
MAT 540 : Problem Set 4

Due Thursday, October 10

1 Cartesian and cocartesian squares

(a). (4 points) Consider a commutative square

A
f //

g

��

B

h
��

C
k
// D

in an abelian category A . Consider the morphisms u =

(
f
g

)
: A → B ⊕ C and

v =
(
h −k

)
: B ⊕ C → D.

Prove that the following statements are equivalent :

(i) The canonical morphism A→ B ×D C is an epimorphism.

(ii) The canonical morphism B tA C → D is a monomorphism.

(iii) The complex A
u→ B ⊕ C v→ D is exact.

(b). (2 points) Let A
g→ B

f→ C be morphisms in A . Show that g−1(Ker f) = Ker(f ◦ g).

(c). (2 points) Keep the notation of the previous question, and suppose that g is surjective.
Show that g(Ker(f ◦ g)) = Ker f .

(d). (2 points) Keep the notation and assumptions of the previous question. If u : D → B is
a morphism such that f ◦ u = 0, show that there exists a commutative diagram

D′
g′ //

u′

��

D

u
��

C g
// B

f
// A

such that g′ is surjective and f ◦ g ◦ u′ = 0.

Solution.

(a). We claim that the canonical morphism B ×D C → B × C = B ⊕ C identifies B ×D C to
Ker v. Indeed, we have, for every E ∈ Ob(A ),

HomA (E,B ×D C) = {(w1, w2) ∈ HomA (E,B)×HomA (E,C) | h ◦ w1 = k ◦ w2}
= {w ∈ HomA (E,B × C) | v ◦ w = 0}
= Hom(E,Ker v).
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So (i) is equivalent to the fact that the morphism A→ Ker v induced by u is an epimor-
phism, which implies that the canonical morphism Im(u) → Ker(v) is an epimorphism,
hence an isomorphism (because it is automatically injective), which is (iii).

We prove that (ii) and (iii) are equivalent. Let ι : B ⊕C → B ⊕C be the morphism with

matrix

(
1 0
0 −1

)
. Note that ι ◦ ι = idB⊕C , and in particular ι is an isomorphism. Let

u′ = ι ◦ u and v′ = v ◦ ι. Then v′ ◦ u′ = v ◦ u = 0, and we have a commutative square

Im(u) //

ι ∼
��

Ker(v)

ι ∼
��

Im(u′) // Ker(v′)

so (iii) is equivalent to the condition that the complex (∗) A u′→ B ⊕ C v′→ D be exact.
We claim that the canonical morphism B ⊕ C → B tA C identifies B tA C to Coker(u′).
Indeed, for every E ∈ Ob(A ),

HomA (Cokeru′, E) = {w ∈ HomA (B ⊕ C,E) | w ◦ u′ = 0}
= {(w1, w2) ∈ HomA (B,E)×HomA (C,E) | w1 ◦ f = w2 ◦ g}
= HomA (B tA C,E).

So (ii) is equivalent to the injectivity of the morphism Coker(u′) → D induced by v′; if
p : B⊕C → Coker(u′) is the canonical surjection, this means that (ii) is equivalent to the
fact that, for every object E of A , we have

{f ∈ HomA (E,B ⊕ C) | v′ ◦ f = 0} = {f ∈ HomA (E,B⊕ C) | p ◦ f = 0}
= {f ∈ HomA (E, Im(u′)},

where the last equality is because Im(u′) = Ker(p). This shows that condition (ii) is
equivalent to Ker(v′) = Im(u′), that is, to the exactness of the complex (*).

(b). By definition of g−1(Ker f), we have a commutative diagram, where the square is cartesian
:

g−1(Ker f)
g′ //

j

��

Ker f

i
��

A g
// B

f
// C

In particular, f ◦ g ◦ j = f ◦ i ◦ g′ = 0, so g−1(Ker f) ⊂ Ker(f ◦ g). Conversely, let C
be an object of A and h : C → A a morphism such that f ◦ g ◦ h = 0. Then we have
a unique morphism h′ : C → Ker f such that i ◦ h′ = g ◦ h, and this in turns defines a
unique morphism k : C → g−1(Ker f) such that j ◦k = h and g′ ◦k = h′. Applying this to
the inclusion Ker(f ◦ g)→ A, we see that this inclusion factors through g−1(Ker f)→ A,
that is, Ker(f ◦ g) ⊂ g−1(Ker f).

