MAT 540 : Problem Set 8

Due Thursday, November 14

1 Right multiplicative systems

Let \mathscr{C} be a category and W be a set of morphisms of \mathscr{C} . Let \mathscr{I} be a full subcategory of \mathscr{C} and $W_{\mathscr{I}}$ be the set of morphisms of \mathscr{I} that are in W. Suppose that W is a right multiplicative system and that, for every $s: X \to Y$ in W such that $X \in Ob(\mathscr{I})$, there exists a morphism $f: Y \to Z$ with $Z \in Ob(\mathscr{I})$ and $f \circ s \in W$.

Show that $W_{\mathscr{I}}$ is a right multiplicative system. (1 point for (S1)+(S2), 1 point each for (S3) and (S4))

2 Isomorphisms in triangulated categories

(4 points)

Let (\mathscr{D}, T) be a triangulated category, and let $f : X \to Y$ be a morphism of \mathscr{D} . Show that f is an isomorphism if and only if there exists a distinguished triangle $X \xrightarrow{f} Y \to Z \to T(X)$ with Z = 0.

3 Null systems

Let (\mathscr{D},T) be a triangulated. Remember that a null system in \mathscr{D} is a set \mathscr{N} of objects of \mathscr{D} such that:

(N1) $0 \in \mathcal{N};$

(N2) for every $X \in Ob(\mathscr{C})$, we have $X \in \mathscr{N}$ if and only if $T(X) \in \mathscr{N}$;

(N3) if $X \to Y \to Z \to T(X)$ is a distinguished triangle and if $X, Y \in \mathcal{N}$, then $Z \in \mathcal{N}$.

We fix a null system \mathscr{N} , and we denote by $W_{\mathscr{N}}$ the set of morphisms $f: X \to Y$ in \mathscr{D} such that there exists a distinguished triangle $X \xrightarrow{f} Y \to Z \to T(X)$ with $Z \in \mathscr{N}$.

- (a). (1 point) If $X \in \mathcal{N}$ and Y is isomorphic to X, show that $Y \in \mathcal{N}$.
- (b). (1 point) Show that $W_{\mathscr{N}}$ contains all the isomorphisms of \mathscr{D} .
- (c). (2 points) Show that $W_{\mathcal{N}}$ is stable by composition.
- (d). (4 points) Show that $W_{\mathcal{N}}$ satisfies conditions (S3) and (S4) of Definition V.2.2.1 of the notes.
- (e). (2 points) Show that $W_{\mathcal{N}}$ is also a left multiplicative system.

4 Localization of functors

Let \mathscr{C} be a category, let W be a set of morphisms of \mathscr{C} , and let \mathscr{I} be a full subcategory of \mathscr{C} ; denote by $W_{\mathscr{I}}$ the set of morphisms of \mathscr{I} that are in W. We fix a localization $Q : \mathscr{C} \to \mathscr{C}[W^{-1}]$ of \mathscr{C} by W, and we denote by $\iota : \mathscr{I} \to \mathscr{C}$ the inclusion functor. Let $F : \mathscr{C} \to \mathscr{D}$ be a functor. Suppose that:

- (a) W is a right multiplicative system;
- (b) for every $X \in Ob(\mathscr{C})$, there exists a morphism $s: X \to Y$ in W such that $Y \in Ob(\mathscr{I})$;
- (c) for every $s \in W_{\mathscr{I}}$, the morphism F(s) is an isomorphism.

Show that, for every functor $G: \mathscr{C}[W^{-1}] \to \mathscr{D}$, the map

 $\alpha: \operatorname{Hom}_{\operatorname{Func}(\mathscr{G},\mathscr{G})}(F, G \circ Q) \to \operatorname{Hom}_{\operatorname{Func}(\mathscr{I},\mathscr{G})}(F \circ \iota, G \circ Q \circ \iota)$

induced by composition on the right by ι is bijective. (2 points for injectivity, 3 points for surjectivity)

5 Localization of a triangulated category

Let (\mathscr{D}, T) be a triangulated category, let \mathscr{N} be a null system in \mathscr{D} , and let $W = W_{\mathscr{N}}$ be the corresponding multiplicative system. (See problem 3.) We write $Q : \mathscr{D} \to \mathscr{D}/\mathscr{N}$ for $Q : \mathscr{D} \to \mathscr{D}[W^{-1}]$.

(a). (1 point) Show that there exists an auto-equivalence $T : \mathscr{D}/\mathscr{N} \to \mathscr{D}/\mathscr{N}$ such that $T \circ Q \simeq Q \circ T$.

