We
prove this claim by induction on i. So suppose that i ≥ 1 and that we know the claim for every
j < i. Let F be an object of A . Choose an injective morphism of F into an injective abelian
sheaf I . Let U be a rational covering of a rational domain U of X . Note that I|U is still
injective as an abelian sheaf on U . As the forgetful functor from sheaves to presheaves admits a
lft adjoint (the sheafification functor), it preserves injective objects, so I|U is still injective when
seen as a presheaf of abelian groups on U . As the Ȟ

i
(U , .) are the right derived functors of

Ȟ
0
(U , .) on the category of presheaves of abelian groups on U (see [25, Lemma 01EN]), we

have Ȟ
i
(U ,I ) = 0 for every i ≥ 1. In particular, I is an object of A .

Let G be the cokernel of the map F → I . It is easy to see (cf. [25, Lemma 01EU])
that the vanishing of Ȟ

1
(U ,I ) for every rational covering of a rational domain of X im-

plies that, for every rational domain U of X , the I (U) → G (U) is surjective. Also, using
the long exact sequence of Čech cohomology coming from the exact sequence of presheaves
0 → F → I → G → 0, and using the fact that F and I are in A , we see that G is also an
object of A .

Fix a rational domain U of X and consider the long exact sequence of cohomology groups :

0→ F (U)→ I (U)→ G (U)→ H1(U,F )→ H1(U,I )→ H1(U,G )→ . . .

. . .→ Hi−1(U,G )→ Hi(U,F )→ Hi(U,I )→ Hi(U,G )→ . . .

As I is injective, we have Hp(U,I ) = 0 for every p ≥ 1. So, if i ≥ 2, then the exact
sequence above and the induction hypothesis applied to G imply that Hi(U,F ) = 0. Suppose
that i = 1. As I (U)→ G (U), the map H1(U,F )→ H1(U,I ) = 0 is injective, so we also get
H1(U,F ) = 0.

138

https://stacks.math.columbia.edu/tag/01EW
https://stacks.math.columbia.edu/tag/01EN
https://stacks.math.columbia.edu/tag/01EU


IV.3 Proof of theorem IV.1.1.5 in cases (a), (c) and (d)

IV.3.5 Case (a)

We explain how to prove theorem IV.1.1.5 in case (a), i.e., when the topology on Â is discrete.
Again, by corollary III.6.4.3, we can (and will) assume that A is complete, so that A is a discrete
ring. Then A+ can be any integrally closed subring of A, and

Spa(A,A+) = {x ∈ Spv(A) | ∀a ∈ A+, |a|x ≤ 1}.

Remember that we have a continuous and spectral map supp : Spv(A) → Spec(A),
x 7−→ Ker(|.|x). We also denote by supp its restriction to the subset Spa(A,A+). Note that
the map supp : Spa(A,A+)→ Spec(A) is surjective because, for every ℘ ∈ Spec(A), the trivial
valuation with support ℘ is in Spa(A,A+). For the same reason, for every finite subset T of A
and every s ∈ A, the image of R

(
T
s

)
⊂ Spa(A,A+) by supp is the principal open subset D(s)

of Spec(A).

Let T ⊂ A be a finite subset and s ∈ A. Then A
(
T
s

)
is the ring A[s−1] with the discrete

topology, so OX(R
(
T
s

)
) = A[s−1] with the discrete topology. Also, as supp(R

(
T
s

)
) = D(s) is

open, we have

(supp∗OSpec(A))(R
(
T
s

)
) = OSpec(A)(D(s)) = OX(R

(
T
s

)
).

This shows that the presheaves OX and supp∗OSpec(A) coincide on the family of rational domain
of X , and in particular that OX is a sheaf on this family and that its augmented Čech complex
for any rational covering of a rational domain is exact.

We now get the result by applying the criterion of EGA I chapitre 0 (3.2.2) (to show that OX

is a sheaf) and [25, Lemma 01EU] (to show that its higher cohomology vanishes on rational
domains) as in section IV.3.4.
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V Perfectoid algebras

In this chapter, we will study the main example of stably uniform Tate rings, i.e. perfectoid Tate
rings. The main references are Scholze’s papers [22] and [23], as well as Fontaine’s Bourbaki
seminar [10] and Bhatt’s notes [1].

In all this chapter, we fix a prime number `.

V.1 Perfectoid Tate rings

V.1.1 Definition and basic properties

Definition V.1.1.1. (Section 1.1 of [10], definition 3.1 of [23]) Let A be a Tate ring. We say that
A is perfectoid if A is complete and uniform, and if there exists a pseudo-uniformizer $ of A
such that

(a) $` divides ` in A0;

(b) the Frobenius map Frob : A0/$ → A0/$`, a 7−→ a` is bijective.

If A is a perfectoid Tate ring and a field, we say that A is a perfectoid field.

Note that condition (a) implies that A0/$ is a ring of characteristic `, so the Frobenius map in
(b) is a morphism of rings.

Remark V.1.1.2. It follows from proposition V.1.1.3 that, if A is a perfectoid Tate ring, then
every pseudo-uniformizer$ ofA such that$` divides ` inA0 satisfies condition (b) of definition
V.1.1.1.

Note also that, if A is perfectoid of characteristic 0, then ` is topologically nilpotent (because
it is a multiple in A0 of some uniformizer), so, if ` is invertible in A, then the topology on A0 is
the `-adic topology and A = A0[1

`
] (by proposition II.2.5.2).

Finally, remember that perfectoid Tate ring, like all complete uniform Tate rings, are reduced.
(See remark IV.1.1.3.)

Proposition V.1.1.3. (Lemma 3.9 of [2].) LetA be a Tate ring, and let$ be a pseudo-uniformizer
of A such that $` divides ` in A0.
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(i) The map Frob : A0/$ → A0/$`, a 7−→ a` is injective.

(ii) If A is complete and uniform, then the following conditions are equivalent :

(a) every element of A0/`$A0 is a `th power;

(b) every element of A0/`A0 is a `th power;

(c) every element of A0/$`A0 is a `th power.

Moreover, if these conditions holds, then there exist units u and v in A0 such that u$ and
v` admit compatible systems of `-power roots in A0.

Proof. (i) Let a ∈ A0 such that a` ∈ $`A0. Then (a$−1)` ∈ A0, so a$−1 ∈ A0, and
a ∈ $A0.

(ii) As $` divides ` and ` divides `$ in A0, it is clear that (a) implies (b) and (b) implies (c).
We want to show that (c) implies (a).

Suppose that (c) holds, and let a ∈ A0. By lemma V.1.1.5, there exists a sequence
(an)n≥0 of elements of A0 such that a =

∑
n≥0 a

`
n$

`n. By lemma V.1.1.6, this implies
that a− (

∑
n≥0 an$

n)` ∈ $`A0, which gives (a).

We prove the last statement. By lemma V.1.1.7 (applied toA0 and toA0/π`A0), the canon-
ical map lim←−a7−→a` A

0 → lim←−a7−→a` A
0/$`A0 is an isomorphism. In particular, we can find

ω = (ω(n)) ∈ lim←−a7−→a` such that ω(0) = $ mod. $`A0 (resp. ω(0) = ` mod. $`A0). In
other words, there exists a ∈ A0 such that ω(0) = $(1 + `a) (resp. ω(0) = `(1 + $a)).
The claim now follows from the fact that, for every a ∈ A0, 1 +$a and 1 + `a are units in
A0 (because $a and `a are topologically nilpotent).

The following corollary is an immediate consequence of the proposition, but it is convenient
when we want to prove that a Tate ring is perfectoid.

Corollary V.1.1.4. Let A be a complete uniform Tate ring. Then the following conditions are
equivalent :

(i) A is a perfectoid;

(ii) every element of A0/`A0 is a `th power, and A has a pseudo-uniformizer $ such that $`

divides ` in A0.

Lemma V.1.1.5. We use the notation of proposition V.1.1.3. Suppose that every element of
A0/$`A0 is a `th power, and let a ∈ A0.

Then there exists a sequence (an)n≥0 of elements of A0 such that, for every n ∈ N,
a−

∑n
i=0 a

`
i$

`i ∈ $`(n+1)A0.
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Proof. We construct the elements an by induction on n. The assumption immediately implies
that there exists a0 ∈ A0 such that a − a`0 ∈ $`A0. Suppose that n ≥ 1 and that we have found
a0, . . . , an−1 such that a−

∑n−1
i=0 a

`
i$

`i ∈ $`nA0. Let b ∈ A0 such that a−
∑n−1

i=0 a
`
i$

`i = $`nb,
and choose an ∈ A0 such that b− a`n ∈ $`A0. Then a−

∑n
i=0 a

`
i$

`i ∈ $`(n+1)A0.

The following lemma is an easy consequence of the binomial formula.

Lemma V.1.1.6. We use the notation of proposition V.1.1.3. For all a, b ∈ A0, we have
(a+$b)` − a` − ($b)` ∈ $`A0.

Lemma V.1.1.7. (Lemma 3.4(i) of [22].) Let S be a ring and $ ∈ S. Suppose that S is $-
adically complete (and Hausdorff) and that $ divides ` in S. Then the canonical map

lim←−
a7−→a`

S → lim←−
a7−→a`

S/$S

is an isomorphism of topological monoids (where the monoid operations are given by the multi-
plications of the rings).

Proof. Let S1 = lim←−a7−→a` S and S2 = lim←−a7−→a` S/$S. We prove the statement by constructing
a continuous multiplicative inverse of the canonical map S1 → S2.

First, we construct a continuous multiplicative map α : S2 → S such that α((sn)n≥0) = s0

mod. πS. Let (sn)n≥0 ∈ S2. Choose representatives sn ∈ S of the sn. We claim that :

(i) limn→+∞ s
`n

n exists;

(ii) the limit in (i) is independent of the choice of the representatives sn.

To prove (i), note that, for every n ∈ N, we have s`n+1 − sn ∈ $S. Applying lemma V.1.1.6
repeatedly and using the fact that $ divides `, we deduce that s`n+1

n+1 − s`
n

n ∈ $n+1S. This
implies that (s`

n

n )n≥0 is a Cauchy sequence in S, so it has a limit. To prove (ii), choose some
other lifts s′n of the sn. Then, for every n ∈ N, we have s′n − sn ∈ $S, so as before we get
(s′n)`

n − s`nn ∈ $n+1S. This implies that limn→+∞ s
`n

n = limn→+∞(s′n)`
n .

By claims (i) and (ii), we can define a map α : S2 → S by sending (sn)n≥0 to limn→+∞ s
`n

n ,
where the sn ∈ S are any lifts of the sn. It is clear that α is multiplicative, and it is also easy to
see that it is continuous.

Note that, if s = (sn)n≥0 ∈ S2, then it has a canonical `th root, which is its shift
s′ = (sn+1)n≥0, and we have α(s′)` = α(s) by definition of α.

We now get the desired map S2 → S1 by sending (sn)n≥0 ∈ S2 to the sequence

(α((sr+n)n≥0))r≥0,

which is clearly an element of S1.
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We now look at two particular cases : perfectoid fields and perfectoid rings of characteristic `.

Proposition V.1.1.8. (Proposition 3.5 of [23].) Let A be a Tate ring of characteristic `. Then the
following are equivalent :

(i) A is perfectoid.

(ii) A is complete and perfect.

Proof. Suppose that A is complete and perfect. Then it is also uniform by theorem IV.1.3.5. So,
by corollary V.1.1.4, it suffices to check that every element of A0 is a `th power, which follows
immediately from the fact that A is perfect.

Conversely, suppose that A is perfectoid. Then it is complete by assumption, and we want to
show that it is perfect. As A is a localization of A0, it suffices to show that A0 is perfect. As
` = 0 in A, we have A0/`A0 = A0, so the conclusion follows from proposition V.1.1.3(ii).

For fields, we have the following result of Kedlaya.

Theorem V.1.1.9. (Theorem 4.2 of [18].) Let A be a perfectoid Tate ring that is also a field.
Then the topology of A is given by a rank 1 valuation; in other words, A is a complete non-
Archimedean field.

This implies that the definition of perfectoid field given here is equivalent to their original
definition (definition 3.1 of [22]).

Proposition V.1.1.10. Let K be a complete topological field. Then the following conditions are
equivalent :

(i) K is a perfectoid field;

(ii) the topology of K is given by a rank 1 valuation |.| satisfying the following conditions :

(a) |.| is not discrete (i.e., its valuation group is not isomorphic to Z);

(b) |`| < 1;

and the `th power map on K0/`K0 is surjective.

Proof. Suppose that K is perfectoid. Then we know that its topology is given by a rank 1 valu-
ation |.| by theorem V.1.1.9. By corollary V.1.1.4, the `th power map on K0/`K0 is surjective,
and K has a pseudo-uniformizer $ such that $` divides ` in K0. In particular, ` is topologically
nilpotent in K, so |`| < 1.

Now suppose that K satisfies the conditions of (ii). Then K0 = {a ∈ K | |a| ≤ 1}, so
K0 is bounded in K, i.e. K is uniform. We check that K satisfies the conditions of corollary
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V.1.1.4(ii). The first condition is part of the assumption on K. For the second condition, note
that, as |.| is not discrete, there exists $ ∈ K − {0} such that |$|` ≤ |`|. In particular, |$| < 1,
so $ is topologically unipotent, hence a pseudo-uniformizer of K; moreover, as |`$−`| ≤ 1, we
have `$−` ∈ K0, which means that $` divides ` in K0.

Example V.1.1.11. (See 3.3, 3.4 of [23].)

(1) The field Q` is not perfectoid because its topology is given by a discrete valuation.

(2) The field C` is perfectoid; more generally, any algebraically closed complete non-
archimedean field is perfectoid.

(3) Let Qcycl
` be the completion of Q`[µ

1/`∞ ] :=
⋃
n≥0 Q`[µ

1/`n ] for the unique valuation |.|
extending the `-adic valuation on Q`, and let Zcycl

` = (Qcycl
` )0. Then Qcycl

` is perfec-
toid. Indeed, it is complete non-Archimedean. For every r ≥ 1, the cyclotomic exten-
sion Q`[µ1/`r ]/Q` is of degree `r−1(` − 1), and, if ω is a primitive `rth root of 1, then
NQ`[ω]/Q`

(1 − ω) = `, hence |ω|`r−1` = |`|. This shows that |.| is not a discrete valuation.
We obviously have |`| < 1. Finally, let a ∈ Zcycl

` /`Zcycl
` . We can find a lift a of a in the

ring of integers of Q`[µ1/`n ] for some n ≥ 0. Pick a primitive `n+1th root of unity ω. Then
we can write a =

∑`n−1
i=0 aiω

`i, with the ai in Z`. Then, if b =
∑`n−1

i=0 aiω
i, then b` = a

modulo `Zcycl
` .

(4) Similarly, the completion L of Q`[`
1/`∞ ] :=

⋃
n≥0 Q`[`

1/`n ] for the unique valuation |.|
extending the `-adic valuation on Q` is a perfectoid field. Indeed, K is complete and non-
Archimedean, and the valuation group of |.| is not isomorphic to Z because its element
|`| < 1 is divisible by `r for every r ∈ N. Also, we have K0/`K0 = F`, so every element
of K0/`K0 is a `th power.

(5) As in (3), we can show that the completion F`((t1/`
∞

)) of
⋃
n≥0 F`((t1/`

n
)) for the unique

valuation extending the t-adic valuation on F`((t)) is a perfectoid field. This construction
still makes sense if we replace F` by any ring A, and it gives a perfectoid field if A is a
perfect field of characteristic `.

(6) Let K be a perfectoid field of characteristic 0. If A0 is the `-adic completion of⋃
n≥0K

0[T 1/`n ], then K〈T 1/`∞〉 := A0[1
`
] is a perfectoid Tate ring. (See proposition

V.1.2.8.) Note that, if n ≥ 0, then the Gauss norms on K〈T 1/`n+1〉 and on its subring
K〈T 1/`n〉 coincide, so we get a norm on

⋃
n≥0K〈T 1/`n〉. Then K〈T 1/`∞〉 is the comple-

tion of
⋃
n≥0K〈T 1/`n〉 for this norm.

Note that the construction of A〈T 1/`∞〉 makes sense for any f-adic ring A.

