
MAT 540 : Problem Set 2

Due Thursday, September 26

1. Monoidal categories (extra credit)

A monoidal category is a category C equipped with a bifunctor (·) ⊗ (·) : C × C → C (the
tensor product or monoidal functor), with an identity (or unit) object 11 and with three natural
isomorphisms α(A,B,C) : (A⊗B)⊗C ∼→ A⊗ (B⊗C), λ(A) : 11⊗A ∼→ A and ρA : A⊗ 11

∼→ A,
satisfying the following conditions :

• for all A,B,C,D ∈ Ob(C ), the following diagram commutes :

((A⊗B)⊗ C)⊗D

α(A⊗B,C,D)
��

α(A,B,C)⊗idD// (A⊗ (B ⊗ C))⊗D
α(A,B⊗C,D) // A⊗ ((B ⊗ C)⊗D)

idA⊗α(B,C,D)
��

(A⊗B)⊗ (C ⊗D)
α(A,B,C⊗D)

// A⊗ (B ⊗ (C ⊗D))

• for all A,B ∈ Ob(C ), the following diagram commutes :

(A⊗ 11)⊗B
α(A,11,B) //

ρ(A)⊗idB ''

A⊗ (11⊗B)

idA⊗λ(B)ww
A⊗B

Here are some examples :

• C = Set or Top, ⊗ = ×, 11 is a singleton;

• C = Grp, ⊗ = ×, 11 = {1};

• C = RMod with R a commutative ring, ⊗ = ⊗R, 11 = R;

• C = Func(D ,D) with D a category, ⊗ = ◦, 11 = idD .

A monoid in C is an object M of C together with two morphisms µ : M ⊗ M → M
(multiplication) and η : 11→M (unit), such that the two following diagrams commute :

M ⊗ (M ⊗M)
idM⊗µ//M ⊗M µ //M

(M ⊗M)⊗M

α(M,M,M)

OO

µ⊗idM

//M ⊗M
µ

;;
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and

M ⊗M
µ

((

11⊗M
λ(M)
��

η⊗idMoo

M ⊗ 11
ρ(M)

//

idM⊗η

OO

M

(We can also define morphisms of monoids, and monoids in C form a category.)

Examples :

• A monoid in (Set,×) is a monoid (in the usual sense).

• A monoid in (Top,×) is a topological monoid.

• If R is a commutative ring, a monoid in (RMod,⊗) is a R-algebra. (In particular, a
monoid in (Ab,⊗Z) is a ring.)

• A monoid in (Func(D ,D), ◦) is called a monad on D .

(a). (2 points) Let Mon be the category of (usual) monoids. It is a monoidal category, with
the monoidal functor given by × and the unit object {1}. If (M,µ, η) is a monoid in Mon,
show that M is a commutative monoid and µ is equal to the multiplication of M .

(b). (3 points) Let F : C → D and G : D → C be two functors such that (F,G) is a pair
of adjoint functors, and let ε : F ◦ G → idD and η : idC → G ◦ F be the counit and
unit of the adjunction. Define a morphism of functors µ : (G ◦ F ) ◦ (G ◦ F ) → G ◦ F by
µ(X) = G(ε(F (X))) : G(F ◦G(F (X))) → G(F (X)). Show that (G ◦ F, µ, η) is a monad
on C .

Solution.

(a). We denote the monoid operation of M by (a, b) 7−→ a · b and its unit element by 1. We
also denote the map µ : M2 → M by (a, b) 7−→ a ∗ b. The fact that µ is a morphism of
monoids says that, for all a, b, c, d ∈M , we have

(*) (a ∗ b) · (c ∗ d) = (a · c) ∗ (b · d).

As η : {1} →M is a morphism of monoids, it sends 1 to 1 ∈M , so · and ∗ have the same
unit. 1 So, if a, d ∈M , we have

a · d = (a ∗ 1) · (1 ∗ d) = (a · 1) ∗ (1 · d) = a ∗ d,

and also
a · d = (1 ∗ a) · (d ∗ 1) = (1 · d) ∗ (a · 1) = d ∗ a.

This proves both statements. 2

(b). Note that the operations (·) ◦ idC and idC ◦ (·) are the identity functor of the category
Func(C ,C ), so the functorial isomorphisms ρ and λ are just the identity in that case;
similarly, as (H ◦H ′)◦H ′′ = H ◦ (H ′ ◦H ′′) for any H,H ′, H ′′ ∈ Func(C ,C ), the functorial
isomorphism α is also the identity. So we have three things to prove :

(1) µ ◦ (idG◦F ⊗ η) = idG◦F ;

1This would be automatic even if we did not assume that η is a morphism of monoids : Let e be the unit of ∗.
Then 1 = 1 · 1 = (e ∗ 1) · (1 ∗ e) = (e · 1) ∗ (1 · e) = e ∗ e = e.

2Note that we did not use the associativity of · and ∗. In fact, we could deduce the associativity of · and ∗ from
property (*).
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(2) µ ◦ (η ⊗ idG◦F ) = idG◦F ;

(3) µ ◦ (µ⊗ idG◦F ) = µ ◦ (idG◦F ⊗ µ).

To prove (1), we note that, by definition of ⊗ and µ, for every X ∈ Ob(C ), the left-hand
side of (1) applied to X is the image by G of the composition

F (X)
F (η(X)) // F (G(F (X)))

ε(F (X)) // F (X) .

So (1) follows from the first statement of Proposition I.4.4 of the notes. The proof of
(2) is similar : by definition of ⊗ and µ, for every X ∈ Ob(C ), the left-hand side of (2)
applied to X is the composition

G(F (X))
η(G(F (X)))// G(F (G(F (X))))

G(ε(F (X)))// G(F (X)) ,

and we can apply the second statement of Proposition I.4.4 of the notes.

