MAT 540 : Problem Set 2

Due Thursday, September 26

1. Monoidal categories (extra credit)

A monoidal category is a category \mathscr{C} equipped with a bifunctor $(\cdot) \otimes (\cdot) : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ (the tensor product or monoidal functor), with an identity (or unit) object $\mathbb{1}$ and with three natural isomorphisms $\alpha(A, B, C) : (A \otimes B) \otimes C \xrightarrow{\sim} A \otimes (B \otimes C)$, $\lambda(A) : \mathbb{1} \otimes A \xrightarrow{\sim} A$ and $\rho_A : A \otimes \mathbb{1} \xrightarrow{\sim} A$, satisfying the following conditions :

• for all $A, B, C, D \in Ob(\mathscr{C})$, the following diagram commutes :

• for all $A, B \in Ob(\mathscr{C})$, the following diagram commutes :

$$(A \otimes \mathbb{1}) \otimes B \xrightarrow{\alpha(A,\mathbb{1},B)} A \otimes (\mathbb{1} \otimes B)$$

$$\rho(A) \otimes \mathrm{id}_{B} \xrightarrow{A \otimes B} \mathrm{id}_{A \otimes \lambda(B)}$$

Here are some examples :

- $\mathscr{C} = \mathbf{Set}$ or $\mathbf{Top}, \otimes = \times, \mathbb{1}$ is a singleton;
- $\mathscr{C} = \mathbf{Grp}, \otimes = \times, \mathbb{1} = \{1\};$
- $\mathscr{C} = {}_R \mathbf{Mod}$ with R a commutative ring, $\otimes = \otimes_R$, $\mathbb{1} = R$;
- $\mathscr{C} = \operatorname{Func}(\mathscr{D}, \mathscr{D})$ with \mathscr{D} a category, $\otimes = \circ$, $\mathbf{1} = \operatorname{id}_{\mathscr{D}}$.

A monoid in \mathscr{C} is an object M of \mathscr{C} together with two morphisms $\mu : M \otimes M \to M$ (multiplication) and $\eta : \mathbb{1} \to M$ (unit), such that the two following diagrams commute :

$$\begin{array}{c} M \otimes (M \otimes M) \xrightarrow{\mathrm{id}_M \otimes \mu} M \otimes M \xrightarrow{\mu} M \\ & & & \\ \alpha(M,M,M) \\ & & \\ (M \otimes M) \otimes M \xrightarrow{\mu \otimes \mathrm{id}_M} M \otimes M \end{array}$$

and

(We can also define morphisms of monoids, and monoids in $\mathscr C$ form a category.) Examples :

Examples .

- A monoid in (\mathbf{Set}, \times) is a monoid (in the usual sense).
- A monoid in (\mathbf{Top}, \times) is a topological monoid.
- If R is a commutative ring, a monoid in (_RMod, ⊗) is a R-algebra. (In particular, a monoid in (Ab, ⊗_Z) is a ring.)
- A monoid in $(\operatorname{Func}(\mathscr{D}, \mathscr{D}), \circ)$ is called a monad on \mathscr{D} .
- (a). (2 points) Let **Mon** be the category of (usual) monoids. It is a monoidal category, with the monoidal functor given by \times and the unit object {1}. If (M, μ, η) is a monoid in **Mon**, show that M is a commutative monoid and μ is equal to the multiplication of M.
- (b). (3 points) Let $F : \mathscr{C} \to \mathscr{D}$ and $G : \mathscr{D} \to \mathscr{C}$ be two functors such that (F, G) is a pair of adjoint functors, and let $\varepsilon : F \circ G \to \operatorname{id}_{\mathscr{D}}$ and $\eta : \operatorname{id}_{\mathscr{C}} \to G \circ F$ be the counit and unit of the adjunction. Define a morphism of functors $\mu : (G \circ F) \circ (G \circ F) \to G \circ F$ by $\mu(X) = G(\varepsilon(F(X))) : G(F \circ G(F(X))) \to G(F(X))$. Show that $(G \circ F, \mu, \eta)$ is a monad on \mathscr{C} .

2. Geometric realization of a simplicial set Remember that the simplicial category Δ is the subcategory of **Set** whose objects are the sets $[n] = \{0, 1, ..., n\}$, for $n \in \mathbb{N}$, and whose morphisms are nondecreasing maps (where we put the usual order on [n]). The category of simplicial sets **sSet** is defined by **sSet** = PSh(Δ) = Func(Δ^{op} , **Set**); if X is a simplicial set, we write X_n for X([n]) and $\alpha^* : X_m \to X_n$ for $X(\alpha) : X([m]) \to X([n])$ (if $\alpha : [n] \to [m]$ is a nondecreasing map). The standard *n*-simplex Δ is the simplicial set represented by [n], i.e. Hom_{Δ}(·, [n]).