(6) Finally, we give an example of a perfectoid Tate alegbra that does not contain a field. First,
consider the f-adic ring A0 = Zcycl

` [[T 1/`∞ ]] (see (3) and (5)); this is an adic ring, with the
T -adic topology. LetB = A〈(`/T )1/`∞〉 := A〈X1/`∞〉/(`−XT ). This is still an adic ring
with the T -adic topology. Finally, the f-adic ring B[ 1

T
] is a Tate ring, and it is perfectoid.
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A pseudo-uniformizer satisfying the conditions of definition V.1.1.1 is$ = T 1/` (note that
$` = T divides ` in B). The ring B[ 1

T
] doesn’t contain a field, because ` is nonzero and

not invertible in it.

V.1.2 Tilting

Proposition V.1.2.1. (Section 1.3 of [10] and lemma 3.10 of [23].) Let A be a perfectoid Tate
ring. We consider the set

A[ = lim←−
a7−→a`

A := {(a(n)) ∈ AN | ∀n ∈ N, (a(n+1))` = a(n)},

with the projective limit topology, the pointwise multiplication and the addition defined by
(a(n)) + (b(n)) = (c(n)), with

c(n) = lim
r→+∞

(a(n+r) + b(n+r))`
r

.

We denote the map A[ → A, (a(n)) 7−→ a(0) by f 7−→ f ].

Then :

(i) The addition is well-defined (i.e. the limit above always exists) and makes A[ into a per-
fectoid Tate ring of characteristic `.

(ii) The subring A[0 of power-bounded elements in A[ is given by

A[0 = lim←−
a7−→a`

A0.

If $ is a pseudo-uniformizer of A that divides ` in A0, then the canonical map

A[0 → lim←−
a7−→a`

A0/$

is an isomorphism of topological rings.

(iii) There exists a pseudo-uniformizer $ of A such that $` divides ` in A0 and that $ is in the
image of the map (.)] : A[ → A. Moreover, if $[ is an element of A[ such that $ = ($[)],
then $[ is a pseudo-uniformizer of A[, the map f 7−→ f ] induces a ring isomorphism
A[0/$[ ' A0/$, and A[ = A[0[ 1

$[ ].

Note that, if A is a perfectoid ring of characteristic `, then FrobA : A→ A is an isomorphism
of topological rings (by the open mapping theorem, i.e. theorem II.4.1.1), so A[ is canonically
isomorphic to A (via the map (.)]).
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Proof. (1) Note that the image of the map (.)] : A[ → A is the set of elements of A that have
compatible systems of `th power roots. So, by proposition V.1.1.3, there exists a pseudo-
uniformizer $ of A such that $` divides ` in A0 and that $ is in the image of (.)]. Choose
$[ ∈ A[ such that ($[)].

(2) We show that the addition of A[ is well-defined on elements of A[0. Let (a(n)), (b(n)) be
elements of A[0. Fix n ∈ N. For every r ∈ N, we have

(a(n+r+1) + b(n+r+1))` = (a(n+r+1))` + (b(n+r+1))` = a(n+r) + b(n+r) mod `A0 ⊂ $A0,

so repeated applications of lemma V.1.1.6 give

(a(n+r+1) + b(n+r+1))`
r+1

== (a(n+r) + b(n+r))`
r

mod $r+1A0.

This implies that ((a(n+r) + b(n+r))`
r
)r≥0 is a Cauchy sequence, so it admits a limit c(n) in

A0. The fact that (c(n+1))` = c(n) for every n (i.e. that (c(n)) is an element of A[) follows
immediately from the definition of c(n).

(3) By lemma V.1.1.7, the canonical map

A[0 = lim←−
a7−→a`

A0 → lim←−
a7−→a`

A0/$A0

is an isomorphism of topological monoids. We show that it is also compatible with addi-
tion. Let (a(n)), (b(n)) be elements of A[0, and let (c(n)) = (a(n)) + (b(n)). Fix n ∈ N.
Then

c(n) = lim
r→+∞

(a(n+r) + b(n+r))`
r

.

But we have seen in the proof of (2) that the sequence ((a(n+r) + b(n+r))`
r
)r≥0 is constant

modulo $A0, so c(n) = a(n) + b(n) modulo $A0. This shows the claim. In particular, we
get that A[0 is a non-Archimedean topological ring of characteristic `.

(4) Write $[ = ($1/`n)n≥0. (In other words, we choose a compatible system ($1/`n)n≥0

of `th power roots of $.) For every a = (a(n)) ∈ A[ and every r ∈ N, we have
($[)ra = ($r/`na(n))n≥0 by definition of the multiplication of A[. In particular, taking
r = `, we see that the isomorphism os topological rings A[0 ∼→ lim←−a7−→a` A

0/$A0 induces
an isomorphism of topological rings

A[0/($[)`A[0
∼→ lim←−

a7−→a`
A0/$`m−n

A0 ' A0/$`A0,

where the last isomorphism follows from condition (b) in definition V.1.1.1, applied to the
pseudo-uniformizers $1/`n , n ≥ 0. As the square

A[0/$[A[0

Frob
��

(.)]

∼
// A0/$A0

Frob
��

A[0/($[)`A[0
(.)]

∼
// A0/$`A0

is clearly commutative, this shows that Frob : A[0/$[A[0 → A[0/($[)`A[0 is bijective.
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(5) We show that A[0 is $[-adically Hausdorff and complete. It suffices to show that the
$[-adic topology on A[0 is finer than the product topology coming from the isomorphism
A[0

∼→ lim←−a7−→a` A
0/$A0. But, by the formula of (4) for ($[)r(a(n)), if m ∈ N, then the

projections of ($[)`
m
A[0 on the last m factors of

∏
n≥0A

0/$A0 are 0, which implies the
desired result.

(6) We show that addition is well-defined on A[. Let (a(n)) ∈ A[. We choose N ∈ N such that
$Na(0) ∈ A0. Then, for every n ≥ 0, ($N/`na(n))`

n
= $Na(0) ∈ A0, so $N/`na(n) ∈ A0.

This shows that ($[)N(a(n)) ∈ A[0.

Let (b(n)) be another element of A[. Up to increasing N , we may assume that
$N/`nb(n) ∈ A0 for every n ∈ N. Fix n ∈ N. By (2), we know that the sequence
($N/`n(a(n+r) +b(n+r))`

r
)r≥0 converges inA0. This implies immediately that the sequence

((a(n+r) + b(n+r))`
r
)r≥0 converges in A.

(7) Using the fact that A[0 is a topological ring and the calculation of (6), it is easy to check
that A[ is a topological ring and that A[ = A[0[ 1

$[ ]. By remark II.2.5.3, A[ is a Tate ring
having A[0 as a ring of definition.

(8) We show that (A[)0 = A[0. (This implies that A[ is perfectoid and finishes the proof
of the proposition.) As A[0 is a bounded subring of A[, we clearly have A[0 ⊂ (A[)0.
Conversely, let a = (a(n)) ∈ (A[)0. As a is power-bounded, there exists N ∈ N such that
($[)Nan ∈ A[0 for every n ≥ 0. This implies that $N(a(0))n ∈ A0 for every n ≥ 0,
i.e. that a(0) is power-bounded. As (a(n))`

n
= a(n) for every n ∈ N, a(n) is also power-

bounded, and we have shown that a ∈ A[0.

Definition V.1.2.2. The perfectoid Tate ring A[ of proposition V.1.2.1 is called the tilt of A.

Remark V.1.2.3. Let A and A′ be perfectoid Tate algebras, with A′ of characteristic `, and let $
and $′ be pseudo-uniformizers of A and A′ such that $` divides ` in A0 and that $ = ($[)] for
some pseudo-uniformizer $[ of A[.

Then any isomorphism ϕ : A0/$`A0 ∼→ A′0/$′`A′0 sending$ to$′ induces an isomorphism
A[

∼→ A′.

Indeed, by the second formula in proposition V.1.2.1(ii), we have A[0 = lim←−a7−→a` A
0/$`A0

and A′[0 = lim←−a7−→a` A
′0/$′`A′0, so ϕ induces an isomorphism ψ : A[0

∼→ A′[0 = A′0, and
ψ($[) = $′ modulo $′`A′0. This implies that ψ($[) is also a pseudo-uniformizer of A′0, so ψ
extends to an isomorphism A[

∼→ A′.

Remark V.1.2.4. Let A be a perfectoid Tate ring. Then the map (.)] : A[0 → A0 induces an
isomorphism of rings A[0/A[00 ∼→ A0/A00.

Proof. First note thatA00 (resp. A[00) is an ideal ofA0 (resp. A[0), so the statement makes sense.
By proposition V.1.2.1, we can choose a pseudo-uniformizer $[ of A[ such that $ := ($[)] is
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a pseudo-unfiformizer of A, and then (.)] induces an isomorphism A[0/$[A[0
∼→ A0/$A0. We

have A00 ⊃ $A0, and, by lemma II.1.2.3, A00/$A0 is the nilradical of A0/$A0. We have a
similar result for A[, and this implies the statement.

Proposition V.1.2.5. Let A be a perfectoid Tate ring. If A+ is a ring of integral elements in A
(i.e. an open and integrally closed subring of A contained in A0), then A[+ := lim←−a7−→a` A

+ is a
ring of integral elements in A[, and, for every pseudo-uniformizer $[ of A[ such that $ := ($[)]

is a pseudo-uniformizer of A, the isomorphism A[0/$[ ' A0/$ sends A[+/$[ to A+/$.

Moreover, this induces a bijection between rings of integral elements in A and A[.

Proof. Choose pseudo-uniformizers $ and $[ of A and A[ such that $ = ($[)].

IfA+ is a ring of integral elements inA, then$A0 ⊂ A+ ⊂ A0 (the first inclusion comes from
the fact that $A0 ⊂ A00), and A+/$A0 is an integrally closed subring of A0/$A0. Conversely,
if S is an integrally closed subring of A0/$A0, then its inverse image in A0 is an open and
integrally closed subring ofA0, i.e. a ring of integral elements inA. So rings of integral elements
in A are in natural bijection with integrally closed subrings of A0/$A0. We have a similar result
for A[. As A0/$A0 ' A[0/$[A[0, this gives a bijection betweem rings of integral elements in
A and A[.

It remains to show that this bijection is given by the formula of the proposition. Let A+ be a
ring of integral elements in A, and let A[+ be the corresponding ring of integral elements in A[.
Let a = (a(n)) ∈ A[0 = lim←−a7−→a` A

0. We want to check that a ∈ A[+ if and only if a(n) ∈ A+ for
every n ∈ N. First, as A+ is integrally closed in A0, we have a(n) ∈ A+ for every n ∈ N if and
only if a(0) ∈ A+. Then, as$A0 ⊂ A+, we have a(0) ∈ A+ if and only if a(0)+$A0 ∈ A+/$A0.
But a(0) +$A0 is the image of a+$[A[0 by the isomorphism A0/$A0 ' A[0/$[A[0, and this
isomrophism sends A+/$A0 to A[+$[A[0, so we get the desired equivalence.

Definition V.1.2.6. If A is a perfectoid Tate ring and A+ ⊂ A is a ring of integral elements, we
say that (A,A+) is a perfectoid Huber pair and we call (A[, A[) its tilt.

Proposition V.1.2.7. (Proposition 3.6 of [22].) Let A be a perfectoid Tate ring. Then, for every
continuous valuation |.| : A → Γ ∪ {0} on A, the map |.|[ : A[ → Γ ∪ {0}, a 7−→ |a]| is a
continuous valuation on A[.

Moreover, if A = K is a perfectoid field, then this induces a bijection Cont(K)
∼→ Cont(K[).

Proof. Let |.| : A→ Γ∪{0} be a continuous valuation on A. Then |.|[ obviously satisfies all the
properties of a valuation on A[, except maybe for the strong triangle inequality. We check this
last property. Let a = (a(n)) and b = (b(n)) be elements of A[. By definition of the addition on
A[, we have

(a+ b)] = lim
n→+∞

(a(n) + b(n))`
n

= lim
n→+∞

((a1/`n)] + (b1/`n)])`
n

,
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so
|a+ b|[ = |(a+ b)]| ≤ sup

n∈N
(max(|(a1/`n)]|`n , |(b1/`n)]|`n)) = max(|a|[, |b|[).

We show that |.|[ is continuous. Let γ ∈ Γ. By definition |.|[, {a ∈ A[ | |a|[ < γ} is the inverse
image by the continuous map (.)] : A[ → A of the open subset {a ∈ A | |a| < γ} of A, so it is
an open subset of A[.

Now assume that K is a perfectoid field. We want to show that |.| 7−→ |.|[ induces a bijection
Cont(K)

∼→ Cont(K[). By corollary II.2.5.11, Cont(K) is canonically in bijection with the
set of valuation subrings K+ of K such that K00 ⊂ K+ ⊂ K0, hence with the set of valuation
subrings of the field K0/K00. We have a similar statement for K[. So the result follows from
remark V.1.2.4.

We fnish with some examples of tilting.

Proposition V.1.2.8. (Proposition 5.20 of [22].) Let K be a perfectoid field, and let $ be a
pseudo-uniformizer of K and K+ be a ring of integral elements in K. As in example V.1.1.11(6),
we denote by K+〈X1/`∞〉 the $-adic completion of the ring

⋃
n≥0K

+[X1/`n ], and we set
K〈X1/`∞〉 = K+〈X1/`∞〉[ 1

$
] (note that this last ring does not depend on the choice of K+).

Then K〈X1/`∞〉 is perfectoid, with ring of power-bounded elements
(K〈X1/`∞〉)0 = K0〈X1/`∞〉, and its tilt is canonically isomorphic to K[〈X1/`∞〉.

Moreover, K+〈X1/`∞〉 is a ring of integral elements in K〈X1/`∞〉 and the tilt of
(K〈X1/`∞〉, K+〈X1/`∞〉) is (K[〈X1/`∞〉, K[+〈X1/`∞〉).

Proof. Set A = K〈X1/`∞〉 and A+ = K+〈X1/`∞〉. We know that A is a complete Tate
ring and that A0 := K0〈X1/`∞〉 is a ring of definition of A by remark II.2.5.3. In particu-
lar, we have A0 ⊂ A0. Also, if we set A′0 =

⋃
n≥0K

0[X1/`n ] with the $-adic topology and
A′ = A′0[ 1

$
], then, by the same remark, A′ is a Tate ring with ring of definition A′0 and, by

corollary II.3.1.9(v), A is the completion of A′. So, by proposition II.3.1.12(i), to show that
A0 = A0, it suffices to show that (A′)0 = A′0. Let f ∈ (A′)0. Then there exists n ∈ N such
that f ∈ K0[X1/`n ][ 1

$
] = K[X1/`n ], and we want to show that f is in K0[X1/`n ]. Without loss

of generality, we may assume that n = 0, so that f ∈ K[X]. Denote by |.| the rank 1 valuation
giving the topology of K. Suppose that f 6∈ K0[X], write f =

∑
s≥0 asX

s, and let r be the
smallest integer such that |ar| = maxs≥0 |as|. Then |as| ≤ |ar| for every s, and |as| < |ar| if
s < r; also, for every n ∈ Z, we have |n · 1K | ≤ 1. So, if n ∈ N, then the coefficient α of
Xrn in fn satisfies |α| = |ar|n. This shows that the set {fn, n ∈ N} is not bounded, so f is not
power-bounded.

We have shown that A is uniform. As K is perfectoid, we may assume that $ ∈ K+ and
that $` divides ` in K+; then $ is a pseudo-uniformizer of A, and $` divides ` in A+, and in
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particular in A0 ⊃ A+. It remains to show that every element of A0/$A0 is a `th power. But
this is obvious, because A0/$A0 =

⋃
n≥0(K0/$K0)[X1/`n ].

We may assume that $ = ($[)], with $[ ∈ K[+ a pseudo-uniformizer of K[. Then we have
a canonical isomorphism A+/$`A+ ' A[+/($[)`A[+. By remark V.1.2.3, this extends to an
isomorphism A[

∼→ K[〈X1/`∞〉 sending A[+ to K[+〈X1/`∞〉.

Proposition V.1.2.9. (Lemma 5.21 of [22].) Let A be a perfectoid Tate algebra. Then A is a
perfectoid field if and only if A[ is a perfectoid field.

Proof. Let a = (a(n)) ∈ A[ = lim←−c7−→c` A. As A is reduced (see remark IV.1.1.3), a = 0 if and
only if a(0) = 0. On the other hand, as (a(n))`

n
= a(0) for every n ∈ N, we have a ∈ (A[)× if and

only if a(0) ∈ A×. This shows that A[ is a field if and ony if A is a field. By theorem V.1.1.9, this
finishes the proof.

