MAT 540: Problem Set 8

Due Thursday, November 14

1 Right multiplicative systems

Let $\mathscr C$ be a category and W be a set of morphisms of $\mathscr C$. Let $\mathscr I$ be a full subcategory of $\mathscr C$ and $W_{\mathscr I}$ be the set of morphisms of $\mathscr I$ that are in W. Suppose that W is a right multiplicative system and that, for every $s:X\to Y$ in W such that $X\in \mathrm{Ob}(\mathscr I)$, there exists a morphism $f:Y\to Z$ with $Z\in \mathrm{Ob}(\mathscr I)$ and $f\circ s\in W$.

Show that $W_{\mathscr{I}}$ is a right multiplicative system. (1 point for (S1)+(S2), 1 point each for (S3) and (S4))

Solution. Conditions (S1) and (S2) of Definition V.2.2.1 of the notes are clear. We check condition (S3). Let $f: X \to Y$ and $s: X \to X'$ be morphisms of $\mathscr I$ such that $s \in W$. Then there exist a morphism $g: X' \to Y'$ in $\mathscr C$ and a morphism $t: Y \to Y'$ in W such that $t \circ f = g \circ s$. Moreover, by the hypotheses of the proposition, there exists $h: Y' \to Y''$, with $Y'' \in \mathrm{Ob}(\mathscr I)$, such that $h \circ t \in W$. As $\mathscr I$ is a full subcategory of $\mathscr C$, we get a commutative diagram in $\mathscr I$:

$$X' \xrightarrow{h \circ g} Y''$$

$$\downarrow s \qquad \downarrow h \circ t$$

$$X \xrightarrow{f} Y$$

We now check condition (S4). Let $f, g: X \to Y$ be two morphisms of \mathscr{I} , and let $s: X' \to X$ be a morphism of $W_{\mathscr{I}}$ such that $f \circ s = g \circ s$. As W is a right multuplicative system, there exists $t: Y \to Y'$ in W such that $t \circ f = t \circ g$. Take $h: Y' \to Y''$ such that $Y'' \in \mathrm{Ob}(\mathscr{I})$ and $h \circ t \in W$. Then $h \circ t \in W_{\mathscr{I}}$, and we have $(h \circ t) \circ f = (h \circ t) \circ g$.

2 Isomorphisms in triangulated categories

(4 points)

Let (\mathcal{D}, T) be a triangulated category, and let $f: X \to Y$ be a morphism of \mathcal{D} . Show that f is an isomorphism if and only if there exists a distinguished triangle $X \xrightarrow{f} Y \to Z \to T(X)$ with Z = 0.

Solution. Suppose that f is an isomorphism. By (TR2), there exists a distinguished triangle

 $X \xrightarrow{f} Y \to Z \to T(X)$. By (TR4), the commutative square

$$X \xrightarrow{f} Y$$

$$id_X \downarrow \qquad \qquad \downarrow^{f^{-1}}$$

$$X \xrightarrow{id_X} X$$

can be completed to a morphism of distinguished triangles

$$X \xrightarrow{f} Y \xrightarrow{} Z \xrightarrow{} T(X)$$

$$\downarrow_{\text{id}_X} \downarrow \qquad \downarrow_{f^{-1}} \downarrow_g$$

$$X \xrightarrow{\text{id}_Y} X \xrightarrow{} 0 \xrightarrow{} T(X)$$

By Corollary V.1.1.12 of the notes, the morphism g is an isomorphism, so Z=0.

Conversely, suppose that there exists a distinguished triangle $X \xrightarrow{f} Y \to Z \to T(X)$ with Z = 0. Then, for every object W of \mathscr{D} , applying $\operatorname{Hom}_{\mathscr{D}}(W,\cdot)$ to the triangle $X \to Y \to Z \to T(X)$ and using Proposition V.1.1.11(ii) of the notes shows that $f_*: \operatorname{Hom}_{\mathscr{D}}(W,X) \to \operatorname{Hom}_{\mathscr{D}}(W,Y)$ is an isomorphism. By the Yoneda lemma (Corollary I.3.2.9 of the notes), the morphism f is an isomorphism.

3 Null systems

Let (\mathcal{D}, T) be a triangulated. Remember that a null system in \mathcal{D} is a set \mathcal{N} of objects of \mathcal{D} such that:

- (N1) $0 \in \mathcal{N}$;
- (N2) for every $X \in \text{Ob}(\mathscr{C})$, we have $X \in \mathscr{N}$ if and only if $T(X) \in \mathscr{N}$;
- (N3) if $X \to Y \to Z \to T(X)$ is a distinguished triangle and if $X, Y \in \mathcal{N}$, then $Z \in \mathcal{N}$.

We fix a null system \mathscr{N} , and we denote by $W_{\mathscr{N}}$ the set of morphisms $f: X \to Y$ in \mathscr{D} such that there exists a distinguished triangle $X \xrightarrow{f} Y \to Z \to T(X)$ with $Z \in \mathscr{N}$.

- (a). (1 point) If $X \in \mathcal{N}$ and Y is isomorphic to X, show that $Y \in \mathcal{N}$.
- (b). (1 point) Show that $W_{\mathcal{N}}$ contains all the isomorphisms of \mathcal{D} .
- (c). (2 points) Show that $W_{\mathcal{N}}$ is stable by composition.
- (d). (4 points) Show that $W_{\mathcal{N}}$ satisfies conditions (S3) and (S4) of Definition V.2.2.1 of the notes.
- (e). (2 points) Show that $W_{\mathcal{N}}$ is also a left multiplicative system.

Solution.

(a). Let $f: X \to Y$ be an isomorphism. By problem 2, the triangle $X \xrightarrow{f} Y \to 0 \to T(X)$ is distinguished. By axiom (TR3), the triangle $0 \to X \xrightarrow{f} Y \to T(0) = 0$ is also distinguished and so, by (N1) and (N3), we have $Y \in \mathcal{N}$.