- (a). Let \mathscr{C} be a category and $F : \mathscr{C}^{\text{op}} \to \mathbf{Set}$ be a presheaf on \mathscr{C} . We consider the category \mathscr{C}/F whose objects are pairs (X, x), with $X \in \mathrm{Ob}(\mathscr{C})$ and $x \in F(X)$, and such that a morphism $(X, x) \to (Y, y)$ is a morphism $f : X \to Y$ in \mathscr{C} with F(f)(y) = x. Note that we have an obvious faithful functor $G_F : \mathscr{C}/F \to \mathscr{C}$ (forgetting the second entry in a pair), so we get a functor $h_{\mathscr{C}} \circ G_F : \mathscr{C}/F \to \mathrm{PSh}(\mathscr{C})$.
 - (i) (1 point) When does \mathscr{C}/F have a terminal object ?
 - (ii) (2 points) Show that $\varinjlim(h_{\mathscr{C}} \circ G_F) = F$. (Hint : Use the second entries of the pairs to construct a morphism from $\varinjlim(h_{\mathscr{C}} \circ G_F)$ to F.) ¹

For every $n \in \mathbb{N}$, let $|\Delta_n| = \{(x_0, \ldots, x_n) \in [0, 1]^{n+1} \mid x_0 + \ldots + x_n = 1\}$ with the subspace topology. If $f : [n] \to [m]$ is a map, we define $|f| : |\Delta_n| \to |\Delta_m|$ by $|f|(x_0, \ldots, x_n) = (\sum_{i \in f^{-1}(j)} x_i)_{0 \leq j \leq m}$. (With the convention that an empty sum is equal to 0.) Consider the functor $|.| : \Delta \to \text{Top}$ sending [n] to $|\Delta_n|$ and $f : [n] \to [m]$ to |f|.

¹So every presheaf is a colimit of representable presheaves.

Let X be a simplicial set, and consider the functor $G_X : \Delta/X \to \Delta$ of (a). The geometric realization of X is by definition the topological space $|X| = \lim_{X \to \infty} (|.| \circ G_X)$.

- (b). (1 points) Show that this construction upgrades to a functor $|.|: \mathbf{sSet} \to \mathbf{Top}$.²
- (c). (2 points) Show that, if X is Δ_n , then $|X| = |\Delta_n|$.
- (d). (1 point) Give a simplicial set whose geometric realization is $\{(x_0, x_1, x_2) \in [0, 1]^2 \mid x_0 = 0 \text{ or } x_2 = 0\}$. (Hint: why are the horns called horns ?)

(e). (2 points) Consider the functor Sing : **Top** \rightarrow **sSet** given by Sing(X) = Hom_{**Top**}(|.|, X) : $\Delta^{\text{op}} \rightarrow$ **Set**. (That is, if X is a topological space, then Sing(X) is the simplicial set such that Sing(X)_n is the set of continuous maps from $|\Delta_n|$ to X, and, if $f : [n] \rightarrow [m]$ is nondecreasing, then $f^* : \text{Sing}(X)_m \rightarrow \text{Sing}(X)_n$ sends a continuous map $u : |\Delta_m| \rightarrow X$ to $u \circ |f|$.) The simplicial set Sing(X) is called the singular simplicial complex of X of X.

Show that (|.|, Sing) is a pair of adjoint functors.

3. Yoneda embedding and colimits Let k be a field, and let \mathscr{C} be the category of k-vector spaces.

- (a). (1 point) For every $n \in \mathbb{N}$, let $k[x]_{\leq n}$ be the vector space of polynomials of degree $\leq n$ in k[x]. Using the inclusions $k[x]_{\leq n} \subset k[x]_{\leq m}$ for $n \leq m$, we get a functor $F : \mathbb{N} \to \mathscr{C}$, $n \longmapsto k[x]_{\leq n}$. Show that $\lim F = k[x]$.
- (b). (2 points) Show that $h_{\mathscr{C}}: \mathscr{C} \to PSh(\mathscr{C})$ does not commute with all colimits.

4. Filtrant colimits of modules (3 points)

Let R be a ring, let \mathscr{I} be a filtrant category and let $F : \mathscr{I} \to {}_{R}\mathbf{Mod}$ be a functor. For every $i \in \mathrm{Ob}(\mathscr{I})$, we write $M_i = F(i)$. Let \sim be the equivalence relation on $\coprod_{i \in \mathrm{Ob}(\mathscr{I})} M_i$ defined in Proposition I.5.6.2 of the notes; so $(i, x) \sim (j, y)$ if there exist morphisms $\alpha : i \to k$ and $\beta : j \to k$ in \mathscr{I} such that $F(\alpha)(x) = F(\beta)(y)$. Let $M = \coprod_{i \in \mathrm{Ob}(\mathscr{I})} M_i / \sim$; this is the colimit of the composition $\mathscr{I} \xrightarrow{F}_R \mathbf{Mod} \xrightarrow{\mathrm{For}} \mathbf{Set}$. Denote by $q_i : M_i \to M$ the obvious maps.

Show that there exists a unique structure of left *R*-module on *M* such that all the q_i are *R*-linear maps, and that this structure makes $(M, (q_i))$ into a colimit of *F*.

