
MAT 540 : Problem Set 10

Due Saturday, December 7

1 The Dold-Kan correspondence

You need to look at the results of problems 1 and 2 of problem set 3 to do this problem.

Remember the simplicial category ∆ and the category of simplicial sets sSet from problem
9 of problem set 1 and problem 2 of problem set 2. Let C = kar((Z[∆])⊕) (see problems 1 and
2 of problem set 3), so that C is an additive pseudo-abelian category.

The category Func(∆op,Ab) is called the category of simplicial abelian groups and denoted
by sAb; it is an abelian category, where kernel, cokernels and images are calculated in the
obvious way (that is, Ker(X → Y ) = (Ker(Xn → Yn))n∈N etc).

By the Yoneda lemma, the functor hC : C → Func(C op,Ab) is fully faithful; by problems
1 and 2 of problem set 3, we have an equivalence Funcadd(C op,Ab) ' Func(∆op,Ab) = sAb.
So we get a fully faithful functor C → sAb, and we identify C with the essential image of this
functor.

If X is a simplical set, we denote by Z(X) the “free simplicial abelian group on X” : it is
the simplicial abelian group sending [n] to the free abelian group Z(Xn) and α : [n] → [m] to
the unique group morphism from Z(Xm) to Z(Xn) extending α∗ : Xm → Xn. If u : X → Y is
a morphism of simplicial sets, we simply write u : Z(X) → Z(Y ) for the morphism of simplicial
abelian groups induced by u. If α : [n]→ [m], we also use α to denote the morphism ∆n → ∆m

that is the image of α by the Yoneda embedding h∆ : ∆→ sSet.

(a). (1 point) For every n ∈ N, show that the simplicial abelian group Z(∆n) is in C . (Hint :
It’s the image of the object [n] of ∆. Follow the identifications !)

Let n ≥ 1. Remember from problem 9 of problem set 1 that we have defined morphisms
δ0, δ1, . . . , δn : [n−1]→ [n] in ∆ by the condition that δi is the unique increasing map [n−1]→ [n]
such that i 6∈ Im(δi). According to our previous conventions, we get morphisms δi : ∆n−1 → ∆n

in sSet and δi : Z(∆n−1) → Z(∆n) in sAb. Remember also that, for k ∈ [n], the horn Λn
k is the

union of the images of the δi, for i ∈ [n]− {k}.

(b). (1 point) Show that Z(Λn
k ) =

∑
i∈[n]−{k} Im(δi), where the sum is by definition the image

of the canonical morphism
⊕

i∈[n]−{k} Im(δi)→ Z(∆n) and we have identified Z(Λn
k ) to its

image in Z(∆n).

If f : [n] → X is a map from [n] to a set X, we also use the notation
(f(0) → f(1) → . . . → f(n)) to represent f . Let n ∈ N, and let Sn be the set of sequences
(a1, . . . , an) ∈ [n] such that ai ∈ {i− 1, i} for every i ∈ {1, . . . , n}; if a = (a1, . . . , an), we write
fa = (0→ a1 → . . .→ an) ∈ HomSet([n], [n]) and ε(a) = (−1)card({i|ai 6=i}).

(c). (1 point) For every a ∈ Sn, show that fa ∈ Hom∆([n], [n]).
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(d). (2 points) Let pn =
∑

a∈Sn
ε(a)fa ∈ EndC (Z(∆n)). Show that pn is a projector.

(e). (3 points) Show that Z(Λn
0 ) = Im(idZ(∆n)−pn) = Ker(pn). In particular, Z(Λn

0 ) is an object
of C .

(f). (1 point) Let In = Im(pn). This is also an object of C . Show that we have an isomorphism
Z(∆n) ' Z(Λn

0 ) ⊕ In in C .

(g). (2 points) If X is an object of sAb and f : X → In is a surjective morphism (that is, such
that fr is surjective for every r ≥ 0), show that there exists a morphism g : In → X such
that f ◦ g = idIn .