We say that a triangle in \mathscr{D}/\mathscr{N} is distinguished if it is isomorphic to the image by Q of a distinguished triangle of \mathscr{D} . Axiom (TR0) of Definition V.1.1.4 of the notes is obvious.

(b). (5 points: 1 point per axiom) Show that axioms (TR1)-(TR5) also hold.

6 More group cohomology

The description of group cohomology in Subsection IV.3.5 of the notes can be useful in this problem.

We define elements u, v, r and s of the symmetric group \mathfrak{S}_4 by u = (12)(34), v = (14)(23), r = (123) and s = (13). The Klein four group is the normal subgroup K of \mathfrak{S}_4 generated by u and v.

Let k be a field of characteristic 2.

- (a). (2 points) Show that $\mathfrak{S}_4/K \simeq \mathfrak{S}_3$.
- (b). (2 points) Show that there is a unique representation $\tau : \mathfrak{S}_4 \to \mathrm{GL}_2(k)$ such that $\tau(u) = \tau(v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \tau(r) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } \tau(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

Let $M = M_2(k)$, with the action of \mathfrak{S}_4 given by $g \cdot A = \tau(g)A\tau(g)^{-1}$, for $g \in \mathfrak{S}_4$ and $A \in M_2(k)$. We identify \mathfrak{S}_3 with the subgroup of \mathfrak{S}_4 generated by r and s. We have a short exact sequence of groups

$$1 \to \mathbb{Z}/3\mathbb{Z} \to \mathfrak{S}_3 \to \mathbb{Z}/2\mathbb{Z} \to 1,$$

where the generator $1 \in \mathbb{Z}/3\mathbb{Z}$ is sent to $r \in \mathfrak{S}_3$.

- (c). (2 points) If N is any representation of $\mathbb{Z}/3\mathbb{Z}$ on a k-vector space, show that $\mathrm{H}^p(\mathbb{Z}/3\mathbb{Z}, N) = 0$ for every $p \geq 1$. (You might find Remark IV.3.5.1 of the notes useful.)
- (d). (1 point) If N is any representation of \mathfrak{S}_3 on a k-vector space, show that we have canonical isomorphisms $\mathrm{H}^p(\mathbb{Z}/2\mathbb{Z}, N^{\mathbb{Z}/3\mathbb{Z}}) \xrightarrow{\sim} \mathrm{H}^p(\mathfrak{S}_3, N)$ for every $p \geq 0$.
- (e). (2 points) Show that $H^p(\mathfrak{S}_3, M) = 0$ for every $p \ge 1$.
- (f). (1 point) Show that we have canonical isomorphisms

$$\mathrm{H}^{p}(\mathbb{Z}/2\mathbb{Z},\mathrm{H}^{1}(K,M)^{\mathbb{Z}/3\mathbb{Z}}) \xrightarrow{\sim} \mathrm{H}^{p}(\mathfrak{S}_{3},\mathrm{H}^{1}(K,M)),$$

for every $p \ge 0$.

- (g). (1 points) Show that $\mathrm{H}^{1}(K, M) = \mathrm{Hom}_{\mathbf{Grp}}(K, M)$, and that the action of \mathfrak{S}_{3} on $\mathrm{H}^{1}(K, M)$ is given by $(g \cdot \varphi)(x) = g \cdot \varphi(g^{-1}xg)$, if $g \in \mathfrak{S}_{3}$, $x \in K$ and $\varphi \in \mathrm{H}^{1}(K, M)$.
- (h). (3 points) Show that $\mathrm{H}^{0}(\mathfrak{S}_{3},\mathrm{H}^{1}(K,M))$ is a 1-dimensional k-vector space, and that $\mathrm{H}^{p}(\mathfrak{S}_{3},\mathrm{H}^{1}(K,M)) = 0$ if $p \geq 1$.
- (i). (2 points) Show that we have canonical isomorphisms $\mathrm{H}^{1}(\mathfrak{S}_{4}, M) \xrightarrow{\sim} \mathrm{H}^{1}(K, M)^{\mathfrak{S}_{3}}$ and $\mathrm{H}^{2}(\mathfrak{S}_{4}, M) \xrightarrow{\sim} \mathrm{H}^{2}(K, M)^{\mathfrak{S}_{3}}$.
- (j). (3 points) Let N be a k-vector space with trivial action of K. Show that the map $Z^2(K,N) \to N^3$ sending a 2-cocycle $\eta : K^2 \to N$ to $(\eta(u,u) \eta(1,1), \eta(v,v) \eta(1,1), \eta(uv,uv) \eta(1,1))$ induces an isomorphism $H^2(K,N) \xrightarrow{\sim} N^3$.
- (k). (2 points) Show that $H^2(\mathfrak{S}_4, M)$ is a 2-dimensional k-vector space.