(c). By (b), it suffices to show that g(g−1(Ker f)). In fact, this is true for any subobject of
B, so let B′ ⊂ B. We want to show that the morphism g−1(B′) → B′ induced by g is
surjective. By definition of g−1(B′), we have a cartesian square

g−1(B′) //

��

B′

��
C g

// B

and then the conclusion follows from Corollary II.2.1.16 of the notes.
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(d). Let B′ = Im(u) ⊂ B. The morphism u factors as D
v→ B′

i→ B with v surjective and i
injective, and we take D′ = g−1(B′)×B′ D. We have a commutative diagram where both
squares are cartesian

D′
g′ //

a
��

D

v
��

g−1(B′) //

b
��

B′

i
��

C g
// B

and we take u′ = b ◦ a. The morphism g′ is surjective by Corollary II.2.1.16 of the notes,
and f ◦ g ◦ u′ = f ◦ i ◦ v ◦ g′ = f ◦ u ◦ g′ = 0.

�

2 A random fact

(2 points)

Let A be an abelian category and f : B → A be a morphism of A . Show that, for every
object C of A , the morphism HomA (Im(f), C) → HomA (B,C) (induced by B → Im(f))
induces an isomorphism

HomA (Im(f), C)
∼→ Ker(HomA (B,C)→ HomA (Ker f, C)).

Solution. The statement is saying two things :

(1) The map HomA (Im(f), C) → HomA (B,C) is injective; this follows from the fact that
B → Im(f) is surjective.

(2) A morphism g : B → C factors through the quotient Im(f) of B if and only if g(Ker f) = 0,
or, in other words, the morphism B → Im(f) is the cokernel of the morphism Ker(f)→ B.
This follows from the fact that Coim(f)

∼→ Im(f). (Remember that Coim(f) is by defini-
tion the cokernel of the morphism Ker(f)→ B.)

�

3 More sheaves on an abelian category

We use the notation of problem 6 of problem set 3 : We fix an abelian category, and we denote
by Sh the category of sheaves of abelian groups on A for the canonical topology. It is a full
subcategory of the catgeory of presheaves PSh = Func(A op,Ab). Both Sh and PSh are abelian
categories, and the forgetful functor Sh→ PSh is left exact but not exact; this functor admits
a left adjoint F 7−→ F sh, which is exact.

(a). (2 points) Let f : A→ B be a surjective morphism in A . Show that, for every morphism
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u : C → B, there exists a commutative square

C ′
f ′ //

��

C

u
��

A
f
// B

with f ′ : C ′ → C surjective.

(b). (3 points) Show that the Yoneda embedding hA : A → Func(A op,Set),

A 7−→ HomA (·, A), factors as A
h // Sh

For // Func(A op,Set) , where For is the for-
getful functor and h is a fully faithful left exact additive functor.

(c). (2 points) Show that the functor h : A → Sh is exact.

Solution.

(a). We take C ′ = A ×B C and f ′ : C ′ → C equal to the second projection. The surjectivity
of f ′ follows from Corollary II.2.1.16 of the notes.

(b). For every A ∈ Ob(A ), the functor HomA (·, A) : A op → Set factors through the forgetful
functor Ab → Set, so we can see HomA (·, A) as an object of PSh; also, if f : A → B
is a morphism, then f∗ : HomA (·, B) → HomA (·, A) is a morphism of presheaves of
abelian groups (and not just of presheaves of sets), because composition is bilinear. So

the Yoneda embedding factors as A
h′ // PSh

For // Func(A op,Set) , where For is the

forgetful functor. The functor h′ is additive and left exact because HomA (·, ·) is additive
and left exact in both variables (and in particular the second). Also, for every A ∈ Ob(A ),
the representable presheaf HomA (·, A) is a sheaf for the canonical topology by problem
6(c) of problem set 3, so we get the factorization of the statement. Finally, the functor h
is left exact because the sheafification functor PSh → Sh is exact and isomorphic to the
identity functor on Sh, so any complex of sheaves 0 → F1 → F2 → F3 that is exact in
PSh is also exact in Sh.