It remains to prove (3). Let X ∈ Ob(C ). Then, when applied to X, the square

(G ◦ F ) ◦ (G ◦ F ) ◦ (G ◦ F )
µ⊗idG◦F //

idG◦F⊗µ
��

(G ◦ F ) ◦ (G ◦ F )

µ

��
(G ◦ F ) ◦ (G ◦ F ) µ

// (G ◦ F )

becomes

(*) G(F (G(F (G(F (X))))))
G(ε(F (G(F (X))))) //

G(F (G(ε(F (X)))))

��

G(F (G(F (X))))

G(ε(F (X)))

��
G(F (G(F (X))))

G(ε(F (X)))
// G(F (X))

Let Y = F (X) and u = ε(Y ) : F (G(Y )) → Y . As ε : F ◦ G → idD is a morphism of
functors, the following square is commutative

F (G(F (G(Y ))))
ε(F (G(Y ))) //

F (G(u))
��

F (G(Y ))

u

��
F (G(Y ))

ε(Y )
// Y

Applying the functor F to this square, we recover the square (*), so (*) is also commuta-
tive.

�

2. Geometric realization of a simplicial set Remember that the simplicial category ∆ is
the subcategory of Set whose objects are the sets [n] = {0, 1, . . . , n}, for n ∈ N, and whose
morphisms are nondecreasing maps (where we put the usual order on [n]). The category of
simplicial sets sSet is defined by sSet = PSh(∆) = Func(∆op,Set); if X is a simplicial set,
we write Xn for X([n]) and α∗ : Xm → Xn for X(α) : X([m]) → X([n]) (if α : [n] → [m] is
a nondecreasing map). The standard n-simplex ∆ is the simplicial set represented by [n], i.e.
Hom∆(·, [n]).
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(a). Let C be a category and F : C op → Set be a presheaf on C . We consider the category
C /F whose objects are pairs (X,x), with X ∈ Ob(C ) and x ∈ F (X), and such that a
morphism (X,x)→ (Y, y) is a morphism f : X → Y in C with F (f)(y) = x. Note that we
have an obvious faithful functor GF : C /F → C (forgetting the second entry in a pair),
so we get a functor hC ◦GF : C /F → PSh(C ).

(i) (1 point) When does C /F have a terminal object ?

(ii) (2 points) Show that lim−→(hC ◦GF ) = F . (Hint : Use the second entries of the pairs

to construct a morphism from lim−→(hC ◦GF ) to F .) 3

For every n ∈ N, let |∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1 | x0 + . . . + xn = 1} with
the subspace topology. If f : [n] → [m] is a map, we define |f | : |∆n| → |∆m| by
|f |(x0, . . . , xn) = (

∑
i∈f−1(j) xi)0≤j≤m. (With the convention that an empty sum is equal to

0.) Consider the functor |.| : ∆→ Top sending [n] to |∆n| and f : [n]→ [m] to |f |.

Let X be a simplicial set, and consider the functor GX : ∆/X → ∆ of (a). The geometric
realization of X is by definition the topological space |X| = lim−→(|.| ◦GX).

(b). (1 points) Show that this construction upgrades to a functor |.| : sSet→ Top. 4

(c). (2 points) Show that, if X is ∆n, then |X| = |∆n|.

(d). (1 point) Give a simplicial set whose geometric realization is
{(x0, x1, x2) ∈ [0, 1]2 | x0 = 0 or x2 = 0}. (Hint: why are the horns called horns ?)

(e). (2 points) Consider the functor Sing : Top → sSet given by
Sing(X) = HomTop(|.|, X) : ∆op → Set. (That is, if X is a topological space,
then Sing(X) is the simplicial set such that Sing(X)n is the set of continuous maps from
|∆n| to X, and, if f : [n]→ [m] is nondecreasing, then f∗ : Sing(X)m → Sing(X)n sends
a continuous map u : |∆m| → X to u ◦ |f |.) The simplicial set Sing(X) is called the
singular simplicial complex of X of X.

Show that (|.|,Sing) is a pair of adjoint functors.

Solution.

(a). (i) Suppose that (X,x) is a terminal object of C /F . Let Y be an object of C , and
consider the map φ : HomC (Y,X) → F (Y ) sending f : Y → X to F (f)(x) ∈ F (Y ).
(Remember that F is a contravariant functor on C .) We claim that φ is bijective.
Indeed, if f, g : Y → X are two morphisms such that F (f)(x) = F (g)(x), then they
define morphisms from (Y, F (f)(x)) to (X,x) in the category C /F , hence must be
equal; so φ is injective. Also, if y ∈ F (Y ), then (Y, y) is an object of C /F , so there
exists a morphism h : (Y, y)→ (X,x) in C /F , that is, a morphism h : Y → X in C
such that F (h)(x) = y; so φ is surjective.

3So every presheaf is a colimit of representable presheaves.
4This functor is called the left Kan extension of |.| : ∆→ Top along the Yoneda embedding ∆→ sSet.
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This proves that a terminal object in C /F is exactly a pair representing the functor
F , so such a terminal object exists if and only if F is representable.

(ii) If X ∈ Ob(C ) and x ∈ F (X), then, by the Yoneda lemma, there is unique morphism
ux : hX → F in PSh(C ) such that ux(X)(idX) = x. We claim that the family of
these morphisms defines a cone under hC ◦GF with nadir F . This claim means that,
for any two objects (X,x) and (Y, y) in C /F and any morphism f : (X,x)→ (Y, y),
the following diagram commutes :

hX
hf //

ux
��

hY

uy}}
F

As the morphism uy ◦ hf : hX → F sends idX ∈ hX(X) to
uy(X)(f ◦ idX) = F (f)(y) = F (x) = ux(X)(idX), we have uy ◦ hf = ux by the
Yoneda lemma, so the diagram commutes, as desired.

By the universal property of the colimit, this gives a morphism φ : lim−→(hC ◦GF )→ F
in PSh(C ).