Example V.1.2.10. Let L be the perfectoid field of example V.1.1.11(4). Then
(Qcycl

` )[ = L[ = F`((t1/`
∞

)). (We can prove this using remark V.1.2.3.)

V.1.3 Witt vectors

We will explain Fontaine’s approach to untilting using Witt vectors, so we need a few reminders
about their construction and properties. A reference for this is [24] chapitre II §6.

Consider the Witt polynomials W0,W1, . . . ∈ Z[X0, X1, . . .], defined by

Wm =
m∑
n=0

X`m−n

n `n = X`m

0 + `X`m−1

1 + . . .+ `m−1X`
m−1 + `mXm.

Theorem V.1.3.1. ([24] chapitre II §6, Théorème 5.) For every Φ ∈ Z[X, Y ], there exists a
unique sequence (ϕn)n≥0 of elements of the polynomial ring Z[Xn, Yn, n ∈ N] such that, for
every m ∈ N :

Wm(ϕ0, ϕ1, . . .) = Φ(Wm(X0, X1, . . .),Wm(Y0, Y1, . . .)).

Applying this theorem to the polynomials X + Y and XY , we get sequences of polynomials
(Sn)n≥0 and (Pn)n≥0.

Theorem V.1.3.2. ([24] chapitre II §6, Théorème 6.) Let A be a commutative ring. We write
W (A) = AN, and define an addition and multiplication on W (A) by

a+ b = (S0(a, b), S1(a, b), . . .)
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and
a · b = (P0(a, b), P1(a, b), . . .),

for a, b ∈ AN. Then this makes W (A) into a commutative ring, called the ring of Witt vectors of
A.

We denote by W∗ the map W (A) → AN sending a to the sequence (W0(a),W1(a), . . .). The
idea is that this map is an isomorphism of rings if ` is invertible in A, and that we can reduce to
this case by functoriality.

The ring morphism Wm : W (A)→ A is called the mth ghost component map.

Definition V.1.3.3. ([24] chapitre II §5.) A strict `-ring is a commutative ring A such that ` is
not a zero divisor in A, A is complete (and Hausdorff) for the `-adic topology and the ring A/`A
is perfect.

Proposition V.1.3.4. ([24] chapitre II §5 proposition 8.) If A is a strict `-ring, there exists a
unique multiplicative section of the reduction map A→ A/`A.

We denote this section by a 7−→ [a] and call it the Teichmüller representative.

Theorem V.1.3.5. ([24] chapitre II §5 théorème 5 and §6 théorème 7.) Let A be a perfect ring
of characteristic `. Then there exists a unique (up to unique isomorphism) strict `-ring B such
that B/`B = A, and this ring is canonically isomorphic to W (A).

Moreover, the isomorphism from W (A) to B sends a = (an)n≥0 to
∑

m≥0[a
1/`m

m ]`m.

In particular, ifA is a perfect ring of characteristic `, then we have a Teichmüller representative
[.] : A → W (A), and every element of W (A) can be written as

∑
n≥0[an]`n, with the an ∈ A

uniquely determined.

V.1.4 Untilting

We will use the ring of Witt vectors to “untilt” a perfectoid Tate ring of characteristic `. First we
need a definition.

Definition V.1.4.1. (Section 1.4 of [10] and definition 3.15 of [23].) Let (A,A+) be a perfectoid
Huber pair of characteristic `. An ideal I of W (A+) is called primitive of degree 1 if it is
generated by an element ξ of the form ξ = `+ [$]α, where $ is a pseudo-uniformizer of A and
α ∈ W (A+). We also say that the element ξ of W (A+) is primitive of degree 1.

Lemma V.1.4.2. (Lemma 3.16 of [23].) Any element ξ of W (A+) that is primitive of degree 1 is
torsionfree in W (A+).
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Proof. Write ξ = ` + [$]α, where $ is a pseudo-uniformizer of A and α ∈ W (A+). Let
b ∈ W (A+) such that bξ = 0. We want to show that b = 0. By theorem V.1.3.5, we can write
b =

∑
n≥0[an]`n, with the an ∈ A+ uniquely determined, and it suffices to show that all the

an are 0. We show by induction on r that an ∈ $rA+ for every n, r ∈ N, which implies that
an = 0 because A+ is $-adically separated. The result is obvious for r = 0. Suppose that r ≥ 1
and that we have an ∈ $r−1A+ for every n. Then we can write an = $r−1a′n with a′n ∈ A+.
Let b′ =

∑
n≥0[a′n]`n ∈ W (R+). Then we have 0 = bξ = [$]r−1b′ξ, so b′ξ = 0 because

[$] is not a zero divisor in W (A+). Reducing the euqlity (` + [$]α)b′ = 0 modulo [$] gives∑
n≥0[a′n]`n+1 ∈ [$]W (A+), hence a′n ∈ $A+ for every n ∈ N, and we are done.

Theorem V.1.4.3. (Lemma 3.14 of [23].) Let (A,A+) be a perfectoid Huber pair, and let
(A[, A[+) be its tilt.

(i) The map

θ :

{
W (A[+) → A+∑
n≥0[an]`n 7−→

∑
n≥0 a

]
n`
n

is a surjective morphism of rings.

(ii) The kernel of θ is primitive of degree 1.

Note that, if char(A) = ` (so that A[ = A), then Ker θ is the ideal generated by ` (which is
primitive of degree 1).

Proof. Choose a pseudo-uniformizer $[ of A[ such that $ := ($[)] is a pseudo-uniformizer of
A and that $` divides ` in A+. (We have seen that we can choose $[ and $ satisfying all these
properties, except that $[ may not be in A[+ and $` only divides ` in A0. But, as A[+ and A+

are open and$[ and `$1−` are topologically nilpotent (for the second one, because it is in$A0),
there exists some integer N ≥ 1 such that ($[)N ∈ A[+ and `N$N−N` ∈ A+, and we get the
last property if we replace $[ by ($[)N .)

(i) We first check that θ is a morphism of rings. It suffices to check that its composition
with each projection A+ → A+/$mA+ is a morphism of rings. Fix m ≥ 1. Re-
member that we have the mth ghost component map Wm : W (A+) → A+, sending
(an)n≥0 ∈ W (A+) to

∑m
n=0 a

`m−n

n `n. The composition W (A+)
Wm→ A+ → A+/$mA+

sends a family (an)n≥0 of elements of $A+ to 0, hence it factors through a mor-
phism of rings W (A+/$A+) → A+/$mA+. We can compose this with the map
A[+ = lim←−A

+ → A+/$A+, (a(n)) 7−→ a(m) + $A+ to get a morphism of rings
θ′ : W (A[+) → W (A+/$A+) → A+/$mA+. We claim that θ′ is the composition of
θ with the projection A+ → A+/$mA+. Indeed, let a = (an)n≥0 ∈ W (A[+), and write
an = (a

(i)
n )i≥0. Then a =

∑
n≥0[a

1/`n

n ]`n, so

θ(a) =
∑
n≥0

(a1/`n

n )]`n =
∑
n≥0

a(n)
n `n.
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On the other hand, the image of a in W (A+/$A+) is the sequence (a
(m)
n + $A+)n≥0. A

lift of this in W (A+) is (a
(m)
n )n≥0. Applying the map Wm : W (A+) → A+/$mA+, we

get

θ′(a) =
m∑
n=0

(a(m)
n )`

m−n

`n =
m∑
n=0

a(n)
n `n.

Now we show that θ is surjective. We have θ([$[]) = $, and the
map W (A[+)/[$[]W (A[+) → A+/$A+ induces by θ sends

∑
n≥0[an]`n to

(a0)] + $A+, so it is the composition of the canonical maps W (A[+) → A[+

and A[+ → A[+/$[A[+ ' A+/$A+, and in particular it is surjec-
tive. As W (A[+) is [$[]-adically complete (because, for every r ∈ N,
[$[]rW (A[+) = {

∑
n≥0[an]`n, an ∈ ($[)rW [+) and A+ is $-adically complete, this

implies that θ is surjective by [25, Lemma 0315](1).

(ii) First we show that there exists f ∈ $[A[+ such that f ] = ` modulo `$A+. Indeed, as
$` divides ` in A+, α := `$−1 ∈ A+. As every element of A+/`A+ is a `th power, there
exists β ∈ A[+ such that β] = α modulo `A+. Take f = $[β. Then f ] = $β] is equal to
$α = ` modulo `$A+.

By the claim proved in the previous paragraph the surjectivity of θ, we can write

` = f ] + `($[)]
∑
n≥0

a]n`
n

for some f ∈ $[A[+ and an ∈ A]+. Let

ξ = `− [f ]− [$[]
∑
n≥0

[an]`n+1 ∈ W (A[+).

Then ξ is primitive of degree 1 (because $[ divides f in A[+, so [$[] divides [f ] in
W (A[+)), and θ(ξ) = 0 by the choice of f and the an.

It remains to show that Ker(θ) = ξW (A[+). Note that ξ ∈ ` + [$[]W (A[+),
so W (A[+)/(ξ, [$[]) = W (A[+)/(`, [$[]) ' A[+/$[A[+, and the map
W (A[+)/(ξ, [$[]) → A+/$A+ induced by θ is the map (.)] : A[+/$[A[+ → A+/$A+,
which is an isomorphism. To conclude that θ induces an isomorphism, it suffices (by
lemma V.1.4.4) to check that W (A[+)/(ξ) is [$[]-adically complete.

To show that W (A[+)/(ξ) is [$[]-adically complete, consider the short exact sequence of
W (A[+)-modules

0→ ξW (A[+)→ W (A[+)→ W (A[+)/(ξ)→ 0.

As ξ is not a zero divisor (lemma V.1.4.2), the W (A[+)-module ξW (A[+) is flat, and so,
by lemma [25, Lemma 0315](3), the sequence of [$[]-adic completions is still exact. But
the first two modules are [$[]-adically complete, so the third must also be [$[]-adically
complete.
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Lemma V.1.4.4. Let R be a ring, let $ ∈ R, and let θ : M → N be a morphism of R-modules.
Suppose that M and N are $-adically complete and Hausdorff, that N is $-torsionfree, and
that θ induces an isomorphism M/$M

∼→ N/$N . Then θ is an isomorphism.

Proof. We already know that θ is surjective, by [25, Lemma 0315](1). To show that θ is injective,
it suffices to show that, for every n ≥ 1, the morphism M/$nM → N/$nN induces by θ is
injective. We show this by induction on n. The case n = 1 is the assumption, so suppose that
n ≥ 2 and that we know the result for every n′ < n. We have a commutative diagram with exact
rows :

M/$n−1M
$·(.) //

θ
��

M/$nM //

θ
��

M/$M

θ
��

// 0

0 // N/$n−1N
$·(.) // N/$nN // N/$N // 0

Indeed, the map N/$n−1N → N/$nN , x 7−→ $x is injective because N is $-torsionfree. By
the induction hypothesis, the first and third vertical maps are injective. So the injectivity of the
middle vertical arrow follows from the five lemma (or an easy diagram chase).

Corollary V.1.4.5. (Theorem 3.17 of [23], see also proposition 1.1 of [10].) There is an equiva-
lence of categories between :

(a) perfectoid Huber pairs (S, S+);

(b) triples (R,R+, I), where (R,R+) is a perfectoid Huber pair of characteristic ` and
I ⊂ W (R+) is an ideal that is primitive of degree 1.

This equivalence is given by the functors that send a pair (S, S+) as in (a)
to (S[, S[+,Ker(θ : W (S[+) → S+)), and a triple (R,R+, I) as in (b) to
((W (R+)/I)[ 1

[$]
],W (R+)/I), where $ is any pseudo-uniformizer of R.

Corollary V.1.4.6. (See théorème 1.2 of [10].) Fix a perfectoid Huber pair (A,A+). Then there
is an equivalence of categories between perfectoid Huber pairs over (A,A+) and over (A[, A[+).

This equivalence is given by the functor that send a morphism of perfectoid Huber pairs
(A,A+) → (B,B+) to its tilt (A[, A[+) → (B[, B[+). In the other direction, suppose that
we have a morhism of perfectoid Huber pairs (A[, A[+) → (B[, B[+), then we get a mor-
phism α : W (A[+) → W (B[+). By the definition of a primitive ideal of degree 1, if
I = Ker(θ : W (A[+) → A+), then J := α(I) is a primitive ideal of degree 1 of W (B[+),
so we get a morphism of perfectoid Huber pairs

(A,A+) ' ((W (A[+)/I)[ 1
[$[]

],W (A[+)/I)→ ((W (B[+)/J)[ 1
[$[]

],W (B[+)/J)

(where $[ is any pseudo-uniformizer of A[).
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V.1.5 A little bit of almost mathematics

We will introduce as little almost mathematics as possible. For a complete treatment, see [11].

Definition V.1.5.1. Let (A,A+) be a perfectoid Huber pair.

(i) We say that a A+-module M is almost zero if A00 ·M = 0.

(ii) We say that a morphism of A+-modules u : M → N is almost injective (resp. almost
surjective) if keru (resp. Cokeru) is almost zero; we say that it is almost an isomorphism
if it is both almost injective and almost surjective.

(iii) If M ⊂ N are A+-modules, we say that they are almost equal if N/M is almost zero.

Example V.1.5.2. A+ and A0 are almost equal.

Remark V.1.5.3. If u : M → N is almost injective (resp. almost surjective, resp. almost an
isomorphism), then u[ 1

$
] : M [ 1

$
]→ N [ 1

$
] is injective (resp. surjective, resp. an isomorphism).

Proposition V.1.5.4. Let (A,A+) be a perfectoid Huber pair and M be a A+-module. Choose
a pseudo-uniformizer $ of A that has a compatible system ($1/`n)n≥0 of `th power roots. (In
other words, $ is in the image of (.)] : A[ → A.)

Then M is almost zero if and only if, for every x ∈ M and for every n ∈ N, we have
$1/`nx = 0.

Proof. We have $1/`n ∈ A00 for every n ∈ N, so, if M is almost zero, then $1/`nx = 0 for
every x ∈M and every n ∈ N.

Conversely, suppose that, for every x ∈ M and every n ∈ N, we have $1/`nx = 0.
Let a ∈ A00. As $A+ is open in A, there exists n ∈ N such that a`n ∈ $A+. Then
($−1/`na)`

n ∈ A+, so $−1/`na ∈ A+ because A+ is integrally closed in A. So, for every
x ∈M , ax = $1/`n(($−1/`na)x) = 0.

Corollary V.1.5.5. If (A,A+) → (B,B+) is a morphism of perfectoid Huber pairs and M is
a B+-module, then M is almost zero as a B+-module if and only if it is almost zero as a A+-
module.

In particular, for perfectoid Huber pairs over a perfectoid Huber pair (K,K0) with K a field,
we recover the same definition as in definition 4.1 of [22].

Definition V.1.5.6. Let (A,A+) be a perfectoid Huber pair and M be a A+-module. We set
M∗ = HomA+(A00,M). This is also aA+-module, and it is called the module of almost elements
of M .

By the general properties of Hom, the functor M 7−→M∗ commutes with projective limits (in
particular, it is left exact).
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Remark V.1.5.7. If M1,M2, N are A+-modules and µ : M1 ×M2 → N is a A+-bilinear map,
then we have a canonical A+-linear map M1∗ ⊗A+ M2∗ → N∗, induced by the A+-bilinear map{

HomA+(A00,M1)× HomA+(A00,M2) → HomA+(A00, N)
(f, g) 7−→ (a 7−→ µ(f(a)⊗ g(a))).

In particular, if B+ is a A+-algebra and M is a B+-module, then (B+)∗ is a A+-algebra and
M∗ is a (B+)∗-module. Moreover, ifM1,M2, N areB+-modules and the map µ : M1×M2 → N
is actually B+-bilinear, then it is easy to see from the construction given above that the induced
map M1∗ ×M2∗ → N∗ is (B+)∗-bilinear; so, if for example C+ is a B+-algebra, then (C+)∗ is
a (B+)∗-algebra.

Proposition V.1.5.8. Let (A,A+) be a perfectoid Huber pair and M be a A+-module.

(i) The canonical map M →M∗, x 7−→ (a 7−→ ax) is almost an isomorphism.

(ii) Choose a pseudo-uniformizer$ ofA that has a compatible system ($1/`n)n≥0 of `th power
roots. If M is $-torsionfree (so that the canonical map M → A⊗A+ M is injective), then

M∗ = {x ∈ A⊗A+ M | ∀n ∈ N, $1/`nx ∈M} = {x ∈ A⊗A+ M | ∀a ∈ A00, ax ∈M}.

