MAT 540 : Problem Set 4

Due Thursday, October 10

1 Cartesian and cocartesian squares

(a). (4 points) Consider a commutative square

$$\begin{array}{c} A \xrightarrow{f} B \\ g \\ g \\ C \xrightarrow{k} D \end{array}$$

in an abelian category \mathscr{A} . Consider the morphisms $u = \begin{pmatrix} f \\ g \end{pmatrix} : A \to B \oplus C$ and $v = \begin{pmatrix} h & -k \end{pmatrix} : B \oplus C \to D$.

Prove that the following statements are equivalent :

- (i) The canonical morphism $A \to B \times_D C$ is an epimorphism.
- (ii) The canonical morphism $B \sqcup_A C \to D$ is a monomorphism.
- (iii) The complex $A \xrightarrow{u} B \oplus C \xrightarrow{v} D$ is exact.
- (b). (2 points) Let $A \xrightarrow{g} B \xrightarrow{f} C$ be morphisms in \mathscr{A} . Show that $g^{-1}(\operatorname{Ker} f) = \operatorname{Ker}(f \circ g)$.
- (c). (2 points) Keep the notation of the previous question, and suppose that g is surjective. Show that $g(\text{Ker}(f \circ g)) = \text{Ker } f$.
- (d). (2 points) Keep the notation and assumptions of the previous question. If $u: D \to B$ is a morphism such that $f \circ u = 0$, show that there exists a commutative diagram

$$\begin{array}{cccc}
D' & \xrightarrow{g'} & D \\
 & \downarrow u \\
C & \xrightarrow{g} & B & \xrightarrow{f} & A
\end{array}$$

such that g' is surjective and $f \circ g \circ u' = 0$.

2 A random fact

(2 points)

Let \mathscr{A} be an abelian category and $f: B \to A$ be a morphism of \mathscr{A} . Show that, for every object C of \mathscr{A} , the morphism $\operatorname{Hom}_{\mathscr{A}}(\operatorname{Im}(f), C) \to \operatorname{Hom}_{\mathscr{A}}(B, C)$ (induced by $B \to \operatorname{Im}(f)$)

induces an isomorphism

$$\operatorname{Hom}_{\mathscr{A}}(\operatorname{Im}(f), C) \xrightarrow{\sim} \operatorname{Ker}(\operatorname{Hom}_{\mathscr{A}}(B, C) \to \operatorname{Hom}_{\mathscr{A}}(\operatorname{Ker} f, C)).$$

3 More sheaves on an abelian category

We use the notation of problem 6 of problem set 3 : We fix an abelian category, and we denote by Sh the category of sheaves of abelian groups on \mathscr{A} for the canonical topology. It is a full subcategory of the catgeory of presheaves $PSh = Func(\mathscr{A}^{op}, \mathbf{Ab})$. Both Sh and PSh are abelian categories, and the forgetful functor $Sh \to PSh$ is left exact but not exact; this functor admits a left adjoint $F \longmapsto F^{sh}$, which is exact.

(a). (2 points) Let $f: A \to B$ be a surjective morphism in \mathscr{A} . Show that, for every morphism $u: C \to B$, there exists a commutative square

with $f': C' \to C$ surjective.

- (b). (3 points) Show that the Yoneda embedding $h_{\mathscr{A}} : \mathscr{A} \to \operatorname{Func}(\mathscr{A}^{\operatorname{op}}, \operatorname{\mathbf{Set}}),$ $A \longmapsto \operatorname{Hom}_{\mathscr{A}}(\cdot, A)$, factors as $\mathscr{A} \xrightarrow{h} \operatorname{Sh} \xrightarrow{\operatorname{For}} \operatorname{Func}(\mathscr{A}^{\operatorname{op}}, \operatorname{\mathbf{Set}})$, where For is the forgetful functor and h is a fully faithful left exact additive functor.
- (c). (2 points) Show that the functor $h : \mathscr{A} \to Sh$ is exact.

4 Other embedding theorems

If we weaken the assumptions in Morita's theorem, we can still get interesting results. There are many variants, we will prove two here.

Let \mathscr{A} be an abelian category, Q an object of \mathscr{A} and $R = \operatorname{End}_{\mathscr{A}}(Q)$. As explained in the paragraph before Theorem II.3.1.6 of the notes, we can see the functor $\operatorname{Hom}_{\mathscr{A}}(Q, \cdot)$ as an additive left exact functor from \mathscr{A} to Mod_R .

Note that we are *not* assuming that Q is projective for now.