- (b). This follows immediately from problem 2 and from (N0).
- (c). Let $f: X \to Y$ and $g: Y \to Z$ be in $W_{\mathscr{N}}$. Choose distinguished triangles $X \xrightarrow{f} Y \to Z' \to T(X)$ and $Y \xrightarrow{g} Z \to Z' \to T(Y)$ with $Z', Y' \in \mathscr{N}$. Let $X \xrightarrow{g \circ f} Y \to Z' \to T(X)$ be a distinguished triangle. By the octahedral axiom (axiom (TR5)), there exists a distinguished triangle $Z' \to Y \to X' \to T(X')$. By (N3), we have $X' \in \mathscr{N}$, and so $g \circ f \in W_{\mathscr{N}}$.
- (d). We show condition (S3). Let $f: X \to Y$ and $s: X \to X'$ be morphisms in \mathscr{D} with $s \in W_{\mathscr{N}}$. By the definition of $W_{\mathscr{N}}$ and axioms (TR3) and (N2), we can find a distinguished triangle $Z \xrightarrow{h} X \to X' \to T(Z)$ with $Z \in \mathscr{N}$. By (TR2), we can find a diatinguished triangle $Z \xrightarrow{f \circ h} Y \xrightarrow{t} Y' \to T(Z)$, and $t \in W_{\mathscr{N}}$ by (TR3) and (N2). Finally, by (TR4), we can complete the commutative diagram

$$Z \xrightarrow{h} X \xrightarrow{s} X' \xrightarrow{\longrightarrow} T(Z)$$

$$\operatorname{id}_{Z} \downarrow \qquad f \downarrow \qquad g \mid \qquad \operatorname{id}_{T(Z)} \downarrow \qquad \qquad Z \xrightarrow{f \circ h} Y \xrightarrow{t} Y' \xrightarrow{\longrightarrow} T(Z)$$

In other words, we can find a morphism $g: X' \to Y'$ such that $g \circ s = t \circ f$. This finishes the proof of (S3).

We show condition (S4). Let $f,g:X\to Y$ be two morphisms of \mathscr{D} , and suppose that there exists $s:X'\to X$ such that $f\circ s=g\circ s$ and $s\in W_{\mathscr{N}}$. If h=f-g, then we have $h\circ s=0$. Choose a distinguished triangle $X'\overset{s}{\to} X\overset{u}{\to} Z\to T(X')$ with $Z\in \mathscr{N}$. Applying the cohomological functor $\operatorname{Hom}_{\mathscr{D}}(\cdot,Y)$ to this distinguished triangle, we get an exact sequence

$$\operatorname{Hom}_{\mathscr{D}}(Z,Y) \to \operatorname{Hom}_{\mathscr{D}}(X,Y) \to \operatorname{Hom}_{\mathscr{D}}(X,X').$$

As the image $h \circ s$ of $h \in \operatorname{Hom}_{\mathscr{D}}(X,Y)$ by the second morphism of this sequence is 0, there exists $k \in \operatorname{Hom}_{\mathscr{D}}(Z,Y)$ such that $h = k \circ u$. Consider a distinguished triangle $Z \xrightarrow{k} Y \xrightarrow{t} Y' \to T(Z)$. As $Z \in \mathscr{N}$, we have $t \in W_{\mathscr{N}}$. Also, as $t \circ k = 0$ (by Proposition V.1.1.11(i) of the notes), we have $t \circ h = 0$, so $t \circ f = t \circ g$.

(e). We know that \mathscr{D}^{op} is also a triangulated category, and $\mathscr{N}^{\text{op}} = \{X \in \text{Ob}(\mathscr{D}^{\text{op}}) \mid X \in \mathscr{N}\}$ is a null system in \mathscr{D}^{op} ; indeed, axioms (N1) and (N2) obviously hold, and axiom (N3) for \mathscr{N}^{op} follows from (N3) for \mathscr{N} thanks to (TR3) and (N2). Also, again thanks to (TR3) and (N2), the set of morphisms $W_{\mathscr{N}^{\text{op}}}$ determined by \mathscr{N}^{op} is equal to $(W_{\mathscr{N}})^{\text{op}}$. So, by question (d), the set $(W_{\mathscr{N}})^{\text{op}}$ is a right multiplicative system. But this is equivalent to the fact that $W_{\mathscr{N}}$ is a left multiplicative system.

4 Localization of functors

Let $\mathscr C$ be a category, let W be a set of morphisms of $\mathscr C$, and let $\mathscr I$ be a full subcategory of $\mathscr C$; denote by $W_{\mathscr I}$ the set of morphisms of $\mathscr I$ that are in W. We fix a localization $Q:\mathscr C\to\mathscr C[W^{-1}]$ of $\mathscr C$ by W, and we denote by $\iota:\mathscr I\to\mathscr C$ the inclusion functor. Let $F:\mathscr C\to\mathscr D$ be a functor. Suppose that:

- (a) W is a right multiplicative system;
- (b) for every $X \in \text{Ob}(\mathscr{C})$, there exists a morphism $s: X \to Y$ in W such that $Y \in \text{Ob}(\mathscr{I})$;

(c) for every $s \in W_{\mathscr{I}}$, the morphism F(s) is an isomorphism.

Show that, for every functor $G: \mathscr{C}[W^{-1}] \to \mathscr{D}$, the map

$$\alpha: \operatorname{Hom}_{\operatorname{Func}(\mathscr{C},\mathscr{D})}(F,G\circ Q) \to \operatorname{Hom}_{\operatorname{Func}(\mathscr{I},\mathscr{D})}(F\circ\iota,G\circ Q\circ\iota)$$

induced by composition on the right by ι is bijective. (2 points for injectivity, 3 points for surjectivity)

Solution. Let $u_1, u_2 : F \to G \circ Q$ be morphism of functors such that $\alpha(u_1) = \alpha(u_2)$. Let $X \in \text{Ob}(\mathscr{C})$, and choose a morphism $s : X \to X'$ such that $X' \in \text{Ob}(\mathscr{I})$. Then we have commutative diagrams

$$F(X) \xrightarrow{u_1(X)} G \circ Q(X) \quad \text{and} \quad F(X) \xrightarrow{u_2(X)} G \circ Q(X)$$

$$F(s) \downarrow \qquad \qquad \downarrow G \circ Q(s) \qquad \qquad F(s) \downarrow \qquad \qquad \downarrow G \circ Q(s)$$

$$F(X') \xrightarrow{u_1(X')} G \circ Q(X') \qquad \qquad F(X') \xrightarrow{u_2(X')} G \circ Q(X')$$

and $u_1(X') = u_2(X')$ because $X' \in \text{Ob}(\mathscr{I})$, so $u_1(X) = u_2(X)$. This shows that $u_1 = u_2$, and hence that α is injective.

