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UNIQUENESS OF SMOOTH STATIONARY BLACK HOLES IN
VACUUM: SMALL PERTURBATIONS OF THE KERR SPACES

S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN

ABSTRACT. Following the program started in [24], we attempt to remove the analyti-
city assumption in the the well known Hawking-Carter-Robinson uniqueness result for
regular stationary vacuum black holes. Unlike [24], which was based on a tensorial
characterization of the Kerr solutions, due to Mars [29], we rely here on Hawking’s
original strategy, which is to reduce the case of general stationary space-times to that
of stationary and axi-symmetric spacetimes for which the Carter-Robinson uniqueness
result holds. In this reduction Hawking had to appeal to analyticity. Using a variant of
the geometric Carleman estimates developed in [24], in this paper we show how to bypass
analyticity in the case when the stationary vacuum space-time is a small perturbation of
a given Kerr solution. Our perturbation assumption is expressed as a uniform smallness
condition on the Mars-Simon tensor. The starting point of our proof is the new local
rigidity theorem established in [2].
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1. INTRODUCTION

It is widely expectedﬂ that the domains of outer communication of regular, stationary,
four dimensional, vacuum black hole solutions are isometrically diffeomorphic to those of
the Kerr black holes. Due to gravitational radiation, general, asymptotically flat, dynamic,
solutions of the Einstein-vacuum equations ought to settle down, asymptotically, into a
stationary regime. Thus the conjecture, if true, would characterize all possible asymptotic
states of the general vacuum evolution. A similar scenario is supposed to hold true in the
presence of matter.

So far the conjecture is known to be trud] if, besides reasonable geometric and physical
conditions, one assumes that the space-time metric in the domain of outer communication
is real analytic. This last assumption is particularly restrictive, since there is no reason
whatsoever that general stationary solutions of the Einstein field equations are analytic in
the ergoregion, i.e. the region where the stationary Killing vector-field becomes space-like.
Hawking’s proof starts with the observation that the event horizon of a general stationary
metric is non-expanding and the stationary Killing field must be tangent to it. Specializing
to the future event horizon H*, Hawking [21] (see also [26]) proved the existence of a non-
vanishing vector-field K tangent to the null generators of H* and Killing to any order
along H*. Under the assumption of real analyticity of the space-time metric one can
prove, by a Cauchy-Kowalewski type argument (see [21] and the rigorous argument in
[13]), that the Hawking Killing vector-field K can be extended to a neighborhood of the
entire domain of outer communication. Thus, it follows, that the spacetime (M, g) is
not just stationary but also axi-symmetric. To derive uniqueness, we then appeal to the
theorem of Carter and Robinson which shows that the exterior region of a non-degenerate,
stationary, axi-symmetric, connected, connected vacuum black hole must be isometrically
diffeomorphic to a Kerr exterior of mass M and angular momentum a < M. The proof
of this result originally obtained by Carter [7] and Robinson [32], has been strengthened
and extended by many authors, notably Mazur [31], Bunting [5], Weinstein [36]; the most
recent and complete account, which fills in various gaps in the previous literature is the
recent paper of Chrusciel and Costa [17], see also [I§]. A clear and complete exposition
of the ideas that come into the proof can be found in Heusler’s book, [22]. We remark
the Carter Robinson theorem does not require analyticity.

ISee reviews by B. Carter [9] and P. Chusciel [I2] for a history and review of the current status of the
conjecture.

2By combining results of Hawking [21], Carter [7], and Robinson [32], see also the recent work of
Chrusciel-Costa [17].
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In [24] a different strategy was followed based on the tensorial characterization of the
Kerr spaces, due to Mars [29] and Simon [34], and a new analytic framework based
on Carleman estimates. Uniqueness of Kerr was proved for a general class of regular
stationary vacuum space-times which verify a complex scalar identity along the bifurcation
sphere of the horizon. Unfortunately, to eliminate this local assumption, one needs a global
argument which has alluded us so far.

