MAT 540 : Problem Set 11

Due Thursday, December 19

1 The model structure on complexes (continued)

(a). Let R be a ring, let $\mathscr{C} = \mathscr{C}^*(_R \mathbf{Mod})$ with $* \in \{-, \emptyset\}$ and consider the sets of morphisms

$$I = \{S^n \to D^{n-1}, \ n \in \mathbb{Z}\}$$

and

$$J = \{0 \to D_n, \ n \in \mathbb{Z}\}$$

in \mathscr{C} . We use the notation S^n and D^n of problem 2 of problem set 10, and we denote by W the set of quasi-isomorphisms in \mathscr{C} .

- (i) (1 point) Show that S^n is small in \mathscr{C} for every $n \in \mathbb{Z}$.
- (ii) (1 point) Show that I inj is the set of surjective quasi-isomorphisms.
- (iii) (1 point) Show that J inj is the set of surjective morphisms.
- (iv) (1 point) Show that I and J are the sets of generating cofibrations and generating acyclic cofibrations of the model structure of problem 2 of problem set 10 on \mathscr{C} .
- (v) (3 points) Show that, if $f \in I$ cell, then f is injective and $\operatorname{Coker}(f_n)$ is a free R-module for every $n \in \mathbb{Z}$.
- (b). Let $\mathscr{C}' = \mathscr{C}^{\leq 0}(_R \mathbf{Mod})$, and consider the following sets of morphisms in \mathscr{C}' :

$$I' = \{S^n \to D^{n-1}, \ n \le 0\} \cup \{0 \to S^0\}$$

and

$$J' = \{ 0 \to D_n, \ n \le -1 \}.$$

We still denote by W the set of quasi-isomorphisms in \mathscr{C}' .

- (i) (1 points) Show that J' inj is the set of morphisms f such that f_n is surjective for $n \leq -1$.
- (ii) (2 points) Show that $I' inj = W \cap J' inj$.
- (iii) (2 points) Show that I' and J' satisfy the conditions of Theorem VI.5.4.5 of the notes.

2 The model structure on simplicial *R*-modules

Remember the simplicial category Δ and the category of simplicial sets **sSet** from problem 9 of problem set 1 and problem 2 of problem set 2. As in problem 9 of problem set 1 we define

morphisms $\delta_0, \delta_1, \ldots, \delta_n : [n-1] \to [n]$ in Δ by the condition that δ_i is the unique increasing map $[n-1] \to [n]$ such that $i \notin \operatorname{Im}(\delta_i)$.

(a). Let \mathscr{A} be an additive category. Let X_{\bullet} be an object of $\operatorname{Func}(\Delta^{\operatorname{op}}, \mathscr{A})$. For $n \in \mathbb{N}$ and $i \in \{0, 1, \ldots, n\}$, we denote the morphism $X_{\bullet}(\delta_i^n)$ by $d_i^n : X_n \to X_{n-1}$. The unnormalized chain complex of X_{\bullet} is the complex $C(X_{\bullet})$ in $\mathscr{C}^{\leq 0}(\mathscr{A})$ given by: for every $n \geq 0$,

$$C(X_{\bullet})^{-n} = X_r$$

and

$$d_{C(X_{\bullet})}^{-n} = \sum_{i=0}^{n} (-1)^{i} d_{i}^{n}.$$

(i) (1 point) Show that $C(X_{\bullet})$ is a complex.

From now on, we assume that \mathscr{A} is also pseudo-abelian. We use the notation of problem 1 of problem set 10. In particular, we denote by \mathscr{C} the category $\operatorname{kar}((\mathbb{Z}[\Delta])^{\oplus})$, identified to full subcategory of $\operatorname{Func}(\Delta^{\operatorname{op}}, \mathbf{Ab})$, and we extend object of $\operatorname{Func}(\Delta^{\operatorname{op}}, \mathscr{A})$ to additive functors from \mathscr{C} to \mathbf{Ab} . Let X_{\bullet} be an object of $\operatorname{Func}(\Delta^{\operatorname{op}}, \mathscr{A})$.