Now we show that φ is an isomorphism. Let F ′ = lim−→(hC ◦GF ). This is a colimit in
the category of presheaves on C , so we can use Proposition I.5.3.1 of the notes to
compute it. Let Z be an object of C . Then F ′(Z) = lim−→(X,x)∈Ob(C /F )

HomC (Z,X),

and the map φ(Z) : F ′(Z)→ F (Z) sends a morphism f : Z → X to F (f)(x) ∈ F (Z).
If z ∈ F (Z), then (Z, z) is an object of C /F , and φ(Z)(idZ) = z; this shows that
φ(Z) is surjective. Let (X,x) and (Y, y) be two objects of C /F , let f : Z → X
and g : Z → Y be morphisms of C , and suppose that F (f)(x) = F (g)(y). Let
z = F (f)(x). Then (Z, z) is an object of C /F , the morphisms f and g induce
morphisms (Z, z)→ (X,x) and (Z, z)→ (Y, y) in C /F , and, in the square

HomC (Z,Z)
HomC (Z,f) //

HomC (Z,g)
��

HomC (Z,X)

φ(Z)
��

HomC (Z, Y )
φ(Z)

// F (Z)

the element idZ of HomC (Z,Z) is sent to the same element z of Z by both paths.
So the images of f and g in F ′(Z) are equal, which proves that φ(Z) is injective.

(b). For X a simplicial set, we set

L(X) =
∐
n∈N

∐
x∈Xn

|∆n|,

so that |X| is the quotient of L(X) by the equivalence relation ∼ of Theorem I.5.2.1 of the
notes, with the quotient topology. If f : X → Y is a morphism of simplicial sets, we denote
by L(f) a continuous map L(X) → L(Y ) that, for each n ∈ N and each x ∈ Xn, sends
the component |∆n| of L(X) corresponding to (n, x) to the component |∆n| of L(Y )
corresponding to (n, fn(x)) by id|∆n|. This clearly defines a functor L : sSet → Top.
To show that |.| upgrades to a functor, it suffices to show that, for every morphism

f : X → Y in sSet, the map f ′ : L(X)
L(f)→ L(Y )→ |Y | factors through the quotient map

L(X)→ |X|. Fix f , let n,m ∈ N, x ∈ Xn, y ∈ Xm, s ∈ |∆n| and t ∈ |∆m| such that the
images of (n, x, s), (m, y, t) ∈ L(X) in |X| are equal; we want to show that the images of
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(n, fn(x), s), (m, fm(y), t) ∈ L(Y ) in |Y | are also equal. We may assume that there exists
α : [n] → [m] such that x = α∗(y) and t = |α|(s). Then fn(x) = fn(α∗(y)) = α∗(fm(y)),
so (n, fn(x), s) and (m, fm(y), t) have the same image in |Y |.

(c). By (a)(i), the category ∆/∆n has a terminal object, which is ([n], id[n]). It follows imme-
diately from the definition of a cone under a functor that a cone (S, (um,x)m∈N,x∈∆n([m]))
under |.| ◦ G∆n is uniquely determined by the continuous map un,id[n]

: |∆n| → S, and
that this map can be arbitrary. In other words, the functor sending a topological space S
to the space of cones under |.| ◦ G∆n with nadir S is representable by |∆n|. This means
that |∆n| = lim−→(|.| ◦G∆n) = |∆n|.

(d). Let’s take X = Λ2
1 (see problem 9 of problem set 1). The geometric relaization |X| is

the quotient of
∐
n∈N

∐
x∈Xn

|∆n| by the equivalence relation ∼ of Theorem I.5.2.1 of the
notes.

By definition, for every n ∈ N, the set Xn is the set of nondecreasing maps α : [n] → [2]
such that {0, 2} 6⊂ Im(α). In particular, such a map always factors as α = β ◦ γ with
γ : [n]→ [1] and β : [1]→ [2] two nondecreasing maps such that β ∈ X1, so α = γ∗(β), so,
for every s ∈ |∆n|, we have (n, α, s) ∼ (1, β, |γ|(s)). This means that |X| is homeomorphic
to the quotient of

∐
n∈{0,1}

∐
x∈Xn

|∆n| by the relation of ∼.

For every i ∈ [2], let αi : [0] → [2] be the map 0 7−→ i, and δi : [1] → [2] be the unique
increasing map such that Im(δi) = [2] − {i}. Let β be the unique map from [1] to [0].
Then X0 = {α0, α1, α2} and X1 = {δ0, δ2, α0 ◦β, α1 ◦β, α2 ◦β}. Also, for every i ∈ [2] and
every s ∈ |∆1|, we have (1, αi ◦ β, s) ∼ (0, αi, |β|(s)). So |X| is the quotient of the disjoint
union of three points corresponding to α0, α1, α2, say 0, 1 and 2, and of two line segments
(homeomorphic to [0, 1]) corresponding to δ0, δ2, say I0 and I2, by the restriction of ∼. It
is easy to see that this equivalence relation identifies the two extremities of I0 (resp. I2)
with 1 and 2 (resp. 0 and 1), so |X| is homeomorphic to the space of the figure.

(e). Let X be a simplicial set and Y be a topological space. By definition, we have
|X| = lim−→∆/X

(|.| ◦GX), so, by Proposition I.5.3.4 of the notes, we have an isomorphism

HomTop(|X|, Y ) ' lim←−
(n,x)∈Ob((∆/X)op)

HomTop(|∆n|, Y ) = lim←−
(n,x)∈Ob((∆/X)op)

Sing(Y )n.

Also, by question (a)(ii), we have X = lim−→∆/X
GX , so, by the same proposition, we have

HomsSet(X,Sing(Y )) ' lim←−
(n,x)∈Ob((∆/X)op)

HomsSet(∆n, Sing(Y )) ' lim←−
(n,x)∈Ob((∆/X)op)

Sing(Y )n

(the last isomorphism comes from the Yoneda lemma). So we get an isomorphism

HomTop(|X|, Y ) ' HomsSet(X,Sing(Y )),

and checking that it is an isomorphism of functors is straightforward.

�

3. Yoneda embedding and colimits Let k be a field, and let C be the category of k-vector
spaces.

(a). (1 point) For every n ∈ N, let k[x]≤n be the vector space of polynomials of degree ≤ n
in k[x]. Using the inclusions k[x]≤n ⊂ k[x]≤m for n ≤ m, we get a functor F : N → C ,
n 7−→ k[x]≤n. Show that lim−→F = k[x].
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(b). (2 points) Show that hC : C → PSh(C ) does not commute with all colimits.