(c). By question (b) and Lemma II.2.3.2 of the notes, it suffices to show that h sends sur-
jections to surjections. Let f : A → B be a surjective morphism, and let C ∈ Ob(A ).
Let u : C → B be an element of hB(C). Choose a commutative diagram as in question
(a). Then f ′ : C ′ → C is a covering family for the canonical topology of A , and the
morphism u′ : C ′ → A gives an element of hA(C ′) whose image by f∗ : hA(C ′)→ hB(C ′)
is f ◦ u′ = f ′∗(u). This shows that f∗ : hB → hA is surjective in the category Sh.

�

4 Other embedding theorems

If we weaken the assumptions in Morita’s theorem, we can still get interesting results. There
are many variants, we will prove two here.

Let A be an abelian category, Q an object of A and R = EndA (Q). As explained in the
paragraph before Theorem II.3.1.6 of the notes, we can see the functor HomA (Q, ·) as an
additive left exact functor from A to ModR.

Note that we are not assuming that Q is projective for now.
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We assume that A admits all small colimits. From now on, we assume that A admits all
small colimits. (You can mostly ignore the smallness condition. It basically means that you can
take colimits indexed by all sets that are built out of sets like HomA (A,B). The rigorous way
to say it is that A is a W -category, with W a universe, and that it admits limits indexed by
W -small categories.)

(a). (3 points) Show that, for every right R-module M , the functor A → Set,
A 7−→ HomR(M,HomA (Q,A)) is representable. We denote a pair representing this func-
tor by (M ⊗R Q, η(M)).

(b). (1 point) Show that the functor G = HomA (Q, ·) : A →ModR admits a left adjoint F .

(c). (2 points) If M is a free right R-module, show that η(M) : M → G(F (M)) is injective,
and that it is bijective if M is also finitely generated.

(d). Let A ′ ⊂ A be a full subcategory of A that is stable by taking finite limits and finite
colimits.

(i) (1 point) Show that A ′ is an abelian category and that the inclusion functor A ′ → A
is exact.

From now on, we assume that the category A ′ is small. Suppose that Q is a generator of
A . For every object A of A , consider the surjective morphism qA :

⊕
HomA (Q,A)Q → A

of Proposition II.3.1.3(i)(e) of the notes. Let P =
⊕

A∈Ob(A ′)

⊕
HomA (Q,A)Q; for every

A ∈ Ob(A ′), we have a surjective morphism pA : P → A, which is given by qA on the
summand of P indexed by A and by 0 on the other summands. Let S = EndA (P ), and
consider the functor G′ = HomA (P, ·) : A →ModS .

(ii) (2 points) Show that G′ is faithful, and that it is exact if Q is projective.

(iii) (3 points) If Q is projective, show that the restriction of G′ to A ′ is fully faithful.

From now on, we also assume that small filtrant colimits are exact in A and that Q is a
generator of A . 1 We do not assume that Q is projective.

(e). The goal of this question is to show that G is fully faithful. Let C be the full sub-
category of A whose objects are finite direct sums of copies of P , and D the full sub-
category of ModR whose objects are finitely generated free R-modules. We denote by
h : A → PSh(C ) the functor A 7−→ HomA (·, A)|C , and by h′ : ModR → PSh(D) the
functor M 7−→ HomR(·,M)|D .

(i) (1 point) Show that G induces an equivalence of categories C → D .

(ii) (1 points) Show that h′ : ModR → PSh(D) is fully faithful.

(iii) (1 points) Assuming that h : A → PSh(C ) is fully faithful, show that
G : A →ModR is fully faithful.

(iv) (3 points) Show that h is left exact and faithful, and that, for any morphism f of A ,
if h(f) is surjective, then f is surjective.

(v) (2 points) For any object B of C , any morphism f : B → A in A and any object C
of A , show that the map

HomA (Im f, C)→ HomPSh(C )(Im(h(B)→ h(A)), h(C))

is an isomorphism. (Hint : problem 2.)

