MAT 540 : Problem Set 1

Due Thursday, September 19

1.

- (a). (2 points) In the category **Set**, show that a morphism is a monomorphism (resp. an epimorphism) if and only it is injective (resp. surjective).
- (b). (2 points) Let \mathscr{C} be a category and $F : \mathscr{C} \to \mathbf{Set}$ be a *faithful* functor, show that any morphism f of \mathscr{C} whose such that F(f) is injective (resp. surjective) is a monomorphism (resp. an epimorphism).
- (c). (2 points) What are the monomorphisms and epimorphisms in $_R$ Mod ?
- (d). (2 points) What are the monomorphisms in **Top**? Give an example of a continuous morphism with dense image that is not an epimorphism in **Top**.¹
- (e). (2 points) Find a category \mathscr{C} , a faithful $F : \mathscr{C} \to \mathbf{Set}$ and a monomorphism f in \mathscr{C} such that F(f) is not injective.
- (f). (1 point) Find an epimorphism in **Ring** that is not surjective.
- (g). The goal of this question is to show that any epimorphism in **Grp** is a surjective map. Let $\phi: G \to H$ be a morphism of groups, and suppose that it is an epimorphism in **Grp**. Let $A = \text{Im}(\phi)$. Let $S = \{*\} \sqcup (H/A)$, where $\{*\}$ is a singleton, and let \mathfrak{S} be the group of permutations of S. We denote by σ the element of \mathfrak{S} that switches * and A and leaves the other elements of H/A fixed. For every $h \in H$, we denote by $\psi_1(h)$ the element of \mathfrak{S} that leaves * fixed and acts on H/A by left translation by H; this defines a morphism of groups $\psi_1: H \to \mathfrak{S}$. We denote by $\psi_2: H \to \mathfrak{S}$ the morphism $\sigma \psi_1 \sigma^{-1}$.
 - (i) (2 points) Show that $\psi_1 = \psi_2$.
 - (ii) (1 point) Show that A = H.
- **2.** Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor.
- (a). (3 points) If F has a quasi-inverse, show that it is fully faithful and essentially surjective.
- (b). (4 points) If F is fully faithful and essentially surjective, construct a functor $G : \mathscr{C}' \to \mathscr{C}$ and isomorphisms of functors $F \circ G \simeq \mathrm{id}_{\mathscr{C}}$ and $G \circ F \simeq \mathrm{id}_{\mathscr{C}'}$.
- **3.** Let \mathscr{C} be the full subcategory of **Ab** whose objects are finitely generated abelian groups.
- (a). (2 points) Show that every natural endomorphism of $id_{\mathscr{C}}$ is multiplication by some $n \in \mathbb{Z}$.

¹In fact, the epimorphisms in **Top** are the surjective continuous maps.

(b). (3 points) Consider the functor $F : \mathscr{C} \to \mathscr{C}$ that sends an abelian group A to $A_{\text{tor}} \oplus (A/A_{\text{tor}})$ (and acts in the obvious way on morphisms), where A_{tor} is the torsion subgroup of A. Show that there is no natural isomorphism $F \xrightarrow{\sim} \text{id}_{\mathscr{C}}$.

4. (2 points, extra credit) Let k be a field, and let $F : \mathbf{Mod}_k \to \mathbf{Mod}_k$ be the functor sending a k-vector space V to $V \otimes_k V$ and a k-linear transformation f to $f \otimes f$. Show that the only morphism of functors from $\mathrm{id}_{\mathbf{Mod}_k}$ to F is the zero one, i.e. the morphism $u : \mathrm{id}_{\mathbf{Mod}_k} \to F$ such that u(V) = 0 for every k-vector space V.

5. (4 points) Let \mathscr{C} be a category. Remember that the category $PSh(\mathscr{C})$ of presheaves on \mathscr{C} is the category $Func(\mathscr{C}^{op}, \mathbf{Set})$.

