MAT 540 : Problem Set 8

Due Thursday, November 14

1 Right multiplicative systems

Let € be a category and W be a set of morphisms of 4. Let .# be a full subcategory of &
and W, be the set of morphisms of .# that are in W. Suppose that W is a right multiplicative
system and that, for every s : X — Y in W such that X € Ob(.#), there exists a morphism
f:Y = Z with Z € Ob(#) and fose W.

Show that W is a right multiplicative system. (1 point for (S1)+(S2), 1 point each for (S3)
and (S4))

Solution. Conditions (S1) and (S2) of Definition V.2.2.1 of the notes are clear. We check
condition (S3). Let f: X — Y and s : X — X’ be morphisms of .# such that s € W. Then
there exist a morphism ¢g : X’ — Y’ in ¢ and a morphism ¢ : Y — Y’ in W such that to f = gos.
Moreover, by the hypotheses of the proposition, there exists h : Y/ — Y” with Y” € Ob(.%),
such that hot € W. As .# is a full subcategory of &, we get a commutative diagram in .#:

X/ hog y!

X——Y
f

We now check condition (S4). Let f,g : X — Y be two morphisms of ., and let s : X’ — X
be a morphism of W such that fos = gos. As W is a right multuplicative system, there
exists t : Y — Y’ in W such that to f =tog. Take h : Y/ — Y” such that Y” € Ob(.#) and
hote€ W. Then hot € W, and we have (hot)o f = (hot)og.

O

2 Isomorphisms in triangulated categories

(4 points)
Let (2,T) be a triangulated category, and let f : X — Y be a morphism of . Show that

f is an isomorphism if and only if there exists a distinguished triangle X Ly sz T(X)
with Z = 0.

Solution. Suppose that f is an isomorphism. By (TR2), there exists a distinguished triangle



X LY = Z - T(X). By (TR4), the commutative square

x—t.y

idX f_1

X —X

idx

can be completed to a morphism of distinguished triangles

X Y Z T(X)
I
X=X 0 T(X)

By Corollary V.1.1.12 of the notes, the morphism ¢ is an isomorphism, so Z = 0.

Conversely, suppose that there exists a distinguished triangle X i> Y - Z —» T(X)
with Z = 0. Then, for every object W of 2, applying Homg(W,:) to the triangle
X - Y — Z — T(X) and using Proposition V.1.1.11(ii) of the notes shows that
f« : Homg (W, X) — Homg(W,Y) is an isomorphism. By the Yoneda lemma (Corollary 1.3.2.9
of the notes), the morphism f is an isomorphism.

0

3 Null systems

Let (2,T) be a triangulated. Remember that a null system in Z is a set .4 of objects of Z
such that:

(N1) 0 € 1

(N2) for every X € Ob(%), we have X € 4 if and only if T'(X) € A

(N3) if X - Y — Z — T(X) is a distinguished triangle and if X, Y € .4, then Z € 4.

We fix a null system .4, and we denote by W 4 the set of morphisms f: X — Y in & such
that there exists a distinguished triangle X Ly sz T(X) with Z € A

(a). (1 point) If X € 4" and Y is isomorphic to X, show that Y € 4.

(b). (1 point) Show that W 4 contains all the isomorphisms of 2.

(c). (2 points) Show that W_ 4 is stable by composition.

(d). (4 points) Show that W 4 satisfies conditions (S3) and (S4) of Definition V.2.2.1 of the

notes.

(e). (2 points) Show that W 4 is also a left multiplicative system.

Solution.

(a). Let f: X — Y be an isomorphism. By problem 2, the triangle X Ly 505 T(X) is

distinguished. By axiom (TR3), the triangle 0 — X Ly - T'(0) = 0 is also distinguished
and so, by (N1) and (N3), we have Y € /.



(b). This follows immediately from problem 2 and from (NO).