We show that α is surjective. Let $v: F \circ \iota \to G \circ Q \circ \iota$ be a morphism of fucntors. Let $X \in \mathrm{Ob}(\mathscr{C})$, and let $s: X \to X'$ be a morphism of W such that $X' \in \mathrm{Ob}(\mathscr{I})$. Then $G \circ Q(s)$ is an isomorphism, and we set $u(X) = (G \circ Q(s))^{-1} \circ v(X') \circ F(s)$. We must check that this does not depend on the choice of s. Let $s': X \to X''$ be another morphism of W such that $X'' \in \mathrm{Ob}(\mathscr{I})$. By condition (S3), we can find a commutative square

$$X \xrightarrow{s'} X''$$

$$\downarrow t$$

$$X' \xrightarrow{t'} Y$$

with $t \in W$. After composing with a morphism $Y \to Y'$ in W such that $Y' \in \mathrm{Ob}(\mathscr{I})$, we may assume that $Y \in \mathrm{Ob}(\mathscr{I})$. The images of s, t and s' by $G \circ Q$ are isomorphisms, so $G \circ Q(t')$ is also an isomorphism. As v is a morphism of functors, we have

$$(G \circ Q(s'))^{-1} \circ v(X'') \circ F(s') = (G \circ Q(s'))^{-1} \circ (G \circ Q(t))^{-1} \circ v(Y) \circ F(t) \circ F(s')$$

$$= (G \circ Q(s))^{-1} \circ (G \circ Q(t'))^{-1} \circ v(Y) \circ F(t') \circ F(s)$$

$$= (G \circ Q(s))^{-1} \circ v(X') \circ F(s).$$

So u(X) is well-defined. It remains to show that teh family $(u(X))_{X \in \mathrm{Ob}(\mathscr{C})}$ is a morphism of functors from F to $G \circ Q$. Let $f: X \to Y$ be a morphism of \mathscr{C} . We choose morphisms $s: X \to X'$ and $t: Y \to Y'$ un W such that $X', Y' \in \mathrm{Ob}(\mathscr{I})$. By condition (S3), we can find morphisms $f': X' \to Z$ and $s': Y' \to Z$ such that $s' \in W$ and that $s' \circ t \circ f = f' \circ s$. After composing s' and g by a morphism $Z \to Z'$ in W such that $Z' \in \mathrm{Ob}(\mathscr{I})$, we may assume that $Z \in \mathrm{Ob}(\mathscr{I})$. Then, using the fact that v is a morphism of functors and the definition of u, we get

$$(G \circ Q(f)) \circ u(X) = (G \circ Q(f))(G \circ Q(s))^{-1} \circ v(X') \circ F(s)$$

$$= (G \circ Q(t))^{-1} \circ (G \circ Q(s'))^{-1} \circ (G \circ Q(g)) \circ v(X') \circ F(s)$$

$$= (G \circ Q(t))^{-1} \circ (G \circ Q(s'))^{-1} \circ v(Z) \circ F(g) \circ F(s)$$

$$= (G \circ Q(t))^{-1} \circ (G \circ Q(s'))^{-1} \circ v(Z) \circ F(s') \circ F(t) \circ F(f)$$

$$= (G \circ Q(t))^{-1} \circ v(Y') \circ F(t) \circ F(f)$$

$$= u(Y) \circ F(f).$$

This shows that u is a morphism of functors.

5 Localization of a triangulated category

Let (\mathcal{D},T) be a triangulated category, let \mathcal{N} be a null system in \mathcal{D} , and let $W=W_{\mathcal{N}}$ be the corresponding multiplicative system. (See problem 3.) We write $Q:\mathcal{D}\to\mathcal{D}/\mathcal{N}$ for $Q:\mathcal{D}\to\mathcal{D}[W^{-1}]$.

(a). (1 point) Show that there exists an auto-equivalence $T_{\mathcal{N}}: \mathcal{D}/\mathcal{N} \to \mathcal{D}/\mathcal{N}$ such that $T_{\mathcal{N}} \circ Q \simeq Q \circ T$.

We say that a triangle in \mathcal{D}/\mathcal{N} is distinguished if it is isomorphic to the image by Q of a distinguished triangle of \mathcal{D} . Axiom (TR0) of Definition V.1.1.4 of the notes is obvious.

(b). (5 points: 1 point per axiom) Show that axioms (TR1)-(TR5) also hold.

Solution.

(a). The functor T preserves $W_{\mathcal{N}}$ (by (TR3) and (N2)), so the functor $\mathscr{D} \xrightarrow{T} \mathscr{D} \xrightarrow{Q} \mathscr{D}/\mathscr{N}$ sends elements to $W_{\mathcal{N}}$ to isomorphisms, so it factors through a factor $T_{\mathcal{N}} : \mathscr{D}/\mathscr{N} \to \mathscr{D}/\mathscr{N}$.

If we want to justify the construction of $T_{\mathcal{N}}$ in Theorem V.3.1.4 of the notes, we can say this: If $X \in \mathrm{Ob}(\mathcal{D}/\mathcal{N}) = \mathrm{Ob}(\mathcal{D})$, we set $T_{\mathcal{N}}(X) = T(X)$. Let $u: X \to Y$ be

a morphism of \mathcal{D} , and chose a diagram

in \mathscr{D} representing u, with Y

 $t \in W_{\mathscr{N}}$. We take $T_{\mathscr{N}}(u)$ to be the morphism from $T_{\mathscr{N}}(X)$ to $T_{\mathscr{N}}(Y)$ represented by the

diagram

. This makes sense because $T(t) \in Z_{\mathcal{N}},$ by (TR3)

and (N2). If we choose two representatives

of u, then we have a commutative diagram

with $t_3 \in W_{\mathscr{N}}$. Then applying T gives a commutative diagram

morphism from T(X) to T(Y) in \mathcal{D}/\mathcal{N} . So $T_{\mathcal{N}}$ is well-define, and it is easy to see that it is a functor.

