MAT 540 : Problem Set 9

Due Thursday, November 21

1 Abelian subcatgeories of triangulated categories

Let \mathscr{D} be a triangulated category. We denote the shift functors by $X \mapsto X[1]$, and we write triangles as $X \to Y \to Z \to X[1]$ or $X \to Y \to Z \stackrel{+1}{\to}$. For every $X, Y \in Ob(\mathscr{D})$ and every $n \in \mathbb{Z}$, we write $\operatorname{Hom}_{\mathscr{D}}^{n}(X, Y) = \operatorname{Hom}(X, Y[n])$.

- (a). Let $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ and $X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} X'[1]$ be two distinguished triangles of \mathscr{D} , and let $g: Y \to Y'$ be a morphism.
 - (i) (2 points) Show that the following conditions are equivalent:
 - (1) $v' \circ g \circ u = 0;$
 - (2) there exists $f: X \to X'$ such that $u' \circ f = g \circ u$;
 - (3) there exists $h: Z \to Z'$ such that $h \circ v = v' \circ g$;
 - (4) there exist $f: X \to X'$ and $h: Z \to Z'$ such that (f, g, h) is a morphism of triangles.
 - (ii) (1 point) Suppose that the conditions (i) hold and that $\operatorname{Hom}_{\mathscr{D}}^{-1}(X, Z') = 0$. Show that the morphisms f and h of (i)(2) and (i)(3) are unique.
- (b). Let \mathscr{C} be a full subcategory of \mathscr{D} , and suppose that $\operatorname{Hom}^n(X,Y) = 0$ if $X,Y \in \operatorname{Ob}(\mathscr{C})$ and n < 0.
 - (i) (2 points) Let $f : X \to Y$ be a morphism of \mathscr{C} . Take a distinguished triangle $X \xrightarrow{f} Y \to S \xrightarrow{+1}$ in \mathscr{D} , and suppose that we have a distinguished triangle $N[1] \to S \to C \xrightarrow{+1}$ with $N, C \in \operatorname{Ob}(\mathscr{C})$. In particular, we get morphisms $\alpha : N[1] \to S \to X[1]$ and $\beta : Y \to S \to X$.

Show that $\alpha[-1]: N \to X$ is a kernel of f and that $\beta: Y \to C$ is a cokernel of f.

We say that a morphism f of \mathscr{C} is *admissible* if there exist distinguished triangles satisfying the conditions of (i). We say that a sequence of morphisms of $\mathscr{C} \ 0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is an *admissible short exact sequence* if there exists a distinguished triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{+1}$ in \mathscr{D} .

- (ii) (2 points) Suppose that \mathscr{C} as a zero object. If $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{+1}$ is a distinguished triangle in \mathscr{D} with $X, Y, Z \in Ob(\mathscr{C})$, show that f and g are admissible, that f is a kernel of g and that g is a cokernel of f.
- (iii) (2 points) If $f: X \to Y$ is an admissible monomorphism (resp. epimorphism) in \mathscr{C}

and $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{+1}$ is a distinguished triangle in \mathscr{D} , show that Z (resp. Z[-1]) is isomorphic to an object of \mathscr{C} and $Z = \operatorname{Coker}(f)$ (resp. $Z = \operatorname{Ker}(f)$).

- (iv) (4 points) Suppose that every morphism of \mathscr{C} is admissible and \mathscr{C} is an additive subcategory of \mathscr{D} . Show that \mathscr{C} is an abelian category and that every short exact sequence in \mathscr{C} is admissible.
- (v) (3 points) Suppose that \mathscr{C} is an abelian category and that every short exact sequence in \mathscr{C} is admissible. Show that every morphism of \mathscr{C} is admissible.