(iii) If M is almost zero, then M∗ = 0.

(iv) If u : M → N is an almost injective (resp. surjective) map of A+-modules, then the map
u∗ : M∗ → N∗ is injective (resp. surjective).

Proof. (i) This follows from the exact sequence

0→ HomA+(A+/A00,M)→M →M∗ → Ext1
A+(A+/A00,M).

(ii) Let v : M∗ →M be evaluation at $. If left multiplication by $ is an isomorphism on M ,
then the map $−1v : M∗ →M is an inverse of the canonical map M →M∗, so M = M∗.

Now suppose that M is only $-torsionfree. As (A ⊗A+ M)∗ = A ⊗A+ M by the pre-
vious paragraph and M → (A ⊗A+ M) is injective by hypothesis, we get injections
M ⊂ M∗ ⊂ A ⊗A+ M . Let M ′ = {x ∈ A ⊗A+ M | ∀n ∈ N, $1/`nx ∈ M} and
M ′′ = {x ∈ A ⊗A+ M | ∀a ∈ A00, ax ∈ M}. We obviously have M ′′ ⊂ M ′. Con-
versely, if x ∈M ′, then (M +A+x)/M is almost zero by proposition V.1.5.4, so x ∈M ′′.
This shows that M ′ = M ′′. Now we show that M∗ = M ′′. If x ∈ M ′′, then the map
A00 → M , a 7−→ ax is in M∗, and its image by $−1v is x. So M ′′ ⊂ M∗. Conversely, let
c : A00 → M be an element of M∗, and let x = $−1c($) ∈ A ⊗A+ M . Then, for every
n ∈ N, we have

$1/`nx = $1/`n$−1c($1−1/`n$1/`n) = $−1+1/`n$1−1/`nc($1/`) = c($1/`n) ∈M,

so x ∈M ′ = M ′′.
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(iii) Let u : A00 → M be an element of M∗. Let a ∈ A00. Then we can find n ∈ N such that
$−1/`na ∈ A00 (just choose n such that a`n ∈ $A00), so u(a) = $1/`nu($−1/`na) = 0.
This shows that u = 0.

(iv) Suppose that u is almost injective. As the functor (.)∗ is right exact, the kernel of
u∗ : M∗ → N∗ is equal to the image of (Keru)∗ → M∗. But (Keru)∗ = 0 by (iii),
so u∗ is injective.

Suppose that u is almost surjective. Then, applying the right exact functor (.)∗
to the exact sequence M → N → Cokeru → 0, we get an exact sequence
M∗ → N∗ → (Cokeru)∗ → 0. But we know that (Cokeru)∗ = 0 by (iii), so u∗ is
surjective.

Proposition V.1.5.9. (See lemma 4.4.1 of [1].) Let (A,A+) be a perfectoid Huber pair and M
be a A+-module. Choose a pseudo-uniformizer $ of A that has a compatible system ($1/`n)n≥0

of `th power roots.

Let M be a A+-module that is $-torsionfree and $-adically separated and complete. Then
the A+-module M∗ is also $-torsionfree and $-adically separated and complete.

Moreover, for every a ∈ A+ such that M is a-torsionfree, the canonical morphism
aM∗ → (aM)∗ is an isomorphism, and the canonical morphism M∗/aM∗ → (M/aM)∗ is
injective, with image equal to that of (M/$1/`naM)∗ for every n ∈ N.

Proof. First we show that M∗ is $-torsionfree. This follows from the fact that the functor (.)∗ is
left exact, so Ker($ : M∗ →M∗) = (Ker($ : M →M))∗ = 0.

Let a ∈ A+ such that M is a-torsionfree. Then, applying (.)∗ to the exact sequence

0→M
a·(.)→ M →M/aM → 0, we get an exact sequence

0→M∗
a·(.)→ M∗ → (M/aM)∗ → Ext1

A+(A00,M).

This shows in particular that aM∗ = (aM)∗ and that M∗/aM∗ → (M/aM)∗ is injective. Let
n ∈ N, and let ε = $1/`n . We have a commutative diagram with exact rows

0 //M
a·(.) //

��

M //

��

M/aM // 0

0 //M/εM
a·(.)
//M/εaM //M/aM // 0
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Applying the functor (.)∗, we get a commutative diagram with exact rows

M∗
a·(.) //

��

M∗
b1 //

��

(M/aM)∗ // Ext1
A+(A00,M)

c
��

(M/εM)∗
a·(.)
// (M/εaM)∗ b2

// (M/aM)∗ // Ext1
A+(A00,M/εM)

We want to show that the maps b1 and b2 have the same image. It suffices to
prove that the map c is injective, which is equivalent to the fact that multiplication
by ε is equal to zero on Ext1

A+(A00,M). Applying the functor HomA+(.,M) to the
exact sequence 0 → A00 → A+ → A+/A00 → 0, we get an isomorphism
Ext1

A+(A00,M) ' Ext2
A+(A+/A00,M), which shows that Ext1

A+(A00,M) is almost zero and
implies the desired result.

We finally prove that A∗ is $-adically separated and complete. By the assumption on
M , we have M

∼→ lim←−M/$nM . As the functor (.)∗ commutes with projective lim-
its, the canonical map M∗ → lim←−(M/$nM)∗ is an isomorphism. But this map fac-
tors as M∗ → lim←−M∗/$

nM∗ → lim←−(M/$nM)∗, and the second map is injective be-
cause M∗/$

nM∗ → (M/$nM)∗ is injective for every n ∈ N. So the canonical map
M∗ → lim←−M∗/$

nM∗ is also an isomorphism. (We could also have used the previous para-
graph to show directly that lim←−M∗/$

nM∗ → lim←−(M/$nM)∗ is an isomorphism.)

Proposition V.1.5.10. (See proposition 5.2.6 and theorem 6.2.5 of [1].) Let (A,A+) be a per-
fectoid Huber pair, and choose a pseudo-uniformizer $ of A that has a compatible system
($1/`n)n≥0 of `th power roots and that divides ` in A+. Let ϕ : A → B be a morphism of
f-adic rings and B0 be an open subring of B containing ϕ(A+).

Suppose that :

(a) B is complete;

(b) B0 is ϕ($)-adically separated and complete;

(c) the map B0/ϕ($1/`)→ B0/ϕ($), b 7−→ b` is almost an isomorphism.

Then B is perfectoid, B0 is a ring of definition of B and B0 = (B0)∗.

Proof. We know that B is a Tate ring and that ϕ($) is a pseudo-uniformizer of B (see proposi-
tion II.1.3.4). To simplify the notation, we will write $ instead of ϕ($). By lemma V.1.5.11, B0

is a ring of definition of B.

We write B′ = (B0)∗. We know that B′ is $-adically separated and complete by proposition
V.1.5.9, and that

B′ = {b ∈ B | ∀n ∈ N, $1/`nb ∈ B0}
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by proposition V.1.5.8(ii). In particular, lemma V.1.5.11 implies that B′ is a bounded subring of
B, i.e. a ring of definition. By proposition V.1.5.8(iv), the map (B0/$

1/`B0)∗ → (B0/$B0)∗
induced by b 7−→ b` is injective, so the map B′/$1/`B′ → B′/$B′, b 7−→ b` is also injective,
because B′/$1/`B′ (resp. B′/$B′) injects in (B0/$

1/`B0)∗ (resp. (B0/$B0)∗) by proposition
V.1.5.9.

We prove that B′ is closed by taking `th roots. Let b ∈ B such that b` ∈ B′. We want to
prove that b ∈ B′. Choose an integer r ∈ N such that $r/`b ∈ B′ (this is possible because
B = B′[1/$]). If r = 0, then b ∈ B′ and we are done. Suppose that r ≥ 1. We have
($r/`b)` = $rb` ∈ $rB′ ⊂ $B′. By the injectivity of the map B′/$1/`B′ → B′/$B′,
b 7−→ b`, this implies that $r/`b ∈ $1/`B′, hence that $(r−1)/`b ∈ B′. If r − 1 ≥ 1, we can
apply this process again to show that $(r−2)/`b ∈ B′, etc. In the end, we get that b ∈ B′.

Note that the previous paragraph implies that B00 ⊂ B′. Indeed, if b ∈ B00, then there exists
n ∈ N such that b`n ∈ B′ (because B′ is open), so b ∈ B′ by what we just proved.

We show that the map B′/$1/`B′ → B′/$B′, b 7−→ b` is surjective. Let b ∈ B′. As the map
B0/$

1/`B0 → B0/$B0, c 7−→ c` is surjective, there exists c0 ∈ B0 such that$1/`b ∈ c`+$B0.
Let d = $−1/`2c. Then d` = $−1/`c` ∈ b + $1−1/`B0 ⊂ B′, so, as B′ in closed under taking
`th roots, d ∈ B′. Write b = d` + $1−1/`b′, with b′ ∈ B0. Then there exists d′ ∈ B0 such that
$1−1/`b′ ∈ (d′)` +$B0, and we finally get b ∈ (d+ d′)` +$B′.

To finish the proof, we just need to show that B′ = B0. The inclusion B′ ⊂ B0 follows from
the fact that B′ is bounded and from proposition II.1.2.4. Conversely, let b ∈ B0. Then, for every
n ∈ N, we have $1/`nb ∈ B00 ⊂ B′; so b ∈ B′.

Lemma V.1.5.11. Let A be a complete Tate ring and $ be a pseudo-uniformizer of A. Let B be
an open subring of A that is $-adically separated and complete. Then B is bounded in A.

Proof. By corollary II.1.1.8(iii), we can choose a ring of definition A0 of A such that A0 ⊂ B.
We may assume, after replacing $ by a power, that $ is in A0. Note that $ is not a zero divisor
in B, because it is invertible in A. By remark II.2.5.3, the ring A′ = B[ 1

$
], with the topology for

which B is a ring of definition, is a complete Tate ring with pseudo-uniformizer $. Of course,
as a ring, A′ is canonically isomorphic to A. Moreover, the obvious isomorphism A

∼→ A′ is
continuous, because B is open in A. By the open mapping theorem (theorem II.4.1.1), this map
is open, which means that A ∼→ A′ is an isomorphism of topological rings, hence that B is a ring
of definition of A.

Using the proposition, we can (almost) generalize proposition V.1.2.8.

Corollary V.1.5.12. . Let (A,A+) be a perfectoid Huber pair, and let $ ∈ A+ be a pseudo-
uniformizer of A. We denote by A+〈X1/`∞〉 the $-adic completion of the ring

⋃
n≥0A

+[X1/`n ],
and we set A〈X1/`∞〉 = A+〈X1/`∞〉[ 1

$
].
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Then A〈X1/`∞〉 is perfectoid, with ring of power-bounded elements (A〈X1/`∞〉)0 al-
most equal to A+〈X1/`∞〉, and its tilt is canonically isomorphic to A[〈X1/`∞〉. Moreover,
A+〈X1/`∞〉 is a ring of integral elements in A〈X1/`∞〉 and the tilt of (A〈X1/`∞〉, A+〈X1/`∞〉) is
(A[〈X1/`∞〉, A[+〈X1/`∞〉).

Proof. We may assume that there is a pseudo-uniformizer $[ ∈ A[+ of A[ such that $ = ($[)],
and that $` divides ` in A+. Then we may apply proposition V.1.5.10 to B = A〈X1/`∞〉 and to
its open subring B0 = A+〈X1/`∞〉, and we get that B is perfectoid and B0 = (B0)∗.

As B0/$
`B0 =

⋃
n≥0(A+/$`A+)[X1/`n ], we have a canonical isomorphism

B0/$
`B0 '

⋃
n≥0A

[+/($[)`A[+[X1/`n ]. By remark V.1.2.3, this extends to an isomor-
phism B[ ∼→ A[〈X1/`∞〉 sending B[+ to A[+〈X1/`∞〉.

Corollary V.1.5.13. (See lemma 9.2.3 of [1].) Let (A,A+) be a perfectoid Huber pair of char-
acteristic `, let $ be a pseudo-uniformizer of A, let f1, . . . , fn, g ∈ A+ with fn = $N (N ∈ N)
and U = R

(
f1,...,fn

g

)
. Then :

(i) Let A+〈
(
fi
g

)1/`∞

〉 be the $-adic completion of the subring A+[
(
fi
g

)1/`∞

] of A[1
g
]. Then

A+〈
(
fi
g

)1/`∞

〉 is $-torsionfree, $-adically separated and complete, and perfect.

(ii) The canonical A+-algebra map ψ : A+[X
1/`∞

i ] → A+[
(
fi
g

)1/`∞

] sending

X
1/`m

i to
(
fi
g

)1/`m

is surjective with kernel containing and almost equal to

I := (g1/`mX
1/`m

i − f 1/`m

i , 1 ≤ i ≤ n, m ∈ N).

(iii) Let X = Spa(A,A+). The Tate ring OX(U) is perfectoid, and OX(U)0 = A+〈
(
fi
g

)1/`∞

〉∗
(in particular, these subrings of OX(U) are almost equal).

Proof. Remember that A and A+ are perfect (see proposition V.1.1.8).

(i) This ring is the $-adic completion of the perfect and $-torsionfree ring A+[
(
fi
g

)1/`∞

].

(ii) It is clear that ψ is surjective and that I ⊂ Kerψ. We have A+[X
1/`∞

i ][ 1
$

] = A[X
1/`∞

i ] and

A+[
(
fi
g

)1/`∞

][ 1
$

] = A[1
g
] (because fn = $n).

We claim that Kerψ[ 1
$

] = I[ 1
$

]. Indeed, let f ∈ Kerψ[ 1
$

]. We
may assume that f ∈ A[X1, . . . , Xn], and we want to show that
f ∈ (gXi − fi) = (gX1 − f1, . . . , gXn−1 − fn−1, $

−NgXn − 1). We have an
isomorphism A[X1, . . . , Xn]/($−NgXn − 1) ' A[g−1][X1, . . . , Xn−1] and the ideal
(gXi − fi) to I ′ := (X1 − f1g

−1, . . . , Xn−1 − fn−1g
−1). This ideal I ′ is clearly the
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kernel of the map A[g−1][X1, . . . , Xn−1] → A[g−1] induced by ψ, so the image of f in
A[g−1][X1, . . . , Xn−1] is in I ′, which is what we wanted.

Now let B = A+[X
1/`∞

i ]/I . It is clear from the definition of I that B is perfect, and ψ

induces a surjective map ψ : B → A+[
(
fi
g

)1/`∞

] that is an isomorphism after inverting $.

In particular, Ker(ψ) is $∞-torsion, so it is almost zero by lemma V.1.5.14, and we are
done.

(iii) By (i) and proposition V.1.1.3(i), the open subring A+〈
(
fi
g

)1/`∞

〉 of OX(U) satisfies the
conditions of proposition V.1.5.10. The result follows immediately from this proposition.

Lemma V.1.5.14. Let (A,A+) be a perfectoid Huber pair of characteristic ` and B a perfect
A+-algebra. Then the $∞-torsion in B is almost zero.

Proof. Let N = {b ∈ B | ∃n ∈ Z≥1, $
nb = 0}. We want to show that N is almost zero. Let

b ∈ N , and let n ∈ Z≥1 such that $nb = 0. Let r ∈ N. As B is perfect, there exists c ∈ B
such that b = c`

r , and then ($n/`rc)`
r

= 0, so, using the fact that B is perfect again, $n/`rc = 0,
which finally gives $n/`rb = 0. By proposition V.1.5.4, this implies that N is almost 0.

Corollary V.1.5.15. (Lemma 9.2.5 of [1].) Let (A,A+) be a perfectoid Huber pair, and
X = Spa(A,A+). Choose a pseudo-uniformizer $ of A that is of the form ($[)] for $[ a
pseudo-uniformizer of A[, and such that $ divides ` in A+. Let f1, . . . , fn, g ∈ A+ such that
fn = $N for some N ∈ N. Suppose that we have a1, . . . , an, b ∈ A[ with a]i = fi, b] = g and
an = ($[)N . Let U = R

(
f1,...,fn

g

)
⊂ X and U [ = R

(
a1,...,an

b

)
⊂ X[, so that U is the preimage

of U [ by the map X → X[, x 7−→ x[. Then :

(i) Let B0 := A+〈
(
fi
g

)1/`∞

〉 be the $-adic completion of the subring A+[
(
fi
g

)1/`∞

] of

A[1
g
]. Then B0 is $-torsionfree, $-adically separated and complete, and the map

B0/$
1/`B0 → B0/$B0, b 7−→ b` is bijective.