For every k ∈ [n], define a simplicial subset ∆≤kn of ∆n by taking ∆≤kn ([m]) equal to the set
of nondecreasing α : [m] → [n] such that either card(Im(α)) ≤ k, or card(Im(α)) = k + 1 and
0 ∈ Im(α). In particular, question (h)(i) says that ∆≤n−1

n = Λn
0 . (On the geometric realizations,

|∆n| is a simplex of dimension n with vertices numbered by 0, 1, . . . , n, and |∆≤kn | is the union
of its faces of dimension ≤ k that contain the vertex 0.)

(h). (i) (1 point) For every k ∈ [n] and every m ∈ N, show that

Λn
k([m]) = {α : [m]→ [n] | either card(Im(α)) ≤ n−1, or card(Im(α)) = n and k ∈ Im(α)}.

(ii) (1 point) For every m ∈ N, show that the set

{α : [m]→ [n] | Im(α) ⊃ [n]− {0}}

is a basis of the Z-module In([m]).

(iii) (1 point) For every k ∈ {1, . . . , n}, show that

Z(∆≤k
n )/Z(∆≤k−1

n ) ' I(nk)
k .

(iv) (1 point) For every k ∈ {1, . . . , n}, show that

Z(∆≤k
n ) ' Z(∆≤k−1

n ) ⊕ I(nk)
k .

(i). (1 point) Show that there is an isomorphism Z(∆n) '
⊕n

k=0 I
(nk)
k in C .

(j). (2 points) For all n,m ∈ N, show that HomC (In, Im) is a free Z-module of finite type. We
denote its rank by an,m.

(k). (2 points) Show that an,n ≥ 1 and an,n+1 ≥ 1 for every n ∈ N. (Hint for the second:
δ0 : [n]→ [n+ 1].)

(l). (2 points) Show that, for all n,m ∈ N, we have(
n+m+ 1

m

)
=

n∑
k=0

m∑
l=0

ak,l

(
n

k

)(
m

l

)
.

(m). (2 points) Show that, for all n,m ∈ N, we have(
n+m+ 1

m

)
=

m∑
k=0

(
n+ 1

k

)(
m

k

)
.

(n). (2 points) Show that an,n = an,n+1 = 1 for every n ∈ N and an,m = 0 if m 6∈ {n, n+ 1}.

2



(o). (2 points) Let I be the full subcategory of C whose objects are the In for n ∈ N. If A is
an additive category, we consider the category C≤0(A ) of complexes of objects of A that
are concentrated in degree ≤ 0 (that is, complexes X ∈ Ob(C (A )) such that Xn = 0 for
n ≥ 1).

Give an equivalence of categories from Funcadd(I op,A ) to C≤0(A ).

(p). (2 points) Deduce an equivalence of categories from Func(∆op,A ) to C≤0(A ), if A is a
pseudo-abelian additive category. This is called the Dold-Kan equivalence.

(q). (2 points) Suppose that A is an abelian category, and let X• be an object of Func(∆op,A ).
For n ∈ N and i ∈ {0, 1, . . . , n}, we denote the morphism X•(δ

n
i ) by dni : Xn → Xn−1. The

normalized chain complex of X• is the complex N(X•) in C≤0(A ) given by: for every
n ≥ 0,

N(X•)
−n =

⋂
1≤i≤n

Ker(dni )

and d−nN(X•) is the restriction of dn0 . This defines a functor N : Func(∆op,A )→ C≤0(A ).
Show that this functor is isomorphic to the equivalence of categories of the previous
question.

2 The model structure on complexes

Let R be a ring, and let A = RMod. 1

We denote by W the set of quasi-isomorphisms of C (A ), by Fib the set of morphisms
f : X → Y in C (A ) such that fn : Xn → Y n is surjective for every n ∈ Z and by Cof
the set of morphisms of C (A ) that have the left lifting property relatively to every morphism
of W ∩ Fib. We say that X ∈ Ob(C (A )) is fibrant (resp. cofibrant) if the unique morphism
X → 0 (resp. 0 → X) is in Fib (resp. in Cof). The goal of this problem is to show that
(W,Fib,Cof) is a model structure on C (A ).