(). Let f : X - Y and g : Y — Z be in W. Choose distinguished triangles

XLy 5z 5 rxX)ady 4 72 5 7 - T(Y) with 2.,Y € 4. Let

XYy 575 T(X) be a distinguished triangle. By the octahedral axiom (axiom
(TR5)), there exists a distinguished triangle Z’ — Y — X’ — T'(X’). By (N3), we have
X' e N,andsogofeWy,.

(d). We show condition (S3). Let f : X — Y and s : X — X’ be morphisms in Z with s € W_y.
By the definition of W 4 and axioms (TR3) and (N2), we can find a distinguished triangle

Z % X 5 X' - T(Z) with Z € 4. By (TR2), we can find a diatinguished triangle

2y Ly 5 7(Z), and t € W by (TR3) and (N2). Finally, by (TR4), we can

complete the commutative diagram

Z-lex S x T(Z)
\
idzl ft g idT(Z)l
Y
Z e el T(2)
foh t

In other words, we can find a morphism g : X’ — Y’ such that g o s =t o f. This finishes
the proof of (S3).

We show condition (S4). Let f,g : X — Y be two morphisms of &, and suppose that
there exists s : X’ — X such that fos = gosand s € W. If h = f — g, then we
have h o s = 0. Choose a distinguished triangle X’ % X % Z — T(X') with Z € .#".
Applying the cohomological functor Homg (-, Y) to this distinguished triangle, we get an
exact sequence
Homg(Z,Y) — Homgy(X,Y) — Homgy (X, X').

As the image h o s of h € Homg(X,Y) by the second morphism of this sequence is 0,
there exists k € Homg(Z,Y) such that h = k o u. Consider a distinguished triangle

zE5y Ly o T(Z). As Z € A, we have t € W 4. Also, as t ok = 0 (by Proposition
V.1.1.11(i) of the notes), we have toh =0,s0to f =tog.

(e). We know that Z°P is also a triangulated category, and AP = {X € Ob(2°P) | X € 4}
is a null system in Z°P; indeed, axioms (N1) and (N2) obviously hold, and axiom (N3) for
AP follows from (N3) for .4 thanks to (TR3) and (N2). Also, again thanks to (TR3)
and (N2), the set of morphisms W_yop determined by 4P is equal to (W_4)°P. So, by
question (d), the set (W_4)°P is a right mutliplicative system. But this is equivalent to
the fact that W 4 is a left multiplicative system.

0

4 Localization of functors

Let € be a category, let W be a set of morphisms of €, and let .# be a full subcategory of €’;
denote by W the set of morphisms of .# that are in W. We fix a localization Q : 4 — € [W ]
of € by W, and we denote by ¢ : .# — % the inclusion functor. Let F': ¥ — % be a functor.
Suppose that:

(a) W is a right multiplicative system;

(b) for every X € Ob(%), there exists a morphism s : X — Y in W such that Y € Ob(.%);



(c) for every s € Wy, the morphism F'(s) is an isomorphism.
Show that, for every functor G : €[W~1] — 2, the map
Q: HomF‘unc(‘ﬁ,@) (F7 Go Q) - HomF‘unc(J,_@) (F o1,GoQo [')

induced by composition on the right by ¢ is bijective. (2 points for injectivity, 3 points for
surjectivity)

Solution. Let uj,us : F — G o @ be morphism of functors such that a(u;) = a(u2). Let
X € Ob(%), and choose a morphism s : X — X’ such that X’ € Ob(.#). Then we have
commutative diagrams

FOY YN gox)  and P2 Gox)
F(s)l ZlGoQ(s) F(s)i 2\LGOQ(8)

/ / / /

F(X)) 5 G o QX)) F(X') 5 G o QX)

and uq(X') = ug(X’) because X’ € Ob(#), so u1(X) = uz(X). This shows that u; = ug, and
hence that « is injective.

