
MAT 540 : Problem Set 8

Due Thursday, November 14

1 Right multiplicative systems

Let C be a category and W be a set of morphisms of C . Let I be a full subcategory of C
and WI be the set of morphisms of I that are in W . Suppose that W is a right multiplicative
system and that, for every s : X → Y in W such that X ∈ Ob(I ), there exists a morphism
f : Y → Z with Z ∈ Ob(I ) and f ◦ s ∈W .

Show that WI is a right multiplicative system. (1 point for (S1)+(S2), 1 point each for (S3)
and (S4))

Solution. Conditions (S1) and (S2) of Definition V.2.2.1 of the notes are clear. We check
condition (S3). Let f : X → Y and s : X → X ′ be morphisms of I such that s ∈ W . Then
there exist a morphism g : X ′ → Y ′ in C and a morphism t : Y → Y ′ in W such that t◦f = g◦s.
Moreover, by the hypotheses of the proposition, there exists h : Y ′ → Y ′′, with Y ′′ ∈ Ob(I ),
such that h ◦ t ∈W . As I is a full subcategory of C , we get a commutative diagram in I :

X ′
h◦g // Y ′′

X

s

OO

f
// Y

h◦t

OO

We now check condition (S4). Let f, g : X → Y be two morphisms of I , and let s : X ′ → X
be a morphism of WI such that f ◦ s = g ◦ s. As W is a right multuplicative system, there
exists t : Y → Y ′ in W such that t ◦ f = t ◦ g. Take h : Y ′ → Y ′′ such that Y ′′ ∈ Ob(I ) and
h ◦ t ∈W . Then h ◦ t ∈WI , and we have (h ◦ t) ◦ f = (h ◦ t) ◦ g.

�

2 Isomorphisms in triangulated categories

(4 points)

Let (D , T ) be a triangulated category, and let f : X → Y be a morphism of D . Show that

f is an isomorphism if and only if there exists a distinguished triangle X
f→ Y → Z → T (X)

with Z = 0.

Solution. Suppose that f is an isomorphism. By (TR2), there exists a distinguished triangle

1



X
f→ Y → Z → T (X). By (TR4), the commutative square

X
f //

idX

��

Y

f−1

��
X

idX

// X

can be completed to a morphism of distinguished triangles

X
f //

idX

��

Y //

f−1

��

Z //

g

��

T (X)

X
idX

// X // 0 // T (X)

By Corollary V.1.1.12 of the notes, the morphism g is an isomorphism, so Z = 0.

Conversely, suppose that there exists a distinguished triangle X
f→ Y → Z → T (X)

with Z = 0. Then, for every object W of D , applying HomD(W, ·) to the triangle
X → Y → Z → T (X) and using Proposition V.1.1.11(ii) of the notes shows that
f∗ : HomD(W,X)→ HomD(W,Y ) is an isomorphism. By the Yoneda lemma (Corollary I.3.2.9
of the notes), the morphism f is an isomorphism.

�

3 Null systems

Let (D , T ) be a triangulated. Remember that a null system in D is a set N of objects of D
such that:

(N1) 0 ∈ N ;

(N2) for every X ∈ Ob(C ), we have X ∈ N if and only if T (X) ∈ N ;

(N3) if X → Y → Z → T (X) is a distinguished triangle and if X,Y ∈ N , then Z ∈ N .

We fix a null system N , and we denote by WN the set of morphisms f : X → Y in D such

that there exists a distinguished triangle X
f→ Y → Z → T (X) with Z ∈ N .

(a). (1 point) If X ∈ N and Y is isomorphic to X, show that Y ∈ N .

(b). (1 point) Show that WN contains all the isomorphisms of D .

(c). (2 points) Show that WN is stable by composition.

(d). (4 points) Show that WN satisfies conditions (S3) and (S4) of Definition V.2.2.1 of the
notes.

(e). (2 points) Show that WN is also a left multiplicative system.

Solution.

(a). Let f : X → Y be an isomorphism. By problem 2, the triangle X
f→ Y → 0 → T (X) is

distinguished. By axiom (TR3), the triangle 0→ X
f→ Y → T (0) = 0 is also distinguished

and so, by (N1) and (N3), we have Y ∈ N .
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(b). This follows immediately from problem 2 and from (N0).

(c). Let f : X → Y and g : Y → Z be in WN . Choose distinguished triangles

X
f→ Y → Z ′ → T (X) and Y

g→ Z → Z ′ → T (Y ) with Z ′, Y ′ ∈ N . Let

X
g◦f→ Y → Z ′ → T (X) be a distinguished triangle. By the octahedral axiom (axiom

(TR5)), there exists a distinguished triangle Z ′ → Y → X ′ → T (X ′). By (N3), we have
X ′ ∈ N , and so g ◦ f ∈WN .