Solution.

(a). Note that the colimit is filtrant, because N is a directed poset. By an easy analogue
Proposition I.5.6.3 of the notes to conclude that the lim−→F is the quotient of

⊕
n∈N k[x]≤n

by the subspace generated by the images of all the maps um,i : k[x]≤m →
⊕

n∈N k[x]≤n
sending f ∈ k[x]≤m to (f,−f), where the first entry is in the summand k[x]≤m and the
second entry is in the summand k[x]≤m+i, for every m ∈ N and every i ≥ 1. 5 So the
sum map from

⊕
n∈N k[x]≤n → k[x] (sending a family (f0, f1, . . .) with finite support to

f0 + f1 + . . .) factors through lim−→F and induces an isomorphism lim−→F
∼→ k[x].

(b). Let V = k[x]. We have seen in (a) that V = lim−→n∈N k[x]≤n, so we get a morphism of

presheaves u : lim−→n∈N hk[x]≤n
→ hV . If W is a k-vector space, u(W ) is the map from

(lim−→n∈N hk[x]≤n
)(W ) = lim−→n∈N Homk(W,k[x]≤n) to Homk(W,V ) induced by the obvious

injections Homk(W,k[x]≤n) ⊂ Homk(W,V ). So the image of u(W ) is the set of k-linear
maps from W to V whose image is contained in one of the subspaces k[x]≤n of V . In
particular, idV ∈ hV (V ) is not in the image of u(V ), so u is not an isomorphism.

�

4. Filtrant colimits of modules (3 points)

Let R be a ring, let I be a filtrant category and let F : I → RMod be a functor. For every
i ∈ Ob(I ), we write Mi = F (i). Let ∼ be the equivalence relation on

∐
i∈Ob(I )Mi defined

in Proposition I.5.6.2 of the notes; so (i, x) ∼ (j, y) if there exist morphisms α : i → k and
β : j → k in I such that F (α)(x) = F (β)(y)). Let M =

∐
i∈Ob(I )Mi/ ∼; this is the colimit of

the composition I
F→ RMod

For→ Set. Denote by qi : Mi →M the obvious maps.

Show that there exists a unique structure of left R-module on M such that all the qi are
R-linear maps, and that this structure makes (M, (qi)) into a colimit of F .

Solution. Let X =
∐
i∈IMi. If (i,m) and (i, n) are elements of X such that (i,m) ∼ (j, n), and

if a ∈ R, then (i,m) ∼ (j, n) (because the maps F (α) are all R-linear). So the action of R by
left multiplication on X descends to an action on M . Now let (i1,m1) and (i2,m2) be elements
of X. Choose morphisms α1 : i1 → j and α2 : i2 → i in I . Then (i1,m1) ∼ (i, F (α1)(m1))
and (i2,m2) ∼ (i, F (α1)(m2)), so, if M has a structure of abelian group such that the map
Mi → M is additive, this forces the image of (i, F (α1)(m1) + F (α2)(m2)) in M to be the sum
of the images of (i1,m1) and (i2,m2) in M . We must check that this definition of addition
does not depend on the choices, so we take (j1, n1), (j2, n2) ∈ X such that (j1, n1) ∼ (i1,m1)
and (j2, n2) ∼ (i2,m2). Choose morphisms α′1 : j1 → j and α′2 : j2 → j. We want to check
that (i, F (α1)(m1) + F (α2)(m2)) ∼ (j, F (α′1)(n1) + F (α′2)(n2)). The hypothesis on (j1, n1)
and (j2, n2) means that there exist morphisms β1 : i1 → k1, γ1 : j1 → k1, β2 : i2 → k2 and
γ2 : j2 → k2 in I such that F (β1)(m1) = F (γ1)(n1) and F (β2)(m2) = F (γ2)(n2). As I is
filtrant, we can find an object l of I and morphisms δ : i → l, δ1 : k1 → l, δ2 : k2 → l and
δ′ : j → l, and then we can find a morphism ε : l→ l′ such that

ε ◦ δ ◦ α1 = ε ◦ δ1 ◦ β1 : i1 → l′,

ε ◦ δ ◦ α2 = ε ◦ δ2 ◦ β2 : i2 → l′,

5We could also use problem 4 to calculate the colimit.
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ε ◦ δ′ ◦ α′1 = ε ◦ δ1 ◦ γ1 : j1 → l′,

and
ε ◦ δ′ ◦ α′2 = ε ◦ δ2 ◦ γ2 : i1 → l′.

Then

(l′, F (ε ◦ δ)(F (α1)(m1) + F (α2)(m2))) = (l′, F (ε)(F (δ1 ◦ β1)(m1) + F (δ2 ◦ β2)(m2)))

= (l′, F (ε)(F (δ1 ◦ γ1)(n1) + F (δ2 ◦ γ2)(n2)))

= (l′, F (ε ◦ δ′)(F (α′1)(n1) + F (α′2)(n2))),

which implies that (i, F (α1)(m1) + F (α2)(m2)) ∼ (j, F (α′1)(n1) + F (α′2)(n2)).

The fact that these two operations define a left R-module structure no M follows easily from
their definition and from the fact that the Mi are left R-modules.

The obvious R-module maps qi : Mi →M define a cone under F with apex M in the category

RMod. Let (N, (vi)I∈Ob(I )) be another cone under F in RMod. In particular, this defines a
cone under For◦F in Set, where For : RMod→ Set is the forgetful functor. So there is a unique
map f : M → N such that f ◦ qi = vi for every i ∈ Ob(I ). We need to show that f is R-linear.
Let x1, x2 ∈M and a ∈ R. We choose elements (i1,m1) and (i2,m2) of

∐
i∈Ob(I )Mi represent-

ing x1 and x2; as we have seen in the definition of the addition onM , we may assume that i1 = i2.
Then ax1 is represented by (i1, am1), so f(ax1) = vi1(am1) = avi1(m1) = af(x1), and x1 +x2 is
represented by (i1,m1 +m2), so f(x1 +x2) = vi1(m1 +m2) = vi1(m1)+vi1(m2) = f(x1)+f(x2).