We show that « is surjective. Let v : FF ot — G o Q ot be a morphism of fucntors. Let
X € Ob(%), and let s : X — X' be a morphism of W such that X’ € Ob(.#). Then G o Q(s)
is an isomorphism, and we set u(X) = (G o Q(s))~! o v(X’) o F(s). We must check that this
does not depend on the choice of s. Let s’ : X — X” be another morphism of W such that
X" € Ob(.#). By condition (S3), we can find a commutative square

X X

sl it
X, H] Y
t
with ¢ € W. After composing with a morphism Y — Y’ in W such that Y € Ob(.#), we may
assume that Y € Ob(.#). The images of s, t and s’ by G o @) are isomorphisms, so G o Q(t') is
also an isomorphism. As v is a morphism of functors, we have

(GoQ(s") ov(X") o F(s') = (GoQ(s) T o (GoQ(t) " ou(Y) o F(t) o F(s)
—(GoQ(s) o (GoQ() ou(Y) o F(t) o F(s)
=(GoQ(s)) tou(X) o F(s).
So u(X) is well-defined. It remains to show that teh family (u(X))xeon(s) is a morphism
of functors from F to Go Q. Let f : X — Y be a morphism of ¥. We choose morphisms
s: X - X' andt:Y — Y’ un W such that X', Y’ € Ob(.#). By condition (S3), we can find
morphisms f': X/ — Z and s’ : Y/ — Z such that s € W and that s’ oto f = f'os. After
composing s’ and g by a morphism Z — Z’ in W such that Z’ € Ob(.#), we may assume that

Z € Ob(.#). Then, using the fact that v is a morphism of functors and the definition of u, we
get

(GoQ(f)) ou(X) =



This shows that u is a morphism of functors.

5 Localization of a triangulated category

Let (2,T) be a triangulated category, let .4 be a null system in &, and let W = W 4 be
the corresponding multiplicative system. (See problem 3.) We write Q : 2 — 2/.4 for
Q:2— W

(a). (1 point) Show that there exists an auto-equivalence Ty : Z/A4 — 2/.4 such that
TyoQ~=~QoT.

We say that a triangle in Z/.4" is distinguished if it is isomorphic to the image by @ of a
distinguished triangle of Z. Axiom (TRO) of Definition V.1.1.4 of the notes is obvious.

(b). (5 points: 1 point per axiom) Show that axioms (TR1)-(TR5) also hold.

Solution.

(a). The functor T preserves W 4 (by (TR3) and (N2)), so the functor 7 L9289 /A sends
elements to W_y to isomorphisms, so it factors through a factor Ty : 2/ N — D/ N .

If we want to justify the construction of T 4 in Theorem V.3.1.4 of the notes, we can
say this: If X € Ob(Z2/4") = Ob(2), we set T y(X) = T(X). Let u : X — Y be

Y/
a morphism of &, and chose a diagram / X in 2 representing u, with
X Y

t € W . We take T 4 (u) to be the morphism from T 4 (X) to T 4 (Y') represented by the

T
diagram IV W . This makes sense because T'(t) € Z 4, by (TR3)
T(X) T(Y)

Y Y
and (N2). If we choose two representatives V y and V y
X Y X Y

of u, then we have a commutative diagram

Yll

I

3 t3

X-Eoy <ty

N

Y



with t3 € W 4. Then applying T gives a commutative diagram

T(Yy)

e
(f3) T(ts)

7(x) ~LL vy <Ly

%iﬁ)

T(Y3)

T(Y]) T(Y3)
TV \ﬁ) and jy W) represent the same
X) T(X) TY)

T(Y)

morphism from 7'(X) to T(Y) in 2/.4". So T 4 is well-define, and it is easy to see that
it is a functor.

(b(TR1)

(TR2)

(TR3)

(TR4)

Let X € Ob(Z/.4"). Then the triangle X% x>o - TJV( ) in /4 is

isomorphic to the image by @ of the distmguished triangle X¥x 50 T(X) in
2, so it is distinguished.