- (b)(TR1) Let $X \in \text{Ob}(\mathcal{D}/\mathcal{N})$. Then the triangle $X \stackrel{\text{id}_X}{\to} X \to 0 \to T_{\mathcal{N}}(X)$ in \mathcal{D}/\mathcal{N} is isomorphic to the image by Q of the distinguished triangle $X \stackrel{\text{id}_X}{\to} X \to 0 \to T(X)$ in \mathcal{D} , so it is distinguished.
 - (TR2) Let $u: X \to Y$ be a morphism in \mathscr{D}/\mathscr{N} , and choose morphisms $f: X \to Y'$ and $s: Y \to Y'$ in \mathscr{D} such that $s \in W_{\mathscr{N}}$ and $u = Q(s)^{-1} \circ Q(f)$. Choose a distinguished triangle $X \xrightarrow{f} Y' \xrightarrow{g} Z \to T(X)$ in \mathscr{D} . Then the triangle $X \xrightarrow{u} Y \xrightarrow{Q(g \circ s)} Z \to T_{\mathscr{N}}(X)$ in \mathscr{D}/\mathscr{N} is isomorphic to the image by Q of $X \xrightarrow{f} Y' \xrightarrow{g} Z \to T(X)$, so it is distinguished.
 - (TR3) Let $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T_{\mathcal{N}}(X)$ be a triangle in \mathscr{D}/\mathscr{N} . If it isn distinguished, then it is isomorphic to the image by Q of a distinguished triangle $X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \xrightarrow{h'} T(X')$ in \mathscr{D} , and then the triangle $Y \xrightarrow{g} Z \xrightarrow{h} T(X) \xrightarrow{-T_{\mathcal{N}}(f)} T_{\mathcal{N}}(Y)$ is isomorphic to the image by Q of $Y' \xrightarrow{g'} Z \xrightarrow{h'} T(X') \xrightarrow{-T(f')} T(Y')$, hence it is also distinguished. The proof of the converse is similar.
 - (TR4) Consider a commutative diagram

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T_{\mathcal{N}}(X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad T(u) \downarrow$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} T_{\mathcal{N}}(X')$$

in \mathscr{D}/\mathscr{N} , where the rows are distinguished triangles. By the definition of distinguished triangles in \mathscr{D}/\mathscr{N} , we may assume that f,g,h,f',g',h' are morphisms of \mathscr{D} . We write $u=Q(s)^{-1}\circ Q(a)$, where $a:X\to X''$ and $s:X'\to X''$ are morphisms of \mathscr{D} such that $s\in W_{\mathscr{N}}$. As $W_{\mathscr{N}}$ is a multiplicative system, we can find a commutative square

$$X'' \xrightarrow{k} T$$

$$\downarrow s \qquad \downarrow s'$$

$$X' \xrightarrow{f'} Y'$$

with $s' \in W_{\mathcal{N}}$. Write $v = Q(t')^{-1} \circ Q(b')$, with $b' : Y \to Y'''$ and $t' : Y' \to Y''$ are

morphisms of \mathscr{D} such that $t' \in W_{\mathscr{N}}$. Then

$$Q(s')^{-1} \circ Q(k \circ a) = Q(f') \circ Q(s)^{-1} \circ Q(s) = Q(f') \circ u = v \circ Q(f) = Q(t')^{-1} \circ Q(b' \circ f),$$

so, by the description of the Hom in the localization after Definition V.2.2.3 of the notes, there exists a commutative diagram

with $t \in W_{\mathscr{N}}$. Let $b = b'' \circ b' : Y \to Y''$. Then

$$Q(t)^{-1} \circ Q(b) = Q(t')^{-1} \circ Q(b') = v.$$

Let $f'' = c \circ k : X'' \to Y''$. Then

$$f'' \circ a = c \circ k \circ a = k' = b'' \circ b' \circ f = b \circ f$$

and

$$t \circ f' = c \circ s' \circ f' = c \circ k \circ s'' = f'' \circ s'',$$

so we have constructed a commutative diagram in \mathcal{D} :

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T_{\mathcal{N}}(X)$$

$$\downarrow a \downarrow \qquad \qquad \downarrow T_{\mathcal{N}}(a)$$

$$X'' \xrightarrow{f''} Y'' \xrightarrow{g''} Z'' \xrightarrow{h''} T_{\mathcal{N}}(X'')$$

$$\downarrow s \qquad \qquad \downarrow t \qquad \qquad \uparrow T_{\mathcal{N}}(s)$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} T_{\mathcal{N}}(X')$$

and, by axiom (TR2), we can extend $f'': X'' \to Y''$ to a distinguished triangle $X'' \stackrel{f''}{\to} Y'' \stackrel{g''}{\to} Z'' \stackrel{h''}{\to} T(X'')$. Completing s and t to distinguished triangles, we get a commutative diagram where the first two rows and columns are distinguished triangles and $N_1, N_2 \in \mathcal{N}$:

We also complete $t \circ f' = f'' \circ s$ to a distinguished triangle $X' \to Y'' \to A \to T(X')$. By the octahedral axiom (TR5) applied to the triangles based on $(f', t, t \circ f')$ and on (s, f'', f'' circs), we have distinguished triangles

$$Z' \to A \to N_2 \to T(Z')$$

and

$$N_1 \to A \to Z'' \to T(N_1).$$

Applying the octahedral axiom again for the morphisms $Z' \to A$, $A \to Z''$ and their composition, we get a commutative diagram where the rows and the third columns are distinguished triangles:

In particular, we have $N_3 \in \mathcal{N}$. So we have completed the commutative square

$$X' \xrightarrow{f'} Y'$$

$$\downarrow t$$

$$X'' \xrightarrow{f''} Y''$$

to a morphism of triangles

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} T(X')$$

$$\downarrow t \qquad \qquad \downarrow T(s)$$

$$X'' \xrightarrow{f''} Y'' \xrightarrow{g''} Z'' \xrightarrow{h''} T(X'')$$

such that the morphism $Z' \to Z''$ is in $W_{\mathscr{N}}$. Moreover, by (TR4), we can complete the commutative square

$$X \xrightarrow{f} Y$$

$$\downarrow b$$

$$X'' \xrightarrow{f''} Y''$$

to a morphism of triangles

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T(X)$$

$$\downarrow a \qquad \qquad \downarrow b \qquad \qquad \downarrow T(a)$$

$$X'' \xrightarrow{f''} Y'' \xrightarrow{g''} Z'' \xrightarrow{h''} T(X'')$$

So we have constructed a commutative diagram in \mathcal{D} whose rows are distinguished triangles:

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T(X)$$

$$\downarrow b \qquad \qquad \downarrow T(a)$$

$$X'' \xrightarrow{f''} Y'' \xrightarrow{g''} Z'' \xrightarrow{h''} T(X'')$$

$$\downarrow s \qquad t \qquad \qquad \downarrow T(s) \qquad \downarrow T(s)$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} T(X')$$

and such that s, t and the morphism $Z' \to Z''$ are in $W_{\mathcal{N}}$. Taking the image of this by Q, we get a morphism of distinguished triangles in \mathscr{D}/\mathscr{N} extending the pair (u, v).