�

5. Filtrant colimits are exact (3 points)

Let R be a ring and I be a filtrant category. Show that the functor
lim−→ : Func(I ,RMod) → RMod is exact, i.e. that if u : F → G and v : G → H are mor-

phism of functors from I to RMod such that the sequence 0 → F (i)
u(i)→ G(i)

v(i)→ H(i) → 0

is exact for every i ∈ Ob(I ), then the sequence 0 → lim−→F
lim−→u
→ lim−→G

lim−→ v
→ lim−→H → 0 is exact.

(Remember that we say that a sequence of R-modules 0 → M
f→ N

g→ P → 0 is exact if
Ker f = 0, Ker g = Im f and Im g = P .)

Solution. First we note that, if f : M → N is a morphism of RMod, then Ker(f) = Ker(f, 0)
is a finite limit in RMod and Coker(f) = Coker(f, 0) is a (finite colimit). Also, we have
Im(f) = Ker(Coker(f)), and so Im(f) = N if and only if Coker(f) = 0.

By Subsection I.5.4.1 of the notes and Corollary I.5.6.5 of the notes, we have (with the
notation of the problem)

Ker(lim−→u) = lim−→
i∈Ob(I )

Ker(u(i)) = lim−→
i∈Ob(I )

0 = 0

and
Coker(lim−→ v) = lim−→

i∈Ob(I )

Ker(v(i)) = lim−→
i∈Ob(I )

0 = 0.

Also,
Coker(lim−→u) = lim−→

i∈Ob(I )

Coker(u(i)),
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so

Im(lim−→u) = Ker(Coker(lim−→u)) = lim−→
i∈Ob(I )

Ker(Coker(u(i)))

= lim−→
i∈Ob(I )

Im(u(i))

= lim−→
i∈Ob(I )

Ker(v(i))

= Ker(lim−→ v).

�

6. Objects of finite type and of finite presentation Let C a category that admits all
filtrant colimits (indexed by small enough categories). An object X of C is called of finite type
(resp. of finite presentation or compact) if, for every filtrant category I and every functor
F : I → C , the canonical map

lim−→
i∈Ob(I )

HomC (X,F (i))→ HomC (X, lim−→F )

(see the beginning of Subsection I.5.4.2 of the notes) is injective (resp. bijective).

(a). Let R be a ring and M be a left R-module.

(i) (1 point) If M is free of finite type as a R-module, show that it is of finite presentation
as an object of RMod.

(ii) (2 points) If M is of finite type (resp. of finite presentation) as a R-module, show
that it is of finite type (resp. of finite presentation) as an object of RMod.

(iii) (1 point) Let I the poset of R-submodules of M that are of finite type, ordered
by inclusion, and let F : I → RMod be the functor sending N ⊂ M to M/N ;
if N ⊂ N ′ ⊂ M , we send the unique morphism N → N ′ in I to the canonical
projection M/N →M/N ′. Show that lim−→F = 0.

(iv) (2 points) If M is of finite type (resp. of finite presentation) as an object of RMod,
show that it is of finite type (resp. of finite presentation) as an R-module.

(b). (6 points, extra credit) Let R be a commutative ring and S be a commutative R-algebra.
Show that S is finitely presented as an R-algebra if and only if it is of finite presentation
as an object of R−CAlg.

(c). (i) (1 point) If X is a finite set with the discrete topology, show that X is of finite
presentation as an object of Top.

(ii) (1 point) Let X be a topological space. Let I be the poset of finite sets of X ordered
by inclusion; wee see I as a subcategory of Top (we use the subset topology on each
finite Y ⊂ X), and we denote by F : I → Top the inclusion functor. Show that
X = lim−→F if the topology on X is the indiscrete (= coarse) topology.

(iii) (1 point) Let X be a topological space. If X is of finite presentation as an object of
Top, show that it is finite.

(iv) (2 points) For n ∈ N, let Xn = N≥n × {0, 1}, with the topology for which the open
subsets are ∅ and (N≥m × {0}) ∪ (N≥n × {1}), for m ≥ n. Define fn : Xn → Xn+1
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by fn(n, a) = (n + 1, a) and fn(m, a) = (m, a) if m > n. Show that the Xn are
topological spaces and that the maps fn are continuous.

(v) (2 points) Show that lim−→n∈NXn is {0, 1} with the indiscrete topology. By lim−→n∈NXn,

we mean the colimit of the functor F : N → Top such that F (n) = Xn and
that, for each non-identity morphism α : n → m in N, that is, for n < m in N,
F (α) = fm−1 ◦ fm−2 ◦ . . . ◦ fn : Xn → Xm.

(vi) (2 points) Let X be a topological space. If X is of finite presentation as an object of
Top, show that X is finite and has the discrete topology.

(d). (2 points) Let X be a topological space, and let Open(X) be the set of open subsets of
X, ordered by inclusion. Show that X is compact if and only if X is of finite presentation
as an object of Open(X).

Solution.

(a). (i) We can deduce this from the facts that :

• HomR(R,N) = N for every left R-module N (so R is of finite presentation as
an object of RMod);

• HomR(M1 ⊕ M2, ·) = HomR(M1, ·) ⊕ HomR(M2, ·) (so the direct sum of two
objects of RMod of finite type (resp. of finite presentation) is also of finite type
(resp. of finite presentation)).

Alternately, here is a very categorical way to answer the question. Let (F,G) be a
pair of adjoint functors, with F : C → D and G : D → C . Suppose that all filtrant
colimits exist in C and D and that G commutes with filtrant colimits. Then we claim
that F sends objects of finite presentation in C to objects of finite presentation in
D . Indeed, let X ∈ Ob(C ). Then, for every functor α : I → D , with I filtrant, we
have a commutative diagram :

lim−→i∈Ob(I )
HomD(F (X), α(i))

∼ //

��

lim−→i∈Ob(I )
HomC (X,G(α(i)))

��
HomD(F (X), lim−→α) ∼

// HomC (X,G(lim−→α)) ∼
// HomC (X, lim−→(G ◦ α))

If X is of finite presentation, then the rigth vertical morphism is an isomorphism, so
the left vertical morphism also is.