In this paper we return to Hawking’s original strategy and show how to extend his
Killing vector-field, and thus axial symmetry, from the horizon to the entire domain
of outer communication without appealing to analyticity. As noted above, once once
has extended axial symmetry to the entire exterior region, the Carter-Robinson theorem
implies that (M, g) must be isometric to a Kerr solution. Our argument, which relies
on the Carleman estimates developed in [24] and [25], and their extensions in [1] and [2],
require a smallness assumption which is expressed, geometrically, by assuming that the
Mars-Simon tensor of our stationary metric is uniformly bounded by a sufficiently small
constant. Our main result is therefore perturbative; we show that any regular stationary
vacuum solution which is sufficiently close to a Kerr solution K(a,m), 0 < a < m must
in fact coincide with it.

The first step of our approach has already been presented by us in [2]. There we show,
under very general assumptions, how to construct the Hawking Killing vector-field in a
neighborhood of a non-expanding, smooth, bifurcate horizon. The main idea, which also
plays an essential role in this paper, is to turn the problem of extension into one of unique
continuation, relying on Carleman estimates for systems of wave equations coupled to
ordinary differential equations, see the introduction in [2] for an informal discussion.

To further extend these vector-fields to the entire domain of outer communication we
make use of the foliation given by the level hypersurfaces of the function y, the real part
of (1 —0)~! where ¢ is the complex Ernst potential associated to the stationary vector-
field T, see subsection 2.3l The Carleman estimates on which our extension argument is
based, depend on a crucial T-conditional pseudo-convezity property for the function y (see
Lemma[4.3)) which was previously shown to hold true (see [24] and [25]) if the Mars-Simon
tensor S.S vanishes identically. Here we show that the the same property holds true if our
space-time verifies our small perturbation assumption, i.e. SS sufficiently small. Thus,
the main ideas of the paper are

(1) A robust argument by which the problem of extension of Killing vector-fields
is turned into a uniqueness problem for an ill-posed system of covariant wave
equations coupled to ODE’s.

(2) A local extension argument of Hawking’s Killing vector-field in a neighborhood of
the bifurcate horizon. This step, which was accomplished in [2], is unconditional,
i.e. it does not require the smallness assumption for SS.



4 S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN

(3) An extension of the global argument of [24], by which the Hawking vector-field
constructed in [2] in a neighborhood of the bifurcate horizon can be globally ex-
tended. This step, which rests on the T-conditional pseudo-convexity property,
requires our global smallness assumption for the Mars-Simon tensor SS.

In the subsection below we give precise assumptions and the statement of our main result.

1.1. Precise assumptions and the main theorem. We assume that (M, g) is a
smooth] vacuum Einstein spacetime of dimension 3 + 1 and T € T(M) is a smooth
Killing vector-field on M. We also assume that we are given an embedded partial Cauchy
surface X% C M and a diffeomorphism @ : Ey /o — °, where E, = {z € R : |z > r}.

We group our main assumptionsH in three categories. The first one combines a standard
asymptotic flatness assumption with a global assumption concerning the orbits of T. The
asymptotic flatness assumption, in particular, defines the asymptotic region M9 and
the domain of outer communication (exterior region) E = Z~(M("))NT+ (M) where
Z-(Mend)) T+(MD) denote the past and respectively future sets of M("®. Our second
assumption concerns the smoothness of the two achronal boundaries §(Z~(M©"¥)) in a
small neighborhood of their intersection Sy = §(Z~ (M) N §(Z+(ME™)). Our third
assumption asserts that E is a small perturbation a fixed Kerr metric, in a suitable sense.
We give an invariant form to this assumption by making use of the Mars-Simon tensor
SS whose vanishing characterizes Kerr spacetimes, see [29].

GR. (Global regularity assumption) We assume that the restriction of the diffeo-
morphism &, to Eg,, for R, sufficiently large, extends to a diffeomorphism ®; : R X
Er, — M where M(“") (asymptotic region) is an open subset of M. In local co-
ordinates {z", 2’} defined by this diffecomorphism, we assume that T = dy and, with
r= /(212 + (22)2 + (2%)2, that the components of the spacetime metric verifyf],

oM - - 257 ¥ _
goo = —1+ T +O4(r™?), gij = 0ij + Op(r Y, g = kT 3 +06(r7?), (L.1)

for some M > 0, S', 5% 5% € R (see [3]) such that,
J = [(SY)? + (5%)% + (S%)%)V% € [0, M?). (1.2)
Let
E =7 (M) Nzt M),
We assume that E is globally hyperbolic and
YONZ-(MED) = 20N THMED) = &y (EY). (1.3)

3M is a connected, oriented, time oriented, paracompact C* manifold without boundary.