Let F be a presheaf on \mathscr{C} and X be an object of \mathscr{C} . Let $\Phi : \operatorname{Hom}_{\operatorname{PSh}(\mathscr{C})}(h_X, F) \to F(X)$ be the map defined by $\Phi(u) = u(X)(\operatorname{id}_X)$. Let $\Psi : F(X) \to \operatorname{Hom}_{\operatorname{PSh}(\mathscr{C})}(h_X, F)$ be the map sending $x \in F(X)$ to the morphism of functors $\Psi(x) : h_X \to F$ such that $\Psi(x)(Y) : h_X(Y) = \operatorname{Hom}_{\mathscr{C}}(Y, X) \to F(Y)$ sends $f : Y \to X$ to $F(f)(x) \in F(Y)$. Show that Φ and Ψ are bijections that are inverses of each other.

6.

- (a). (2 points) Show that the categories **Set** and **Set**^{op} are not equivalent. (Hint : If $F : \mathbf{Set}^{\mathrm{op}} \to \mathbf{Set}$ is an equivalence of categories, show that $F(\emptyset)$ is a singleton and that $F(X) = \emptyset$ for X a singleton.)
- (b). (1 point) Let \mathscr{C} be the full subcategory of **Set** whose objects are finite sets. Show that \mathscr{C} and \mathscr{C}^{op} are not equivalent.
- (c). (1 point) Show that **Rel** and **Rel**^{op} are equivalent.
- (d). (2 points) Let \mathscr{D} be the full subcategory of **Ab** whose objects are finite abelian groups. Show that \mathscr{D} and \mathscr{D}^{op} are equivalent.

7. (4 points) Let \mathscr{C} and \mathscr{C}' and $F : \mathscr{C} \to \mathscr{C}', G : \mathscr{C}' \to \mathscr{C}$ be two functors. We consider the two bifunctions $H_1, H_2 : \mathscr{C}^{\mathrm{op}} \times \mathscr{C} \to \mathbf{Set}$ defined by $H_1 = \operatorname{Hom}_{\mathscr{C}'}(F(\cdot), \cdot)$ and $H_2 = \operatorname{Hom}_{\mathscr{C}}(\cdot, G(\cdot))$. Suppose that we are given, for every $X \in \operatorname{Ob}(\mathscr{C})$ and every $Y \in \operatorname{Ob}(\mathscr{C}')$, a bijection $\alpha(X, Y) : H_1(X, Y) \xrightarrow{\sim} H_2(X, Y)$. Show that the two following statements are equivalent :

- (i) The family of bijections $(\alpha(X,Y))_{X \in Ob(\mathscr{C}), Y \in Ob(\mathscr{C}')}$ defines an isomorphism of functors $H_1 \xrightarrow{\sim} H_2$.
- (ii) For every morphism $f: X_1 \to X_2$ in \mathscr{C} , every morphism $g: Y_1 \to Y_2$ in \mathscr{C}' , and for all $u \in \operatorname{Hom}_{\mathscr{C}'}(F(X_1), Y_1)$ and $v \in \operatorname{Hom}_{\mathscr{C}'}(F(X_2), Y_2)$, the square

$$\begin{array}{c|c} F(X_1) & \stackrel{u}{\longrightarrow} Y_1 \\ F(f) & & \downarrow^g \\ F(X_2) & \stackrel{w}{\longrightarrow} Y_2 \end{array}$$

is commutative if and only if the square

$$\begin{array}{c|c} X_1 \xrightarrow{\alpha(X_1,Y_1)(u)} G(Y_1) \\ f \\ \downarrow & \qquad \downarrow^{G(g)} \\ X_2 \xrightarrow{\alpha(X_2,Y_2)(v)} G(Y_2) \end{array}$$

is commutative.

8. Remember that a functor $F : \mathscr{C} \to \mathbf{Set}$ is called representable if there exists an object X of \mathscr{C} and an element x of F(X) such that the morphism of functors $u : \operatorname{Hom}_{\mathscr{C}}(X, \cdot) \to F$ defined by $u(Y) : \operatorname{Hom}_{\mathscr{C}}(X,Y) \to F(Y), (f : X \to Y) \longmapsto F(f)(x)$ is an isomorphism. The couple (X, x) is then said to represent F.

