MAT 540 : Problem Set 2

Due Thursday, September 26

1. Monoidal categories (extra credit)

A monoidal category is a category € equipped with a bifunctor () ® (+) : € x € — € (the
tensor product or monoidal functor), with an identity (or unit) object 1 and with three natural
isomorphisms a(A4, B,C) : (A®B)®C S5 A®(BRC), \M(A) : 10 A S Aand pa : AR 1 S A,
satisfying the following conditions :

e for all A,B,C,D € Ob(%), the following diagram commutes :

—_—

(A®B)®C)® D (A (B®C))® D A® ((B®C)® D)
a(A®B,C,D)l iidAé@a(B,C,D)

(A® B)® (C® D) A® (B®(C®D))

a(A,B,C®D)

e for all A, B € Ob(%), the following diagram commutes :

a(A1,B
(A®1)® B WLB A9 (1@ B)
p(A)@idp ‘K@M(B)
A® B

Here are some examples :
e ¢ = Set or Top, ® = x, 1 is a singleton;
e ¢ =Grp, ® =x, 1={1}
e ¥ = gpMod with R a commutative ring, ® = Qg, 1 = R;
e ¢ =Func(2, ) with Z a category, ® = o, 1 = idg.
A monoid in € is an object M of ¥ together with two morphisms y : M @ M — M
(multiplication) and 7 : 1 — M (unit), such that the two following diagrams commute :

Mo (Me M) v em M

a(M,M,M)T /
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(We can also define morphisms of monoids, and monoids in % form a category.)
Examples :

e A monoid in (Set, x) is a monoid (in the usual sense).

e A monoid in (Top, x) is a topological monoid.

e If R is a commutative ring, a monoid in (pkMod, ®) is a R-algebra. (In particular, a
monoid in (Ab,®z) is a ring.)

e A monoid in (Func(Z, 2), o) is called a monad on 2.

(a). (2 points) Let Mon be the category of (usual) monoids. It is a monoidal category, with
the monoidal functor given by x and the unit object {1}. If (M, u,n) is a monoid in Mon,
show that M is a commutative monoid and w is equal to the multiplication of M.

(b). (3 points) Let F' : € — Z and G : Z — € be two functors such that (F,G) is a pair
of adjoint functors, and let ¢ : FFo G — idg and 7 : id¢y — G o F be the counit and
unit of the adjunction. Define a morphism of functors p: (Go F)o (Go F) — Go F by
wX)=GE(F(X))): G(FoG(F(X))) = G(F(X)). Show that (G o F, u,n) is a monad
on %.

2. Geometric realization of a simplicial set Remember that the simplicial category A is
the subcategory of Set whose objects are the sets [n] = {0,1,...,n}, for n € N, and whose
morphisms are nondecreasing maps (where we put the usual order on [n]). The category of
simplicial sets sSet is defined by sSet = PSh(A) = Func(A°P,Set); if X is a simplicial set,
we write X,, for X([n]) and o* : X,;, — X, for X(«) : X([m]) — X([n]) (if a : [n] — [m] is
a nondecreasing map). The standard n-simplex A is the simplicial set represented by [n], i.e.
Homa (-, [n)]).

(a). Let € be a category and F' : €°P — Set be a presheaf on 4. We consider the category
¢ /F whose objects are pairs (X, ), with X € Ob(%) and x € F(X), and such that a
morphism (X, z) — (Y, y) is a morphism f : X — Y in ¢ with F/(f)(y) = «. Note that we
have an obvious faithful functor Gp : €/F — % (forgetting the second entry in a pair),
so we get a functor hy o Gp : € /F — PSh(%).

(i) (1 point) When does €'/ F have a terminal object ?

(ii) (2 points) Show that hﬂ(hcg oGp) = F. (Hint : Use the second entries of the pairs

to construct a morphism from hg(hcg oGp)to F.) 1

For every n € N, let |A,| = {(zo,...,zs) € [0,1]"" | 29 + ... + z, = 1} with
the subspace topology. If f : [n] — [m] is a map, we define |f| : |A,| — |A,| by
|fl(@o, .-+ an) = (Xiep-1(j) Ti)o<j<m- (With the convention that an empty sum is equal to

0.) Consider the functor |.| : A — Top sending [n] to |A,| and f : [n] — [m] to | f].

1S0 every presheaf is a colimit of representable presheaves.



Let X be a simplicial set, and consider the functor Gx : A/X — A of (a). The geometric
realization of X is by definition the topological space | X| = hﬂ(” oGx).
(b)
()

-

-

(d). (1  point) Give a  simplicial set  whose  geometric realization is
{(z0,71,22) € 10,12 | 19 = 0 or 22 = 0}. (Hint: why are the horns called horns ?)

1 points) Show that this construction upgrades to a functor |.| : sSet — Top. 2

2 points) Show that, if X is A, then | X| = |A,].

2

0 1

(e). (2 points) Consider the functor Sing : Top —  sSet given by
Sing(X) = Homrop(].|,X) : A°® — Set. (That is, if X is a topological space,
then Sing(X) is the simplicial set such that Sing(X),, is the set of continuous maps from
|Ay| to X, and, if f : [n] — [m] is nondecreasing, then f* : Sing(X),, — Sing(X), sends
a continuous map u : |A,| — X to wo [f|.) The simplicial set Sing(X) is called the
singular simplicial complex of X of X.