We apply this to the pair of adjoint functors (Φ,For), where For : RMod → Set is
the forgetful functor and Φ : Set → RMod sends a set X to the free left R-module
on X. The fact that For commutes with filtrant colimits is Corollary I.5.6.3 of the
notes. So it suffices to prove that finite sets are objects of finite presentation in
Set. This follows from the fact that HomSet(X, ·) = (·)X for every set X, and from
Proposition I.5.6.4 of the notes. (It is also easy to see directly.)

(ii) Suppose that M is of finite type. Then we have an exact sequence
0 → P → N → M → 0, with N free of finite type. Let F : I → RMod be a
functor, with I filtrant. By problem 5 and the exactness properties of HomR, we
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have a commutative diagram with exact columns :

(*) 0

��

0

��
lim−→i∈Ob(I )

HomR(M,F (i))

��

(1) // HomR(M, lim−→F )

��
lim−→i∈Ob(I )

HomR(N,F (i))

��

(2) // HomR(N, lim−→F )

��
lim−→i∈Ob(I )

HomR(P, F (i))
(3) // HomR(P, lim−→F )

By question (i), the arrow labeled (2) is an isomorphism, so the arrow labeled (1) is
injective, which is what we wanted to prove.

Now assume that M is of finite presentation. Then we have an exact sequence
0 → P → N → M → 0, with N free of finite type and P of finite type. So, if we
write the diagram (*) again, the arrow labeled (2) is an isomorphism by (i), and the
arrow labeled (3) is injective by the previous paragraph. This implies that the arrow
labeled (1) is an isomorphism,6 which is what we wanted.

(iii) Note that I is a filtrant category, because it comes from a directed poset. (If N
and N ′ are two submodules of finite type of M , then they are both contained in
N +N ′, which is also of finite type.) So we can use problem 4 to calculate lim−→F . Let
x ∈ lim−→F , and let (N,m) be an element of

∐
N∈Ob(I )(M/N) representing it (so N

is a submodule of M of finite type, and m ∈M/N). Then there exists a submodule
N ′ of M of finite type such that N ⊂ N ′ and that the image of m in M/N ′ is 0
(just take the submodule N ′ generated by N and by a preimage of m in M), so
(N,m) ∼ (N ′, 0) in

∐
N∈Ob(I )(M/N), and so x = 0. This shows that lim−→F = 0.

(iv) Suppose that M is of finite type as an object of RMod. Using the functor
F : I → RMod of (iii), we see that the canonical morphism

lim−→
N∈Ob(I )

HomR(M,M/N)→ HomR(M, 0) = 0

is injective, which means that lim−→N∈Ob(I )
HomR(M,M/N) = 0. Consider

idM ∈ HomR(M,M/0). Its image in the filtrant colimit lim−→N∈Ob(I )
HomR(M,M/N)

is 0, so there exists a morphism 0→ N in I (that is, an object N of I ) such that
the image of idM in HomR(M,M/N) is 0. In other words, there exists a submodule
N of M of finite type such that M = N , which means that M is of finite type.

Now suppose that M is of finite presentation as an object of RMod. By the pre-
vious paragraph, M is a R-module of finite type, so there exists an exact sequence
0→ P → N →M → 0 with N a free R-module of finite type. We want to show that
the R-module P is also of finite type. As in (iii), we consider the category I associ-
ated to the poset of finite typeR-submodules of P , and the functor F.G : I → RMod
defined by F (Q) = P/Q and G(Q) = N/Q. For every Q ∈ Ob(I ), we have an ex-
act sequence 0 → F (Q) → G(Q) → N/P → 0. Using problem 5 and (iii), we get
an exact sequence 0 → 0 → lim−→G → N/P → 0. In other words, the canonical

6By the 4 lemma in the category Ab, which I am assuming that you have seen in a previous class. This also
follows from an easy diagram chase.
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morphism lim−→Q∈Ob(I )
N/Q → N/P (induced by the projections N/Q → N/P , for

Q ⊂ P ) is an isomorphism. Using the isomorphism N/P
∼→ M , we get an isomor-

phism f : M
∼→ lim−→Q∈Ob(I )

N/Q. As M is of finite presentation as an object of

RMod, there exists Q ∈ Ob(I ) and a morphism g : M → N/Q such that f is the

composition M
f→ N/Q→ N/P , where the second map is the canonical projection.

This implies that the kernel of the morphism N →M is contained in Q, hence that
P = Q is of finite type.

(b). First we show that polynomial rings over R on finitely many indeterminates are of finite
presentation as objects of R−CAlg. For this, we apply the second proof of (a)(i) to the
pair of adjoint functors (Φ,For), where For : R − CAlg → Set is the forgetful functor
and Φ : Set → R − CAlg sends a set X to the free commutative R-algebra on X,
that is, the polynomial ring R[X]. We already know that finite sets are objects of finite
presentation in Set. So it remains to check that For : R −CAlg → Set commutes with
filtrant colimits. The proof is exactly the same as for R-modules : using the procedure of
problem 4, we show that, if F : I → R −CAlg is a functor with I filtrant, then there
is a unique R-algebra structure on lim−→(For ◦ F ) that makes all the canonical morphisms
F (i)→ lim−→(For ◦F ) into R-algebra morphisms, and that lim−→(For ◦F ) with this R-algebra
structure satisfies the universal property characterizing the colimit of F . (We already
know how to define the addition and the action of R, and we define the multiplication
using the same trick as for the addition. See the solution of problem 4.)