2 t-structures

We use the convention of problem 1. A *t-structure* on \mathscr{D} is the date of two full subcategories $\mathscr{D}^{\leq 0}$ and $\mathscr{D}^{\geq 0}$ such that (with the convention that $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$);

- (0) If $X \in Ob(\mathscr{D})$ is isomorphic to an object of $\mathscr{D}^{\leq 0}$ (resp. $\mathscr{D}^{\geq 0}$), then X is in $\mathscr{D}^{\leq 0}$ (resp. $\mathscr{D}^{\geq 0}$).
- (1) For every $X \in Ob(\mathscr{D}^{\leq 0})$ and every $Y \in Ob(\mathscr{D}^{\geq 1})$, we have Hom(X, Y) = 0.
- (2) We have $\mathscr{D}^{\leq 0} \subset \mathscr{D}^{\leq 1}$ and $\mathscr{D}^{\geq 0} \supset \mathscr{D}^{\geq 1}$.
- (3) For every $X \in \operatorname{Ob}(\mathscr{D})$, there exists a distinguished triangle $A \to X \to B \xrightarrow{+1}$ with $A \in \operatorname{Ob}(\mathscr{D}^{\leq 0})$ and $B \in \operatorname{Ob}(\mathscr{D}^{\geq 1})$.

We fix a t-structure $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ on \mathscr{D} .

- (a). (1 point) Show that the distinguished triangle of condition (3) is unique up to unique isomorphism.
- (b). (3 points) For every $n \in \mathbb{Z}$, show that the inclusion functor $\mathscr{D}^{\leq n} \subset \mathscr{D}$ has a right adjoint $\tau^{\leq n}$ and the inclusion functor $\mathscr{D}^{\geq n} \subset \mathscr{D}$ has a left adjoint $\tau^{\geq n}$. (Hint: It suffice to treat the case n = 0.)
- (c). (2 points) For every $n \in \mathbb{Z}$, show that there is a unique morphism $\delta : \tau^{\geq n+1}X \to (\tau^{\leq n}X)[1]$ such that the triangle $\tau^{\leq n}X \to X \to \tau^{\geq n+1}X \xrightarrow{\delta} (\tau^{\leq n}X)[1]$, where the other two morphisms are given by the counit and unit of the adjunctions of (b).
- (d). (3 points) Let $a, b \in \mathbb{Z}$ such that $a \leq b$, and let $X \in Ob(\mathscr{D})$. Show that there exists a unique morphism $\alpha : \tau^{\geq a} \tau^{\leq b} X \to \tau^{\leq b} \tau^{\geq a} X$ such that the following diagram commutes:

$$\begin{array}{cccc} \tau^{\leq b} X & \longrightarrow & X & \longrightarrow & \tau^{\geq a} X \\ & & & & \uparrow \\ & & & \uparrow \\ \tau^{\geq a} \tau^{\leq b} X & \xrightarrow{\alpha} & \tau^{\leq b} \tau^{\geq a} X \end{array}$$

(where all the other morphisms are counit or unit morphisms of the adjunctions of (b)), and that α is an isomorphism. (Hint: Apply the octahedral axiom to $\tau_{\leq a}X \xrightarrow{f} \tau_{\leq b}X \xrightarrow{g} X$.)

(e). (1 points) If $a, b \in \mathbb{Z}$ are such that $a \leq b$, show that, for every $X \in \mathrm{Ob}(\mathscr{D})$, we have $\tau^{\geq a} \tau^{\leq b} X \in \mathrm{Ob}(\mathscr{D}^{\leq a}) \cap \mathrm{Ob}(\mathscr{D}^{\geq b})$.

Let $\mathscr{C} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$; that is, \mathscr{C} is the full subcategory of \mathscr{D} such that $\operatorname{Ob}(\mathscr{C}) = \operatorname{Ob}(\mathscr{D}^{\leq 0}) \cap \operatorname{Ob}(\mathscr{D}^{\geq 0})$. We denote the functor $\tau^{\leq 0}\tau^{\geq 0} : \mathscr{D} \to \mathscr{C}$ by H^{0} . The category \mathscr{C} is called the *heart* or *core* of the t-structure.

(f). (1 point) Show that \mathscr{C} is an abelian category.