Show that (|.|,Sing) is a pair of adjoint functors.

3. Yoneda embedding and colimits Let k be a field, and let € be the category of k-vector
spaces.

(a). (1 point) For every n € N, let k[z]<,, be the vector space of polynomials of degree < n
in k[z]. Using the inclusions k[x]<, C k[z]<,, for n < m, we get a functor F' : N — €,
n+— k[z]<p. Show that lim F' = k[z].

(b). (2 points) Show that hg : € — PSh(%’) does not commute with all colimits.

4. Filtrant colimits of modules (3 points)

Let R be a ring, let .# be a filtrant category and let F': .# — rpMod be a functor. For every
i € Ob(), we write M; = F(i). Let ~ be the equivalence relation on [];cqp( s M; defined
in Proposition 1.5.6.2 of the notes; so (i,z) ~ (j,y) if there exist morphisms « : i — k and
B:j—kin . such that F(a)(z) = F(B)(y)). Let M = [[;cop(s) Mi/ ~; this is the colimit of

the composition .# EN rMod ™ Set. Denote by ¢; : M; — M the obvious maps.

Show that there exists a unique structure of left R-module on M such that all the g; are
R-linear maps, and that this structure makes (M, (g;)) into a colimit of F'.

5. Filtrant colimits are exact (3 points)

Let R be a ring and £ be a filtrant -category. Show that the functor
lim : Func(#, RpMod) — gMod is exact, i.e. that if u: FF — G and v : G — H are mor-

2This functor is called the left Kan extension of |.| : A — Top along the Yoneda embedding A — sSet.



phism of functors from .# to pMod such that the sequence 0 — F'(7) 9 G(7) @ H(i) — 0

lim u lim v
is exact for every i € Ob(.#), then the sequence 0 — hﬂF % %G % th — 0 is exact.

(Remember that we say that a sequence of R-modules 0 — M i) N % P = 0 is exact if
Ker f =0, Kerg =Im f and Img = P.)

6. Objects of finite type and of finite presentation Let % a category that admits all
filtrant colimits (indexed by small enough categories). An object X of € is called of finite type
(resp. of finite presentation or compact) if, for every filtrant category .# and every functor
F: ¥ — €, the canonical map

lim Homy (X, F(i)) — Home (X, th)
icOb(.7)

(see the beginning of Subsection 1.5.4.2 of the notes) is injective (resp. bijective).

(a). Let R be a ring and M be a left R-module.

(i) (1 point) If M is free of finite type as a R-module, show that it is of finite presentation
as an object of pMod.

(ii) (2 points) If M is of finite type (resp. of finite presentation) as a R-module, show
that it is of finite type (resp. of finite presentation) as an object of pMod.

(iii) (1 point) Let .# the poset of R-submodules of M that are of finite type, ordered
by inclusion, and let F' : .# — rMod be the functor sending N C M to M/N;
if N ¢ N' ¢ M, we send the unique morphism N — N’ in .# to the canonical
projection M /N’ — M/N. Show that lim F* = 0.

(iv) (2 points) If M is of finite type (resp. of finite presentation) as an object of RMod,
show that it is of finite type (resp. of finite presentation) as an R-module.

(b). (4 points, extra credit) Let R be a commutative ring and S be a commutative R-algebra.
Show that S is finitely presented as an R-algebra if and only if it is of finite presentation
as an object of R — CAlg.

(¢). (i) (1 point) If X is a finite set with the discrete topology, show that X is of finite
presentation as an object of Top.

(ii) (1 point) Let X be a topological space. Let .# be the poset of finite sets of X ordered
by inclusion; wee see .# as a subcategory of Top (we use the subset topology on each
finite Y C X), and we denote by F : .# — Top the inclusion functor. Show that
X = th if the topology on X is the indiscrete (= coarse) topology.

(iii) (1 point) Let X be a topological space. If X is of finite presentation as an object of
Top, show that it is finite.

(iv) (2 points) For n € N, let X,, = N>,, x {0,1}, with the topology for which the open
subsets are @ and (N>, x {0}) U (N>, x {1}), for m > n. Define f, : X;, = X, 11
by fn(n,a) = (n+ 1,a) and fp(m,a) = (m,a) if m > n. Show that the X,, are
topological spaces and that the maps f, are continuous.

(v) (2 points) Show that lim Xy is {0,1} with the indiscrete topology. By lim = Xn,
we mean the colimit of the functor F' : N — Top such that F(n) = X, and
that, for each non-identity morphism « : n — m in N, that is, for n < m in N,
F(a) = fm-10 fm—20...0 fn: Xpn = Xy



(vi) (2 points) Let X be a topological space. If X is of finite presentation as an object of
Top, show that X is finite and has the discrete topology.

(d). (2 points) Let X be a topological space, and let Open(X) be the set of open subsets of
X, ordered by inclusion. Show that X is compact if and only if X is of finite presentation
as an object of Open(X).