Let S be a commutative finitely presented R-algebra. We show that S is of finite
presentation as an object of R − CAlg. Choose a surjective R-algebra morphism
f : S0 := R[x1, . . . , xn]→ S whose kernel is finitely generated; write Ker(f) = (a1, . . . , am)
with a1, . . . , am ∈ S0, and let g : S1 := R[y1, . . . , ym]→ S0 be the unique R-algebra mor-
phisms such that g(yj) = aj for 1 ≤ j ≤ m. For any commutative R-algebra T , we denote
by eT : S1 → T the unique R-algebra morphism sending every yj to 0. Then, if T is a
commutative R-algebra, we have a sequence of maps

HomR−CAlg(S, T )
uT→ HomR−CAlg(S0, T )

vT→ HomR−CAlg(S1, T ),

where uT (h) = h ◦ f and vT (h′) = h′ ◦ g. As f : S0 → S is surjective, the map uT is
injective. As the image of g : S1 → S0 generates the ideal Ker(f), a morphism h′ : S0 → T

factors as S0
f→ S

h→ T if and only if it is zero on the image of g; in other words, the
image of uT is exactly the set of h′ ∈ HomR−CAlg(S0, T ) such that vT (h′) = eT . In other
words. we have just proved that the map uT identifies the set HomR−CAlg(S, T ) with the
fiber product of the diagram :

HomR−CAlg(S0, T )

vT
��

{eT } // HomR−CAlg(S1, T )

Let ∗ : R −CAlg → Set be the functor sending T to the singleton {eT }. The inclusion
{eT } ⊂ HomR−CAlg(S1, T ) defines a morphism of functors e : ∗ → HomR−CAlg(S1, ·).
Note also that uT and vT define morphisms of functors u and v. So u identifies the
functor HomR−CAlg(S0, ·) with the fiber product of the diagram

HomR−CAlg(S0, ·)

v

��
∗ e

// HomR−CAlg(S1, ·)
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(in the category Func(R −CAlg,Set)). As the three functors in this diagram commute
with filtrant colimits by the first paragraph, as filtrant colimits commute with finite limits
in Set (Proposition I.5.6.4 of the notes), the functor HomR−CAlg(S, ·) also commutes with
filtrant colimits.

It remains to show that a commutative R-algebra S that is of finite presentation as an
object of R − CAlg is a finitely presented R-algebra. First, consider the poset I of
finitely generated sub-R-algebras S′ ⊂ S, seen as a category, and the obvious (inclu-
sion) functor from I to R − CAlg. The category I is clearly filtrant (because the
union of two finitely generated subslalgebras of S is contained in a finitely generated
subalgebra), and lim−→F = S because we saw in the first paragraph that the forget-
ful functor R − CAlg → Set commutes with filtrant colimits. So the canonical map
lim−→S′∈Ob(I )

HomR−CAlg(S, S′)→ HomR−CAlg(S, S) is bijective, which implies that there

exists a finitely generated subalgebra S′ of S such that the identity of S factors through
the inclusion S′ ⊂ S, i.e. such that S′ = S. So S is a finitely generated R-algebra. We
write S = R[x1, . . . , xn]/I, with I an ideal of R[x1, . . . , xn]. Let I ′ be the poset of finite
generated ideals J ⊂ I, seen as category; again, this is a clearly a filtrant category. Define
a functor G : I ′ → R −CAlg by sending J to R[x1, . . . , xn]/J . For every J ∈ Ob(I ′),
let uJ : G(J) = R[x1, . . . , xn] → S be the quotient morphism. Then (S, (uJ)) is a cone
under G, and we claim that it is a colimit of G. Indeed, let (T, (vJ)) be another cone

under G. In particular, all the morphisms R[x1, . . . , xn] → R[x1, . . . , xn]/J
vJ→ T are

equal, so we get a morphism f : R[x1, . . . , xn] → T . Also, Ker(f) contains every finitely
generated subideal of I, so it contains every element of I, so I ⊂ Ker(f), so f factors as

R[x1, . . . , xn] → S
g→ T . The morphism g is clearly a morphism of cones, and it is the

only possible morphism of cones from (S, (uJ)) to (T, (vj)) because all the maps uJ are
surjective. As S is of finite presentation as an object of R−CAlg, the canonical map

lim−→
J∈Ob(I ′)

HomR−CAlg(S,R[x1, . . . , xn]/J)→ HomR−CAlg(S, S)

is bijective. In particular, there exists a finitely generated ideal J ⊂ I such that the
identity morphism of S factors as S → R[x1, . . . , xn]/J → S, where the second map is the
quotient map; this forces J and I to be equal, so I is a finitely generated ideal, and so S
is a finitely presented R-algebra.

(c). (i) As in (a)(i), we can do this directly or categorically. If we do it directly, we use
the fact that a singleton is clearly of finite presentation in Top, and that a finite
discrete set is a finite coproduct of singletons in Top. If we do it categorically, we
apply the fact that we proved in (a)(i) to the pair of adjoitn functors (F,For), where
For : Top → Set is the forgetful functor (which preserves all colimits by Section
I.5.5 of the notes) and F is its left adjoint, i.e. the functor that sends a set X to
itself with the discrete topology (Example I.4.8 of the notes). Then the result follows
from the fact that a finite set is of finite presentation as an object of Set, which we
proved in (a)(i).

(ii) Let For : Top → Set be the forgetful functor. It is easy to see that
For(X) = lim−→(For ◦ F ) (this just says that X is the union of all its finite subsets).
We use this to identify X and lim−→F as sets. Then X and lim−→F are isomorphic as
topological spaces if and only if the original topology on X coincides with the colimiit
topology. Let U be a subset of X. It is open in the colimit topology if and only
U ∩ Y is open in Y for every finite subset Y of X (using the subset topology on Y ).
This is certainly true if X has the coarse topology. 7

7It is also true if X has the discrete topology...
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(iii) Let X0 be the underlying set of X with the coarse topology. Then the identity map
i : X → X0 is continuous. As X is of finite presentation, question (ii) implies that i
factors through a finite subset of X, hence that X is finite.