(TR5) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms in \mathscr{D}/\mathscr{N} . After replacing Y and Z by isomorphic objects, we may assume that f and g are morphisms of \mathscr{D} . Applying (TR5) in \mathscr{D} to distinguished triangles based on the morphisms $(f, g, g \circ f)$ and taking the image of the resulting diagram by Q, we get (TR5) in \mathscr{D}/\mathscr{N} .

6 More group cohomology

The description of group cohomology in Subsection IV.3.5 of the notes can be useful in this problem.

We define elements u, v, r and s of the symmetric group \mathfrak{S}_4 by u = (12)(34), v = (14)(23), r = (123) and s = (13). The Klein four group is the normal subgroup K of \mathfrak{S}_4 generated by u and v.

Let k be a field of characteristic 2.

- (a). (2 points) Show that $\mathfrak{S}_4/K \simeq \mathfrak{S}_3$.
- (b). (2 points) Show that there is a unique representation $\tau:\mathfrak{S}_4\to \mathrm{GL}_2(k)$ such that $\tau(u)=\tau(v)=\begin{pmatrix} 1&0\\0&1 \end{pmatrix},\, \tau(r)=\begin{pmatrix} 0&1\\1&1 \end{pmatrix}$ and $\tau(s)=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}.$

Let $M = M_2(k)$, with the action of \mathfrak{S}_4 given by $g \cdot A = \tau(g)A\tau(g)^{-1}$, for $g \in \mathfrak{S}_4$ and $A \in M_2(k)$. We identify \mathfrak{S}_3 with the subgroup of \mathfrak{S}_4 generated by r and s. We have a short exact sequence of groups

$$1 \to \mathbb{Z}/3\mathbb{Z} \to \mathfrak{S}_3 \to \mathbb{Z}/2\mathbb{Z} \to 1$$
,

where the generator $1 \in \mathbb{Z}/3\mathbb{Z}$ is sent to $r \in \mathfrak{S}_3$.

- (c). (2 points) If N is any representation of $\mathbb{Z}/3\mathbb{Z}$ on a k-vector space, show that $H^p(\mathbb{Z}/3\mathbb{Z}, N) = 0$ for every $p \geq 1$. (You might find Remark IV.3.5.1 of the notes useful.)
- (d). (1 point) If N is any representation of \mathfrak{S}_3 on a k-vector space, show that we have canonical isomorphisms $H^p(\mathbb{Z}/2\mathbb{Z}, N^{\mathbb{Z}/3\mathbb{Z}}) \xrightarrow{\sim} H^p(\mathfrak{S}_3, N)$ for every $p \geq 0$.
- (e). (2 points) Show that $H^p(\mathfrak{S}_3, M) = 0$ for every $p \ge 1$.
- (f). (1 point) Show that we have canonical isomorphisms

$$\mathrm{H}^p(\mathbb{Z}/2\mathbb{Z},\mathrm{H}^1(K,M)^{\mathbb{Z}/3\mathbb{Z}})\stackrel{\sim}{\to} \mathrm{H}^p(\mathfrak{S}_3,\mathrm{H}^1(K,M)),$$

for every $p \geq 0$.

- (g). (1 points) Show that $H^1(K, M) = \operatorname{Hom}_{\mathbf{Grp}}(K, M)$, and that the action of \mathfrak{S}_3 on $H^1(K, M)$ is given by $(g \cdot \varphi)(x) = g \cdot \varphi(g^{-1}xg)$, if $g \in \mathfrak{S}_3$, $x \in K$ and $\varphi \in H^1(K, M)$.
- (h). (3 points) Show that $H^0(\mathfrak{S}_3, H^1(K, M))$ is a 1-dimensional k-vector space, and that $H^p(\mathfrak{S}_3, H^1(K, M)) = 0$ if $p \ge 1$.
- (i). (2 points) Show that we have canonical isomorphisms $H^1(\mathfrak{S}_4, M) \xrightarrow{\sim} H^1(K, M)^{\mathfrak{S}_3}$ and $H^2(\mathfrak{S}_4, M) \xrightarrow{\sim} H^2(K, M)^{\mathfrak{S}_3}$.
- (j). (3 points) Let N be a k-vector space with trivial action of K. Show that the map $Z^2(K,N) \to N^3$ sending a 2-cocycle $\eta: K^2 \to N$ to $(\eta(u,u) \eta(1,1), \eta(v,v) \eta(1,1), \eta(uv,uv) \eta(1,1))$ induces an isomorphism $H^2(K,N) \xrightarrow{\sim} N^3$.
- (k). (2 points) Show that $H^2(\mathfrak{S}_4, M)$ is a 2-dimensional k-vector space.

Solution.

- (a). We have $K = \langle u, v \rangle = \{1, u, v, uv\}$, with uv = (13)(24), so the elements of K are 1 and the permutation in \mathfrak{S}_4 that are the product of two transpositions with disjoint supports. This implies that K is a normal subgroup of \mathfrak{S}_4 . Also, it is easy to see that the subgroup H of \mathfrak{S}_4 generated by r and s is equal to the group $\{\sigma \in \mathfrak{S}_4 \mid \sigma(4) = 4\}$, which is isomorphic to \mathfrak{S}_3 . We have $H \cap K = \{1\}$, so the composition $H \subset \mathfrak{S}_4 \to \mathfrak{S}_4/K$ is injective; as $|H| = 6 = 24/4 = |\mathfrak{S}_4/K|$, this composition is an isomorphism, so $\mathfrak{S}_3 \simeq H \stackrel{\sim}{\to} \mathfrak{S}_4/K$.
- (b). The uniqueness of τ follows from the fact that the set $\{u, v, r, s\}$ generates \mathfrak{S}_4 .