- (g). (2 points) Show that, if $X \to Y \to Z \stackrel{+1}{\to}$ is a distinguished triangle in \mathscr{D} such that $X, Z \in Ob(\mathscr{C})$, then Y is also in \mathscr{C} .
- (h). The goal of this question is to show that the functor $\mathrm{H}^0: \mathscr{D} \to \mathscr{C}$ is a cohomological functor. Let $X \to Y \to Z \xrightarrow{+1}$ be a distinguished triangle in \mathscr{D} .
 - $Ob(\mathscr{D}^{\leq 0}).$ (i) (2 points) If X, Y, Z \in show that the sequence $\mathrm{H}^{0}(X) \rightarrow \mathrm{H}^{0}(Y) \rightarrow \mathrm{H}^{0}(Z) \rightarrow 0$ is exact in \mathscr{C} . A sequence (Hint: of morphisms $A \rightarrow B \rightarrow C \rightarrow 0$ in an abelian category \mathscr{A} is exact if and only if, for every object D of \mathscr{A} , the sequence of abelian groups $\operatorname{Hom}_{\mathscr{A}}(D, A) \to \operatorname{Hom}_{\mathscr{A}}(D, B) \to \operatorname{Hom}_{\mathscr{A}}(D, C) \to 0$ is exact.)
 - (ii) (2 points) If $X \in Ob(\mathscr{D}^{\leq 0})$, show that the sequence $H^0(X) \to H^0(Y) \to H^0(Z) \to 0$ is exact in \mathscr{C} . (Hint: Construct a distinguished triangle $X \to \tau^{\leq 0} Y \to \tau^{\leq 0} Z \xrightarrow{+1}$.)
 - (iii) (1 point) If $Z \in Ob(\mathscr{D}^{\geq 0})$, show that the sequence $0 \to H^0(X) \to H^0(Y) \to H^0(Z)$ is exact in \mathscr{C} .
 - (iv) (2 points) In general, show that the sequence $H^0(X) \to H^0(Y) \to H^0(Z)$ is exact in $\mathscr{C}.$

3 The canonical t-structure

Let \mathscr{A} be an abelian category.

- (a). (2 points) Let $n \in \mathbb{Z}$. If $X \in Ob(D^{\leq n}(\mathscr{A}))$ and $Y \in Ob(D^{\geq n+1}(\mathscr{A}))$, show that $\operatorname{Hom}_{\mathcal{D}(\mathscr{A})}(X,Y) = 0.$
- (b). (3 points) Show that $(\mathscr{D}^{\leq 0}(\mathscr{A}), \mathscr{D}^{\geq 0}(\mathscr{A}))$ is a t-structure on $D(\mathscr{A})$, that its heart is equivalent to \mathscr{A} , and that the associated functor $\mathrm{H}^0: \mathscr{D}(\mathscr{A}) \to \mathscr{A}$ is the 0th cohomology functor.

4 Torsion

Let $\mathscr{D} = \mathscr{D}(\mathbf{Ab})$, and let

$$^*D^{\leq 0} = \{X \in \mathscr{D} \mid \mathrm{H}^i(X) = 0 \text{ for } i > 1, \text{ and } \mathrm{H}^1(X) \text{ is torsion}\}$$

and

$${}^*\mathbf{D}^{\geq 0} = \{ X \in \mathscr{D} \mid \mathbf{H}^i(X) = 0 \text{ for } i < 0, \text{ and } \mathbf{H}^0(X) \text{ is torsionfree} \}$$

Let $\mathscr{C} = {}^*\mathbf{D}^{\leq 0} \cap {}^*\mathbf{D}^{\geq 0}.$

- (a). Show that $(*D^{\leq 0}, *D^{\geq 0})$ is a t-structure on $\mathscr{D}.(2$ points for condition (1), 1 for condition (2) and 2 for condition (3))
- (b). Let $f: A \to B$ be a morphism of torsionfree abelian groups. We can see A and B as objects of \mathscr{C} (concentrated in degree 0), and then f is also a morphism of \mathscr{C} .
 - (i) (2 points) Show that f is a monomorphism in \mathscr{C} if and only if f is injective (and **Ab**) and B/f(A) is torsionfree.
 - (ii) (1 point) Show that f is an epimorphism in \mathscr{C} if and only if $f \otimes_{\mathbb{Z}} \mathbb{Q}$ is surjective.
 - (iii) (3 points) Calculate the kernel, the cokernel and the image of f in \mathscr{C} .
- (c). (1 points) For every $n \ge 1$, show that $\operatorname{Ext}^{1}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}) \simeq \mathbb{Z}/n\mathbb{Z}$.