1In other words, A is a Grothendieck abelian category.
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Let A be an object of A . Denote by C /A the category of pairs (B, f), where B ∈ Ob(C )
and f : B → A is a morphism of A ; a morphism u : (B, f) → (B′, f ′) is a morphism
u : B → B′ such that f = f ′ ◦ u.

Let I be the set of finite subsets of Ob(C /A), ordered by inclusion; the correspond-
ing category is clearly filtrant. Define a functor ξ : I → C by sending a finite set
J = {(B1, f1), . . . , (Bn, fn)} to B1 ⊕ . . . ⊕ Bn; note that ξ(J) comes with a morphism
to A, given by

(
f1 . . . fn

)
.

(vi) (1 point) Show that the canonical morphism lim−→J∈I h(ξ(J)) → h(A) is an epimor-
phism.

(vii) (1 point) Show that the canonical morphism lim−→J∈I Im(h(ξ(J)) → h(A)) → h(A) is
an isomorphism.

(viii) (2 points) Show that the canonical morphism lim−→J∈I ξ(J)→ A is an epimorphism.

(ix) (1 point) Show that the canonical morphism lim−→J∈I Im(ξ(J) → A) → A is an iso-
morphism.

(x) (2 points) For C another object of A , show that

HomA (A,C)
h→ HomPSh(C )(h(A), h(C)) is bijective.

(f). The goal of this question is to show that F is exact.

(i) (2 points) Show that it suffices to prove that F preserves injections.

Let f : M → N be a morphism in ModR.

(ii) (2 points) Suppose that M is finitely generated free and that N is free. Show that
the composition of η(Ker f) : Ker f → G(F (Ker f)) and of the canonical morphism
G(F (Ker f))→ Ker(G(F (f))) is an isomorphism.
Hint : Use the commutative diagram

M
f //

η(M)
��

N

η(N)
��

G(F (M))
G(F (f))

// G(F (N))

(iii) (3 points) Suppose that M is finitely generated, that N is free and that f is injective.
Show that F (f) is injective. (Hint : question 1(c).)

(iv) (1 point) Suppose that N is free and that f is injective. Show that F (f) is injective.
(Hint : M is the union of its finitely generated submodules.)

(v) (1 point) Suppose that f is injective. Show that we can find a commutative diagram
with exact rows :

0 // K //M ′ //

f ′

��

M //

f
��

0

0 // K // N ′ // N // 0

such that f ′ is injective and N ′ is free.

(vi) (3 points) Suppose that f is injective. Applying F to the diagram of (v) and using
1(a), show that F (f) is injective.

In conclusion, here are our embedding results so far :
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(1) If A admits small colimits and a projective generator, we have shown that every
small full abelian subcategory A ′ of A such that A ′ ⊂ A is exact admits a fully
faithful exact functor into a category of modules over some ring.

(2) If A is a Grothendieck abelian category (it admits small colimits, small filtrant
colimits are exact, and A has a generator), then we have shown that A admits a
fully faithful left exact functor into a category of modules over a ring, with an exact
left adjoint. This is known as the Gabriel-Popescu embedding theorem.

(3) We also have Morita’s theorem (Theorem II.3.1.6 of the notes) : If A admits small
colimits and has a projective generator P such that the functor HomA (P, ·) commutes
with small direct sums, then A is equivalent to a category of modules over a ring.

Solution.

(a). This is similar to what happens in the proof of Theorem II.3.1.6 of the notes, with a
few changes to reflect the fact that η(M) is not an isomorphism anymore. We denote by
ΦM : A → Set the functor A 7−→ HomR(M,HomA (Q,A)).

(1) If M = R, then the functor ΦM : A 7−→ HomR(M,HomA (Q,A)) ' HomA (Q,A) is
representable byQ, and the morphism η(M) ∈ HomR(R,HomA (Q,Q)) = HomR(R,R)
is the identity of R.

(2) If M = R(X) with X a set, then we have isomorphisms of functors

ΦM = HomR(M,HomA (Q, ·)) '
∏
X

HomR(R,HomA (Q, ·)) '
∏
X

HomA (Q, ·)

' HomA (Q(X), ·),

so the functor ΦM is representable by Q(X), and the morphism
η(M) ∈ HomR(R(X),HomA (Q,Q(X))) is the canonical morphism
R(X) = HomA (Q,Q)(X) → HomA (Q,Q(X)) of Subsection I.5.4.2 of the notes
(which might not be an isomrophism).