Let us show the existence of τ . Consider the bijection $\mathbb{F}_2^2 - \{0\} \simeq \{1, 2, 3\}$ sending $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to 3, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to 1 and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ to 2. This induces an injective morphism of groups $\psi : \operatorname{GL}_2(\mathbb{F}_2) \to \mathfrak{S}_3$ sending $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ to s and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ to r. As $|\operatorname{GL}_2(\mathbb{F}_2)| = 6 = |\mathfrak{S}_3|$, the morphism ψ is an automorphism, and we get the representation $\tau : \mathfrak{S}_4 \to \operatorname{GL}_2(k)$ as the composition

$$\mathfrak{S}_4 \to \mathfrak{S}_4 / K \simeq \mathfrak{S}_3 \stackrel{\psi^{-1}}{\to} \mathrm{GL}_2(\mathbb{F}_2) \subset \mathrm{GL}_2(k).$$

(c). Let Γ be any finite group of odd order. We will show that, for every $k[\Gamma]$ -module N and any $p \geq 1$, we have $H^p(\Gamma, N) = 0$. By Remark IV.3.5.1 of the notes, we can calculate $H^p(\Gamma, N)$ as a derived functor on the category $\mathscr{A} = {}_{k[\Gamma]}\mathbf{Mod}$. We claim that the abelian category \mathscr{A} is semisimple (that is, every short exact sequence splits), which implies that every additive functor on \mathscr{A} is exact, hence has trivial higher derived functors.

The semisimplicity of \mathscr{A} follows from Maschke's theorem, whose proof in this case goes like so: Let $0 \to N_1 \stackrel{u}{\to} N_2 \stackrel{v}{\to} N_3 \to 0$ be an exact sequence of left $k[\Gamma]$ -modules. As k is a field, there exists a k-linear map $w_0: N_3 \to N_2$ such that $v \circ w_0 = \mathrm{id}_{N_3}$. Define $z: N_3 \to N_2$ by

$$w(x) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \gamma \cdot w_0(\gamma^{-1} \cdot x),$$

where we use the fact that $|\Gamma|$ is odd to see that it is invertible in k. Then an easy calculation shows that w is $k[\Gamma]$ -linear and $w \circ v = \mathrm{id}_{N_3}$.

(d). Consider the Hochschild-Serre spectral sequence for the extension

 $1 \to \mathbb{Z}/3 \to \mathfrak{S}_3 \to \mathbb{Z}/2\mathbb{Z} \to 1$ and the $k[\mathfrak{S}_3]$ -module N:

$$E_2^{pq} = \mathrm{H}^p(\mathbb{Z}/2\mathbb{Z}, \mathrm{H}^q(\mathbb{Z}/3\mathbb{Z}, N)) \Rightarrow \mathrm{H}^{p+q}(\mathfrak{S}_3, N).$$

By question (c), we have $E_2^{pq}=0$ if $q\neq 0$, so the spectral sequence degenerates at the second page, and $E_2^{pq}=E_2^{pq}$. So, for every $p\geq 0$, we get an isomorphism

$$\mathrm{H}^p(\mathfrak{S}_3, N) \simeq E_{\infty}^{p,0} = E_2^{p,0} = \mathrm{H}^p(\mathbb{Z}/2\mathbb{Z}, N^{\mathbb{Z}/3\mathbb{Z}}).$$

(e). We use the formula of question (d). By definition of the action of \mathfrak{S}_4 on M, the k-vector space $M^{\mathbb{Z}/3\mathbb{Z}}$ is the centralizer of $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ in $M_2(k)$, that is, the space $\left\{ \begin{pmatrix} a & b \\ b & a+b \end{pmatrix}, \ a,b \in k \right\}$, with the action of the nontrivial element s of $\mathbb{Z}/2\mathbb{Z}$ given by conjugation by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. If $a,b \in k$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ b & a+b \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a+b & b \\ b & a \end{pmatrix}.$$

So we get

$$\begin{split} M^{\mathfrak{S}_3} &= \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \ a \in k \right\}, \\ (1+s) \cdot M^{\mathbb{Z}/3\mathbb{Z}} &= \left(s-1 \right) \cdot M^{\mathbb{Z}/3\mathbb{Z}} = \left\{ \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}, \ b \in k \right\} \end{split}$$

(remember that 2 = 0 in k), and

$$\left\{x\in M^{\mathbb{Z}/3\mathbb{Z}}\mid (1+s)\cdot x=0\right\}=\left\{\begin{pmatrix} a & 0\\ 0 & a\end{pmatrix},\ a\in k\right\}.$$

By question 2(a)(ii) of problem set 7 , we get $H^p(\mathfrak{S}_3, M) = H^p(\mathbb{Z}/2\mathbb{Z}, M^{\mathbb{Z}/3\mathbb{Z}}) = 0$ if $p \ge 1$, and $H^0(\mathfrak{S}_3, M) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \ a \in k \right\}$.

- (f). Apply (d) to the $k[\mathfrak{S}_3]$ -module $H^1(K, M)$, where the action of \mathfrak{S}_3 comes from the isomorphism $\mathfrak{S}_3 \simeq \mathfrak{S}_4 / K$ of (a).
- (g). We use the description of $H^1(K,M)$ given in Subsection IV.3.5 of the notes. As K acts trivially on M, a remark in this subsection gives $H^1(K,M) = Z^1(K,M) = \operatorname{Hom}_{\mathbf{Grp}}(K,M)$. Moreover, if we make $G = \mathfrak{S}_4$ act on $\mathbb{Z}^{K^{n+1}}$ via its action by diagonal conjugation on K^{n+1} , then the unnormalized bar resolution $X^{\bullet} \to \mathbb{Z}$ of \mathbb{Z} as a left $\mathbb{Z}[K]$ -module is G-equivariant. So we get actions of G on the groups $C^n(K,M)$ that preserve the subgroups $Z^n(K,M)$ and $B^n(K,M)$, and induce the action of G on $H^n(K,M)$. By definition of the action of G on X^{\bullet} , the action of G on $C^n(K,M) \overset{\sim}{\to} \mathscr{F}(K^n,M)$ (the set of functions from K^n to M) is given by $(g \cdot \eta)(k_1,\ldots,k_n) = g \cdot \eta(g^{-1}k_1g,\ldots,g^{-1}k_ng)$, for $g \in G$, $\eta:K^n \to M$ and $k_1,\ldots,k_n \in K$. This implies in particular the second statement of (g).
- (h). We have $r^{-1}ur = uv$ and $r^{-1}vr = u$, so, by (g), we have an isomorphism $\mathrm{H}^1(K,M) = \mathrm{Hom}_{\mathbf{Grp}}(K,M) \overset{\sim}{\to} M^2$ sending $c: K \to M$ to (c(u),c(v)), and the action of $r \in G$ on $\mathrm{H}^1(K,M)$ corresponding to the following action on M^2 : if $x,y \in M$, then $r \cdot (x,y) = (\tau(r)(x+y)\tau(r)^{-1},\tau(r)x\tau(x)^{-1})$. If $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then we have