(ii) The canonical A+-algebra map ψ : A+[X
1/`∞

i ] → A+[
(
fi
g

)1/`∞

] sending

X
1/`m

i to
(
fi
g

)1/`m

is surjective with kernel containing and almost equal to

I := (g1/`mX
1/`m

i − f 1/`m

i , 1 ≤ i ≤ n, m ∈ N).

(iii) The Tate ring OX(U) is perfectoid, and OX(U)0 = A+〈
(
fi
g

)1/`∞

〉∗ (in particular, these
subrings of OX(U) are almost equal).

(iv) The tilt of (OX(U),OX(U)+) is canonically isomorphic to (OX[(U [),OX[(U [)+).
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Proof. We show (i). The ring B0 is $-torsionfree and $-adically separated and complete by
definition. Also, if B′0 := A[+〈

(
ai
b

)1/`∞〉, then we have B0/$B0 ' B′0/$B
′
0, and B′0 is perfect;

this gives the last statement of (i).

It is clear that ψ is surjective and I ⊂ Kerψ. Let P0 = A+[X
1/`∞

i ]/I and

a0 : P0 → A+[
(
fi
g

)1/`∞

] be the map induced by ψ. By definition of O+
X(U) (and lemma

IV.1.3.8), we have a canonical morphism b0 : A+[
(
fi
g

)1/`∞

] → O+
X(U). Let (S, S+) be the per-

fectoid Huber pair over (A,A+) that we get by untilting the perfectoid pair (OX[(U [),O+
X[(U

[))

over (A[, A[+) (see corollary V.1.4.6). If i ∈ {1, . . . , n}, then b divides ai in O+
X[(U

[), so b] = g

divides a]i = fi in S+, so the map Spa(S, S+)→ Spa(A,A+) factors through U , and the univer-
sal property of U (see proposition III.6.1.1(ii)) implies that the map (A,A+)→ (S, S+) extends
to a map (OX(U),O+

X(U)) → (S, S+). We denote the map O+
X(U) → S+ by c, and we write

d0 = c ◦ b0. The maps a0 : P0 → A+[
(
fi
g

)1/`∞

] and d0 : A+[
(
fi
g

)1/`∞

] → S+ extends by

continuity to maps a : P → B0 = A+〈
(
fi
g

)1/`∞

〉 and d : B0 → S+ between the $-adic com-
pletions (we use the fact that S+ is complete). As a0 is surjective, a is also surjective (see [25,
Lemma 0315](2)). By corollary V.1.5.13, the map d0 ◦ a0 modulo $ is almost an isomorphism.
By lemma V.1.5.16, Ker a0 is almost zero, which proves (ii).

Moreover, as d0 ◦ a0 and d ◦ a are equal modulo $, d ◦ a modulo $ is also almost an isomor-
phism. On the other hand, as d modulo $ is surjective, so is d (see [25, Lemma 0315](1)), so
d ◦ a is also surjective. By lemma V.1.5.16 again, we get that d ◦ a is almost an isomorphism.
As a is surjective and Ker a ⊂ Ker(d ◦ a), a is also almost an isomorphism, hence so is d. In
particular (see remark V.1.5.3), the map d[ 1

$
] : B0[ 1

$
] → OX(U) → S is an isomorphism. As

the first map is injective by definition of B0, both maps are isomorphisms. Now (iii) follows
immediately from proposition V.1.5.10.

We finally prove (iv). We have already seen that we have a canonical map
(OX(U),O+

X(U)) → (S, S+), and we just proved that OX(U) → S is an isomorphism; this
isomorphism then identifies O+

X(U) to a subring of S+. So it suffices to construct a contin-
uous morphism of A+-algebras S+ → O+

X(U). Let (A[, A[+) → (T, T+) be the tilt of the
morphism (A,A+) → (OX(U),O+

X(U)). As O+
X(U) ⊃ B0, we have fi

g
∈ O+

X(U) for every
i, so ai

b
∈ T+ for every i. (This is clear on the formula for the untilting given after corol-

lary V.1.4.6.) So Spa(T, T+) → Spa(A[, A[+) factors through U [, and the universal prop-
erty of U [ gives a morphism (OX[(U [),O+

X[(U
[)) → (T, T+), which untilts to a morphism

(S, S+)→ (OX(U),O+
X(U)).

Lemma V.1.5.16. We use the notation of corollary V.1.5.15. Let α : M → N be a A+-module
map. Suppose that α is almost surjective, that the induced map M/$M → N/$N is almost an
isomorphism, that M is $-adically separated and that N is $-torsionfree. That α is almost an
isomorphism.
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Proof. We want to check that Cokerα and Kerα are almost zero. This is true for Cokerα
by assumption. Let L = Kerα. As N is $-torsionfree, L/$L is the kernel of the map
M/$M → N/$N induced by α, so it is almost zero. This implies that, for every n ∈ N,
the A+-module L/$nL is almost zero. Let x ∈ L. If r ∈ N, then the image of $1/`rx in L/$nL
is almost zero for every n ∈ N, which means that $1/`rx ∈

⋂
n≥0$

nL. As M is $-adically
separated, we have

⋂
n≥0$

nL ⊂
⋂
n≥0$

nM = 0, so $1/`rx = 0. This shows that L is almost
zero.

V.1.6 Tilting and the adic spectrum

Let (A,A+) be a perfectoid Huber pair. By proposition V.1.2.7, we have a map
(.)[ : Cont(A) → Cont(A[) sending a continuous valuation |.| on A to the continuous valu-
ation a 7−→ |a|[ = |a]| on A[. By the formula for A[+ in proposition V.1.2.5, this map sends
Spa(A,A+) to Spa(A,A[+).

Theorem V.1.6.1. (See corollary 6.7(ii),(iii) of [22], theorem 3.12 of [23].) Let (A,A+) be a
perfectoid Huber pair. Then the map X := Spa(A,A+) → X[ := Spa(A[, A[+), x 7−→ x[ is a
homeomorphism identifying rational domains of X and X[, and, for every rational domain U of
X , the Huber pair (OX(U),O+

X(U)) is perfectoid with tilt (OX[(U [),O+
X[(U

[)).

Moreover, for every x ∈ X , the completed residue field (κ(x), κ(x)+) is perfectoid, with tilt
(κ(x[), κ(x[)+).

Applying theorem IV.1.1.5, we immediately get the following corollary.

Corollary V.1.6.2. Let (A,A+) be a perfectoid Huber pair, and let X = Spa(A,A+). Then OX

is a sheaf, and, for every rational domain U of X and every i ≥ 1, we have Hi(U,OX) = 0.

Proof of theorem V.1.6.1. We choose pseudo-uniformizers $ and $[ of A and A[ such that
$ = ($[)] and that $ divides ` in A+. We write f for the map (.)[ : X → X[.

(1) Let t1, . . . , tn, s ∈ A[ such that (t1, . . . , tn) = A[, and let V = R
(
t1,...,tn

s

)
. By lemma

V.1.6.6, V does not change if we add a power of $[ to t1, . . . , tn, so we may assume that
tn = ($[)N for some N ∈ N. Then t]n = $N , so (t]1, . . . , t

]
n) = A, and we clearly have

f−1(V ) = R
(
t]1,...,t

]
n

s]

)
. In particular, f is continuous.

(2) We show that f is surjective. Let y ∈ X[, and let (L,L+) = (κ(y), κ(y)+). Then L is a
complete non-Archimedean field (because X[ only has analytic points). By definition, L
is the completion of K(x) := Frac(A[/ supp(x)). As A[ is perfect and supp(x) is a prime
ideal ofA[, the quotientA[/ supp(x) is a perfect ring, soK(x) is also perfect. AsK(x)0 is
a perfect ring of definition, we can apply lemma IV.1.3.9, which implies that L is perfect.
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So, by proposition V.1.1.8, L is a perfectoid field. We get a morphism of perfectoid Huber
pairs (A[, A[+) → (L,L+). By corollary V.1.4.6, this untilts to a morphism of perfectoid
Huber pairs (A,A+)→ (K,K+), and K is a perfectoid field by proposition V.1.2.9. Let x
be the image by Spa(K,K+) → Spa(A,A+) of the unique closed point of Spa(K,K+).
Then |.|x is the composition of (A,A+) → (K,K+) and of the rank 1 valuation |.| giving
the topology of K, so |.|x[ is the composition of (A[, A[+) → (L,L+) and of |.|[. But |.|[
is a continuous rank 1 valuation on L, so, by corollary II.2.5.11, it has to be equivalent to
the continuous rank 1 valuation defining the topology of L, which means that x[ = y.

(3) Let f1, . . . , fn, f0 ∈ A such that (f1, . . . , fn) = A, and let U = R
(
f1,...,fn
f0

)
. Again by

lemma V.1.6.6, we may assume without changing U that fn = $N for some N ∈ N. By
corollary V.1.6.5 with ε some fixed number in (0, 1), there exist elements t0, . . . , tn−1, s of
A[ such that, for every i ∈ {0, . . . , n− 1} and every x ∈ X , we have

|fi − t]i|x ≤ |$|1−εx max(|fi|x, |$|N+1
x ).

In particular, we get
max(|fi|x, |$|Nx ) = max(|t]i|x, |$|Nx ),

and, if |$N |x ≤ |f0|x (for example if x ∈ U ) of if |$N |x ≤ |t]0|x, then |f0|x = |t]0|x. It is

easy to deduce from these inequalities thatR
(
t]1,...,t

]
n

t]0

)
= U , so thatU = f−1(R

(
t1,...,tn
t0

)
).

(4) Let x, y ∈ X with x 6= y. AsX is T0, we may assume that there exists a rational domain U
of X such that x ∈ U and y 6∈ U . By (2), there exists a rational domain V of X[ such that
U = f−1(V ), and then we have f(x) ∈ V and f(y) 6∈ V , and in particular f(x) 6= f(y).
So f is injective.

(5) The statement about OX(U) and its tilt (forU ⊂ X a rational domain) follows immediately
from corollary V.1.5.15. (Multiplying all the equations of a rational domain by the same
power of $ doesn’t chage the rational domain, so we may always assume that all these
equations are in A+.)

(6) Finally, the last statement was proved in (2).

Remark V.1.6.3. In remark 9.2.8 of [1], Bhatt gave a proof that f is a homeomorphism that does
not use teh approximation lemma (corollary V.1.6.5). We give it here for fun. Step (1) and (2)
are as in the proof of the theorem above, and then the next steps are :

(3’) As in (5) of the proof above, by corollary V.1.5.15, if V ⊂ X[ is a rational do-
main and U = f−1(V ), then OX(U) is perfectoid and (OX[(V ),O+

X[(V )) is the tilt of
(OX(U),O+

X(U)). As, as f is surjective, we have V = f(U).

(4’) Let f ∈ A+, and let U = R
(
f,$
$

)
. Choose any g ∈ A[+ such that g] = f modulo $A+

(such a g always exists), and let V = R
(
g,$[

$[

)
. Then we have U = f−1(V ). Indeed, if
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x ∈ X , then x ∈ U if and only if |f |x ≤ |$|x; by the strong triangle inequality, this is
equivalent to |g]|x ≤ |($[)]|x, i.e. to |g|f(x) ≤ |$[|f(x), i.e. to f(x) ∈ V .

(5’) Let f ∈ A+. For n ∈ Z≥1, we set Un = R
(
f,$n

$n

)
. We claim that, for every n ≥ 1, there

exists a rational subset Vn ofX[ such that Un = f−1(Vn). We prove this by induction on n.
If n = 1, this is (4’). Suppose the result known for some n ≥ 1. Then, applying (3’) to Un
shows that Vn = Spa(OX(Un)[,O+

X(Un)[). As Un+1 is the rational domain R
(
f$−n,$

$

)
of Un, we can apply (4’) to get a rational domain Vn+1 of Vn such that Un+1 = f−1(Vn+1).
Finally, by corollary III.4.3.2, Vn+1 is also a rational domain in X[, so we have proved the
claim for Un+1.

(6’) Let f ∈ A+ and g ∈ A[+ such that f = g] modulo $A+, and let ε ∈ Z[1
`
] ∩ R>0. Then,

if U = R
(
$1−ε

f

)
and V = R

(
($[)1−ε

g

)
, we have U = f−1(V ). Indeed, let x ∈ X . Then

x ∈ U if and only if |$|x ≤ |$|εx|f |x, and again the strong triangle inequality implies that
this is equivalent to |$|x ≤ |$|εx|g]|x, i.e. to f(x) ∈ V .

(7’) Let f ∈ A+, n ∈ Z≥1 and c ∈ Z[1
`
] ∩ (0, 1). We claim that the rational domain

U = R
(
$nc

f

)
is the preimage by f of a quasi-compact open subset of X[. Indeed, write

U =
⋂n
r≥1 Ur, where

Ur = {x ∈ X | |$nc−(r−1)c|x ≤ |f |x ≤ |$nc−rc|x} ⊂ U ′r = {x ∈ X | ||f |x ≤ |$nc−rc|x}.

The subsets Ur and U ′r are rational domains of X , and, by (5’), there exists a rational
domain V ′r of X[ such that U ′r = f−1(V ′r ). To show that Ur is the preimage of a rational
domain ofX[, it suffices (thanks to (3’)) to show that it is the preimage of a rational domain
Vr of V ′r . Let g = f

$nc−rc ; then g ∈ OX(U ′r), and Ur = {x ∈ U ′r | |$|cx ≤ |g|x}, so the
existence of such a Vr follows from (6’). Finally, U is the preimage of the quasi-compact
open subset

⋃n
r=1 Vr of X[.

(8’) Let f, g ∈ A+ and N ∈ N, and let U = R
(
f,$N

g

)
. We claim that U is the preimage

of a quasi-compact open subset of X[. Let U ′ = R
(
$N

g

)
. By (7’), there exists a quasi-

compact open subset V ′ of X[ such that U ′ = f−1(V ′). Write V ′ =
⋃
i∈I V

′
i , with I finite

and the V ′i rational domains of X[, and let U ′i = f−1(V ′i ); note that the U ′i are rational
domains of X by (1). Let h = f$N

g
. Then h ∈ OX(U ′), so we can take its image in each

OX(U ′i). Let Ui be the rational domain R
(
h,$N

$N

)
in U ′i ; by (5’), there exists a rational

domain Vi of V ′i such that Ui = f−1(Vi). By corollary III.4.3.2, Ui (resp. Vi) is a rational
domain in X (resp. X[). Also, we clearly have U =

⋃
i∈I Ui, so U is the preimage of the

quasi-compact open subset
⋃
i∈I Vi of X[.

(9’) Let f1, . . . , fn, g ∈ A such that (f1, . . . , fn) = A, and let U = R
(
f1,...,fn

g

)
. After multi-

plying f1, . . . , fn, g by the same power of $, we may assume (without changing U ) that
f1, . . . , fn, g ∈ A+. Also, by lemma V.1.6.6, we may assume that fn is of the form $N .
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Then U =
⋂n−1
i=1 Ui, where Ui = R

(
fi,$

N

g

)
. By (8’), there exists quasi-compact open sub-

sets V1, . . . , Vn−1 of X[ such that Ui = f−1(Vi) for i ∈ {1, . . . , n−1}. Then V =
⋂n−1
i=1 Vi

is a quasi-compact open subset of X[, and U = f−1(V ).

(10’) Let x, y ∈ X with x 6= y. As X is T0, we may assume that there exists a rational domain
U of X such that x ∈ U and y 6∈ U . By (2), there exists a quasi-compact open subset V
of X[ such that U = f−1(V ), and then we have f(x) ∈ V and f(y) 6∈ V , and in particular
f(x) 6= f(y). So f is injective.

The main technical ingredient is the following approximation lemma.

Proposition V.1.6.4. (Lemma 6.5 of [22].) Let (K,K+) be a perfectoid Huber pair. We do not
assume that K is a field. 1 Let (A,A+) = (K〈X1/`∞

1 , . . . , X
1/`n

n 〉, K+〈X1/`∞

1 , . . . , X
1/`n

n 〉), and
let f ∈ A+ be a homogeneous element of degree d ∈ Z[1

`
]. For every c ∈ R≥0 and every ε ∈ R>0,

there exists gc,ε ∈ A+[ = K+[〈X1/`∞

1 , . . . , X
1/`∞
n 〉 (see corollary V.1.5.12) homogeneous of

degree d such that, for every x ∈ X = Spa(A,A+),

|f − g]c,ε|x ≤ |$|1−εx max(|f |x, |$|cx).