(3) In general, we chose an exact sequence R(X) u→ R(Y ) →M → 0, with X and Y sets.

This induces morphisms of functors ΦM → ΦR(Y )
u∗→ ΦR(X) , and the second of these

comes from a morphism f : Q(X) → Q(Y ) between the objects representing ΦR(X)

and ΦR(Y ) such that the following diagram commutes :

(*) R(X)

u
��

η(R(X)) // HomA (Q,Q(X))

HomA (Q,f)
��

R(Y ) η(R(Y )) // HomA (Q,Q(Y ))

Let B = Coker f . By Subsection I.5.4.2 of the notes, there is a
canonical morphism M = Coker(G(f)) → G(Coker f) = G(B)B, which
might not be an isomorphism. This induces a morphism of functors
HomA (B, ·) → HomR(G(B), G(·)) → HomR(M,G(·)) = ΦM . To show that this
morphism is an isomorphism, we use, as in the proof of Theorem II.3.1.6 of the notes,
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that we have a commutative diagram with exact columns for every A ∈ Ob(A ) :

0

��

0

��
ΦM (A)

��

// HomA (B,A)

��
ΦR(Y )(A)

∼ //

u∗(A)

��

HomA (Q(Y ), A)

HomA (f,A)
��

ΦR(X)(A)
∼ // HomA (Q(X), A)

(The fact that the columns are exact only uses the left exact of the Hom functors.)
We get the morphism η(M) : M → HomA (Q,B) by taking the morphism between
the cokernels of the vertical maps in the commutative square (*).

(b). This follows from (a) and from Proposition I.4.7 of the notes; in fact, we have
F (M) = M ⊗R Q. Also, by the proof of that proposition, the morphisms
η(M) : M → HomA (Q,M ⊗R Q) = G(F (M)) define a morphism of functors
idModR

→ G ◦ F , which is the unit of the adjunction.

(c). If M = R(X) with X a set, we saw in the solution of (a) that M ⊗X Q = Q(X)

and that η(M) : R(X) → HomA (Q,Q(X)) is the canonical morphism
HomA (Q,Q)(X) → HomA (Q,Q(X)). If X is finite, this morphism is an isomorphism
because HomA (Q, ·), being an additive functor, commutes with finite coproducts. In gen-
eral, we claim that η(M) is injective. Let QX =

∏
X Q; we have a family of morphisms

(qx : Q(X) → Q)x∈X , such that the composition of qx with the morphism Q → Q(X)

corresponding to y ∈ X is idQ if y = x, and 0 if y 6= x. This gives a commutative diagram

HomA (Q,Q)(X) η(M) //

(1)

��

HomA (Q,Q(X))

��
HomA (Q,Q)X ∼

// HomA (Q,QX)

where the map (1) is the inclusion of the direct sum into the direct product (in the category
of abelian groups), hence an injection. So η(M) is injective.

(d). (i) The category A ′ is clearly preadditive. It is additive, because finite products in A
of objects of A ′ are in A ′ by hypothesis, and they are finite products in A ′ by
the fullness of A ′. For the same reason, every morphism in A ′ has a kernel and
a cokernel, which are its kernel and its cokernel in A . If f is a morphism in A ′,
then the canonical morphism from its coimage to its image in A ′ is the same asthe
canonical morphism from its image to its coimage in A , so it is an isomorphism. This
shows that A ′ is an abelian. We have seen in the construction of finite products,
kernels and cokernels in A ′ that the inclusion functor from A ′ to A commutes with
these, so it commutes with finite limits and colimits, so it is exact.

(ii) By the universal property of the direct sum, the functor G′ is isomorphism to∏
A∈Ob(A )

∏
HomA (Q,A) HomA (Q, ·). As Q is a generator, the functor HomA (Q, ·)

is faithful; so G′ is also faithful.

