
MAT 540 : Problem Set 2

Due Thursday, September 26

1. Monoidal categories (extra credit)

A monoidal category is a category C equipped with a bifunctor (·) ⊗ (·) : C × C → C (the
tensor product or monoidal functor), with an identity (or unit) object 11 and with three natural
isomorphisms α(A,B,C) : (A⊗B)⊗C ∼→ A⊗ (B⊗C), λ(A) : 11⊗A ∼→ A and ρA : A⊗ 11

∼→ A,
satisfying the following conditions :

• for all A,B,C,D ∈ Ob(C ), the following diagram commutes :

((A⊗B)⊗ C)⊗D

α(A⊗B,C,D)
��

α(A,B,C)⊗idD// (A⊗ (B ⊗ C))⊗D
α(A,B⊗C,D) // A⊗ ((B ⊗ C)⊗D)

idA⊗α(B,C,D)
��

(A⊗B)⊗ (C ⊗D)
α(A,B,C⊗D)

// A⊗ (B ⊗ (C ⊗D))

• for all A,B ∈ Ob(C ), the following diagram commutes :

(A⊗ 11)⊗B
α(A,11,B) //

ρ(A)⊗idB ''

A⊗ (11⊗B)

idA⊗λ(B)ww
A⊗B

Here are some examples :

• C = Set or Top, ⊗ = ×, 11 is a singleton;

• C = Grp, ⊗ = ×, 11 = {1};

• C = RMod with R a commutative ring, ⊗ = ⊗R, 11 = R;

• C = Func(D ,D) with D a category, ⊗ = ◦, 11 = idD .

A monoid in C is an object M of C together with two morphisms µ : M ⊗ M → M
(multiplication) and η : 11→M (unit), such that the two following diagrams commute :

M ⊗ (M ⊗M)
idM⊗µ//M ⊗M µ //M

(M ⊗M)⊗M

α(M,M,M)

OO

µ⊗idM

//M ⊗M
µ

;;
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and

M ⊗M
µ

((

11⊗M
λ(M)
��

η⊗idMoo

M ⊗ 11
ρ(M)

//

idM⊗η

OO

M

(We can also define morphisms of monoids, and monoids in C form a category.)

Examples :

• A monoid in (Set,×) is a monoid (in the usual sense).

• A monoid in (Top,×) is a topological monoid.

• If R is a commutative ring, a monoid in (RMod,⊗) is a R-algebra. (In particular, a
monoid in (Ab,⊗Z) is a ring.)

• A monoid in (Func(D ,D), ◦) is called a monad on D .

(a). (2 points) Let Mon be the category of (usual) monoids. It is a monoidal category, with
the monoidal functor given by × and the unit object {1}. If (M,µ, η) is a monoid in Mon,
show that M is a commutative monoid and µ is equal to the multiplication of M .

(b). (3 points) Let F : C → D and G : D → C be two functors such that (F,G) is a pair
of adjoint functors, and let ε : F ◦ G → idD and η : idC → G ◦ F be the counit and
unit of the adjunction. Define a morphism of functors µ : (G ◦ F ) ◦ (G ◦ F ) → G ◦ F by
µ(X) = G(ε(F (X))) : G(F ◦G(F (X))) → G(F (X)). Show that (G ◦ F, µ, η) is a monad
on C .

2. Geometric realization of a simplicial set Remember that the simplicial category ∆ is
the subcategory of Set whose objects are the sets [n] = {0, 1, . . . , n}, for n ∈ N, and whose
morphisms are nondecreasing maps (where we put the usual order on [n]). The category of
simplicial sets sSet is defined by sSet = PSh(∆) = Func(∆op,Set); if X is a simplicial set,
we write Xn for X([n]) and α∗ : Xm → Xn for X(α) : X([m]) → X([n]) (if α : [n] → [m] is
a nondecreasing map). The standard n-simplex ∆ is the simplicial set represented by [n], i.e.
Hom∆(·, [n]).

(a). Let C be a category and F : C op → Set be a presheaf on C . We consider the category
C /F whose objects are pairs (X,x), with X ∈ Ob(C ) and x ∈ F (X), and such that a
morphism (X,x)→ (Y, y) is a morphism f : X → Y in C with F (f)(y) = x. Note that we
have an obvious faithful functor GF : C /F → C (forgetting the second entry in a pair),
so we get a functor hC ◦GF : C /F → PSh(C ).

(i) (1 point) When does C /F have a terminal object ?

(ii) (2 points) Show that lim−→(hC ◦GF ) = F . (Hint : Use the second entries of the pairs

to construct a morphism from lim−→(hC ◦GF ) to F .) 1

For every n ∈ N, let |∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1 | x0 + . . . + xn = 1} with
the subspace topology. If f : [n] → [m] is a map, we define |f | : |∆n| → |∆m| by
|f |(x0, . . . , xn) = (

∑
i∈f−1(j) xi)0≤j≤m. (With the convention that an empty sum is equal to

0.) Consider the functor |.| : ∆→ Top sending [n] to |∆n| and f : [n]→ [m] to |f |.

1So every presheaf is a colimit of representable presheaves.
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Let X be a simplicial set, and consider the functor GX : ∆/X → ∆ of (a). The geometric
realization of X is by definition the topological space |X| = lim−→(|.| ◦GX).

(b). (1 points) Show that this construction upgrades to a functor |.| : sSet→ Top. 2

(c). (2 points) Show that, if X is ∆n, then |X| = |∆n|.

(d). (1 point) Give a simplicial set whose geometric realization is
{(x0, x1, x2) ∈ [0, 1]2 | x0 = 0 or x2 = 0}. (Hint: why are the horns called horns ?)