Proof. Fix f and ε ∈ Z[1
`
] ∩ (0, 1). We also fix a ∈ Z[1

`
] such that 0 < a < ε. If c ≤ c′,

then the result for c′ implies the result for c. So it suffices to prove the result for c = ar,
with r ∈ N. We show by induction on r that, for every r ∈ N, there exists εr > 0 and
gr ∈ K+[〈X1/`∞

1 , . . . , X
1/`∞
n 〉 homogeneous of degree d such that, for every x ∈ X ,

|f − g]r|x ≤ |$|1−ε+εrx max(|f |x, |$|arx ).

(This implies the desired inequality, because |$|x < 1 for every x ∈ X .)

If r = 0, we take ε0 = 0 and take for g0 any element of A[+ such that g]0 = f modulo $A+.

Suppose that r ≥ 0 and that we have found εr and gr. Decreasing εr only makes the inequality
more true, so we may assume that εr ∈ Z[1

`
] and εr ≤ ε − a. Let X[ = Spa(A[, A[+), and let

U [
r ⊂ X[ be the rational domain

R
(
gr,($[)ra

($[)ra

)
= {x ∈ X[ | |gr|x ≤ |$[|rax }.

Then Ur = f−1(U [
r) is the rational domain R

(
g]r,$

ra

$ra

)
= R

(
f,$ra

$ra

)
of X . Let h = f − g]r.

By the condition on gr, we have h ∈ $ra+1−ε+εrO+
X(Ur). By corollary V.1.5.15(iii), the

subrings OX(Ur)
◦ and A+〈

(
g]r
$ra

)1/`∞

〉 of OX(Ur) are almost equal, so $−ra−1+ε−εrh is al-

most an element of the second one, which means that we can find εr+1 ∈ Z[1
`
] such that

0 < εr+1 < εr and that $−ra−1+ε−εr+1h is in A+〈
(

g]r
$ra

)1/`∞

〉. As h and g]r are homoge-

neous of degree d, $−ra−1+ε−εr+1h is in the $-completion of
⊕

i∈Z[
1
`

]∩[0,1]

(
g]r
$ra

)i
A+
d−di, where

1Lemma 6.5 of [22] makes this assumption, but the proof seems to work in general.
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A+
d−di is the set of elements of A+ that are homogeneous of degree d − di. So we can write

h as a convergent sum $ra+1−ε+εr+1
∑

i∈Z[
1
`

]∩[0,1]

(
g]r
$ra

)i
hi, where hi ∈ A+

d−di (this means that

I := {i ∈ Z[1
`
] ∩ [0, 1] | hi 6= 0} is finite and countable, and that hϕ(n) → 0 as n → 0

for every bijection ϕ : N ∼→ I). For every i, choose si ∈ A[+d−di such that hi − s]i ∈ $A+.

We may choose the si such that the sum s :=
∑

i∈Z[
1
`

]∩[0,1]

(
gr

($[)ra

)i
si converges, and we set

gr+1 = gr + ($[)ra+1−ε+εr+1s. We claim that, for every x ∈ X , we have

|f − g]r+1|x ≤ |$|1−ε+εr+1
x max(|f |x, |$|a(r+1)

x ).

Let x ∈ X . First assume that |f |x > |$|arx . Then, by the induction hypothesis, we have
|g]r|x = |fr|x > |$|rax , so it suffices to show that, for every i ∈ Z[1

`
] ∩ [0, 1], we have∣∣∣∣∣

(
($[)ra+1−ε+εr+1

(
gr

($[)ra

)i
si

)]∣∣∣∣∣
x

≤ |$|1−ε+εr+1
x |f |x.

As |s]i|x ≤ 1, this follows from |(gir)]|x ≤ |f |x, which holds because i ∈ [0, 1]. Now we assume
that |f |x ≤ |$|arx , which implies that |g]r|x ≤ |$|arx . We claim that then

|f − g]r+1|x ≤ |$|a(r+1)+1−ε+εr+1
x ,

which clearly implies the result. As ar+1 > a(r+1)+1−ε+εr+1 (because εr+1 < εr < ε−a),
it is enough to show that f − g]r+1 ∈ $ar+1O+

X(Ur). Note that

gr+1

($[)ar
= gr

($[)ar
+

∑
i∈Z[

1
`

]∩[0,1]

($[)1−ε+εr+1

(
gr

($[)ar

)i
si,

and that all the terms of the sum in the right hand side are in O+
X[(U

[
r). So we get an equality

g]r+1

$ar = g]r
$ar +

∑
i∈Z[

1
`

]∩[0,1]

$1−ε+εr+1

(
g]r
$ar

)i
hi

in O+
X(Ur) modulo $. If we multiply this equality by $ar, we get f −g]r+1 = f −g]r−h modulo

$1+raO+
X(Ur). By the choice of h, f − g]r − h ∈ $1+raO+

X(Ur), so f − g]r+1 ∈ $1+raO+
X(Ur),

and this implies the desired inequality.

Corollary V.1.6.5. (See corollary 6.7(i) of [22].) Let (A,A+) be a perfectoid Huber pair, and let
X = Spa(A,A+). Fix a pseudo-uniformizer $ ∈ A+ of A such that $ = ($[)] for $[ ∈ A[+.
Let c ∈ R≥0, ε > 0 and f ∈ A. Then there exists gc,ε ∈ A[ such that, for every x ∈ X , we have

|f − g]c,ε|x ≤ |$|1−εx max(|f |x, |$|cx).
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V.2 Perfectoid spaces

Note that, if we take ε < 1, then the inequality of the proposition implies that, for every
x ∈ X , we have

max(|f |x, |$|Nx ) = max(|g]c,ε|x, |$|Nx ).

Proof. After increasing c (and multiplying f by a power of $), we may assume that c ∈ N and
f ∈ A+. As A[+/$[A[+ = A+/$A+, we can find g0, . . . , gc ∈ A[+ and fc+1 ∈ A+ such
that f = g]0 + $g]1 + . . . + $cg]c + $c+1fc+1. It suffices to treat the case where fc+1 = 0.
Consider the continuous ring morphism ψ : B := A〈T 1/`∞

0 , . . . , T
1/`∞
c 〉 → A sending T 1/`m

i

to (g
1/`m

i )]; this morphism sends B+ to A+. By assumption, we have f = psi(f ′), where
f ′ = T0 + $T1 + . . . + $cTc. By proposition V.1.6.4, there exists g′ ∈ A+[〈T 1/`∞

0 , . . . , T
1/`∞
c 〉

homogeneous of degree 1 such that, for every y ∈ Spa(B,B+), we have

|f ′ − (g′)]|y ≤ |$|1−εy max(|f ′|y, |$|cy).

So, if g = ψ[(g′), then g] = ψ((g′)]), and we have

|f − g]c,ε|x ≤ |$|1−εx max(|f |x, |$|cx)

for every x ∈ Spa(A,A+).

Lemma V.1.6.6. Let (A,A+) be a Huber pair with A a Tate ring, let $ be a pseudo-uniformizer
of A, and let f1, . . . , fn, g ∈ A such that (f1, . . . , fn) = A. Then there exists N ∈ N such that

R

(
f1, . . . , fn

g

)
= R

(
f1, . . . , fn, $

N

g

)
.

Proof. Write
∑n

i=1 aifi = 1, with a1, . . . , an ∈ A. As A+ is open in A, there exists N ∈ N such

that $Nai ∈ A+ for every i ∈ {1, . . . , n}. Then, if x ∈ R
(
f1,...,fn

g

)
, we have

|$N |x = |
n∑
i=1

$Naifi|x ≤ max
1≤i≤n

|fi|x ≤ |g|x,

hence x ∈ R
(
f1,...,fn,$N

g

)
. The other inclusion is obvious.

V.2 Perfectoid spaces

Definition V.2.1. (Definition 6.15 of [22].) A perfectoid space is an adic space (definition
III.6.5.3) that is locally isomorphic to Spa(A,A+), for (A,A+) a perfectoid Huber pair. We
say that X is affinoid perfectoid if X = Spa(A,A+) for (A,A+) a perfectoid Huber pair. A
morphism of perfectoid spaces is a morphism of adic spaces.
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V Perfectoid algebras

By theorem V.1.6.1, for every perfectoid Huber pair (A,A+), the space Spa(A,A+) is an
affinoid perfectoid space (i.e. its structure presheaf is a sheaf). Theorem V.1.6.1 also has the
following corollary.

Corollary V.2.2. (Proposition 6.17 of [22].) Every perfectoid space X has a tilt X[, which is a
perfectoid space over F` with an isomorphism of topological spaces (.)[ : X → X[, such that,
for every affinoid perfectoid subspace U of X , if U [ is the image of U in X[, then the tilt of the
pair (OX(U),O+

X(U)) is (OX[(U [),O+
X[(U

[)).

Moreover, tilting induces an equivalence between the categories of perfectoid spaces over X
and over X[.

Unlike general adic spaces, perfectoid spaces admit fiber products.

Proposition V.2.0.1. (Proposition 6.18 of [22].) Let X → Z and Y → Z be two morphism of
perfectoid spaces. Then the fiber product X ×Z Y exists in the category of adic spaces, and it is
a perfectoid space.

Proof. We may assume that X , Y and Z are perfectoid affinoid, so X = Spa(A,A+),
Y = Spa(B,B+) and Z = Spa(C,C+). As the maps C → A and C → B are automati-
cally adic (because A, B and C are Tate rings, see proposition II.1.3.4), the completed tensor
product D := Â⊗C B exists and is a Tate ring (see proposition II.3.2.1 and corollary II.3.1.9).
We take for D+ the completion of the integral closure of the image of A+ ⊗C+ B+ in D. Then
Spa(D,D+) is the fiber product ofX and Y over Z in the category of adic spaces, and it remains
to prove that (D,D+) is a perfectoid pair. See the proof of proposition 6.18 of [22] for details.

V.3 The almost purity theorem

V.3.1 Statement

Definition V.3.1.1. (Definition 7.1 of [22].)

(i) A morphism (A,A+) → (B,B+) of Huber pairs is called finite étale if B is a finite étale
A-algebra and has the corresponding canonical topology (see proposition II.4.2.2) and if
B+ is the integral closure of A+ in A.

(ii) A morphism f : X → Y of adic spaces is called finite étale if there is a cover
of Y by open affinoid subsets V such that f−1(V ) is affinoid and the morphism
(OY (V ),O+

Y (V ))→ (OX(U),O+
X(U)) is finite étale.
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V.3 The almost purity theorem

(iii) A morphism f : X → Y of adic spaces is called étale if, for every x ∈ X , there exists
open neighborhoods U and V of x and f(x) and a commutative diagram

U
j //

f|U   

W

p
��
V

where j is an open embedding and p is finite étale.

Remark V.3.1.2. The definition of an étale morphism that we give here is not Huber’s definition
(Huber’s definition is modelled on the definition for schemes, see definition 1.6.5 of [16]). How-
ever, it is equivalent to it for adic spaces that are locally of finite type over a non-archimedean
field (for example for adic spaces coming from rigid analytic varieties), by lemma 2.2.8 of [16],
and it also gives a reasonable notion for adic spaces that are locally adic spectra of perfectoid
pairs.

The main result of this section is the following :

Theorem V.3.1.3. (Theorem 7.9 of [22].) Let (A,A+) be a perfectoid Huber pair, and let
X = Spa(A,A+).

(i) The functor Y 7−→ OY (Y ) induces an equivalence between the category of finite étale
maps of adic spaces Y → X and the category of finite étale maps of rings A→ B.

(ii) If A → B is a finite étale map of rings and B+ is the integral closure of A in B, then B
(with its canonical topology) is perfectoid and (B,B+) is a perfectoid Huber pair.

(iii) Tilting induces an equivalence between the categories of finite étale Huber pairs over
(A,A+) and over (A[, A[+).

This theorem will be proved in section V.3.7. It has an immediate corollary for étale sites of
perfectoid spaces.

Definition V.3.1.4. Let X be a perfectoid space. Then the étale site Xét of X is the category
of étale morphisms of perfectoid spaces Y → X , with the Grothendieck topology for which
coverings are families (u : Yi → Y )i∈I such that Y =

⋃
i∈I ui(Yi).

Corollary V.3.1.5. If X is a perfectoid space, then tilting induces an isomorphism of sites
Xét ' X[

ét, and this isomorphism is functorial in X .

If (A,A+) → (B,B+) is a finite étale map of perfectoid Huber pairs, we will need a way to
describe the map of rings of integral elements A+ → B+. This map is not étale, but we will see
that it is almost étale, for the correct definition of “almost”.

Definition V.3.1.6. (See sections 4.2 and 4.3 of [1].) Let (A,A+) be a perfectoid Huber pair, let
B+ be a A+-algebra, and let M be a B+-module.
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V Perfectoid algebras

(i) We say that M is almost of finite presentation (or almost finitely presented) if, for every
a ∈ A00, there exists a finitely presented B+-module Ma and a morphism of B+-modules
Ma →M whose kernel and cokernel are killed by a.

(ii) We say that M is almost projective if, for every B+-module N and every integer i ≥ 1, the
B+-module ExtiB+(M,N) is almost zero.

(iii) Suppose that M is a B+-algebra. We say that it is almost finite étale (over B+) if it is
almost of finite presentation, almost projective and if there exists e ∈ (M ⊗B+ M)∗ such
that e2 = e, µ∗(e) = 1 and ker(µ)∗ ·e = 0, where µ : M⊗B+M →M is the multiplication
map.

Remember that, by remark V.1.5.7, M∗ is a (B+)∗-algebra in the situation of (iii).

Remark V.3.1.7. (1) As in proposition V.1.5.4, we can require the conditions of definition
V.3.1.6(i) only for fractional power of a well-chosen pseudo-uniformizer of A.

(2) We can define the abelian category of almost B+-modules by taking the quotient of the
category of B+-modules by the Serre subcategory of almost zero B+-modules, and many
of the “almost” notions have a natural interpretation in this category. However, a B+-
module that is almost projective is in general not a projective object of the category of
almost B+-modules; for example, B+ itself is almost projective, but it is not a projective
almost B+-modules. (The category of almost modules has tensor products and internal
Homs defined in the obvious way, and almost projectivity can be defined in the usual way
using the internal Hom functor.)

Remark V.3.1.8. The definition of almost finite étale maps is motivated by the following result
in ordinary commutative algebra : Let R → S be a locally free map of rings (i.e. let S be a flat
R-algebra that is finitely presented as a R-module). Then R → S is étale if and only if the map
of rings µ : S ⊗R S → S, a⊗ b 7−→ ab has a section, i.e. if and only there exists an idempotent
e ∈ S ⊗R S such that µ(e) = 1 and (Kerµ)e = 0.

Most of theorem V.3.1.3 will follow from the next result, which is slitghly more precise.

Theorem V.3.1.9. Let ϕ : (A,A+) → (B,B+) be a morphism of Huber pairs, with (A,A+)
perfectoid. Choose a pseudo-uniformizer $ ∈ A+ of A that is of the form $ = ($[)], with
$[ ∈ Aflat+ a pseudo-uniformizer of A[.

(i) If ϕ is finite étale, then B is also perfectoid.

(ii) Suppose that B is perfectoid. Then the following conditions are equivalent :

(a) ϕ is finite étale;

(b) the A+-algebra B+ is almost finite étale;

(c) the A+/$A+-algebra B+/$B+ is almost finite étale.

This theorem will be proved in section V.3.7.

172



V.3 The almost purity theorem

V.3.2 The trace map and the trace pairing

Let R → S be a finite locally free morphism of rings (i.e. S is a flat R-module of finite pre-
sentation, or equivalently a finitely generated projective R-module). For every R-linear endo-
morphism u of S, we can define its trace Tr(u) ∈ R in the following way : There exists an
affine covering (Spec(Ri))i∈I of Spec(R) such that S ⊗R Ri is a free Ri-module of finite rank
for every i ∈ I . If i ∈ I , then u defines a Ri-linear endomorphism ui of S ⊗R Ri, so we can
define Tr(ui) ∈ Ri, and these elements glue to a global section Tr(u) of OSpec(R).

If a ∈ S, left multiplication by a on S defines a R-linear endormophism on S, that we denote
by ma. We get a R-linear morphism TrS/R : S → R, a 7−→ Tr(ma).