(d). We show condition (S3). Let f : X → Y and s : X → X ′ be morphisms in D with s ∈WN .
By the definition of WN and axioms (TR3) and (N2), we can find a distinguished triangle

Z
h→ X → X ′ → T (Z) with Z ∈ N . By (TR2), we can find a diatinguished triangle

Z
f◦h→ Y

t→ Y ′ → T (Z), and t ∈ WN by (TR3) and (N2). Finally, by (TR4), we can
complete the commutative diagram

Z
h //

idZ

��

X
s //

f

��

X ′ //

g

��

T (Z)

idT (Z)

��
Z

f◦h
// Y

t
// Y ′ // T (Z)

In other words, we can find a morphism g : X ′ → Y ′ such that g ◦ s = t ◦ f . This finishes
the proof of (S3).

We show condition (S4). Let f, g : X → Y be two morphisms of D , and suppose that
there exists s : X ′ → X such that f ◦ s = g ◦ s and s ∈ WN . If h = f − g, then we
have h ◦ s = 0. Choose a distinguished triangle X ′

s→ X
u→ Z → T (X ′) with Z ∈ N .

Applying the cohomological functor HomD(·, Y ) to this distinguished triangle, we get an
exact sequence

HomD(Z, Y )→ HomD(X,Y )→ HomD(X,X ′).

As the image h ◦ s of h ∈ HomD(X,Y ) by the second morphism of this sequence is 0,
there exists k ∈ HomD(Z, Y ) such that h = k ◦ u. Consider a distinguished triangle

Z
k→ Y

t→ Y ′ → T (Z). As Z ∈ N , we have t ∈ WN . Also, as t ◦ k = 0 (by Proposition
V.1.1.11(i) of the notes), we have t ◦ h = 0, so t ◦ f = t ◦ g.

(e). We know that Dop is also a triangulated category, and N op = {X ∈ Ob(Dop) | X ∈ N }
is a null system in Dop; indeed, axioms (N1) and (N2) obviously hold, and axiom (N3) for
N op follows from (N3) for N thanks to (TR3) and (N2). Also, again thanks to (TR3)
and (N2), the set of morphisms WN op determined by N op is equal to (WN )op. So, by
question (d), the set (WN )op is a right mutliplicative system. But this is equivalent to
the fact that WN is a left multiplicative system.

�

4 Localization of functors

Let C be a category, let W be a set of morphisms of C , and let I be a full subcategory of C ;
denote by WI the set of morphisms of I that are in W . We fix a localization Q : C → C [W−1]
of C by W , and we denote by ι : I → C the inclusion functor. Let F : C → D be a functor.
Suppose that:

(a) W is a right multiplicative system;

(b) for every X ∈ Ob(C ), there exists a morphism s : X → Y in W such that Y ∈ Ob(I );
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(c) for every s ∈WI , the morphism F (s) is an isomorphism.

Show that, for every functor G : C [W−1]→ D , the map

α : HomFunc(C ,D)(F,G ◦Q)→ HomFunc(I ,D)(F ◦ ι, G ◦Q ◦ ι)

induced by composition on the right by ι is bijective. (2 points for injectivity, 3 points for
surjectivity)

Solution. Let u1, u2 : F → G ◦ Q be morphism of functors such that α(u1) = α(u2). Let
X ∈ Ob(C ), and choose a morphism s : X → X ′ such that X ′ ∈ Ob(I ). Then we have
commutative diagrams

F (X)
u1(X) //

F (s)
��

G ◦Q(X)

o G◦Q(s)
��

F (X ′)
u1(X′)

// G ◦Q(X ′)

and F (X)
u2(X) //

F (s)
��

G ◦Q(X)

o G◦Q(s)
��

F (X ′)
u2(X′)

// G ◦Q(X ′)

and u1(X ′) = u2(X ′) because X ′ ∈ Ob(I ), so u1(X) = u2(X). This shows that u1 = u2, and
hence that α is injective.

We show that α is surjective. Let v : F ◦ ι → G ◦ Q ◦ ι be a morphism of fucntors. Let
X ∈ Ob(C ), and let s : X → X ′ be a morphism of W such that X ′ ∈ Ob(I ). Then G ◦Q(s)
is an isomorphism, and we set u(X) = (G ◦ Q(s))−1 ◦ v(X ′) ◦ F (s). We must check that this
does not depend on the choice of s. Let s′ : X → X ′′ be another morphism of W such that
X ′′ ∈ Ob(I ). By condition (S3), we can find a commutative square

X
s′ //

s
��

X ′′

t
��

X ′
t′
// Y

with t ∈ W . After composing with a morphism Y → Y ′ in W such that Y ′ ∈ Ob(I ), we may
assume that Y ∈ Ob(I ). The images of s, t and s′ by G ◦Q are isomorphisms, so G ◦Q(t′) is
also an isomorphism. As v is a morphism of functors, we have

(G ◦Q(s′))−1 ◦ v(X ′′) ◦ F (s′) = (G ◦Q(s′))−1 ◦ (G ◦Q(t))−1 ◦ v(Y ) ◦ F (t) ◦ F (s′)

= (G ◦Q(s))−1 ◦ (G ◦Q(t′))−1 ◦ v(Y ) ◦ F (t′) ◦ F (s)

= (G ◦Q(s))−1 ◦ v(X ′) ◦ F (s).