Let u : X — Y be a morphism in /.4, and choose morphisms f : X — Y’ and
5:Y = Y'in & such that s € W and u = Q(s)~! 0 Q(f). Choose a distinguished

triangle X 5 Y' % Z = T(X) in 9. Then the trangle X uy 9 7 T (X)
in 9/ is isomorphic to the image by Q of X = Y’ = Z — T(X), so it is
distinguished.

Let X LYy %7225 T y(X) be a triangle in /4. If it isn distinguished then it is
isomorphic to the image by Q of a distinguished triangle X’ = Iyt 9 7 1 T(X') in
2, and then the triangle AN T(X) sy T 4 (Y) is isomorphic to the image

by Q of Y’ —> 7z T(X :if , hence it is also distinguished. The proof of
the converse is sunilar.

Consider a commutative diagram

x oy oz T ,(x)

ui vl T(u)l

XY 7 T (X
f! g/ Y /V( )

in 9/, where the rows are distinguished triangles. By the definition of distin-
guished triangles in /.4, we may assume that f, g, h, f’, ¢, h’ are morphisms of 2.
We write u = Q(s)™! o Q(a), where a : X — X" and s : X’ — X" are morphisms of
2 such that s € W 4. As W 4 is a multiplicative system, we can find a commutative
square

x" ko

S

X ——=Y'
f/

with s’ € W. Write v = Q(¢)"' o Q(¥), with &/ : Y — Y and ' : Y/ — Y are



morphisms of 2 such that t' € W 4. Then

Q(s)toQ(koa) = Q(f)oQ(s) " 0Q(s) = Q(f") ou=voQ(f) = Q) oQ(t o f),

so, by the description of the Hom in the localization after Definition V.2.2.3 of the
notes, there exists a commutative diagram

Y/l/

7N
b//
k/

X%—Y”é}//

c
koa T /

T
witht e Wy . Let b=0b"0b: Y —Y"”. Then
Q) 0 Qb) = Q) 0 Q) = v
Let f" =cok: X" —Y". Then
ffoa=cokoa=kK=0"obof=bof

and
tOfl:COS/Of/:COkOS”:f”OS”,

so we have constructed a commutative diagram in Z:

f

X y sz oT,(X)
bl Tw(a

al )
xr Ly g M (X7
Ts Tt TTJV(S)

X' Y’ Z' Ty (X'
f g 1% JV( )

and, by axiom (TR2), we can extend f” : X” — Y” to a distinguished triangle

x7 Loyn 9y g M T(X"). Completing s and t to distinguished triangles, we
get a commutative diagram where the first two rows and columns are distinguished
triangles and N1, Ny € A

x I oy Ly M px
A N
s S t T(s)
X o y g’ VA h'! T(X”)
N N, S A T(Ny)
T(X' T(Y' T(Z' T2(X'
( ) (" ( ) g ( ) W ( )



We also complete to f' = f” o s to a distinguished triangle X’ — Y"” — A — T(X’).
By the octahedral axiom (TR5) applied to the triangles based on (f’,¢,to f') and on
(s, f", f"circs), we have distinguished triangles

7'+ A— No—T(Z)

and
Ny — A= Z" - T(Ny).

Applying the octahedral axiom again for the morphisms Z’ — A, A — Z” and their
composition, we get a commutative diagram where the rows and the third columns
are distinguished triangles:

A A N, T(Z)
7z Z" N3 (7'

| i

A——=7"——=T(N;)——=T(A)

T(N2)
In particular, we have N3 € .4". So we have completed the commutative square

X/ fH/ Y/

XN Y/l
fll

to a morphism of triangles

x Loy L W xn

LT T

X// Y// Z// T(X//)
f// g// n’

such that the morphism Z’ — Z” is in W 4. Moreover, by (TR4), we can complete
the commutative square

X *f> Y

b

Xl/ Y//

f//
to a morphism of triangles
x oy 9.z . 7x)
T T
XN Y// Z// T(X//)
f// g/l h//



So we have constructed a commutative diagram in 2 whose rows are distinguished

triangles:
x—loy 9.z o)
o T A
XY —> 7" — > T(X")

fll g hl/
Ts tT T T(S)T
X' ey iy 5'()

and such that s, ¢t and the morphism Z' — Z” are in W . Taking the image of
this by @, we get a morphism of distinguished triangles in /.4 extending the pair
(u,v).