Finally, the trace pairing is the R-linear morphism Tr : S ⊗R S → R, (a, b) 7−→ TrS/R(ab).

Remember the following “well-known” result.

Theorem V.3.2.1. Let R → S be a finite locally free morphism of rings. Then the following
conditions are equivalent :

(i) The morphism R→ S is étale.

(ii) The trace pairing Tr : S ⊗R S → R is nondegenerate, i.e. the R-linear morphism
S → HomR(S,R) that it defines by adjunction is an isomorphism (of R-modules).

(iii) There exists an idempotent e ∈ S ⊗R S such that µ(e) = 1 and (Kerµ)e = 0, where
µ : S ⊗R S → S is the multiplication. In other words, there exists an isomorphism of S-
algebras S⊗RS ' S×S ′ (that does not preserve unit elements) such that µ : S⊗RS → S
corresponds to the first projection.

We will also need the following results.

Lemma V.3.2.2. Let R → S be a finite locally free morphism of rings, and let R+ be a subring
of R that is integrally closed in R and such that R = R+[ 1

$
], for some $ ∈ R+. Let S+ be the

integral closure of R+ in S. Then S = S+[ 1
$

].

Proof. Note that the rank of S as a R-module is a locally constant function on Spec(R). As
Spec(R) is quasi-compact, we can write Spec(R) as a finite disjoint union of open and closed
subschemes over which the rank of S is constant, and it suffices to prove the result over each of
this subschemes. So we may assume that S has constant R-rank, say n.

Let a ∈ S, and let f =
∑n

r=0(−1)rTr(∧rma)T
r ∈ R[T ] be the characteristic polynomial of

ma, where ∧rma :
∧r
R S →

∧r
R S is the rth exterior power of ma. By the Cayley-Hamilton

theorem, we have f(a) = 0, so a ∈ S+ if Tr(∧rma) ∈ R+ for 0 ≤ r ≤ n. In general, as
R = R+[ 1

$
], we may find m ∈ N such that $mrTr(∧rma) = Tr(∧rm$ma) =∈ R+ for every

r ∈ {0, . . . , n}, so $ma ∈ S+, and we are done.
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Lemma V.3.2.3. Let R→ S be a finite étale map of rings, and let e ∈ S ⊗R S be an idempotent
as in theorem V.3.2.1(iii). Write e =

∑n
i=1 ai⊗ bi, with n a positive integer and ai, bi ∈ S. Then,

for every c ∈ S, we have

n∑
i=1

aiTrS/R(cbi) =
n∑
i=1

biTrS/R(cai) = c.

Proof. Let µ : S ⊗R S → S be the multiplication, and let S ′ = Kerµ. As (Kerµ)e = 0,
we have (a ⊗ 1)e = (1 ⊗ a)e (in S ⊗R S) for every a ∈ S. We get an isomorphism of S-
algebras S × S ′

∼→ S ⊗R S sending (a, b) to (a ⊗ 1)e + b, whose inverse sends x ∈ S ⊗R S
to (µ(x), x − (µ(x) ⊗ 1)e). Note that

∑n
i=1 biTrS/R(cai) = TrS⊗RS/S((c ⊗ 1)e), where we see

S ⊗R S as a S-algebra using the map b 7−→ b⊗ 1. As the trace is additive on direct products of
finite étale S-algebras, we see that TrS⊗RS/S((c ⊗ 1)e) = TrS/S(c) + TrS′/S(0) = c. We prove
the other equality in the same way (this time by using the map S → S ⊗R S, b 7−→ 1⊗ b).

V.3.3 From almost finite étale to finite étale

In this section, we fix a perfectoid Huber pair (A,A+), and a pseudo-uniformizer $ ∈ A+ of A
that has a compatible system ($1/`n)n≥0 of `th power roots and such that $ divides ` in A+.

Proposition V.3.3.1. We have a fully faithful functor from the category of almost finite étale
A+-algebras B0 (with morphisms taken up to almost equality) to the category of finite étale
(A,A+) pairs (B,B+), defined by sending B0 to the pair (B := B0[ 1

$
], B+), where B+ is the

integral closure of A+ in B. Moreover, every pair (B,B+) in the essential image of this functor
is perfectoid.

Proof. The functor is well-defined by lemma V.3.3.3. Suppose that B0 is an almost finite étale
A+-algebra, with image (B,B+). By lemma V.3.3.3 again, we have (B0)∗ = B0, so we can
almost recover B0 from (B,B+). This shows that the functor is fully faithful.

Lemma V.3.3.2. If M is an almost finitely presented A+-module, then M [ 1
$

] is a finitely pre-
sented A-module. If moreover M is almost projective, then M [ 1

$
] is a projective A-module, and

M is almost $-torsionfree (i.e. the submodule M [$∞] of $-power torsion elements of M is
almost zero).

Proof. (1) We show that M [ 1
$

] is finitely presented as a A-module. By assumption, there
exists a finitely presented A+-module N and a morphism of A+-modules N → M whose
kernel and cokernel are $-torsion. So we get an isomorphism N [ 1

$
] ' M [ 1

$
], and N [ 1

$
]

is a finitely presented A-module.
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(2) We show that the A-module M [ 1
$

] is projective if M is almost projective. (See the proof
of lemma 2.4.15 of [11].)

Let ε ∈ A00. As M is almost finitely presented, there exists ϕ : (A+)n → M such
that εCoker(ϕ) = 0. Let M ′ = Im(ϕ), ψ : An → M ′ be the induced surjection and
j : M ′ → M be the inclusion. Then we have ε(M/M ′) = 0, so there exists a A+-linear
map γ : M → M ′ such that j ◦ γ : M → M is multiplication by ε. We have an exact
sequence

HomA+(M, (A+)n)
ψ∗→ HomA+(M,M ′)→ Ext1

A+(M,Kerψ).

As M is almost projective, the third term is almost zero, so ψ∗ is almost surjective. Let
δ ∈ A00. Then δγ ∈ HomA+(M,M ′) is in the image of ψ, so there exists u : M → (A+)n

such that δγ = ψ ◦ u. In particular, composing by the inclusion j : M ′ → M , we see that
(δε)idM = ϕ ◦ u. If we take ε = $1/` and δ = $(`−1)/`, we see that we can find maps
v : (A+)n → M and u : M → (A+)n such that v ◦ u = $idM . But then $−1v[ 1

$
] is a

section of u[ 1
$

], so M [ 1
$

] is a direct factor of An, hence it is a projective A-module.

(3) We show that M is almost $-torsionfree if M is almost projective. Let N = M [$∞]. Let
r ∈ N. In (2), we have shown that we can find maps v : (A+)n →M and u : M → (A+)n

such that v ◦ u = $1/`r idM . If x ∈ N , then u(x) = 0 because A+ is $-torsionfree, so
$1/`rx = v(u(x)) = 0. As r was arbitrary, this shows that N is almost zero.

Lemma V.3.3.3. If B0 is an almost finite étale A+-algebra, then B := B0[ 1
$

] is a finite étale
A-algebra, it is perfectoid for its canonical topology, (B0)∗ = B0, and the integral closure B+

of A+ in B is a ring of integral elements of B.

Proof. We first reduce to the case where B0 is $-torsionfree. Let J = B0[$∞] be the ideal of
$-power torsion elements of B0. It suffices to show that J is almost zero. But this is the last
statement of lemma V.3.3.2.

We already know that B is a finitely presented projective A-module by lemma V.3.3.2. We de-
note the multiplication map onB0 by µ : B0⊗A+B0 → B0. AsB0 is almost finite étale over A+,
there exists an idempotent e ∈ (B0 ⊗A+ B0)∗ such that µ∗(e) = 1 and (Kerµ∗)e = 0. Note that
B⊗AB = (B0⊗A+ B0)[ 1

$
] = (B0⊗A+ B0)∗[

1
$

], and that the multiplication ν : B⊗AB → B is
equal to µ[ 1

$
] and to µ∗[ 1

$
]. Let f be the image of e by the obvious map (B0⊗A+B0)∗ → B⊗AB.

Then f is an idempotent, ν(f) = 1 and (Ker ν)f = 0. In particular, the map ν : B ⊗A B → B
has a section, so it is flat. This means that the map A→ B is weakly étale, and we have already
seen that it is of finite presentation. The fact that B is an étale A-algebra now follows from [25,
Lemma 0CKP].

In particular, we can put the canonical topology on B (as a A-module), which makes B into a
complete topological A-algebra. Let u : M → B0 be a A+-module map with $-torsion kernel
and cokernel, and such that M is a finitely generated A+-module. We may assume that M is
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$-torsionfree. Then u induces an isomorphism M [ 1
$

]
∼→ B, and M with its $-adic topology is

an open subgroup of M [ 1
$

]. As $−1B0 ⊂ u(M) ⊂ B0, this shows that B0 is open and bounded
in B. Also, as B0 ⊂ $−1u(M), B0 also has the $-adic topology. So B is a complete Tate ring.

By lemma V.3.3.4, the map a 7−→ a is an almost isomorphism from B0/$
1/`B0 to B0/$B0.

So we can apply proposition V.1.5.10 to conclude that B is perfectoid and that B0 = (B0)∗.

It remains to show that B+ is an open subring of B (we already know that B+ ⊂ B0, since
B0 ⊂ B0 and B0 contains the image of A+ in B). We have seen that there exists a finitely
generated A+-submodule M of B such that M ⊂ B0 ⊂ $−1M . Let b ∈ B0. Then $bM ⊂ M ,
so $b is integral over A+. This shows that $B0 ⊂ B+, hence that B+ is open.

Lemma V.3.3.4. (Lemma 4.3.8 of [1].) 2 Let R→ S be a weakly étale map of Fp-algebras; this
means that the maps R→ S and S ⊗R S → S, a⊗ b 7−→ ab are both flat. Then the diagram

R
FrobR //

��

R

��
S

FrobS

// S

(where FrobR and FrobS are the absolute Frobenius maps a 7−→ ap) is a pushout square of
rings. In particular, if R is perfect, so is S.

V.3.4 The positive characteristic case

Proposition V.3.4.1. (Proposition 4.3.4 of [1].) Let (A,A+) be a perfectoid Huber pair of char-
acteristic `, and let $ ∈ A+ be a pseudo-uniformizer of A. Let η : A+ → B0 be an integral map
with B0 perfect. Suppose that the induced map η[ 1

$
] : A→ B := B0[ 1

$
] is finite étale. Then η is

almost finite étale.

Proof. Let J = B0[$∞] be the ideal of $-power torsion elements of B0. We claim that J is
almost zero. Indeed, let b ∈ J , and let n ∈ N such that $nb = 0. Then, for every r ∈ N, we
have ($n/`rb1/`r)`

r
= 0, hence $n/`rb1/`r = 0 because B0 is perfect, hence $n/`rb = 0. By

proposition V.1.5.4, this implies that J is almost zero. So replacing B0 by B0/J affects neither
the hypothesis nor the conclusion, and we may assume that J = 0, i.e. that B′0 is $-torsionfree.

Now let B′ be the integral closure of B0 in B. We show that B′ is almost equal to B0, which
will allow us to replace B0 by B′. Let f ∈ B′. Then the B0-module of B spanned by fN is
finitely generated, so there exists r ∈ N such that $rfn ∈ B0 for every n ∈ N. As B0 is perfect,
this implies that $r/`nf ∈ B0 for every n ∈ N, so f ∈ (B0)∗ by proposition V.1.5.8(ii). So we

2Almostify this lemma.

176



V.3 The almost purity theorem

have shown that B0 ⊂ B′ ⊂ (B0)∗, and the fact that B0 and B′ are almost equal follows from
proposition V.1.5.8(i).

By the previous two paragraphs, we may assume that B0 is $-torsionfree and integrally
closed in B. As A → B is finite étale by assumption, we can find an idempotent
e ∈ B ⊗A B = (B0 ⊗A+ B0)[ 1

$
] such that µ(e) = 1 and (Kerµ)e = 0, where µ : B ⊗A B → B

is the multiplication map (see remark V.3.1.8). Choose r ∈ N such that $re ∈ B0 ⊗A+ B0. As e
is idempotent, we have e`n = e for every n ∈ N, hence e = e1/`n because B ⊗A B is perfect (by
lemma V.3.3.4). As B0 ⊗A+ B0 is also perfect (by the same lemma) and injects in B ⊗A B, we
see that ($re)1/`n = $r/`ne ∈ B0⊗A+B0 for every n ∈ N, so e ∈ (B0⊗A+ B0)∗ by proposition
V.1.5.8(ii).

It remains to show that B0 is almost finitely presented and almost projective over A+. Let
n ∈ N. We just proved that $1/`ne ∈ B0 ⊗A+ B0, so we can write $1/`ne =

∑
i∈I ai ⊗ bi,

with I finite and ai, bi ∈ B0. Consider the maps α : B → AI and β : AI → B defined by
α(b) = (TrB/A(bai))i∈I and β((ci)i∈I) =

∑
i∈I cibi. We claim that β◦α is equal to multiplication

by $1/`n . Indeed, let b ∈ B. Then

β(α(b)) =
∑
i∈I

biTrB/A(bai) = $1/`nTr((b⊗ 1)e),

so the claim follows from lemma V.3.2.3.

Moreover, as B0 is integrally closed in B (and A+ is integrally closed in A), the map
TrB/A : B → A sends B0 to A+ as B0, so α sends B0 to (A+)I . It is clear that β sends (A+)I to
B0. As B0 and A+ are $-torsionfree, the restrictions to α and β define maps α0 : B0 → (A+)I

and β0 : (A+)I → B0 such that β0◦α0 is equal to multiplication by$1/`n . Consider the sequence

(A+)I
γ0→ (A+)I

β0→ B0,

where γ0 = $1/`m id − α0 ◦ β0. Then β0 ◦ γ0 = 0, so we get a map Coker(γ0) → B0

whose kernel and cokernel are killed by $1/`m .3 As Coker(γ0) is clearly finitely presented,
this shows that B0 is an almost finitely presented A+-module. Let N be another A+-module,
and let i ≥ 1 be an integer. Then multiplication by $1/`m on ExtiA+(B0, N) factors as

ExtiA+(B0, N)
β∗0→ ExtiA+((A+)I , N)

α∗0→ ExtiA+(B0, N). As ExtiA+((A+)I , N) = 0, this shows
that multiplication by $1/`m is 0 on ExtiA+(B0, N). Hence ExtiA+(B0, N) is almost zero.

Corollary V.3.4.2. (Theorem 4.3.6 of [1].) Let (A,A+) be a perfectoid Huber pair of character-
istic `, and let $ ∈ A+ be a pseudo-uniformizer of A. Then the functor of proposition V.3.3.1 is
an equivalence of categories.

In other words, we have an equivalence of categories from the category of finite étale A-
algebras to the category of almost finite étale A+-algebras (where we identity two maps that are

3Check.
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almost equal). This equivalence is given by sending a finite étale map A → B to the integral
closure B+ of A+ in B, and by sending an almost finite étale A+-algebra B0 to the A-algebra
B0[ 1

$
].

In particular, every finite étale A-algebra is perfectoid for the canonical topology.

Proof. Let C (resp. C ′) be the category of finite étale A-algebras (resp. almost finite étale
A+-algebras with almost equal maps identified). By lemma V.3.3.3, the formula B0 7−→ B0[ 1

$
]

define a functor from Ψ : C ′ → C , and every A-algebra in this essential image of this functor is
perfectoid.

Let B be a finite étale A-algebra, and let B+ be the integral closure of A+ in B. By lemma
V.3.2.2, we have B = B+[ 1

$
]. By proposition V.3.4.1, B+ is an almost finite étale A+-algebra.

So sending B to B+ defines a functor Φ : C → C ′.

It remains to show that the functors Φ and Ψ are mutually quasi-inverse. If B is a finite étale
A-algebra and B+ = Φ(B), then we have already seen that B = B+[ 1

$
] = Ψ(B+). Conversely,

let B0 be an almost finite étale A+-algebra, let B = B0[ 1
$

], and let B+ be the integral closure of
A+ in B. We claim that (B0)∗ = B+

∗ , which will give a functorial isomorphism between B0 and
B+ in C ′. But this is proved in lemma V.3.3.3.

V.3.5 Deforming almost finite étale extensions

The main result of this section is the following :

Theorem V.3.5.1. (Theorem 5.3.27 of [11].) Let (A,A+) be a perfectoid pair, and let$ ∈ A+ be
a pseudo-uniformizer of A. Then reduction modulo $ induces an equivalence of category from
the category of almost finite étale A+-algebras to the category of almost finite étale A+/$A+-
algebras.