So u(X) is well-defined. It remains to show that teh family (u(X))X∈Ob(C ) is a morphism
of functors from F to G ◦ Q. Let f : X → Y be a morphism of C . We choose morphisms
s : X → X ′ and t : Y → Y ′ un W such that X ′, Y ′ ∈ Ob(I ). By condition (S3), we can find
morphisms f ′ : X ′ → Z and s′ : Y ′ → Z such that s′ ∈ W and that s′ ◦ t ◦ f = f ′ ◦ s. After
composing s′ and g by a morphism Z → Z ′ in W such that Z ′ ∈ Ob(I ), we may assume that
Z ∈ Ob(I ). Then, using the fact that v is a morphism of functors and the definition of u, we
get

(G ◦Q(f)) ◦ u(X) = (G ◦Q(f))(G ◦Q(s))−1 ◦ v(X ′) ◦ F (s)

= (G ◦Q(t))−1 ◦ (G ◦Q(s′))−1 ◦ (G ◦Q(g)) ◦ v(X ′) ◦ F (s)

= (G ◦Q(t))−1 ◦ (G ◦Q(s′))−1 ◦ v(Z) ◦ F (g) ◦ F (s)

= (G ◦Q(t))−1 ◦ (G ◦Q(s′))−1 ◦ v(Z) ◦ F (s′) ◦ F (t) ◦ F (f)

= (G ◦Q(t))−1 ◦ v(Y ′) ◦ F (t) ◦ F (f)

= u(Y ) ◦ F (f).
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This shows that u is a morphism of functors.

�

5 Localization of a triangulated category

Let (D , T ) be a triangulated category, let N be a null system in D , and let W = WN be
the corresponding multiplicative system. (See problem 3.) We write Q : D → D/N for
Q : D → D [W−1].

(a). (1 point) Show that there exists an auto-equivalence TN : D/N → D/N such that
TN ◦Q ' Q ◦ T .

We say that a triangle in D/N is distinguished if it is isomorphic to the image by Q of a
distinguished triangle of D . Axiom (TR0) of Definition V.1.1.4 of the notes is obvious.

(b). (5 points: 1 point per axiom) Show that axioms (TR1)-(TR5) also hold.

Solution.

(a). The functor T preserves WN (by (TR3) and (N2)), so the functor D
T→ D

Q→ D/N sends
elements to WN to isomorphisms, so it factors through a factor TN : D/N → D/N .

If we want to justify the construction of TN in Theorem V.3.1.4 of the notes, we can
say this: If X ∈ Ob(D/N ) = Ob(D), we set TN (X) = T (X). Let u : X → Y be

a morphism of D , and chose a diagram

Y ′

X

f
>>

Y

t
``

in D representing u, with

t ∈WN . We take TN (u) to be the morphism from TN (X) to TN (Y ) represented by the

diagram

T (Y ′)

T (X)

T (f)
::

T (Y )

T (t)
cc

. This makes sense because T (t) ∈ ZN , by (TR3)

and (N2). If we choose two representatives

Y ′1

X

f1
>>

Y

t1
__

and

Y ′2

X

f2
>>

Y

t2
__

of u, then we have a commutative diagram

Y ′1

��
X

f1
??

f3 //

f2 ��

Y ′3 Y

t1
__

t3oo

t2��
Y ′2

OO
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with t3 ∈WN . Then applying T gives a commutative diagram

T (Y ′1)

��
T (X)

T (f1)
;;

T (f3) //

T (f2) ##

T (Y ′3) T (Y )

T (t1)
cc

T (t3)oo

T (t2){{
T (Y ′2)

OO

so

T (Y ′1)

T (X)

T (f1)
;;

T (Y )

T (t1)
cc

and

T (Y ′2)

T (X)

T (f2)
;;

T (Y )

T (t2)
cc

represent the same

morphism from T (X) to T (Y ) in D/N . So TN is well-define, and it is easy to see that
it is a functor.

(b).(TR1) Let X ∈ Ob(D/N ). Then the triangle X
idX→ X → 0 → TN (X) in D/N is

isomorphic to the image by Q of the distinguished triangle X
idX→ X → 0→ T (X) in

D , so it is distinguished.