If Q is projective, then, by Lemma II.2.4.3 of the notes, P is also projective, and
then the functor HomA (P, ·) is exact.
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(iii) Let A and B be objects of A ′, and let u : G′(A) → G′(B) be a morphism of right
S-modules. We want to show that there exists g ∈ HomA (A,B) such that G′(g) = u.
By construction of P , we have surjective morphisms pA : P → A and pB : P → B.
As G′ is exact, we get a diagram with exact rows

S
G′(pA) //

v

��

HomA (P,A) //

u

��

0

S
G′(pB) // HomA (P,B) // 0

As S is a projective in ModS , there exists a morphism v : S → S making the diagram.
This morphism is of the form g 7−→ f◦g, with f = v(1) ∈ S = HomA (P, P ). Consider
the diagram with exact rows :

0 // Ker(pA)
i // P

pA //

f
��

A

g

��

// 0

P pB
// B // 0

To show that there exists a morphism g : A → B making this diagram commute,
it suffices to show that pB ◦ f ◦ i = 0. As G′ is faithful, it suffices to show that
G′(pB) ◦ G′(f) ◦ G′(i) = 0; as G′(pB) ◦ G′(f) = G′(pB) ◦ u = v ◦ G′(pA), we have
G′(pB) ◦G′(f) ◦G′(i) = v ◦G′(pA ◦ i) = 0.

To finish the proof, it suffices to prove that G′(g) = u. We know that
G′(g) ◦G′(pA) = G′(pB) ◦ v = u ◦G′(pA), so the equality G′(g) = u follows from the
fact that G′(pA) is surjective.

(e). The idea of this seemingly strange procedure is that we are showing that teh subcategory C
(resp. D), that contains a generator, “generates” A (resp. ModR) in some precise sense
(this notion is called being strictly generating, see Definition 5.3.1 of Kashiwara-Schapira);
so the equivalence C → D of (i) will extend to a fully faithful functor A →ModR. The
proof of this fact is a specialization to our case of the proof of Theorem 5.3.6 of Kashiwara-
Schapira.

(i) If X is a finite set, then the canonical morphism
R(X) = HomA (Q,Q)(X) → G(Q(X)) = HomA (Q,Q(X)) is an isomorphism. Just as
in the second paragraph of the proof of Theorem II.3.1.6 of the notes, we deduce that,
if X and Y are finite sets, then the map G : HomA (Q(X), Q(Y ))→ HomR(R(X), R(Y ))
is bijective. (As Y is finite, we only use the fact that additive functors commute
with finite direct sums, and so we don’t need Q to have the extra property of that
theorem.)

We have just shown that the restriction of the functor G to C is fully faithful, and
that its essential image is D . So G induces an equivalence of categories from C to D
by Corollary I.2.3.9 of the notes.

(ii) Let H : PSh(D) → ModR be the functor sending a presheaf F to F (R) (and a
morphism u : F → G of preasheaves to u(R) : F (R)→ G (R)).

For every right R-module M , we have a canonical isomorphism
H(h′(M)) = HomR(R,M)

∼→ M , u 7−→ u(1). This defines an isomorphism
of functors H ◦ h′ ∼→ idModR

. Let M and N be right R-modules. Then we get a
sequence of morphisms of abelian groups

HomR(M,N)
h′→ HomPSh(D)(h

′(M), h′(N))
H→ HomR(H(h′(M)), H(h′(N)) ' HomR(M,N),
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whose composition is equal to idHomR(M,N). So the first map is injective. Also, as the
functors HomA (·,M) and HomA (·, N) are additive, the presheaves h′(M) h′(N) com-
mute with finite direct sums, so they are determined by their sections on R; this shows
that the second map in the sequence above is also injective; as it is surjective, it must
be bijective, and this implies that h′ : HomR(M,N) → HomPSh(D)(h

′(M), h′(N)) is
bijective.

(iii) We have a diagram of categories and functors

A
G //

h
��

ModR

h′

��
PSh(C ) PSh(D)

Φoo

where Φ is the equivalence of categories induced by the equivalence C → D of (i).
This diagram is not necessarily commutative, but we have an isomorphism of functors
Φ ◦ h ◦ G ' h′. We already know that Φ and h′ are fully faithful, so, if h is fully
faithful, we can conclude that G is fully faithful.

(iv) The functor h is left exact because A 7−→ HomA (·, A) is.