The following definition is temporary. Eventually, we will prove that it is equivalent to defini-
tion V.3.1.1(i).

Definition V.3.5.2. Let (A,A+) be a perfectoid Huber pair. A pair (B,B+) is called strongly
finite étale if :

(i) B+ is an almost finite étale A+-algebra;

(ii) B+ is the integral closure of A+ in B.

Corollary V.3.5.3. Let (A,A+) be a perfectoid Huber pair. Any strongly finite étale pair over
(A,A+) is also perfectoid, and tilting induces an equivalence between the categories of strongly
finite étale pairs over (A,A+) and of finite étale pairs over (A[, A[+).
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Proof. Let $[ ∈ A[+ be a pseudo-uniformizer of A[ such that $ := ($[)] is a pseudo-
uniformizer of A dividing ` in A+.

By proposition V.3.3.1, every strongly finite étale pair over (A,A+) is perfectoid, and the
category of strongly finite étale pairs over (A,A+) is equivalent to the category of almost finite
étale A+-algebras; we have a similar result for (A[, A[+). By corollary V.3.4.2, every finite
étale pair over (A[, A[+) is strongly finite étale. Finally, by theorem V.3.5.1, the category of
almost étale A+-algebras (resp. A[+-algebras) is equivalent to the category of almost finite étale
A+/$A+-algebras (resp. A[+/$[A[+-algebras). So we get an equivalence between the category
of strongly finite étale pairs over (A,A+) and the category of finite étale pairs over (A[, A[+),
and this is the tilting equivalence by definition of tilting and by remark V.1.2.3.

V.3.6 The case of perfectoid fields

Proposition V.3.6.1. (Proposition 3.2.10 of [1], proof due to Kedlaya.) Let K be a perfectoid
field. If K[ is algebraically closed, then so is K.

Remember that we know that K[ is a perfectoid field by proposition V.1.2.9.

Proof. We may assume that K has characteristic 0. Let f(T ) ∈ K0[T ] be a monic polynomial of
degree d ≥ 1. We want to find a root of f(T ) in K0. We will construct by induction a sequence
(xn)n≥0 of elements of K0 such that, forr every n ∈ N :

(a) |f(xn)| ≤ |`|n;

(b) if n ≥ 1, then |xn − xn−1| ≤ |`|(n−1)/d.

Condition (b) shows that (xn)n≥0 converges to some x ∈ K0, and then (a) shows that f(x) = 0.

We set x0 = 0. Suppose that n ≥ 0 and that we have constructed x0, . . . , xn satisfying (a) and
(b). We want to construct xn+1 satisfying the same properties. Write f(T + xn) =

∑d
i=0 biT

i,
with b0, . . . , bd ∈ K0. We have bd = 1 by assumption. If b0 = 0, then f(xn) = 0, so we may
take xm = xn for every m ≥ n+ 1. From now on, we assume that b0 6= 0. Let

c = min{| b0
bj
|
1
j , 1 ≤ j ≤ d, bj 6= 0}.

As bd 6= 0, we have c ≤ |b0|
1
d ≤ 1. Let |.| be the rank 1 valuation giving the topology of K.

The value groups of |K×| and |K[|[ are canonically isomorphic by construction of |.|[. 4 As K[

is algebraically closed, |K×| ' |(K[)×|[ is a Q-vector space, so there exists u ∈ K× such that
c = |u|. As c ≤ 1, we have u ∈ K0. By definition of c, we have bi

b0
ui ∈ K0 for every i, and there

exists at least one i ≥ 1 such that bi
b0
ui 6∈ K00, i.e. such that bi

b0
ui is a unit in K0.

4Add a lemma ?
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Choose t ∈ K[0 such that |t]| = |`|. It is easy to see that K[0/tK[0 ' K0/`K0.
5 Consider any lift g(T ) ∈ K[0[T ] of the image of the polynomial

∑d
i=0

bi
b0
uiT i in

(K0/`K0)[T ] ' (K[0/tK[0)[T ]. By lemma V.3.6.2, there exists a unit y in K[0 such that
g(y) = 0.

We set xn+1 = xn + uy]. We have to check that this xn+1 satisfies conditions (a) and (b). Firs,
we have

f(xn+1) = f(uy] + xn) =
d∑
i=0

biu
i(yi)] = b0

(
d∑
i=0

bi
b0

ui(yi)]

)
.

As y is a root of g(T ), the sum between parentheses is equal to 0 modulo `. So

|f(xn+1)| ≤ |b0||`| = |f(xn)||`| ≤ |`|n|`| = |`|n+1.

This proves (a). Moreover, as y is a unit (so |y]| = 1), we have

|xn+1 − xn| = |uy]| = |u| = c ≤ |b0|
1
d = |f(xn)|

1
d ≤ |`|

n
d .

This proves (b).

Lemma V.3.6.2. (Lemma 3.2.11 of [1].) Let K be a complete and algebraically closed non-
archimedean field, and R = K0. Let f(T ) ∈ R[T ] be a polynomial of degree e ≥ 1 such that
the constant coefficient and at least one other coefficient of f(T ) are units in R. Then f(T ) has
a root which is a unit of R.

Proof. Let m = K00 be the maximal ideal of R and k = R/m be its residue field. By the hy-
pothesis, the image of f(T ) in k[T ] is a polynomial of degree≥ 1 whose constant coefficient is a
unit, so we can a pseudo-uniformizer $ of K such that the image of f(T ) in R/$R[T ] is a poly-
nomial of degree ≥ 1 whose leading term and constant term are units in R/$R. We also write
f : R[T ] → R[T ] for multiplication by f(T ). Then the induced map R/$R[T ] → R/$R[T ]

is finite free of degree ≥ 2, so, if R〈T 〉 is the $-completion of R[T ] and f̂ : R〈T 〉 → R〈T 〉
is the extesion of f by continuity, the map f̂ is also finite free of degree ≥ 2. In particular, the
ring S := R〈T 〉/(f(T )) is a finite free R-algebra of dimension ≥ 2. As R is a henselian local
ring, we can write S '

∏
i∈I Si, where I is finite and each Si is a finite free local R-algebra.

Reducing modulo m, we get k[T ]/(f(T )) '
∏

i∈I Si/m, with the Si/m local. As the constant
term of f(T ) modulo m is nonzero, at least one of the roots of f(T ) modulo m is a unit in k. So
the map k[T ]/(f(T ))

∼→
∏

i∈I Si/m sends T to a unit in at least one of the residue fields of the
Si/m; as the Si are local, the map R[T ]/(f(T )) sends T to a unit in at least one of the Si, say
Si0 . As Si0 is a finite free R-module and K is algebraically closed, the ring Si0,red[

1
$

] is isomor-
phic to a nonempty product of copies of K. Projecting on one of the copies gives a morphism
Si0 → K. As Si0 is integral over R and R is integrally closed in K, this map factors through a

5Add a lemma ?
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map Si0 → R. So we have produced maps R[T ]/(f(T )) → Si0 → R; the first one sends T to a
unit in Si0 , so the composition sends T to a unit in R. The image of T by this composition is the
desired root of f(T ).

Corollary V.3.6.3. (See theorems 3.2.8 and 6.2.10 of [1].) Let K be a perfectoid field. Then :

(i) Any finite separable field extension of K is perfectoid.

(ii) If L/K is a finite separable field extension, then L/K and L[/K[ have the same degree.

(iii) Tilting induces an equivalence between the categories of finite separable field extensions
of K and of K[.

Proof. Let Kfet (resp. K[
fet) be the category of finite separable field extensions of K (resp.

K[). By corollary V.3.5.3, untilting induces a fully faithful functor (.)] : K[
fet → Kfet that

preserves degrees, and it suffices to show that this functor is essentially surjective. As (.)] is
fully faithful, it preserves automorphism groups, and so it preserves Galois extensions. By the
main theorem of Galois theory, if L/K[ is a finite Galois extension, then (.)] induces a bijection
between subextensions of L/K] and of L]/K. So it suffices to show that every finite separable
extension of K embeds in some L], for L/K[ a finite Galois extension.

Let C = K̂[ be the completion of an algebraic closure of K[. This is an algebraically closed
perfectoid extension of K[, and its untilt C] over K is a perfectoid extension of K, that is also
algebraically closed by proposition V.3.6.2. As C is the filtered inductive limit in the category
of perfectoid K[-algebras of all the finite separable extensions L of K[ contained in C. Let
C0 ⊂ C] be the union of all the L], for L/K[ a finite separable extension contained in C. Then
C0 is clearly algebraic over K, and it is dense in C]. (By construction of the untilting functor.)
By Krasner’s lemma (see for example section 25.2 of [20]), C0 is algebraically closed if and only
if C] is, so C0 is algebraically closed. This implies that every finite separable field extension of
K embeds into C0, as desired.

V.3.7 Proof of theorems V.3.1.3 and V.3.1.9

V.3.7.1 Proof of theorem V.3.1.3 from theorem V.3.1.9

Suppose that theorem V.3.1.9 holds. This immediately implies (ii) and (iii) of theorem V.3.1.3.

We show (i). Let X = Spa(A,A+), and let Y → X be a finite étale map of adic spaces. By
definition, there is a finite cover X =

⋃n
i=1 Spa(Ai, A

+
i ) by rational domains such that, for every

i, Y ×X Spa(Ai, A
+
i ) ' Spa(Bi, B

+
i ) with (Ai, A

+
i ) → (Bi, B

+
i ) a finite étale map of Huber

pairs. By theorem V.3.1.9, for every i, the pair (Bi, B
+
i ) is perfectoid and B+

i is almost finite
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étale over A+. In particular, Y is a perfectoid space, and tilting the situation gives a finite étale
map Y [ → X[ := Spa(A[, A[+). In other words, we may assume that A has characteristic `.
Then we finish as in the proof of proposition 7.6 of [22] : We can write (A,A+) as the completion
of an inductive limit of perfections (A′, A′+)perf of strongly Noetherian Huber pairs, the finite
étale morphism Y → X descend to a finite étale morphism to Spa of one of these (A′, A′+)perf

which comes from a finite étale morphism to Spa(A′, A′+) by the topological invariance of the
étale site, this morphism comes from a finite étale A′-algebra by example 1.6.6(ii) of [16], and
we pull this back to (A,A+) using lemma 7.3(iv) of [22].

V.3.7.2 Proof of theorem V.3.1.9

We already know that (i) holds in characteristic ` by corollary V.3.4.2, and for perfectoid field
by corollary V.3.6.3. In (ii), we know that (b) and (c) are equivalent by theorem V.3.5.1, and that
(b) implies (a) by proposition V.3.3.1; we also know that (a) implies (b) in characteristic ` or if
A is a field by corollaries V.3.4.2 and V.3.6.3.

Let B be a finite étale A-algebra, and let B+ be the integral closure of A+ in B. We still need
to show that B is perfectoid and that B+ is almost finite étale over A+. Consider the morphism
of adic spaces f : Y := Spa(B,B+) → X := Spa(A,A+). Let x ∈ X . Then the finite étale
map Y ×X Spa(κ(x), κ(x)+) comes from a finite étale perfectoid pair over (κ(x), κ(x)+), which
corresponds to a finite étale perfectoid pair over (κ(x)[, κ(x)[+) = (κ(x[), κ(x[)+) (see theorem
V.1.6.1).

On the other hand, (κ(x[), κ(x[)+) is the completion of lim−→
U[3x[

(OX[(U [),O+
X[(U

[)), where we

take the limit over rational domains U [ of X[ such that x[ ∈ U [, by proposition III.6.3.1 and
proposition III.6.3.7(i). As taking the category of finite étale covers commutes with filtered
colimits and with completions (more precisely, see corollary 10.0.5 of [1]), the finite étale pair
over (κ(x[), κ(x[)+) from the previous paragraph extends over a neighborhood of x[. In other
words (and using theorem V.1.6.1), we can find a rational domain V of X containing x such that
the finite étale OX(V )-algebra BV := B ⊗A OX(V ) is perfectoid, and that the integral closure
of O+

X(V ) in BV is almost finite étale over O+
X(V ).

As X is quasi-compact, this gives a finite rational convering (Vi)i∈I of X such that each Vi
satisfies the two properties above. In othert words, Ui := Y ×X Vi is of the form Spa(Bi, B

+
i )

with Si := B⊗AOX(Vi) a finite étale perfectoid OX(Vi)-algebra and B+
i almost finite étale over

O+
X(Vi). For all i, j ∈ I , we have Ui ×Vj (Vi ∩ Vj) ' Uj ×Vi (Vi ∩ Vj), because both sides are

isomorphic to the unique finite étale cover of Vi∩Vj corresponding to the finite étale OX(Vi∩Vj)-
algebra B ⊗A OX(Vi ∩ Vj). So we can glue the Ui to get a perfectoid space Y and a map
Y → X that is locally of the form Spa(B′, B′+) → Spa(A′, A′+), for (A′, A′+) → (B′, B′+) a
strongly finite étale map of Huber pairs. As in the proof of (i) of theorem V.3.1.3 in the previous
subsection, we deduce that Y is of the form Spa(C,C+), for (A,A+)→ (C,C+) strongly finite
étale. It remains to show that the A-algebras B and C are isomorphic. This follows from the fact
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that they define isomorphic coherent OX-modules, which is clear from the definition of Y .
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T0 space, 24

absolute value, 8
additive valuation, 8
adic (for a morphism of rings), 60
adic Point, 109
adic space, 120
adic topological ring, 55
affinoid k-algebra, 63
affinoid adic space, 120
affinoid field, 108
affinoid ring, 94
analytic point, 66

base (of a topology), 23
bounded subset (of a topological ring), 55

canonical topology, 89
Cauchy filter, 72
Cauchy sequence, 72
center (of a valuation subring), 17
characteristic group (of a valuation), 36
closed point, 24
cofinal, 47
complete, 72
completed residue field, 107
completion, 74
completion of a Huber pair, 101
constructible subset, 25
constructible topology, 26
continuous valuation, 64
continuous valuation spectrum, 64
convex subgroup, 11
convex subset (with respect to a valuation),

38

couple of definition, 55

discrete valuation, 13
discrete valuation ring, 13
domination, 7

equivalent valuation, 9

f-adic ring, 55
filter, 71
Frobenius endomorphism, 123

Gauss norm, 63, 110
generating family (of a topology), 23
generic point, 24
generization, 24
ghost components, 152

height of a totally ordered abelian group, 11
henselian local ring, 117
henselian pair, 116
horizontal generization, 38
horizontal specialization, 38
Huber pair, 94
Huber ring, 55

ideal of definition, 55
ind-constructible subset, 26
irreducible space, 24
isolated subgroup, 11

kernel of a valuation, 8
Kolmogorov space, 24

limit of a filter, 71
locally spectral space, 25

185



Index

microbial valuation, 14
morphism of Huber pairs, 94
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non-Archimedean field, 70
non-Archimedean topological ring, 55
Non-standard terminology., 109

open immersion, 119
open mapping theorem, 86
ordered abelian group, 7

perfect ring, 123
perfectoid field, 141
perfectoid Tate ring, 141
power-bounded element, 58
power-bounded subset, 58
primitive of degree 1, 152
pro-constructible, 26
pseudo-uniformizer, 62, 69

quasi-compact map, 23
quasi-compact space, 23
quasi-separated space, 23

rank (of a valuation), 12
rational covering, 129
rational subset, 95
Riemann-Zariski space, 17
ring of definition, 55
ring of integral elements, 94

semiperfect ring, 123
simple Laurent covering, 129
sober space, 24
specialization, 24
spectral map, 28
spectral space, 25
stably uniform Huber pair, 121
standard Laurent covering, 128
standard rational covering, 128
strict `-ring, 152
strict morphism, 126, 127
strongly Noetherian, 121
subbase (of a topology), 23

support of a valuation, 8

Tate algebra, 63
Tate ring, 55
Teichmüller representative, 152
tilt, 148
topologicall nilpotent subset, 58
topologically finitely generated, 63
topologically nilpotent element, 14
topologically of finite type, 123
trivial valuation, 9

uniform topological ring, 121

valuation, 9
valuation ring, 7
valuation spectrum, 19
valuation topology, 13
value group, 8
vertical generization, 35
vertical specialization, 35

Witt polynomials, 151
Witt vectors, 151
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