(TR2) Let u : X → Y be a morphism in D/N , and choose morphisms f : X → Y ′ and
s : Y → Y ′ in D such that s ∈ WN and u = Q(s)−1 ◦Q(f). Choose a distinguished

triangle X
f→ Y ′

g→ Z → T (X) in D . Then the triangle X
u→ Y

Q(g◦s)→ Z → TN (X)

in D/N is isomorphic to the image by Q of X
f→ Y ′

g→ Z → T (X), so it is
distinguished.

(TR3) Let X
f→ Y

g→ Z
h→ TN (X) be a triangle in D/N . If it isn distinguished, then it is

isomorphic to the image by Q of a distinguished triangle X ′
f ′→ Y ′

g′→ Z
h′→ T (X ′) in

D , and then the triangle Y
g→ Z

h→ T (X)
−TN (f)→ TN (Y ) is isomorphic to the image

by Q of Y ′
g′→ Z

h′→ T (X ′)
−T (f ′)→ T (Y ′), hence it is also distinguished. The proof of

the converse is similar.

(TR4) Consider a commutative diagram

X
f //

u

��

Y
g //

v

��

Z
h // TN (X)

T (u)
��

X ′
f ′
// Y ′

g′
// Z ′

h′
// TN (X ′)

in D/N , where the rows are distinguished triangles. By the definition of distin-
guished triangles in D/N , we may assume that f, g, h, f ′, g′, h′ are morphisms of D .
We write u = Q(s)−1 ◦Q(a), where a : X → X ′′ and s : X ′ → X ′′ are morphisms of
D such that s ∈WN . As WN is a multiplicative system, we can find a commutative
square

X ′′
k // T

X ′

s

OO

f ′
// Y ′

s′

OO

with s′ ∈ WN . Write v = Q(t′)−1 ◦ Q(b′), with b′ : Y → Y ′′′ and t′ : Y ′ → Y ′′ are

6



morphisms of D such that t′ ∈WN . Then

Q(s′)−1 ◦Q(k◦a) = Q(f ′)◦Q(s)−1 ◦Q(s) = Q(f ′)◦u = v◦Q(f) = Q(t′)−1 ◦Q(b′ ◦f),

so, by the description of the Hom in the localization after Definition V.2.2.3 of the
notes, there exists a commutative diagram

Y ′′′

b′′

��
X

b′◦f
==

k′ //

k◦a !!

Y ′′ Y ′

t′
aa

too

s′}}
T

c

OO

with t ∈WN . Let b = b′′ ◦ b′ : Y → Y ′′. Then

Q(t)−1 ◦Q(b) = Q(t′)−1 ◦Q(b′) = v.

Let f ′′ = c ◦ k : X ′′ → Y ′′. Then

f ′′ ◦ a = c ◦ k ◦ a = k′ = b′′ ◦ b′ ◦ f = b ◦ f

and
t ◦ f ′ = c ◦ s′ ◦ f ′ = c ◦ k ◦ s′′ = f ′′ ◦ s′′,

so we have constructed a commutative diagram in D :

X
f //

a

��

Y
g //

b
��

Z
h // TN (X)

TN (a)
��

X ′′
f ′′ // Y ′′

g′′ // Z ′′
h′′ // TN (X ′′)

X ′
f ′
//

s

OO

Y ′
g′
//

t

OO

Z ′
h′
// TN (X ′)

TN (s)

OO

and, by axiom (TR2), we can extend f ′′ : X ′′ → Y ′′ to a distinguished triangle

X ′′
f ′′→ Y ′′

g′′→ Z ′′
h′′→ T (X ′′). Completing s and t to distinguished triangles, we

get a commutative diagram where the first two rows and columns are distinguished
triangles and N1, N2 ∈ N :

X ′
f ′ //

s

�� $$

Y ′
g′ //

t
��

Z ′
h′ // T (X ′)

T (s)
��

X ′′
f ′′ //

��

Y ′′

��

g′′ //

$$

Z ′′
h′′ // T (X ′′)

��
N1

��

N2

��

A T (N1)

��
T (X ′)

T (f ′)
// T (Y ′)

g′
// T (Z ′)

T (h′)
// T 2(X ′)
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We also complete t ◦ f ′ = f ′′ ◦ s to a distinguished triangle X ′ → Y ′′ → A→ T (X ′).
By the octahedral axiom (TR5) applied to the triangles based on (f ′, t, t◦ f ′) and on
(s, f ′′, f ′′circs), we have distinguished triangles

Z ′ → A→ N2 → T (Z ′)

and
N1 → A→ Z ′′ → T (N1).