Let f : A → B be a morphism in A such that h(f) = 0. Then the R-linear map

h(A)(Q) = HomA (Q,A)
f∗→ HomA (Q,B) = h(B)(Q) is 0; in other words, we have

G(f) = 0. As G is faithful (by Proposition II.3.1.3 of the notes, we get that f = 0.
So h is faithful.

Let f : A→ B be a morphism in A such that h(f) is surjective. Let g1, g2 : B → C
be two morphisms such that g1 ◦ f = g2 ◦ f . Then h(g1) ◦ h(f) = h(g2) ◦ h(f), so
h(g1) = h(g2) by the surjectivity of h(f); as h is faithul, this implies that g1 = g2.
So f is an epimorphism.

(v) By problem 2 and the left exactness of h, we have isomorphisms

HomA (Im f, C)
∼→ Ker(HomA (B,C)→ HomA (Ker f, C))

and

HomPSh(C )(Im(h(B)→ h(A)), h(C))

∼→ Ker(HomPSh(C )(h(B), h(C))→ HomPSh(C )(Ker(h(f)), h(C)))

∼→ Ker(HomPSh(C )(h(B), h(C))→ HomPSh(C )(h(Ker(f)), h(C))).

By these isormophisms, the map that we are trying to understand corresponds to
the map

u : Ker(HomA (B,C)→ HomA (Ker f, C))

→ Ker(HomPSh(C )(h(B), h(C))→ HomPSh(C )(h(Ker(f)), h(C)))

induced by h. As h : HomA (B,C) → HomPSh(C )(h(B), h(C)) is an isomorphism
(by Yoneda’s lemma, applied to the representable presheaf h(B) on C ) and the map
HomA (Ker f, C) → HomPSh(C )(h(Ker f), h(C)) is injective (because h is faithful),
the map u is bijective.

(vi) Let C be an object of C . Then applying the morphism lim−→J∈I h(ξ(J))→ h(A) to C
gives the map

lim−→
J∈I

HomA (C, ξ(J))→ HomA (C,A).
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Saying that this is surjective means that every morphism f : C → A factors as
C → ξ(J)→ A for J ∈ I, which is true : just take J = {(C, f)} and C → ξ(J) equal
to idC . So lim−→J∈I h(ξ(J))(C) → h(A)(C) is surjective for every C ∈ Ob(C ), which

implies that lim−→J∈I h(ξ(J))→ h(A) is an epimorphism.

(vii) As I is filtrant, we have Im(lim−→J∈I h(ξ(J)) → h(A)) = lim−→J∈I Im(h(ξ(J)) → h(A)).

So the result follows immediately from (vi).

(viii) Note that lim−→J∈I h(ξ(J)) → h(A) factors as

lim−→J∈I h(ξ(J)) → h(lim−→J∈I ξ(J)) → h(A), where the first morphism is that of
Subsection I.5.4.2 of the notes and the second is the image by h of the canonical
morphism lim−→J∈I ξ(J) → A. By (vi), the second morphism is an epimorphism, so,

by (iv), the morphism lim−→J∈I ξ(J)→ A is an epimorphism.

(ix) As in (vii), this follows immediately from (viii) and from the fact that I is filtrant.

(x) The map h : HomA (A,C)→ HomPSh(C )(h(A), h(C)) is equal to the composition

HomA (A,C)
∼→ HomA (lim−→

J∈I
Im(ξ(J)→ A), C) by (ix)

' lim←−
J∈Iop

HomA (Im(ξ(J)→ A), C)

∼→ lim←−
J∈Iop

HomPSh(C )(Im(h(ξ(J))→ h(A)), h(C)) by (v)

' HomPSh(C )(lim−→
J∈I

Im(h(ξ(J))→ h(A)), h(C))

' HomPSh(C )(h(A), h(C)) by (vii).

(f). (i) We already know that F is right exact, because it is a left adjoint (Proposition II.2.3.3
of the notes.) So the statement follows from Lemma II.2.3.2 of the notes.