5. Filtrant colimits are exact (3 points)

Let R be a ring and \mathscr{I} be a filtrant category. Show that the functor lim : Func($\mathscr{I}, {}_{R}\mathbf{Mod}$) $\to {}_{R}\mathbf{Mod}$ is exact, i.e. that if $u : F \to G$ and $v : G \to H$ are mor-

²This functor is called the *left Kan extension* of $|.|: \Delta \to \mathbf{Top}$ along the Yoneda embedding $\Delta \to \mathbf{sSet}$.

phism of functors from \mathscr{I} to ${}_{R}\mathbf{Mod}$ such that the sequence $0 \to F(i) \xrightarrow{u(i)} G(i) \xrightarrow{v(i)} H(i) \to 0$ is exact for every $i \in \mathrm{Ob}(\mathscr{I})$, then the sequence $0 \to \varinjlim F \xrightarrow{\lim u} \varinjlim G \xrightarrow{\lim v} \varinjlim H \to 0$ is exact. (Remember that we say that a sequence of *R*-modules $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$ is exact if Ker f = 0, Ker $g = \operatorname{Im} f$ and $\operatorname{Im} g = P$.)

6. Objects of finite type and of finite presentation Let \mathscr{C} a category that admits all filtrant colimits (indexed by small enough categories). An object X of \mathscr{C} is called *of finite type* (resp. *of finite presentation* or *compact*) if, for every filtrant category \mathscr{I} and every functor $F : \mathscr{I} \to \mathscr{C}$, the canonical map

$$\lim_{i \in \operatorname{Ob}(\mathscr{I})} \operatorname{Hom}_{\mathscr{C}}(X, F(i)) \to \operatorname{Hom}_{\mathscr{C}}(X, \varinjlim F)$$

(see the beginning of Subsection I.5.4.2 of the notes) is injective (resp. bijective).

- (a). Let R be a ring and M be a left R-module.
 - (i) (1 point) If M is free of finite type as a R-module, show that it is of finite presentation as an object of $_R$ **Mod**.
 - (ii) (2 points) If M is of finite type (resp. of finite presentation) as a R-module, show that it is of finite type (resp. of finite presentation) as an object of $_R$ Mod.
 - (iii) (1 point) Let \mathscr{I} the poset of *R*-submodules of *M* that are of finite type, ordered by inclusion, and let $F : \mathscr{I} \to {}_R\mathbf{Mod}$ be the functor sending $N \subset M$ to M/N; if $N \subset N' \subset M$, we send the unique morphism $N \to N'$ in \mathscr{I} to the canonical projection $M/N' \to M/N$. Show that $\lim_{\to \infty} F = 0$.
 - (iv) (2 points) If M is of finite type (resp. of finite presentation) as an object of $_R$ **Mod**, show that it is of finite type (resp. of finite presentation) as an R-module.
- (b). (4 points, extra credit) Let R be a commutative ring and S be a commutative R-algebra. Show that S is finitely presented as an R-algebra if and only if it is of finite presentation as an object of $R - \mathbf{CAlg}$.
- (c). (i) (1 point) If X is a finite set with the discrete topology, show that X is of finite presentation as an object of **Top**.
 - (ii) (1 point) Let X be a topological space. Let \mathscr{I} be the poset of finite sets of X ordered by inclusion; we see \mathscr{I} as a subcategory of **Top** (we use the subset topology on each finite $Y \subset X$), and we denote by $F : \mathscr{I} \to \mathbf{Top}$ the inclusion functor. Show that $X = \lim_{X \to \infty} F$ if the topology on X is the indiscrete (= coarse) topology.
 - (iii) (1 point) Let X be a topological space. If X is of finite presentation as an object of **Top**, show that it is finite.
 - (iv) (2 points) For $n \in \mathbb{N}$, let $X_n = \mathbb{N}_{\geq n} \times \{0, 1\}$, with the topology for which the open subsets are \emptyset and $(\mathbb{N}_{\geq m} \times \{0\}) \cup (\mathbb{N}_{\geq n} \times \{1\})$, for $m \geq n$. Define $f_n : X_n \to X_{n+1}$ by $f_n(n, a) = (n + 1, a)$ and $f_n(m, a) = (m, a)$ if m > n. Show that the X_n are topological spaces and that the maps f_n are continuous.
 - (v) (2 points) Show that $\varinjlim_{n \in \mathbb{N}} X_n$ is $\{0, 1\}$ with the indiscrete topology. By $\varinjlim_{n \in \mathbb{N}} X_n$, we mean the colimit of the functor $F : \mathbb{N} \to \text{Top}$ such that $F(n) = X_n$ and that, for each non-identity morphism $\alpha : n \to m$ in \mathbb{N} , that is, for n < m in \mathbb{N} , $F(\alpha) = f_{m-1} \circ f_{m-2} \circ \ldots \circ f_n : X_n \to X_m$.

- (vi) (2 points) Let X be a topological space. If X is of finite presentation as an object of **Top**, show that X is finite and has the discrete topology.
- (d). (2 points) Let X be a topological space, and let Open(X) be the set of open subsets of X, ordered by inclusion. Show that X is compact if and only if X is of finite presentation as an object of Open(X).