Applying the octahedral axiom again for the morphisms Z ′ → A, A→ Z ′′ and their
composition, we get a commutative diagram where the rows and the third columns
are distinguished triangles:

Z ′ // A //

��

N2
//

��

T (Z ′)

Z ′ //

��

Z ′′ // N3
//

��

T (Z ′)

��
A // Z ′′ // T (N1) //

��

T (A)

T (N2)

In particular, we have N3 ∈ N . So we have completed the commutative square

X ′
f ′ //

s
��

Y ′

t
��

X ′′
f ′′
// Y ′′

to a morphism of triangles

X ′
f ′ //

s

��

Y ′

t
��

g′ // Z ′

��

h′ // T (X ′)

T (s)
��

X ′′
f ′′
// Y ′′

g′′
// Z ′′

h′′
// T (X ′′)

such that the morphism Z ′ → Z ′′ is in WN . Moreover, by (TR4), we can complete
the commutative square

X
f //

a
��

Y

b
��

X ′′
f ′′
// Y ′′

to a morphism of triangles

X
f //

a

��

Y

b
��

g // Z

��

h // T (X)

T (a)
��

X ′′
f ′′
// Y ′′

g′′
// Z ′′

h′′
// T (X ′′)
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So we have constructed a commutative diagram in D whose rows are distinguished
triangles:

X
f //

a

��

Y

b
��

g // Z

��

h // T (X)

T (a)
��

X ′′
f ′′
// Y ′′

g′′
// Z ′′

h′′
// T (X ′′)

X ′
f ′ //

s

OO

Y ′

t

OO

g′ // Z ′

OO

h′ // T (X ′)

T (s)

OO

and such that s, t and the morphism Z ′ → Z ′′ are in WN . Taking the image of
this by Q, we get a morphism of distinguished triangles in D/N extending the pair
(u, v).

(TR5) Let f : X → Y and g : Y → Z be morphisms in D/N . After replacing Y and Z
by isomorphic objects, we may assume that f and g are morphisms of D . Applying
(TR5) in D to distinguished triangles based on the morphisms (f, g, g◦f) and taking
the image of the resulting diagram by Q, we get (TR5) in D/N .

�

6 More group cohomology

The description of group cohomology in Subsection IV.3.5 of the notes can be useful in this
problem.

We define elements u, v, r and s of the symmetric group S4 by u = (12)(34), v = (14)(23),
r = (123) and s = (13). The Klein four group is the normal subgroup K of S4 generated by u
and v.

Let k be a field of characteristic 2.

(a). (2 points) Show that S4 /K ' S3.

(b). (2 points) Show that there is a unique representation τ : S4 → GL2(k) such that

τ(u) = τ(v) =

(
1 0
0 1

)
, τ(r) =

(
0 1
1 1

)
and τ(s) =

(
0 1
1 0

)
.

Let M = M2(k), with the action of S4 given by g · A = τ(g)Aτ(g)−1, for g ∈ S4 and
A ∈ M2(k). We identify S3 with the subgroup of S4 generated by r and s. We have a short
exact sequence of groups

1→ Z/3Z→ S3 → Z/2Z→ 1,

where the generator 1 ∈ Z/3Z is sent to r ∈ S3.

(c). (2 points) If N is any representation of Z/3Z on a k-vector space, show that
Hp(Z/3Z, N) = 0 for every p ≥ 1. (You might find Remark IV.3.5.1 of the notes use-
ful.)

(d). (1 point) If N is any representation of S3 on a k-vector space, show that we have canonical
isomorphisms Hp(Z/2Z, NZ/3Z)

∼→ Hp(S3, N) for every p ≥ 0.

(e). (2 points) Show that Hp(S3,M) = 0 for every p ≥ 1.

(f). (1 point) Show that we have canonical isomorphisms

Hp(Z/2Z,H1(K,M)Z/3Z)
∼→ Hp(S3,H

1(K,M)),
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for every p ≥ 0.

(g). (1 points) Show that H1(K,M) = HomGrp(K,M), and that the action of S3 on H1(K,M)
is given by (g · ϕ)(x) = g · ϕ(g−1xg), if g ∈ S3, x ∈ K and ϕ ∈ H1(K,M).

(h). (3 points) Show that H0(S3,H
1(K,M)) is a 1-dimensional k-vector space, and that

Hp(S3,H
1(K,M)) = 0 if p ≥ 1.

(i). (2 points) Show that we have canonical isomorphisms H1(S4,M)
∼→ H1(K,M)S3 and

H2(S4,M)
∼→ H2(K,M)S3 .

(j). (3 points) Let N be a k-vector space with trivial action of K. Show
that the map Z2(K,N) → N3 sending a 2-cocycle η : K2 → N
to (η(u, u) − η(1, 1), η(v, v) − η(1, 1), η(uv, uv) − η(1, 1)) induces an isomorphism
H2(K,N)

∼→ N3.