(iv) Let n ∈ N, and let (mi)i∈I be a family of integers ≥ n. Then⋃
i∈I

(N≥mi × {0}) ∪ (N≥n × {1}) = (N≥infi∈I mi
× {0}) ∪ (N≥n × {1})

with infi∈I mi ≥ n. Also, if I is finite, then⋂
i∈I

(N≥mi × {0}) ∪ (N≥n × {1}) = (N≥supi∈I mi × {0}) ∪ (N≥n × {1})

So the family of “open sets” of the statement does define a topology on N≥n×{0, 1}.

Let n ∈ N, and let m ≥ n+ 1. Then

f−1
n ((N≥m×{0})∪(N≥n+1×{1})) =

{
(N≥m × {0}) ∪ (N≥n × {1}) if m ≥ n+ 2
(N≥n × {0}) ∪ (N≥n × {0}) if m = n+ 1.

So fn is continuous.

(v) We put the coarse topology on {0, 1}. Then the second projections maps
Xn → {0, 1}, hence define a cone under the functor F . So we get a continuous
map f : lim−→n∈NXn → {0, 1}.

If a ∈ {0, 1}, then the image of (0, a) ∈ X0, so its image by the obvious map
X0 →

∐
n∈NXn → lim−→n∈NXn is a preimage of a by f . So f is surjective.

We prove that f is injective. Let (m, a) ∈ Xn and (m′, b) ∈ Xn′ , and suppose that

the images of (m, a) and (m′, b) by the maps Xn →
∐
i∈NXi → lim−→i∈NXi

f→ {0, 1}

and Xm →
∐
i∈NXi → lim−→i∈NXi

f→ {0, 1} are equal. We want to prove that (m, a)

and (m′, b) have the same image in lim−→i∈NXi. As the fi do not change the second
coordinate of elements of Xi, the assumption implies that a = b. If m > n, then
fm−1 ◦ . . . ◦ fn(m, a) = (m, a) ∈ Xm has the same image as (m, a) ∈ Xn in lim−→i∈NXi;

so we may assume that n = m. Similarly, we may assume that n′ = m′. Up to
switching n and n′, we may assume that n′ ≥ n. If n′ = n, we are done. Otherwise,
we have (n′, a) = fn′−1 ◦ . . .◦fn(n, a), so (n′, a) ∈ Xn′ and (n, a) ∈ Xn have the same
image in lim−→i∈NXi.

It remains to prove that f−1 is continuous. If it were not, this would mean that {0}
or {1} is open in lim−→i∈NXi. But the preimages of {0} and {1} by the continuous

map Xn → lim−→i∈NXi are N≥n × {0} and N≥n × {1} respectively, and these are not

open subsets of Xn. So neither {0} nor {1} is open in lim−→i∈NXi.

(vi) We already know that X is finite by (iii). Let U be a subset of X, and let
f : X → {0, 1} be the indicator map of U . Then f is continuous if we put the
coarse topology on {0, 1}, so, by the hypothesis on X and question (v), there exists

a continuous map X
g→ Xn such that f is the composition of g and of the second

projection Xn → {0, 1}. As X is finite, there exists m ≥ n such that, for every
x ∈ X, the first coordinate of g(x) ∈ N≥n × {0, 1} is < m. Then

U = g−1(N≥n × {1}) = g−1((N≥m × {0}) ∪ (N≥n × {1})).

As g is continuous, this proves that U is open in X. As U was an arbitrary subset
of X, this shows that the topology of X is discrete.
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(d). Let U = (Ui)i∈I be a family of open subsets of X. Let II be the category associ-
ated to the poset of finite subsets of I, ordered by inclusions; then II is filtrant. Let
FU : II → Open(X) be the functor sending a finite subset J ⊂ I to

⋃
j∈J Uj ; if

J ⊂ J ′, then the image by FU of the corresponding morphism of II is the inclusion⋃
j∈J Uj ⊂

⋃
j∈J ′ Uj . Then it is easy to see that lim−→FU =

⋃
i∈I Ui.

Suppose that X is finite presentation as an object of Open(X), and let U = (Ui)i∈I be an
open covering of X. Then the identity morphism X → lim−→FU comes from a morphism
X →

⋃
j∈J Uj with J ∈ Ob(II), or, in other words, there exists a finite subset J of I such

that X ⊂
⋃
j∈J Uj . This means that X is compact.

Conversely, suppose that X is compact, and let F : I → Open(X) be a functor, with I
filtrant. Let U = lim−→F . We claim that U =

⋃
i∈Ob(I ) F (i). For every i ∈ Ob(I ), we have

a morphism F (i) → U in Open(X), so F (i) ⊂ U . Conversely, let U ′ =
⋃
i∈Ob(I ) F (i).

Then we have a morphism F (i)→ U ′ in Open(X) for every i ∈ Ob(I ), and this defines a
cone under F with apex U ′, so the universal property of the colimit implies that we have
a morphism U → U ′ in Open(X), that is, that U ⊂ U ′.

Now we show that the map α : lim−→i∈Ob(I )
HomOpen(X)(X,F (i)) → HomOpen(X)(X,U) is

bijective. Note that, as all Hom sets in Open(X) are empty sets or singletons, and as I is
filtrant, the source of α has at most one element. If U 6= X, then HomOpen(X)(X,U) = ∅
and HomOpen(X)(X,F (i)) = ∅ for every i ∈ Ob(I ), so α is bijective. Suppose that
U = X; then HomOpen(X)(X,U) = {idX}, and we want to show that idX has a preimage
by α. This is equivalent to the fact that X = F (i) for some i ∈ Ob(I ). As X is compact
and as X = U =

⋃
i∈Ob(I ) F (i), we know that there exist i1, . . . , in ∈ Ob(I ) such that

X = F (i1)∪ . . .∪F (in). As I is filtrant, there exists j ∈ Ob(I ) and morphisms i1 → j,
. . . , in → j. So we have morphisms F (ir) → F (j) in Open(X) for 1 ≤ r ≤ n, that is,
F (j) contains F (i1), . . . , F (in); this implies that F (j) = X.

�
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