(ii) (1 point) For every $r \in \mathbb{N}$ and every $n \ge 0$, we consider the following direct summand of $C(X_{\bullet})^{-n}$:

$$C_{\leq r}(X_{\bullet})^{-n} = \begin{cases} X_{\bullet}(\mathbb{Z}^{(\Delta_{\overline{n}}^{\leq r})}) & \text{if } r \leq n-1\\ X_{\bullet}(\mathbb{Z}^{(\Delta_{\overline{n}}^{\leq n-1})}) & \text{otherwise.} \end{cases}$$

(With the convention that $\Delta_0^{\leq -1} = \emptyset$.)

Show that this defines a subcomplex $C_{\leq r}(X^{\bullet})$ of $C(X^{\bullet})$.

- (iii) (2 points) Let $i_r : C_{\leq r}(X^{\bullet}) \to C_{\leq r+1}(X^{\bullet})$ be the obvious inclusion. Show that there exists a morphism $f_r : C_{\leq r+1}(X^{\bullet}) \to C_{\leq r}(X^{\bullet})$ such that $f_r \circ i_r$ is the identity morphism.
- (iv) (2 points, probably hard) Show that i_r is a homotopy equivalence.
- (v) (2 points) If \mathscr{A} is an abelian category, show that the inclusion $N(X^{\bullet}) \subset C(X^{\bullet})$ is a quasi-isomorphism.
- (b). (2 points) Let R be a ring, and let $\mathscr{C} = \operatorname{Func}(\Delta^{\operatorname{op}}, {}_{R}\mathbf{Mod})$. Show that there is a model structure on \mathscr{C} for which the weak equivalences are the morphisms $f: X_{\bullet} \to Y_{\bullet}$ such that $C(f): C(X_{\bullet}) \to C(Y_{\bullet})$ is a quasi-isomorphism, and the cofibrations are the morphisms $f: X_{\bullet} \to Y_{\bullet}$ such that $N(f)^{n}: N(X_{\bullet})^{-n} \to N(X_{\bullet})^{-n}$ is injective with projective cokernel for every $n \geq 0$.

3 A Quillen adjunction

Let k be a commutative ring, let G be a group, and let R = k[G]. Consider the categories $\mathscr{C} = \mathscr{C}^-(_R \mathbf{Mod})$ and $\mathscr{D} = \mathscr{C}^-(_k \mathbf{Mod})$ with the projective model structures, and the functor $F : \mathscr{C} \to \mathscr{D}$ sending a complex X to the complex $\mathrm{H}_0(G, X)$.

- (a). (1 point) Show that F has a right adjoint G.
- (b). (2 points) Show that (F, G) is a Quillen adjunction.

4 Kähler differentials

Let R be a commutative ring. If B is a commutative R-algebra and M is a B-module, a R-linear derivation from B to M is a R-linear map $d: B \to M$ such that, for all $b, b' \in B$, we have

$$d(bb') = bd(b') + b'd(b).$$

We denote by $\text{Der}_R(B, M)$ the abelian group of derivations from B to M.

We fix a commutative R-algebra B.

- (a). (2 points) Show that the functor ${}_{B}\mathbf{Mod} \to \mathbf{Ab}, M \longmapsto \operatorname{Hom}_{R}(B, M)$ is representable and give a pair representing it.
- (b). (2 points) Show that the functor ${}_{B}\mathbf{Mod} \to \mathbf{Ab}, M \mapsto \mathrm{Der}_{R}(B, M)$ is representable by a pair $(\Omega^{1}_{B/R}, d_{\mathrm{univ}})$, where $\Omega^{1}_{B/R}$ is a *B*-module (called the module of Kähler differentials) and $d_{\mathrm{univ}}: B \to \Omega^{1}_{B/R}$ is a *R*-linear derivation. (<u>Hint</u>: The functor $M \mapsto \mathrm{Der}_{R}(B, M)$ is a subfunctor of $M \mapsto \mathrm{Hom}_{R}(B, M)$, so $\Omega^{1}_{B/R}$ should be a quotient of the *B*-module representing the functor of (a).)
- (c). (2 points) If B is the polynomial ring $R[X_i, i \in I]$ (where I is a set), show that $\Omega^1_{B/R}$ is a free B-module on the set I.