We assume that \mathscr{A} admits all small colimits. From now on, we assume that \mathscr{A} admits all small colimits. (You can mostly ignore the smallness condition. It basically means that you can take colimits indexed by all sets that are built out of sets like $\operatorname{Hom}_{\mathscr{A}}(A, B)$. The rigorous way to say it is that \mathscr{A} is a \mathscr{W} -category, with \mathscr{W} a universe, and that it admits limits indexed by \mathscr{W} -small categories.)

- (a). (3 points) Show that, for every right *R*-module *M*, the functor $\mathscr{A} \to \mathbf{Set}$, $A \mapsto \operatorname{Hom}_{R}(M, \operatorname{Hom}_{\mathscr{A}}(Q, A))$ is representable. We denote a pair representing this functor by $(M \otimes_{R} Q, \eta(M))$.
- (b). (1 point) Show that the functor $G = \operatorname{Hom}_{\mathscr{A}}(Q, \cdot) : \mathscr{A} \to \operatorname{Mod}_R$ admits a left adjoint F.
- (c). (2 points) If M is a free right R-module, show that $\eta(M) : M \to G(F(M))$ is injective, and that it is bijective if M is also finitely generated.

- (d). Let $\mathscr{A}' \subset \mathscr{A}$ be a full subcategory of \mathscr{A} that is stable by taking finite limits and finite colimits.
 - (i) (1 point) Show that \mathscr{A}' is an abelian category and that the inclusion functor $\mathscr{A}' \to \mathscr{A}$ is exact.

From now on, we assume that the category \mathscr{A}' is small. Suppose that Q is a generator of \mathscr{A} . For every object A of \mathscr{A} , consider the surjective morphism $q_A : \bigoplus_{\operatorname{Hom}_{\mathscr{A}}(Q,A)} Q \to A$ of Proposition II.3.1.3(i)(e) of the notes. Let $P = \bigoplus_{A \in \operatorname{Ob}(\mathscr{A}')} \bigoplus_{\operatorname{Hom}_{\mathscr{A}}(Q,A)} Q$; for every $A \in \operatorname{Ob}(\mathscr{A}')$, we have a surjective morphism $p_A : P \to A$, which is given by q_A on the summand of P indexed by A and by 0 on the other summands. Let $S = \operatorname{End}_{\mathscr{A}}(P)$, and consider the functor $G' = \operatorname{Hom}_{\mathscr{A}}(P, \cdot) : \mathscr{A} \to \operatorname{\mathbf{Mod}}_S$.

- (ii) (2 points) Show that G' is faithful, and that it is exact if Q is projective.
- (iii) (3 points) If Q is projective, show that the restriction of G' to \mathscr{A}' is fully faithful.

From now on, we also assume that small filtrant colimits are exact in \mathscr{A} and that Q is a generator of \mathscr{A} .¹ We do not assume that Q is projective.

- (e). The goal of this question is to show that G is fully faithful. Let \mathscr{C} be the full subcategory of \mathscr{A} whose objects are finite direct sums of copies of P, and \mathscr{D} the full subcategory of $\operatorname{\mathbf{Mod}}_R$ whose objects are finitely generated free R-modules. We denote by $h : \mathscr{A} \to \operatorname{PSh}(\mathscr{C})$ the functor $A \longmapsto \operatorname{Hom}_{\mathscr{A}}(\cdot, A)_{|\mathscr{C}}$, and by $h' : \operatorname{\mathbf{Mod}}_R \to \operatorname{PSh}(\mathscr{D})$ the functor $M \longmapsto \operatorname{Hom}_R(\cdot, M)_{|\mathscr{D}}$.
 - (i) (1 point) Show that G induces an equivalence of categories $\mathscr{C} \to \mathscr{D}$.
 - (ii) (1 points) Show that $h' : \mathbf{Mod}_R \to \mathrm{PSh}(\mathcal{D})$ is fully faithful.
 - (iii) (1 points) Assuming that $h : \mathscr{A} \to PSh(\mathscr{C})$ is fully faithful, show that $G : \mathscr{A} \to \mathbf{Mod}_R$ is fully faithful.
 - (iv) (3 points) Show that h is left exact and faithful, and that, for any morphism f of \mathscr{A} , if h(f) is surjective, then f is surjective.
 - (v) (2 points) For any object B of \mathscr{C} , any morphism $f: B \to A$ in \mathscr{A} and any object C of \mathscr{A} , show that the map

 $\operatorname{Hom}_{\mathscr{A}}(\operatorname{Im} f, C) \to \operatorname{Hom}_{\operatorname{PSh}(\mathscr{C})}(\operatorname{Im}(h(B) \to h(A)), h(C))$

is an isomorphism. (Hint : problem 2.)