The following functors are representable. For each of them, give a couple representing the functor. (If the functor is only defined on objects, it is assumed to act on morphisms in the obvious way.) (1 point per functor)

- (a). The identity endofunctor of **Set**.
- (b). The functor $F : \mathbf{Grp} \to \mathbf{Set}, G \longmapsto G^n$, where $n \in \mathbb{N}$.
- (c). The forgetful functor $\mathbf{Mod}_R \to \mathbf{Set}$, where R is a ring.
- (d). The forget gul functor $\mathbf{Ring} \to \mathbf{Set}$.
- (e). The functor **Ring** \rightarrow **Set**, $R \mapsto R^{\times}$.
- (f). The functor $F : \mathbf{Cat} \to \mathbf{Set}$ that takes a category to its set of objects.
- (g). The functor $F : \mathbf{Cat} \to \mathbf{Set}$ that takes a category to its set of morphisms (i.e. $\bigcup_{X,Y \in \mathrm{Ob}(\mathscr{C})} \mathrm{Hom}_{\mathscr{C}}(X,Y)$).
- (h). The functor $F : \mathbf{Cat} \to \mathbf{Set}$ that takes a category to its set of isomorphisms.
- (i). The functor $F : \mathbf{Top}_* \to \mathbf{Set}$ that takes a pointed topological space (X, x) to the set of continuous loops on X with base point x.
- (j). The functor $F : \mathbf{Set}^{\mathrm{op}} \to \mathbf{Set}$ such that $F(X) = \mathfrak{P}(X)$ and, for every map $f : X \to Y$, $F(f) : \mathfrak{P}(Y) \to \mathfrak{P}(X)$ is the map $A \longmapsto f^{-1}(A)$.
- (k). The functor $F : \mathbf{Top}^{\mathrm{op}} \to \mathbf{Set}$ that sends a topological space to its set of open subsets. (If $f : X \to Y$ is a continuous map, $F(f) : F(Y) \to F(X)$ is the map $U \longmapsto f^{-1}(U)$.)
- (1). If k is a field, the functor $F : \mathbf{Mod}_k^{\mathrm{op}} \to \mathbf{Set}$ that sends a k-vector space to the underlying set of V^* (so F is the composition of the duality functor $\mathbf{Mod}_k^{\mathrm{op}} \to \mathbf{Mod}_k$ and of the forgetful functor from \mathbf{Mod}_k to \mathbf{Set} .)

9. (extra credit) The simplicial category Δ is defined in Example I.2.1.8(5) of the notes. It is the category whose objects are the finite sets $[n] = \{0, 1, ..., n\}$ with their usual order and whose morphisms are the nondecreasing maps between these sets.

The category **sSet** of simplicial sets if $\operatorname{Func}(\Delta^{\operatorname{op}}, \operatorname{Set})$. So a simplicial set is by definition a functor $X : \Delta^{\operatorname{op}} \to \operatorname{Set}$; in that case, we write X_n for X([n]) and, if $f : [n] \to [m]$, we often write $f^* : X_m \to X_n$ for X(f). For example, for each $n \in \mathbb{N}$, the standard simplex of dimension n is the simplicial set $\operatorname{Hom}_{\Delta}(\cdot, [n])$.

If X is a simplicial set, a simplicial subset Y of X is the data of a subset Y_n of X_n , for every $n \in \mathbb{N}$, such that $\alpha^*(Y_m) \subset Y_n$ for every morphism $\alpha : [n] \to [m]$ in Δ . We can form images of morphisms of simplicial sets, and unions and intersections of simplicial subsets, in the obvious way.

If we see each poset [n] as a category in the usual way, then the morphisms of Δ become functors, so this allows us to see Δ as a subcategory of **Cat**.