5 Abelianization and Kähler differentials

Let \mathscr{C} is a category that has finite products, and denote a final object of \mathscr{C} by *. An *abelian* group in \mathscr{C} is a triple (X, m, e), where X is an object of \mathscr{C} , and $m: X \times X \to X$ and $e: * \to X$ are morphisms such that, for every object Y of \mathscr{C} , the morphisms

$$m_* : \operatorname{Hom}_{\mathscr{C}}(Y, X \times X) \simeq \operatorname{Hom}_{\mathscr{C}}(Y, X) \times \operatorname{Hom}_{\mathscr{C}}(Y, X) \to \operatorname{Hom}_{\mathscr{C}}(Y, X)$$

and

$$e_* : \operatorname{Hom}_{\mathscr{C}}(Y, *) = * \to \operatorname{Hom}_{\mathscr{C}}(Y, X)$$

(where we also denote by * a final object of **Set**) define the structure of an abelian group on the set Hom_{\mathscr{C}}(Y, X). The morphism *m* is called the *multiplication morphism* of the group, and the morphism *e* is called the *unit*.

If G = (X, m, e) and G' = (X', m', e') are two abelian groups in \mathscr{C} , a morphism from G to G' is a morphism $f : X \to X'$ in \mathscr{C} such that $f \circ e = e'$ and that the following diagram commutes:

We denote by \mathscr{C}_{ab} the category of abelian groups in \mathscr{C} .

An abelianization functor on \mathscr{C} is a left adjoint to the forgetful functor $\mathscr{C}_{ab} \to \mathscr{C}$.

- (a). (4 points) Show that $\mathbf{Set}_{ab} \simeq \mathbf{Ab}$, that $\mathbf{Grp}_{ab} \simeq \mathbf{Ab}$, that \mathbf{Top}_{ab} is equivalent to the category of commutative topological groups and that $\mathbf{sSet}_{ab} \simeq \mathbf{sAb}$.
- (b). (3 points) Show that **Set**, **Grp** and **sSet** have abelianization functors, and give formulas for these functors.

Let R be a commutative ring and A be a commutative R-algebra. We denote by \mathscr{C} the slice category $R - \mathbf{CAlg}/A$ (see Definition I.2.2.6 of the notes).

If M is a A-module, we define an A-algebra structure on $A \oplus M$ by taking the multiplication given by the formula

$$(a,m)(a',m') = (aa',am'+a'm),$$

for $a, a' \in A$ and $m, m' \in M$. We have a morphism of A-algebras $A \oplus M \to A$ sending (a, m) to a. This gives a functor ${}_{A}\mathbf{Mod} \to \mathscr{C}$.

If $B \to A$ is an object of \mathscr{C} and M is a A-module, we denote by $\text{Der}_R(B, M)$ the abelian group of R-linear derivations from B to M (where M is seen as a B-module using the morphism $B \to A$).

(c). (2 points) Show that we have an isomorphism of functors $\mathscr{C} \times_A \operatorname{Mod} \to \operatorname{Ab}$:

$$\operatorname{Hom}_{\mathscr{C}}(B, A \oplus M) \simeq \operatorname{Der}_{R}(B, M).$$

- (d). (3 points) If M is an A-module, show that $A \oplus M$ is an abelian group in \mathscr{C} , and give formulas for its multiplication and unit.
- (e). (4 points) Show that the functor ${}_{A}\mathbf{Mod} \to \mathscr{C}$ sending M to $A \oplus M$ factors through the subcategory \mathscr{C}_{ab} , and that it induces an equivalence of categories ${}_{A}\mathbf{Mod} \to \mathscr{C}_{ab}$.
- (f). (1 point) Show that the functor $\mathscr{C} \to {}_A\mathbf{Mod}$ sending $B \to A$ to $A \otimes_B \Omega^1_{B/R}$ is an abelianization functor for \mathscr{C} .