(TR5) Let f: X - Y and g : Y — Z be morphisms in Z/.4". After replacing Y and Z
by isomorphic objects, we may assume that f and g are morphisms of . Applying
(TR5) in Z to distinguished triangles based on the morphisms (f, g, go f) and taking
the image of the resulting diagram by @, we get (TR5) in /4.

0

6 More group cohomology

The description of group cohomology in Subsection IV.3.5 of the notes can be useful in this
problem.

We define elements u, v, r and s of the symmetric group &4 by u = (12)(34), v = (14)(23),
r = (123) and s = (13). The Klein four group is the normal subgroup K of &4 generated by u
and v.

Let k be a field of characteristic 2.
(a). (2 points) Show that &4 /K ~ Gs.
(b). (2 points) Show that there is a unique representation 7 : &4 — GLa(k) such that

() = r(v) = (é (1)) () = G’ }) and 7(s) = <‘1) (1))

Let M = Mjy(k), with the action of &, given by g- A = 7(9)A7(g9)~!, for g € &4 and
A € Ms(k). We identify &3 with the subgroup of &4 generated by r and s. We have a short

exact sequence of groups
1—7Z/32 — &3 — Z)27 — 1,

where the generator 1 € Z/3Z is sent to r € Ss.

(c). (2 points) If N is any representation of Z/3Z on a k-vector space, show that
HP(Z/3Z,N) = 0 for every p > 1. (You might find Remark IV.3.5.1 of the notes use-
ful.)

(d). (1 point) If N is any representation of &3 on a k-vector space, show that we have canonical
isomorphisms HP(Z /27, N%/32) 5 HP(&3, N) for every p > 0.

(e). (2 points) Show that HP(S3, M) = 0 for every p > 1.

(f). (1 point) Show that we have canonical isomorphisms

HP(Z/22,H' (K, M)*/*") 5 HP (&3, H' (K, M),



(k).

for every p > 0.

. (1 points) Show that H' (K, M) = Homg,p(K, M), and that the action of &3 on H (K, M)

is given by (g-p)(z) = g-p(g txg), if g € &3, x € K and p € HY(K, M),

. (3 points) Show that H°(&3, H!(K, M)) is a l-dimensional k-vector space, and that

HP (&3, HY (K, M)) =0if p > 1.

. (2 points) Show that we have canonical isomorphisms H'(&4, M) = H'(K, M)®* and

H%(&4, M) = H2(K, M)®s.

. (3 points) Let N be a k-vector space with trivial action of K. Show

that the map Z2?(K,N) — N3 sending a 2-cocycle n : K? — N
to (n(u,u) — n(1,1),n(v,v) — n(1,1),n(wv,uv) — n(1,1)) induces an isomorphism
H%(K,N) = N3.

(2 points) Show that H?(&y, M) is a 2-dimensional k-vector space.

Solution.

(a).

(d).

We have K = (u,v) = {1,u,v,uv}, with uv = (13)(24), so the elements of K are 1 and the
permutation in &4 that are the product of two transpositions with disjoint supports. This
implies that K is a normal subgroup of &4. Also, it is easy to see that the subgroup H of
G4 generated by r and s is equal to the group {o € &4 | 0(4) = 4}, which is isomorphic
to &3. We have H N K = {1}, so the composition H C &4 — &4 /K is injective; as
|H| =6 =24/4 = | &, /K|, this composition is an isomorphism, so &3 ~ H = &, /K.

. The uniqueness of 7 follows from the fact that the set {u,v,r, s} generates Sy.