(ii) We have a commutative diagram with exact rows :

0 // Ker f //

η(Ker f)
��

M
f //

η(M)

��

N

η(N)

��

G(F (Ker f))

��
0 // Ker(G(F (f))) // G(F (M))

G(F (f))
// G(F (N))

where the unmarked vertical one is the canonical morphism. So the result follows
from a diagram chase in ModR.

(iii) As M is finitely generated, there exists a surjective R-linear map g : M ′ → M ,
with M ′ free of finite type. As F is right exact, the morphism F (g) is also
surjective. So, by question 1(c), we have Ker(F (f)) = F (g)(Ker(F (f ◦ g))).
Hence, to prove that Ker(F (f)) = 0, it suffices to show that the composition

Ker(F (f ◦ g)) → F (M ′)
F (g)→ F (M) is 0. As G is conservative, it suffices to prove

this after applying G, and as G is left exact, it suffices to prove that the composi-

tion Ker(G(F (f ◦ g))) → G(F (M ′))
G(F (g))→ G(F (M)) is 0. We have a commutative
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diagram

Ker(f ◦ g)
u //

(1)

��

M ′

η(M ′)
��

g //M

η(M)

��
Ker(G(F (f ◦ g))) v

// G(F (M ′))
G(F (g))

// G(F (M))

We know that g ◦ u = 0 because 0 = Ker f = g(Ker(f ◦ g)) by question 1(c),
so η(M) ◦ g ◦ u = 0. As the morphism (1) is surjective by (ii), this implies that
G(F (g)) ◦ v = 0, as desired.

(iv) Let I be the set of all the finitely generated submodules of M ; for i ∈ I, we denote
the corresponding submodule by Mi. Then I is filtrant, and M = lim−→i∈IMi. As F

is a left adjoint, the canonical morphism lim−→i∈I F (Mi) → F (M) is an isomorphism

by Proposition I.5.4.3 of the notes, and F (f) corresponds to lim−→i∈I F (f|Mi
) by this

isomorphism. For each i ∈ I, the morphism F (f|Mi
) is injective by (iii). As filtrant

colimits are exact in ModR by Corollary II.2.3.4 of the notes, this implies that F (f)
is also injective.

(v) Let g : N ′ → N be a surjective R-linear map with N ′ free, let M ′ = N ′×NM and let
f ′ : M ′ →M and g′ : N ′ → N be the two projections. The morphism g′ is surjective
by Corollary II.2.1.16 of the notes. As f is injective, so is f ′ (it is true and easy to
prove that in any abelian category the pullback of an injective morphism is injective,
but in the category of R-modules it is immediate). Let i : K = Ker g → N ′ and
i′ : Ker(g′)→M ′ be the canonical injections. We have a commutative diagram with
exact rows

0 // Ker(g′)

u

��

i′ //M ′

f ′

��

g′ //M

f

��

// 0

0 // K
i

// N ′ g
// N // 0

As g ◦ f ′ ◦ i′ = f ◦ g ◦ i′ = 0, there exists a unique morphism u : Ker(g′) → K such
that i ◦ u = f ′ ◦ i′. We want to show that u is an isomorphism. As f ′ is injective,
the map f ′ ◦ i′ is injective, hence u is also injective. To prove that u is surjective,
we can do a bit of diagram chasing : Let x ∈ K. Then g(i(x)) = 0 = f(0), so
y = (i(x), 0) ∈ N ′×M is actually in M ′, and we have f ′(y) = i(x) and g′(y) = 0. In
particular, there exists z ∈ Ker(g′) such that y = i′(z). As i(u(z)) = f ′(i′(z)) = i(x)
and i is injective, we get that x = u(z).

(vi) Applying F to the diagram of (v) gives a commutative diagram with exact rows

F (K) // F (M ′)

F (f ′)
��

//

(∗)

F (M)

F (f)

��

// 0

F (K) // F (N ′) // F (N) // 0

By (iv), the map F (f ′) is injective. Also, as F is a left adjoint, it commutes
with colimits, so the square (*) is cocartesian. By question 1(a), the morphism
F (M ′) → F (N ′) ×F (N) F (M) is surjective. As F (f ′) is injective, this morphism is
also injective, so it is an isomorphism; in other words, the square (*) is cartesian. By
Corollary II.2.1.16 of the notes, the morphism F (f) is injective.

�
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