For every M ∈ Ob(A ), let K(M,n) = M [−n] ∈ Ob(C (A )), and let Dn(M) be the complex
X such that Xn = Xn+1 = M , dnX = idM and Xi = 0 if i 6∈ {n, n + 1}. We also write
Sn = K(R,n) and Dn = Dn(R). For every M ∈ Ob(A ), the identity of M induces a morphism
of complexes K(M,n)→ Dn−1(M) (which is clearly functorial in M).

(a). (2 points) Show that the functor Dn : RMod → C (A ) is left adjoint to the functor
C (A ) → A , X 7−→ Xn, and that the functor K(·, n) : A → C (A ) is left adjoint to the
functor Zn.

(b). (1 point) Show that a morphism of C (A ) is in Fib is and only if it has the right lifting
property relatively to 0→ Dn for every n ∈ Z.

(c). (1 point) Show that Dn is cofibrant for every n ∈ Z.

(d). (2 points) Show that Sn is cofibrant for every n ∈ Z.

(e). Let p : X → Y be a morphism of C (A ).

(i) (2 points) If p is in W ∩ Fib, show that it has the right lifting property relatively to
the canonical morphism Sn = K(R,n)→ Dn−1 for every n ∈ Z.

(ii) (3 points) If p has the right lifting property relatively to the canonical morphism
Sn → Dn−1 for every n ∈ Z, show that it is in W ∩ Fib.

1We only need A to have all small limits and colimits and a nice enough projective generator, but we take
A = RMod to simplify the notation.
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(f). (1 point) Show that the canonical morphism Sn → Dn−1 is in Cof.

(g). Let f : X → Y be a morphism of C (A ). Let E = X ⊕
⊕

n∈Z, y∈Y n Dn, let i : X → E
be the obvious inclusion and let p : E → Y be the morphism that is equal to f on
the summand X and that, for every n ∈ Z and y ∈ Y n, is equal on the corresponding
summand Dn to the morphism Dn → Y corresponding to y ∈ Y n = HomR(R, Y n) by the
adjunction of question (a). We clearly have p ◦ i = f .

(i) (1 point) Show that i is in W .

(ii) (1 point) Show that i has the left lifting property relatively to any morphism of Fib.

(iii) (1 point) Show that p is in Fib.

(h). Let f : X → Y be a morphism of C (A ). Let X0 = X and f0 = f . For every i ∈ N, we
construct morphisms of complexes ji : Xi → Xi+1 and fi+1 : Xi+1 → Y such that ji is
a monomorphism and in Cof and fi+1 ◦ ji = fi in the following way: Suppose that we
already have fi : Xi → Y . Consider the set Di of commutative squares

(D) SnD
fD //

��

Xi

fi
��

DnD−1
gD
// Y

(for some nD ∈ Z). Let ji : Xi → Xi+1 be defined by the cocartesian square

⊕
D∈Di

SnD

∑
fD //

��

Xi

ji

��⊕
D∈Di

DnD−1 // Xi+1

The morphisms fi : Xi → Y and
∑
gD :

⊕
D∈Di

DnD−1 → Y induce a morphism
fi+1 : Xi+1 → Y , and we clearly have fi+1 ◦ ji = fi.

Finally, let F = lim−→i∈NXi (where the transition morphisms are the ji), let j : X → F be
the morphism induced by j0 and let q : F → Y be the morphism induced by the fi.

(i) (1 points) Show that q ◦ j = f .

(ii) (1 point) Show that j is a monomorphism.

(iii) (2 points) Show that j is in Cof.

(iv) (2 points) Show that q is in W ∩ Fib.

(i). (1 point) Show that every element of Cof is a monomorphism.

(j). (2 points) Show that every element of W ∩ Cof has the left lifting property relatively to
elements of Fib. (Hint: Use question (g).)

(k). (3 points) Show that (W,Fib,Cof) is a model structure on C (A ).

(l). (2 points) Show that the intersections of (W,Fib,Cof) with C−(A ) also give a model
structure on this category.

(m). (2 points) Let f : A→ B be a morphism of A . Show that f has the left lifting property
relatively to epimorphisms of A if and only if it is injective with projective cokernel.
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(n). (3 points) Let i : X → Y be a morphism of C−(A ). Show that i is in Cof if and only if,
for every n ∈ Z, the morphism in is injective with projective cokernel.
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