(k). (2 points) Show that H2(S4,M) is a 2-dimensional k-vector space.

Solution.

(a). We have K = 〈u, v〉 = {1, u, v, uv}, with uv = (13)(24), so the elements of K are 1 and the
permutation in S4 that are the product of two transpositions with disjoint supports. This
implies that K is a normal subgroup of S4. Also, it is easy to see that the subgroup H of
S4 generated by r and s is equal to the group {σ ∈ S4 | σ(4) = 4}, which is isomorphic
to S3. We have H ∩ K = {1}, so the composition H ⊂ S4 → S4 /K is injective; as
|H| = 6 = 24/4 = |S4 /K|, this composition is an isomorphism, so S3 ' H

∼→ S4 /K.

(b). The uniqueness of τ follows from the fact that the set {u, v, r, s} generates S4.

Let us show the existence of τ . Consider the bijection F2
2−{0} ' {1, 2, 3} sending

(
1
0

)
to 3,(

0
1

)
to 1 and

(
1
1

)
to 2. This induces an injective morphism of groups ψ : GL2(F2)→ S3

sending

(
0 1
1 0

)
to s and

(
0 1
1 1

)
to r. As |GL2(F2)| = 6 = |S3 |, the morphism ψ is an

automorphism, and we get the representation τ : S4 → GL2(k) as the composition

S4 → S4 /K ' S3
ψ−1

→ GL2(F2) ⊂ GL2(k).

(c). Let Γ be any finite group of odd order. We will show that, for every k[Γ]-module N and
any p ≥ 1, we have Hp(Γ, N) = 0. By Remark IV.3.5.1 of the notes, we can calculate
Hp(Γ, N) as a derived functor on the category A = k[Γ]Mod. We claim that the abelian
category A is semisimple (that is, every short exact sequence splits), which implies that
every additive functor on A is exact, hence has trivial higher derived functors.

The semisimplicity of A follows from Maschke’s theorem, whose proof in this case goes
like so: Let 0 → N1

u→ N2
v→ N3 → 0 be an exact sequence of left k[Γ]-modules. As

k is a field, there exists a k-linear map w0 : N3 → N2 such that v ◦ w0 = idN3 . Define
z : N3 → N2 by

w(x) =
1

|Γ|
∑
γ∈Γ

γ · w0(γ−1 · x),

where we use the fact that |Γ| is odd to see that it is invertible in k. Then an easy
calculation shows that w is k[Γ]-linear and w ◦ v = idN3 .

(d). Consider the Hochschild-Serre spectral sequence for the extension
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1→ Z/3→ S3 → Z/2Z→ 1 and the k[S3]-module N :

Epq2 = Hp(Z/2Z,Hq(Z/3Z, N))⇒ Hp+q(S3, N).

By question (c), we have Epq2 = 0 if q 6= 0, so the spectral sequence degenerates at the
second page, and Epq∞ = Epq2 . So, for every p ≥ 0, we get an isomorphism

Hp(S3, N) ' Ep,0∞ = Ep,02 = Hp(Z/2Z, NZ/3Z).

(e). We use the formula of question (d). By definition of the action of S4 on M ,

the k-vector space MZ/3Z is the centralizer of

(
0 1
1 1

)
in M2(k), that is, the space{(

a b
b a+ b

)
, a, b ∈ k

}
, with the action of the nontrivial element s of Z/2Z given by

conjugation by

(
0 1
1 0

)
. If a, b ∈ k, we have

(
0 1
1 0

)(
a b
b a+ b

)(
0 1
1 0

)
=

(
a+ b b
b a

)
.

So we get

MS3 =

{(
a 0
0 a

)
, a ∈ k

}
,

(1 + s) ·MZ/3Z = (s− 1) ·MZ/3Z =

{(
b 0
0 b

)
, b ∈ k

}
(remember that 2 = 0 in k), and

{x ∈MZ/3Z | (1 + s) · x = 0} =

{(
a 0
0 a

)
, a ∈ k

}
.

By question 2(a)(ii) of problem set 7 , we get Hp(S3,M) = Hp(Z/2Z,MZ/3Z) = 0 if p ≥ 1,

and H0(S3,M) =

{(
a 0
0 a

)
, a ∈ k

}
.

(f). Apply (d) to the k[S3]-module H1(K,M), where the action of S3 comes from the isomor-
phism S3 ' S4 /K of (a).

(g). We use the description of H1(K,M) given in Subsection IV.3.5 of the notes. AsK acts triv-
ially on M , a remark in this subsection gives H1(K,M) = Z1(K,M) = HomGrp(K,M).