Let \mathscr{C} be a category. Its *nerve* $N(\mathscr{C})$ is the restriction to Δ^{op} of the functor $\text{Hom}_{\mathbf{Cat}}(\cdot, \mathscr{C})$ on \mathbf{Cat}^{op} ; it is a functor from Δ^{op} to \mathbf{Set} , i.e. a simplicial set. As $\text{Hom}_{\mathbf{Cat}}$ is a bifunctor, this construction is functorial in \mathscr{C} , and we get a nerve functor $N : \mathbf{Cat} \to \mathbf{sSet}$.

- (a). (3 points) If \mathscr{C} is a category, show that $N(\mathscr{C})_0 \simeq \operatorname{Ob}(\mathscr{C})$ and $N(\mathscr{C})_1 \simeq \coprod_{X,Y \in \operatorname{Ob}(\mathscr{C})} \operatorname{Hom}_{\mathscr{C}}(X,Y)$. Can you give a similar description of $N(\mathscr{C})_n$ for $n \geq 2$?
- (b). (1 point) Let $n \in \mathbb{N}$. Show that the nerve of [n] is isomorphic to Δ_n .
- (c). (1 point) Let $n \in \mathbb{N}$. Show that there exists $e_n \in \Delta_n([n])$ such that, for every simplicial set X, the map $\operatorname{Hom}_{\mathbf{sSet}}(\Delta_n, X) \xrightarrow{\sim} X_n$ sending u to $u_n(e_n)$ is bijective.
- (d). (1 point) For every category \mathscr{C} and every simplicial set X, if $u, v : X \to N(\mathscr{C})$ are two morphisms of simplicial sets such that $u_i, v_i : X_i \to N(\mathscr{C})_i$ are equal for $i \in \{0, 1\}$, show that u = v.
- (e). (1 point) We denote by $\Delta_{\leq 2}$ the full subcategory of Δ whose objects are [0], [1] and [2]; if X is a simplicial set, we denote by $X_{\leq 2}$ its restriction to $\Delta_{\leq 2}$ (which is a functor $\Delta_{\leq 2}^{\text{op}} \rightarrow \mathbf{Set}$).

Let X be a simplicial set and \mathscr{C} be a category. Show that every morphism $X_{\leq 2} \to N(\mathscr{C})_{\leq 2}$ extends to a morphism $X \to N(\mathscr{C})$.

(f). (2 points) Show that the functor $N : \mathbf{Cat} \to \mathbf{sSet}$ is fully faithful.

Let $n \in \mathbb{N}$ For every $k \in [n]$, we denote by δ_k the unique injective increasing map $[n-1] \to [n]$ such that $k \notin \text{Im}(\delta_k)$. This induces a map $\Delta_{n-1} \to \Delta_n$, that we also denote by δ_k ; the image of this map is called the *k*th facet of Δ_n .

If $k \in [n]$, the horn Λ_k^n is the union of all the facets of Δ_n except for the kth one; in other words, it is the simplicial subset of Δ_n defined by

$$\Lambda_k^n([m]) = \{ f \in \operatorname{Hom}_{\Delta}([m], [n]) \mid \exists l \in [n] - \{k\} \text{ and } g \in \operatorname{Hom}_{\Delta}([m], [n-1]) \text{ with } f = \delta_l \circ g \}.$$

- (g). (1 point) Let \mathscr{C} be a category. If $n \geq 3$ and $k \in [n]$, show that every morphism of simplicial sets $\Lambda_k^n \to X$ extends uniquely to a morphism $\Delta_n \to X$.
- (h). (1 point) Let \mathscr{C} be a category. Show that every morphism of simplicial sets $\Lambda_1^2 \to X$ extends uniquely to a morphism $\Delta_2 \to X$.
- (i). (2 points) Show that a simplicial set X is the nerve of a category if and only if, for every $n \in \mathbb{N}$, every 0 < k < n and every morphism of simplicial sets $u : \Lambda_k^n \to X$, the morphism u extends uniquely to a morphism $\Delta_n \to X$.