Let us show the existence of 7. Consider the bijection F3—{0} ~ {1, 2, 3} sending (é) to 3,
<(1)> to 1 and <1> to 2. This induces an injective morphism of groups ¢ : GLa(F2) — &3

sending <(1) (1)> to s and <§) i) to r. As |GLy(F2)| = 6 = | &3, the morphism 9 is an

automorphism, and we get the representation 7 : &4 — GLa(k) as the composition

-1
Gy — 6y /K ~ 63 "5 GLo(Fa) C GLa(k).

. Let I be any finite group of odd order. We will show that, for every k[I']-module N and

any p > 1, we have HP(I', N) = 0. By Remark IV.3.5.1 of the notes, we can calculate
HP(T', N) as a derived functor on the category o/ = rrjMod. We claim that the abelian
category o/ is semisimple (that is, every short exact sequence splits), which implies that
every additive functor on &7 is exact, hence has trivial higher derived functors.

The semisimplicity of o/ follows from Maschke’s theorem, whose proof in this case goes
like so: Let 0 — N; — Ny — N3 — 0 be an exact sequence of left kE[l']-modules. As
k is a field, there exists a k-linear map wp : N3 — Ny such that v owy = idy,. Define
z: N3 — Ny by

1 _
w(z) = WZV'UJO(V Lop),

vyel

where we use the fact that |I'| is odd to see that it is invertible in k. Then an easy
calculation shows that w is k[I']-linear and w o v = idps,.

Consider the Hochschild-Serre spectral sequence for the extension

10



1—>7Z/3 — 63— Z/2Z — 1 and the k[G3]-module N:
EY =HP(Z/27,0%(Z /37, N)) = HPT9(&3, N).

By question (c), we have F5? = 0 if ¢ # 0, so the spectral sequence degenerates at the
second page, and E5! = EF?. So, for every p > 0, we get an isomorphism

HP (&3, N) ~ ER = BP0 = HP(Z,/22, N%/32),

. We use the formula of question (d). By definition of the action of &4 on M,

the k-vector space MZ/3Z is the centralizer of <(1) i) in Ms(k), that is, the space

{(g a 3_ b) , a,b € k}, with the action of the nontrivial element s of Z/2Z given by

1
conjugation by (O

1 O). If a,b € k, we have

GGt G o)=(0" )
(s over)

(1+s)-MZ/3Z:(s—1)-MZ/3Z:{<b 0>, bek}

So we get

0 b
(remember that 2 =0 in k), and

{xeMZ/3Z|(1+3)~:c:0}:{<8 2) aek:}.

By question 2(a)(ii) of problem set 7 , we get H?(&3, M) = HP(Z/27, M%/32) = 0 if p > 1,
0 _Jfa O
andH(Gg,M)—{<O a>,a€k:}.

. Apply (d) to the k[&3]-module H' (K, M), where the action of &3 comes from the isomor-

phism &3 ~ &4 /K of (a).

. We use the description of H! (K, M) given in Subsection IV.3.5 of the notes. As K acts triv-

ially on M, a remark in this subsection gives H' (K, M) = Z1(K, M) = Homgp (K, M).
Moreover, if we make G = &4 act on ZE™ via its action by diagonal conjugation on
K™! then the unnormalized bar resolution X® — Z of Z as a left Z[K]-module is G-
equivariant. So we get actions of G on the groups C"(K, M) that preserve the subgroups
Z™(K,M) and B"(K,M), and induce the action of G on H"(K,M). By definition of
the action of G on X*, the action of G on C"(K, M) = Z (K", M) (the set of functions
from K™ to M) is given by (g - n)(k1,...,kn) = g-1n(9 " k1g,...,9  kng), for g € G,
n: K" — M and ky,...,k, € K. This implies in particular the second statement of (g).
1

. We have 7~lur = wv and r~'vr = w, so, by (g), we have an isomorphism

HY(K, M) = Homgyp(K, M) = M? sending ¢ : K — M to (c(u),c(v)), and the ac-
tion of r € G on H'(K, M) corresponding to the following action on M?: if z,y € M,

then r - (z,y) = (7(r)(x + y)7(r) "L, 7(r)zr(z) 7). If 2 = (Z Z), then we have

-1 _ C+d C
7(r)ar(r) _<a+b+c+d a+c>'

11



So a straightforward calculation shows that

Hl(K,M)Z/3Z:>{(:U,y)eM2|3a,bekwithx:<aib 2) andy:<b ““’)}.