- (d). (1 point) If A and B are finitely generated abelian groups, show that $\text{Ext}^{n}_{\mathbf{Ab}}(A, B) = 0$ for every $n \geq 2$.¹
- (e). (2 points) Let $X \in Ob(\mathscr{C})$. Suppose that $H^i(X)$ is a finitely generated abelian groups for every $i \in \mathbb{Z}$. If $\operatorname{Hom}_{\mathscr{D}}(X,\mathbb{Z}) = 0$, show that X = 0.
- (f). (1 point) Give an example of a $X \in Ob(\mathscr{C})$ nonzero such that $Hom_{\mathscr{D}}(X,\mathbb{Z}) = 0$.
- (g). (2 points) Let $X \in Ob(\mathscr{D})$. If $X \in Ob(*D^{\leq 0})$ (resp $X \in Ob(*D^{\geq 0})$), show that $R \operatorname{Hom}_{\mathbf{Ab}}(X, \mathbb{Z})$ is in $D^{\geq 0}(\mathbf{Ab})$ (resp. $D^{\leq 0}(\mathbf{Ab})$).
- (h). (3 points) Let X be a complex of finitely generated abelian groups. If $R \operatorname{Hom}_{Ab}(X, \mathbb{Z})$ is in $D^{\geq 0}(Ab)$ (resp. $D^{\leq 0}(Ab)$), show that $X \in Ob(^*D^{\leq 0})$ (resp $X \in Ob(^*D^{\geq 0})$).

5 Weights

Let \mathscr{A} be an abelian category. Suppose that we have a family $(\mathscr{A}_n)_{n \in \mathbb{Z}}$ of full abelian subcategories of \mathscr{A} such that:

- (1) If $n \neq m$, then $\operatorname{Hom}_{\mathscr{A}}(A, B) = 0$ for any $A \in \operatorname{Ob}(\mathscr{A}_n)$ and $B \in \operatorname{Ob}(\mathscr{A}_m)$.
- (2) Any object A of \mathscr{A} has a weight filtration, that is, an increasing filtration Fil_•A such that $\operatorname{Fil}_n A = 0$ for $n \ll 0$, $\operatorname{Fil}_n A = A$ for $n \gg 0$ and $\operatorname{Fil}_n A/\operatorname{Fil}_{n+1} A \in \operatorname{Ob}(\mathscr{A}_n)$ for every $n \in \mathbb{Z}$.

For every $n \in \mathbb{Z}$, we denote by $\mathscr{A}_{\leq n}$ (resp. $\mathscr{A}_{\geq n}$) the full subcategory of \mathscr{A} whose objects are the $A \in \operatorname{Ob}(\mathscr{A})$ having a weight filtration $\operatorname{Fil}_{\bullet}A$ such that $\operatorname{Fil}_n A = A$ (resp. $\operatorname{Fil}_n A = 0$).

- (a). (1 point) If $A \in Ob(\mathscr{A}_{\leq n})$ and $B \in Ob(\mathscr{A}_{\geq n+1})$, show that $\operatorname{Hom}_{\mathscr{A}}(A, B) = 0$.
- (b). (2 points) Show that the inclusion functor $\mathscr{A}_{\leq n} \subset \mathscr{A}$ has a right adjoint ${}^{w}\tau^{\leq n}$, and that the inclusion functor $\mathscr{A}_{\geq n} \subset \mathscr{A}$ has a left adjoint ${}^{w}\tau^{\geq n}$.
- (c). (2 points) If $A \in Ob(\mathscr{A}_{\leq n})$ and $B \in Ob(\mathscr{A}_{\geq n+1})$, show that $\operatorname{Ext}^{i}_{\mathscr{A}}(B, A) = 0$ for every $i \in \mathbb{Z}$.
- (d). (4 points) Define two full subcategories ${}^w D^{\leq n}$ and ${}^w D^{\geq n}$ of $D^b(\mathscr{A})$ by:

$$Ob(^{w} D^{\leq n}) = \{ X \in Ob(D^{b}(\mathscr{A})) \mid \forall i \in \mathbb{Z}, H^{i}(X) \in \mathscr{A}_{\leq n} \}$$

and

$$Ob(^{w} D^{\geq n+1}) = \{ X \in Ob(D^{b}(\mathscr{A})) \mid \forall i \in \mathbb{Z}, H^{i}(X) \in \mathscr{A}_{>n+1} \}$$

Show that $({}^w D^{\leq n}, {}^w D^{\geq n+1})$ is a t-structure on $D^b(\mathscr{A})$, and that the heart of this t-structure is $\{0\}$.

¹This actually holds for any abelian groups.