Let A be an object of \mathscr{A} . Denote by \mathscr{C}/A the category of pairs (B, f), where $B \in Ob(\mathscr{C})$ and $f : B \to A$ is a morphism of \mathscr{A} ; a morphism $u : (B, f) \to (B', f')$ is a morphism $u : B \to B'$ such that $f = f' \circ u$.

Let *I* be the set of finite subsets of $Ob(\mathscr{C}/A)$, ordered by inclusion; the corresponding category is clearly filtrant. Define a functor $\xi : I \to \mathscr{C}$ by sending a finite set $J = \{(B_1, f_1), \ldots, (B_n, f_n)\}$ to $B_1 \oplus \ldots \oplus B_n$; note that $\xi(J)$ comes with a morphism to *A*, given by $(f_1 \ldots f_n)$.

- (vi) (1 point) Show that the canonical morphism $\varinjlim_{J \in I} h(\xi(J)) \to h(A)$ is an epimorphism.
- (vii) (1 point) Show that the canonical morphism $\varinjlim_{J \in I} \operatorname{Im}(h(\xi(J)) \to h(A)) \to h(A)$ is an isomorphism.

 $^{^1 \}mathrm{In}$ other words, $\mathscr A$ is a Grothendieck abelian category.

- (viii) (2 points) Show that the canonical morphism $\lim_{J \in J} \xi(J) \to A$ is an epimorphism.
 - (ix) (1 point) Show that the canonical morphism $\varinjlim_{J \in I} \operatorname{Im}(\xi(J) \to A) \to A$ is an isomorphism.
 - (x) (2 points) For C another object of \mathscr{A} , show that $\operatorname{Hom}_{\mathscr{A}}(A, C) \xrightarrow{h} \operatorname{Hom}_{\operatorname{PSh}(\mathscr{C})}(h(A), h(C))$ is bijective.
- (f). The goal of this question is to show that F is exact.
 - (i) (2 points) Show that it suffices to prove that F preserves injections.
 - Let $f: M \to N$ be a morphism in \mathbf{Mod}_R .
 - (ii) (2 points) Suppose that M is finitely generated free and that N is free. Show that the composition of $\eta(\operatorname{Ker} f) : \operatorname{Ker} f \to G(F(\operatorname{Ker} f))$ and of the canonical morphism $G(F(\operatorname{Ker} f)) \to \operatorname{Ker}(G(F(f)))$ is an isomorphism. Hint : Use the commutative diagram

$$\begin{array}{c|c}
M & \xrightarrow{f} & N \\
 & & & & \\ \eta(M) & & & & \\ \eta(M) & & & & \\ G(F(M)) & \xrightarrow{\sigma(F(f))} & G(F(N)) \\
\end{array}$$

- (iii) (3 points) Suppose that M is finitely generated, that N is free and that f is injective. Show that F(f) is injective. (Hint : question 1(c).)
- (iv) (1 point) Suppose that N is free and that f is injective. Show that F(f) is injective. (Hint : M is the union of its finitely generated submodules.)
- (v) (1 point) Suppose that f is injective. Show that we can find a commutative diagram with exact rows :

such that f' is injective and N' is free.

(vi) (3 points) Suppose that f is injective. Applying F to the diagram of (v) and using 1(a), show that F(f) is injective.

In conclusion, here are our embedding results so far :

- (1) If \mathscr{A} admits small colimits and a projective generator, we have shown that every small full abelian subcategory \mathscr{A}' of \mathscr{A} such that $\mathscr{A}' \subset \mathscr{A}$ is exact admits a fully faithful exact functor into a category of modules over some ring.
- (2) If *A* is a Grothendieck abelian category (it admits small colimits, small filtrant colimits are exact, and *A* has a generator), then we have shown that *A* admits a fully faithful left exact functor into a category of modules over a ring, with an exact left adjoint. This is known as the Gabriel-Popescu embedding theorem.
- (3) We also have Morita's theorem (Theorem II.3.1.6 of the notes) : If \mathscr{A} admits small colimits and has a projective generator P such that the functor $\operatorname{Hom}_{\mathscr{A}}(P, \cdot)$ commutes with small direct sums, then \mathscr{A} is equivalent to a category of modules over a ring.