Moreover, we have sus = v and svs = u, so the action of s € G on H' (K, M) corresponds
to the following action on M?: if z,y € M, then s - (z,y) = (7(s)y7(s), 7(s)x7(s)). If

T = <CCL b), then we have
d c
T(s)zT(s) = (b a) .

d
So, if N = H' (K, M)%/3Z we have

N2 —fneN|(1—-s)-n=0}={neN|(1+s) -n=0}
=(1-s5)-N=(

UG D) e

By question (f) and question 2(a)(ii) of problem set 7 , we get

R (R

and, if p > 1, then

—
_|_
B
=

HP (&3, HY (K, M)) = 0.

i). Consider the Hochschild-Serre spectral sequence for the extension

1—- K — 64— 63 — 1 and the k[&4]-module M:
EN = HP (&3, HY(K, M)) = HP (&4, M).

By questions (e) and (h), we have E5? =0 if ¢ € {0,1} and p # 0. So the second page of
the spectral sequence looks like this:

HO(&3, H2(K, M)) HY(&3, H2(K, M)) H%(&3, H2(K, M)) H3(&3, H2(K, M))
HO(&3, HY (K, M)) 0 0 0
HO(&3,HY(K, M)) 0 0 0

In particular, if r > 2 and ¢ € {0,1,2}, then d¥? : EY? — EI"" is zero, be-
cause EF"™ = 0, hence ngl = E%. So we get B2 = Eg’q if ¢ € {0,1,2}, and

EX =EY =E2 =0 (because the corresponding Fs terms are 0). This gives isomor-
phisms

HO(&y, M) 5 E%0 = H(&5, HO (K, M),
H'(&4, M) = EY' = HY(&3,H' (K, M),

and
H?(&4, M) 5 E%? = HY(6&3,H?(K, M)).
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(j). Let n € C?(K,N). As K acts trivially on N, the function 7 is a 2-cocycle if and only if,
for all g1, g2, 93 € K, we have

0 =n(g2,93) — n(9192, 93) +n(91, 9293) — 191, 92)-

As N is a k-vector space and k has characteristic 2, this relation can also be written as

(*) 0 = n(g2,93) + (9192, 93) + (91, 9293) + 1(91, 92)-

Also, the function 7 is a 2-coboundary if and only if there exists a function ¢ : K — M
such that n = d*(c), that is, for all g1, 92 € K,

(**) n(g1, g2) = c(g1) + c(g2) + c(g192).

Let n € Z?(K,M). Taking g1 = g2 = 1 in equation (*), we get, for every g € K,
n(1,1) = n(1,g). Similarly, taking go = g3 = 1 in (*), we get, for every g € K,
n(1,1) = n(g,1). Taking (g1, g2,93) equal to (u,v,uv), (v,u,uv), (u,uv,v), (v,uv,u),
(uv,u,v) and (uv,v,u), we get the following six relations:

(1) n(u,v) + n(v,uwv) = n(u,u) + n(uv, wv)
(2) (v, w) + n(u, wv) = n(v, v) + n(uv, uv)
(3) n(u, w) +n(uv,v) = n(u, u) +n(v, v)
(4) (v, wv) + n(uv, u) = 1(u, w) + (v, v)
(5) n(uv,u) + n(u,v) = n(v,v) + n(uv, uv)
(6) n(uv,v) + n(v,u) = n(u,u) + n(uw, wv)