$$\tau(r)x\tau(r)^{-1} = \begin{pmatrix} c+d & c\\ a+b+c+d & a+c \end{pmatrix}.$$

So a straightforward calculation shows that

$$\mathrm{H}^1(K,M)^{\mathbb{Z}/3\mathbb{Z}} \overset{\sim}{\to} \left\{ (x,y) \in M^2 \mid \exists a,b \in k \text{ with } x = \begin{pmatrix} a & b \\ a+b & a \end{pmatrix} \text{ and } y = \begin{pmatrix} b & a+b \\ a & b \end{pmatrix} \right\}.$$

Moreover, we have sus = v and svs = u, so the action of $s \in G$ on $H^1(K, M)$ corresponds to the following action on M^2 : if $x, y \in M$, then $s \cdot (x, y) = (\tau(s)y\tau(s), \tau(s)x\tau(s))$. If $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then we have

$$\tau(s)x\tau(s) = \begin{pmatrix} d & c \\ b & a \end{pmatrix}.$$

So, if $N = H^1(K, M)^{\mathbb{Z}/3\mathbb{Z}}$, we have

$$\begin{split} N^{\mathbb{Z}/2\mathbb{Z}} &= \left\{ n \in N \mid (1-s) \cdot n = 0 \right\} = \left\{ n \in N \mid (1+s) \cdot n = 0 \right\} \\ &= (1-s) \cdot N = (1+s) \cdot N \\ &= \left\{ \begin{pmatrix} \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}, \begin{pmatrix} a & 0 \\ a & a \end{pmatrix} \right), \ a \in k \right\}. \end{split}$$

By question (f) and question 2(a)(ii) of problem set 7 , we get

$$\mathrm{H}^0(\mathfrak{S}_3,\mathrm{H}^1(K,M)) = \left\{ \left(\begin{pmatrix} a & a \\ 0 & a \end{pmatrix}, \begin{pmatrix} a & 0 \\ a & a \end{pmatrix} \right), \ a \in k \right\}$$

and, if $p \ge 1$, then

$$H^p(\mathfrak{S}_3, H^1(K, M)) = 0.$$

(i). Consider the Hochschild-Serre spectral sequence for the extension $1 \to K \to \mathfrak{S}_4 \to \mathfrak{S}_3 \to 1$ and the $k[\mathfrak{S}_4]$ -module M:

$$E_2^{pq} = \mathrm{H}^p(\mathfrak{S}_3, \mathrm{H}^q(K, M)) \Rightarrow \mathrm{H}^{p+q}(\mathfrak{S}_4, M).$$

By questions (e) and (h), we have $E_2^{pq}=0$ if $q\in\{0,1\}$ and $p\neq 0$. So the second page of the spectral sequence looks like this:

In particular, if $r \geq 2$ and $q \in \{0,1,2\}$, then $d_r^{0,q}: E_r^{0,q} \to E_r^{r,q-r+1}$ is zero, because $E_r^{r,q-r+1}=0$, hence $E_{r+1}^{0,q}=E_r^{0,q}$. So we get $E_\infty^{0,q}=E_2^{0,q}$ if $q \in \{0,1,2\}$, and $E_\infty^{1,0}=E_\infty^{1,1}=E_\infty^{2,0}=0$ (because the corresponding E_2 terms are 0). This gives isomorphisms

$$H^{0}(\mathfrak{S}_{4}, M) \xrightarrow{\sim} E_{\infty}^{0,0} = H^{0}(\mathfrak{S}_{3}, H^{0}(K, M)),$$

$$H^{1}(\mathfrak{S}_{4}, M) \xrightarrow{\sim} E_{\infty}^{0,1} = H^{0}(\mathfrak{S}_{3}, H^{1}(K, M)),$$

and

$$\mathrm{H}^2(\mathfrak{S}_4, M) \stackrel{\sim}{\to} E_{\infty}^{0,2} = \mathrm{H}^0(\mathfrak{S}_3, \mathrm{H}^2(K, M)).$$

(j). Let $\eta \in C^2(K, N)$. As K acts trivially on N, the function η is a 2-cocycle if and only if, for all $g_1, g_2, g_3 \in K$, we have

$$0 = \eta(g_2, g_3) - \eta(g_1g_2, g_3) + \eta(g_1, g_2g_3) - \eta(g_1, g_2).$$

As N is a k-vector space and k has characteristic 2, this relation can also be written as

(*)
$$0 = \eta(g_2, g_3) + \eta(g_1g_2, g_3) + \eta(g_1, g_2g_3) + \eta(g_1, g_2).$$

Also, the function η is a 2-coboundary if and only if there exists a function $c: K \to M$ such that $\eta = d^1(c)$, that is, for all $g_1, g_2 \in K$,

$$\eta(g_1, g_2) = c(g_1) + c(g_2) + c(g_1g_2).$$

Let $\eta \in Z^2(K, M)$. Taking $g_1 = g_2 = 1$ in equation (*), we get, for every $g \in K$, $\eta(1,1) = \eta(1,g)$. Similarly, taking $g_2 = g_3 = 1$ in (*), we get, for every $g \in K$, $\eta(1,1) = \eta(g,1)$. Taking (g_1, g_2, g_3) equal to (u, v, uv), (v, u, uv), (u, uv, v), (u, uv, v), (u, uv, u), (uv, u, v) and (uv, v, u), we get the following six relations:

(1)
$$\eta(u,v) + \eta(v,uv) = \eta(u,u) + \eta(uv,uv)$$

(2)
$$\eta(v,u) + \eta(u,uv) = \eta(v,v) + \eta(uv,uv)$$

(3)
$$\eta(u, uv) + \eta(uv, v) = \eta(u, u) + \eta(v, v)$$

(4)
$$\eta(v, uv) + \eta(uv, u) = \eta(u, u) + \eta(v, v)$$

(5)
$$\eta(uv, u) + \eta(u, v) = \eta(v, v) + \eta(uv, uv)$$

(6)
$$\eta(uv, v) + \eta(v, u) = \eta(u, u) + \eta(uv, uv)$$

Taking (g_1, g_2, g_3) equal to (u, u, v), (v, v, u) and (uv, uv, u), (and using the fact that $\eta(1, q) = \eta(q, 1) = \eta(1, 1)$ for every $q \in K$), we get the following three relations:

(7)
$$\eta(u,v) + \eta(u,uv) = \eta(u,u) + \eta(1,1)$$

(8)
$$\eta(v, u) + \eta(v, uv) = \eta(v, v) + \eta(1, 1)$$

(9)
$$\eta(uv, v) + \eta(uv, u) = \eta(uv, uv) + \eta(1, 1)$$

Let $\alpha: C^2(K,N^3) \to N^3$ be the morphism sending $\eta: K^2 \to N$ to $(\eta(u,u)-\eta(1,1),\eta(v,v)-\eta(1,1),\eta(uv,uv)-\eta(1,1))$. We claim that $(\operatorname{Ker} \alpha) \cap Z^2(K,N) = B^2(K,N)$.

Suppose first that $\eta \in B^2(K, N)$, and write $\eta = d^1(c)$, with $c: K \to N$. Taking $g_1 = g_2$ in (**) and using the fact that every element of K is of order 1 or 2, we get, for every $g \in K$, $\eta(g,g) = c(1)$. Hence $\eta(g,g) = \eta(1,1)$ for every $g \in K$, so $\alpha(\eta) = 0$.

Conversely, let $\eta \in Z^2(K, N)$ such that $\alpha(\eta) = 0$. Then $\eta(u, u) = \eta(v, v) = \eta(uv, uv) = \eta(1, 1)$, so equations (1)-(6) imply that

 $\eta(u,v) = \eta(v,uv) = \eta(uv,u)$ and $\eta(v,u) = \eta(uv,v) = \eta(u,uv)$, and then equation (7) implies that $\eta(u,v) = \eta(u,uv)$, so we finally get

$$\eta(u,v) = \eta(v,uv) = \eta(uv,u) = \eta(v,u) = \eta(uv,v) = \eta(u,uv).$$

Define $c: K \to N$ by c(u) = c(v) = 0, $c(1) = \eta(1,1)$ and $c(uv) = \eta(u,v)$. Then it is easy to check that $\eta = d^1(c)$, so $\eta \in B^2(K, M)$.

To finish the proof, we need to show that α induces a surjection $Z^2(K,N) \to N^3$. Let $(x,y,z) \in N^3$. We want to find $\eta \in Z^2(K,N)$ such that $\alpha(\eta) = (x,y,z)$. As we can always translate η by an element of $B^2(K,N)$ without changing $\alpha(\eta)$, we may take $\eta(1,1) = \eta(u,v) = 0$. Then we must have $\eta(u,u) = x$, $\eta(v,v) = y$ and $\eta(uv,uv) = z$, and equations (1)-(9) imply that

$$\eta(v, uv) = x + z$$

$$\eta(uv, u) = y + z$$

$$\eta(u, uv) = x$$

$$\eta(uv, v) = y$$

$$\eta(v, u) = x + y + z$$

Also, if η is a 2-cocycle, we must have $\eta(1,g) = \eta(g,1) = \eta(1,1) = 0$ for every $g \in K$. This determines the values of η on all of K^2 , and it is easy to check that the function η that we defined is indeed a 2-cocycle.

(k). We know that $H^2(\mathfrak{S}_4, M) \simeq H^0(\mathfrak{S}_3, H^2(K, M))$ by question (i), so we need to calculate the action of \mathfrak{S}_3 on $H^2(K, M)$; we will use the isomorphism $\alpha : H^2(K, M) \xrightarrow{\sim} M^3$ of question (j). By the proof of question (g), an element $g \in \mathfrak{S}_4$ acts on a 2-cocycle $\eta \in Z^2(K, M)$ by $(g \cdot \eta)(k_1, k_2) = g \cdot \eta(g^{-1}k_1g, g^{-1}k_2g)$. Let $\eta \in Z^2(K, M)$, and let $(x, y, z) = \alpha(\eta)$. We have sus = v, svs = u, s(uv)s = uv, $r^{-1}ur = uv$, $r^{-1}vr = u$ and $r^{-1}(uv)r = v$, so

$$\alpha(s \cdot \eta) = (s \cdot y, s \cdot x, s \cdot z)$$

and

$$\alpha(r \cdot \eta) = (r \cdot z, r \cdot x, r \cdot y).$$

So η represents an element of $H^2(K, M)^{\mathfrak{S}_3}$ if and only if $s \cdot y = x$, $s \cdot x = y$, $s \cdot z = z$, $r \cdot z = x$, $r \cdot x = y$ and $r \cdot y = z$. We already calculate the action of r and s on M in the solution of question (h). The relation $s \cdot z = z$ is equivalent to the fact that $z = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, for $a, b \in k$. Then we get

$$x = r \cdot z = \begin{pmatrix} a+b & b \\ 0 & a+b \end{pmatrix}$$

and

$$y = r \cdot x = \begin{pmatrix} a+b & 0 \\ b & a+b \end{pmatrix}.$$

We have $z = r \cdot y$ because $r^3 = 1$, and it is clear that $x = s \cdot y$ and $y = s \cdot x$. So the k-vector space

$$\mathrm{H}^2(K,M)^{\mathfrak{S}_3} \simeq \left\{ \left(\begin{pmatrix} a+b & b \\ 0 & a+b \end{pmatrix}, \begin{pmatrix} a+b & 0 \\ b & a+b \end{pmatrix}, \begin{pmatrix} a & b \\ b & a \end{pmatrix} \right), \ a,b \in k \right\}$$

is 2-dimensional.