(e). (2 points) Consider the functor Sing : Top → sSet given by
Sing(X) = HomTop(|.|, X) : ∆op → Set. (That is, if X is a topological space,
then Sing(X) is the simplicial set such that Sing(X)n is the set of continuous maps from
|∆n| to X, and, if f : [n]→ [m] is nondecreasing, then f∗ : Sing(X)m → Sing(X)n sends
a continuous map u : |∆m| → X to u ◦ |f |.) The simplicial set Sing(X) is called the
singular simplicial complex of X of X.

Show that (|.|,Sing) is a pair of adjoint functors.

3. Yoneda embedding and colimits Let k be a field, and let C be the category of k-vector
spaces.

(a). (1 point) For every n ∈ N, let k[x]≤n be the vector space of polynomials of degree ≤ n
in k[x]. Using the inclusions k[x]≤n ⊂ k[x]≤m for n ≤ m, we get a functor F : N → C ,
n 7−→ k[x]≤n. Show that lim−→F = k[x].

(b). (2 points) Show that hC : C → PSh(C ) does not commute with all colimits.

4. Filtrant colimits of modules (3 points)

Let R be a ring, let I be a filtrant category and let F : I → RMod be a functor. For every
i ∈ Ob(I ), we write Mi = F (i). Let ∼ be the equivalence relation on

∐
i∈Ob(I )Mi defined

in Proposition I.5.6.2 of the notes; so (i, x) ∼ (j, y) if there exist morphisms α : i → k and
β : j → k in I such that F (α)(x) = F (β)(y)). Let M =

∐
i∈Ob(I )Mi/ ∼; this is the colimit of

the composition I
F→ RMod

For→ Set. Denote by qi : Mi →M the obvious maps.

Show that there exists a unique structure of left R-module on M such that all the qi are
R-linear maps, and that this structure makes (M, (qi)) into a colimit of F .

5. Filtrant colimits are exact (3 points)

Let R be a ring and I be a filtrant category. Show that the functor
lim−→ : Func(I ,RMod) → RMod is exact, i.e. that if u : F → G and v : G → H are mor-

2This functor is called the left Kan extension of |.| : ∆ → Top along the Yoneda embedding ∆ → sSet.
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phism of functors from I to RMod such that the sequence 0 → F (i)
u(i)→ G(i)

v(i)→ H(i) → 0

is exact for every i ∈ Ob(I ), then the sequence 0 → lim−→F
lim−→u
→ lim−→G

lim−→ v
→ lim−→H → 0 is exact.

(Remember that we say that a sequence of R-modules 0 → M
f→ N

g→ P → 0 is exact if
Ker f = 0, Ker g = Im f and Im g = P .)

6. Objects of finite type and of finite presentation Let C a category that admits all
filtrant colimits (indexed by small enough categories). An object X of C is called of finite type
(resp. of finite presentation or compact) if, for every filtrant category I and every functor
F : I → C , the canonical map

lim−→
i∈Ob(I )

HomC (X,F (i))→ HomC (X, lim−→F )

(see the beginning of Subsection I.5.4.2 of the notes) is injective (resp. bijective).

(a). Let R be a ring and M be a left R-module.

(i) (1 point) If M is free of finite type as a R-module, show that it is of finite presentation
as an object of RMod.

(ii) (2 points) If M is of finite type (resp. of finite presentation) as a R-module, show
that it is of finite type (resp. of finite presentation) as an object of RMod.

(iii) (1 point) Let I the poset of R-submodules of M that are of finite type, ordered
by inclusion, and let F : I → RMod be the functor sending N ⊂ M to M/N ;
if N ⊂ N ′ ⊂ M , we send the unique morphism N → N ′ in I to the canonical
projection M/N ′ →M/N . Show that lim−→F = 0.

(iv) (2 points) If M is of finite type (resp. of finite presentation) as an object of RMod,
show that it is of finite type (resp. of finite presentation) as an R-module.

(b). (4 points, extra credit) Let R be a commutative ring and S be a commutative R-algebra.
Show that S is finitely presented as an R-algebra if and only if it is of finite presentation
as an object of R−CAlg.

(c). (i) (1 point) If X is a finite set with the discrete topology, show that X is of finite
presentation as an object of Top.

(ii) (1 point) Let X be a topological space. Let I be the poset of finite sets of X ordered
by inclusion; wee see I as a subcategory of Top (we use the subset topology on each
finite Y ⊂ X), and we denote by F : I → Top the inclusion functor. Show that
X = lim−→F if the topology on X is the indiscrete (= coarse) topology.

(iii) (1 point) Let X be a topological space. If X is of finite presentation as an object of
Top, show that it is finite.

(iv) (2 points) For n ∈ N, let Xn = N≥n × {0, 1}, with the topology for which the open
subsets are ∅ and (N≥m × {0}) ∪ (N≥n × {1}), for m ≥ n. Define fn : Xn → Xn+1

by fn(n, a) = (n + 1, a) and fn(m, a) = (m, a) if m > n. Show that the Xn are
topological spaces and that the maps fn are continuous.

(v) (2 points) Show that lim−→n∈NXn is {0, 1} with the indiscrete topology. By lim−→n∈NXn,

we mean the colimit of the functor F : N → Top such that F (n) = Xn and
that, for each non-identity morphism α : n → m in N, that is, for n < m in N,
F (α) = fm−1 ◦ fm−2 ◦ . . . ◦ fn : Xn → Xm.
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(vi) (2 points) Let X be a topological space. If X is of finite presentation as an object of
Top, show that X is finite and has the discrete topology.

(d). (2 points) Let X be a topological space, and let Open(X) be the set of open subsets of
X, ordered by inclusion. Show that X is compact if and only if X is of finite presentation
as an object of Open(X).
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