Taking (g1, 92,93) equal to (u,u,v), (v,v,u) and (uv,uv,u), (and using the fact that
n(l,9) =n(g,1) =n(1,1) for every g € K), we get the following three relations:

(7) 1(u, v) + n(u, w) = n(u,u) +n(1,1)

(8) (v, u) + (v, uv) = nv,v) +n(1,1)

9) n(uv,v) + n(uv,u) = n(uv,uv) + n(1,1)

Let a : C?(K,N3 — N3 be the morphism sending n : K2? — N
to  (n(u,u) — n(1,1),n(v,v) — n(1,1),n(uwv,uv) — n(1,1)). We claim that

(Kera)N Z%(K,N) = B*(K, N).

Suppose first that n € B2(K, N), and write n = d'(c), with ¢ : K — N. Taking g1 = ¢»
in (**) and using the fact that every element of K is of order 1 or 2, we get, for every
g9 € K, n(g,9) = c(1). Hence n(g, g) = n(1,1) for every g € K, so a(n) = 0.

Conversely, let n €  Z*(K,N) such that oa(p) = 0. Then
n(u,u) = n(v,v) = nluv,uv) = n(1,1), so equations (1)-(6) imply that

13



n(u,v) = n(v,uwv) = n(uv,u) and n(v,u) = n(uv,v) = n(u,uv), and then equation
(7) implies that n(u,v) = n(u,uv), so we finally get

n(u,v) = n(v, w) = n(wv, u) = (v, w) = n(uv,v) = nu, w).
Define ¢ : K — N by c(u) = ¢(v) =0, ¢(1) = n(1,1) and c¢(uv) = n(u,v). Then it is easy
to check that n = d'(c), so n € B2(K, M).

To finish the proof, we need to show that « induces a surjection Z?(K,N) — N3.
Let (z,y,2) € N3. We want to find n € Z%(K, N) such that a(n) = (z,y,2). As we
can always translate by an element of B?(K, N) without changing a(n), we may take
n(1,1) = n(u,v) = 0. Then we must have n(u,u) = z, n(v,v) =y and n(uwv,uv) = 2z, and
equations (1)-(9) imply that

n(v,uv) =+ z

n(uv,u) =y + 2z
n(u, uwv) = x
n(w,v) =y
nv,u) =x+y+z

Also, if n is a 2-cocyle, we must have n(1,g) = n(g,1) = n(1,1) = 0 for every g € K. This
determines the values of 1 on all of K?, and it is easy to check that the function 7 that
we defined is indeed a 2-cocycle.

. We know that H2(&4, M) ~ H%(&3, H2(K, M)) by question (i), so we need to calculate the

action of &3 on H?(K, M); we will use the isomorphism « : H?(K, M) = M? of question
(j). By the proof of question (g), an element g € &, acts on a 2-cocycle n € Z2(K, M)
by (9-m)(k1,k2) = g-n(g~" k19,9 kag). Let n € Z*(K, M), and let (z,y,2) = a(n). We
have sus = v, svs = u, s(uv)s = uv, rtur = uv, rtvr = u and r~!(uv)r = v, so

al(s-n)=(s-y,s-x,5z2)

and
alr-n)=(r-z,r-x,r-y).

So 7 represents an element of H?(K, M)®3 if and only if s -y =z, s -2 =y, s- 2 = 2,
r-z=ux,r-x=yandr- -y ==z We already calculate the action of r and s on M in the

. . . . . b
solution of question (h). The relation s -z = z is equivalent to the fact that z = <a ),

b a
o a+b b
r=rE= 0 a+b

g a—+b 0
y= “\ b a+b)

We have z = r -y because > = 1, and it is clear that = s-y and y = s - z. So the
k-vector space

2 S3 a+b b CL+b 0 a b
HY(K, M) _{<< 0 a+bd)’ b a+b)’\b a » b ER

is 2-dimensional.

for a,b € k. Then we get

and
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