Moreover, if we make G = S4 act on ZKn+1
via its action by diagonal conjugation on

Kn+1, then the unnormalized bar resolution X• → Z of Z as a left Z[K]-module is G-
equivariant. So we get actions of G on the groups Cn(K,M) that preserve the subgroups
Zn(K,M) and Bn(K,M), and induce the action of G on Hn(K,M). By definition of
the action of G on X•, the action of G on Cn(K,M)

∼→ F (Kn,M) (the set of functions
from Kn to M) is given by (g · η)(k1, . . . , kn) = g · η(g−1k1g, . . . , g

−1kng), for g ∈ G,
η : Kn →M and k1, . . . , kn ∈ K. This implies in particular the second statement of (g).

(h). We have r−1ur = uv and r−1vr = u, so, by (g), we have an isomorphism
H1(K,M) = HomGrp(K,M)

∼→ M2 sending c : K → M to (c(u), c(v)), and the ac-
tion of r ∈ G on H1(K,M) corresponding to the following action on M2: if x, y ∈ M ,

then r · (x, y) = (τ(r)(x+ y)τ(r)−1, τ(r)xτ(x)−1). If x =

(
a b
c d

)
, then we have

τ(r)xτ(r)−1 =

(
c+ d c

a+ b+ c+ d a+ c

)
.
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So a straightforward calculation shows that

H1(K,M)Z/3Z
∼→
{

(x, y) ∈M2 | ∃a, b ∈ k with x =

(
a b

a+ b a

)
and y =

(
b a+ b
a b

)}
.

Moreover, we have sus = v and svs = u, so the action of s ∈ G on H1(K,M) corresponds
to the following action on M2: if x, y ∈ M , then s · (x, y) = (τ(s)yτ(s), τ(s)xτ(s)). If

x =

(
a b
c d

)
, then we have

τ(s)xτ(s) =

(
d c
b a

)
.

So, if N = H1(K,M)Z/3Z, we have

NZ/2Z = {n ∈ N | (1− s) · n = 0} = {n ∈ N | (1 + s) · n = 0}
= (1− s) ·N = (1 + s) ·N

=

{((
a a
0 a

)
,

(
a 0
a a

))
, a ∈ k

}
.

By question (f) and question 2(a)(ii) of problem set 7 , we get

H0(S3,H
1(K,M)) =

{((
a a
0 a

)
,

(
a 0
a a

))
, a ∈ k

}
and, if p ≥ 1, then

Hp(S3,H
1(K,M)) = 0.

(i). Consider the Hochschild-Serre spectral sequence for the extension
1→ K → S4 → S3 → 1 and the k[S4]-module M :

Epq2 = Hp(S3,H
q(K,M))⇒ Hp+q(S4,M).

By questions (e) and (h), we have Epq2 = 0 if q ∈ {0, 1} and p 6= 0. So the second page of
the spectral sequence looks like this:

H0(S3,H
2(K,M)) H1(S3,H

2(K,M)) H2(S3,H
2(K,M)) H3(S3,H

2(K,M))

H0(S3,H
1(K,M)) 0 0 0

H0(S3,H
0(K,M)) 0 0 0

In particular, if r ≥ 2 and q ∈ {0, 1, 2}, then d0,q
r : E0,q

r → Er,q−r+1
r is zero, be-

cause Er,q−r+1
r = 0, hence E0,q

r+1 = E0,q
r . So we get E0,q

∞ = E0,q
2 if q ∈ {0, 1, 2}, and

E1,0
∞ = E1,1

∞ = E2,0
∞ = 0 (because the corresponding E2 terms are 0). This gives isomor-

phisms
H0(S4,M)

∼→ E0,0
∞ = H0(S3,H

0(K,M)),

H1(S4,M)
∼→ E0,1

∞ = H0(S3,H
1(K,M)),

and
H2(S4,M)

∼→ E0,2
∞ = H0(S3,H

2(K,M)).
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(j). Let η ∈ C2(K,N). As K acts trivially on N , the function η is a 2-cocycle if and only if,
for all g1, g2, g3 ∈ K, we have

0 = η(g2, g3)− η(g1g2, g3) + η(g1, g2g3)− η(g1, g2).

As N is a k-vector space and k has characteristic 2, this relation can also be written as

(*) 0 = η(g2, g3) + η(g1g2, g3) + η(g1, g2g3) + η(g1, g2).

Also, the function η is a 2-coboundary if and only if there exists a function c : K → M
such that η = d1(c), that is, for all g1, g2 ∈ K,

(**) η(g1, g2) = c(g1) + c(g2) + c(g1g2).

Let η ∈ Z2(K,M). Taking g1 = g2 = 1 in equation (*), we get, for every g ∈ K,
η(1, 1) = η(1, g). Similarly, taking g2 = g3 = 1 in (*), we get, for every g ∈ K,
η(1, 1) = η(g, 1). Taking (g1, g2, g3) equal to (u, v, uv), (v, u, uv), (u, uv, v), (v, uv, u),
(uv, u, v) and (uv, v, u), we get the following six relations:

(1) η(u, v) + η(v, uv) = η(u, u) + η(uv, uv)

(2) η(v, u) + η(u, uv) = η(v, v) + η(uv, uv)

(3) η(u, uv) + η(uv, v) = η(u, u) + η(v, v)

(4) η(v, uv) + η(uv, u) = η(u, u) + η(v, v)

(5) η(uv, u) + η(u, v) = η(v, v) + η(uv, uv)

(6) η(uv, v) + η(v, u) = η(u, u) + η(uv, uv)

Taking (g1, g2, g3) equal to (u, u, v), (v, v, u) and (uv, uv, u), (and using the fact that
η(1, g) = η(g, 1) = η(1, 1) for every g ∈ K), we get the following three relations:

(7) η(u, v) + η(u, uv) = η(u, u) + η(1, 1)

(8) η(v, u) + η(v, uv) = η(v, v) + η(1, 1)

(9) η(uv, v) + η(uv, u) = η(uv, uv) + η(1, 1)

Let α : C2(K,N3) → N3 be the morphism sending η : K2 → N
to (η(u, u) − η(1, 1), η(v, v) − η(1, 1), η(uv, uv) − η(1, 1)). We claim that
(Kerα) ∩ Z2(K,N) = B2(K,N).

Suppose first that η ∈ B2(K,N), and write η = d1(c), with c : K → N . Taking g1 = g2

in (**) and using the fact that every element of K is of order 1 or 2, we get, for every
g ∈ K, η(g, g) = c(1). Hence η(g, g) = η(1, 1) for every g ∈ K, so α(η) = 0.

Conversely, let η ∈ Z2(K,N) such that α(η) = 0. Then
η(u, u) = η(v, v) = η(uv, uv) = η(1, 1), so equations (1)-(6) imply that
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η(u, v) = η(v, uv) = η(uv, u) and η(v, u) = η(uv, v) = η(u, uv), and then equation
(7) implies that η(u, v) = η(u, uv), so we finally get

η(u, v) = η(v, uv) = η(uv, u) = η(v, u) = η(uv, v) = η(u, uv).

Define c : K → N by c(u) = c(v) = 0, c(1) = η(1, 1) and c(uv) = η(u, v). Then it is easy
to check that η = d1(c), so η ∈ B2(K,M).

To finish the proof, we need to show that α induces a surjection Z2(K,N) → N3.
Let (x, y, z) ∈ N3. We want to find η ∈ Z2(K,N) such that α(η) = (x, y, z). As we
can always translate η by an element of B2(K,N) without changing α(η), we may take
η(1, 1) = η(u, v) = 0. Then we must have η(u, u) = x, η(v, v) = y and η(uv, uv) = z, and
equations (1)-(9) imply that

η(v, uv) = x+ z

η(uv, u) = y + z

η(u, uv) = x

η(uv, v) = y

η(v, u) = x+ y + z

Also, if η is a 2-cocyle, we must have η(1, g) = η(g, 1) = η(1, 1) = 0 for every g ∈ K. This
determines the values of η on all of K2, and it is easy to check that the function η that
we defined is indeed a 2-cocycle.

(k). We know that H2(S4,M) ' H0(S3,H
2(K,M)) by question (i), so we need to calculate the

action of S3 on H2(K,M); we will use the isomorphism α : H2(K,M)
∼→M3 of question

(j). By the proof of question (g), an element g ∈ S4 acts on a 2-cocycle η ∈ Z2(K,M)
by (g · η)(k1, k2) = g · η(g−1k1g, g

−1k2g). Let η ∈ Z2(K,M), and let (x, y, z) = α(η). We
have sus = v, svs = u, s(uv)s = uv, r−1ur = uv, r−1vr = u and r−1(uv)r = v, so

α(s · η) = (s · y, s · x, s · z)

and
α(r · η) = (r · z, r · x, r · y).

So η represents an element of H2(K,M)S3 if and only if s · y = x, s · x = y, s · z = z,
r · z = x, r · x = y and r · y = z. We already calculate the action of r and s on M in the

solution of question (h). The relation s · z = z is equivalent to the fact that z =

(
a b
b a

)
,

for a, b ∈ k. Then we get

x = r · z =

(
a+ b b

0 a+ b

)
and

y = r · x =

(
a+ b 0
b a+ b

)
.

We have z = r · y because r3 = 1, and it is clear that x = s · y and y = s · x. So the
k-vector space

H2(K,M)S3 '
{((

a+ b b
0 a+ b

)
,

(
a+ b 0
b a+ b

)
,

(
a b
b a

))
, a, b ∈ k

}
is 2-dimensional.

�
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