4Mauny of these assumptions can be justified as consequences of more primitive assumptions, see [3],
[, [, [15], [16], [19], [20], [33]. For the sake of simplicity, we do not attempt to work here under the
most general regularity assumptions. See the recent paper [I7] for a careful discussion.

"We denote by Oy (r®) any smooth function in M(¢"%) which verifies |0" f| = O(r%~*) for any 0 < i < k
with |9 f| = D iotistintiai |00 O 05705 f1.
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We assume that T does not vanish at any point of E and that every orbit of T in E is
complete and intersects the hypersurface XV,

SBS. (Smooth bifurcation sphere assumption) It follows from (3] that
S(Z- (M D) N0 = §(ZHMED) N0 = S,

where Sy = ®y({z € R3 : |z| = 1}) is an imbedded 2-sphere (called the bifurcation
sphere). We assume that there is a neighborhood O of Sy in M such that the sets

HT =0nsIT (M) and H™ =0 NI (M)

are smooth imbedded hypersurfaces. We assume that these hypersurfaces are null, non-
expandingﬂ and intersect transversally in Sy. Finally, we assume that the vector-field T
is tangent to both hypersurfaces H™ and H~, and does not vanish identically on Sy.

PK. (Perturbation of Kerr assumption). Let o denote the Ernst potential and SS the
Mars-Simon tensor, defined in an open neighborhood of ¥ N E in M (see section 2 for
precise definitions). We assume that

(1 —0)SS(T,T,,T3,T,)| <t on X°NE, (1.4)

for some sufficiently small constant £ (depending only on the constant A defined in section
2), where Ty is the future-directed unit vector orthogonal to 3X° and Ty, Ty, Ts, Ty is an
orthonormal basis along X°.

Main Theorem. Under the assumptions GR, SBS, and PK the domain of outer com-
munication B of M is isometric to the domain of outer communication of the Kerr space-
time with mass M and angular momentum J.

In other words, a stationary vacuum black hole, which satisfies suitable regularity as-
sumptions and is sufficiently “close” to a Kerr solution, has to be isometric to that Kerr
solution. This can be interpreted as a strong extension of Carter’s original theorem, see
[7], [8], on stationary and axi-symmetric perturbations of the Kerr spaces, in which we
remove the axi-symmetry assumption and give a geometric, coordinate independent, per-
turbation condition. We provide below a more detailed outline of the proof of the Main
Theorem.

In section 2] we define a system of local coordinates along our reference space-like
hypersurface ¥°, and define our main constant A. The small constant  in (L) is to
be taken sufficiently small, depending only on A. We review also the construction of two
optical functions u and u in a neighborhood of the bifurcation sphere Sy, adapted to the
null hypersurfaces H™ and H~, and recall the definition of the complex Ernst potential o
and the Mars-Simon tensor SS. Finally, we record some asymptotic formulas, which are
proved in the appendix.

6A null hypersurface is said to be non-expanding if the trace of its null second fundamental form
vanishes identically.
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In section Bl we develop the main consequences of our smallness assumption (L4]). All
of our results in this section are summarized in Proposition 3.4 we prove a lower bound
on |1 — o| along ¥, as well as several approximate identities in a small neighborhood of
331 which are used in the rest of the paper.

In section Ml we derive several properties of the function y needed in the continuation
argument in section Bl We prove first that y is almost constant on Sy, as in Lemma [A.1]
and increases in a controlled way in a neighborhood of Sy in »;. Then we prove that the
level sets of the function y away from Sy are regular, in a suitable sense. Finally, we prove
that the function y satisfies the T-conditional pseudo-convexity property, away from Sy,
see Lemma [4.3]

In section Bl which is the heart of the paper, we construct the Hawking Killing vector-
field K in the domain of outer communication E. The starting point is the existence
of K in a neighborhood of Sy, which was proved in [2]. We extend K to larger and
larger regions, as measured by the function y, as the solution of an ordinary differential
equation, see Lemma[5.3] We then prove that the resulting vector-field K is Killing (and
satisfies several other bootstrap conditions) as a consequence of a uniqueness property of
stationary vacuum solutions, see Proposition [5.4l The proof of this last proposition relies
on Carleman estimates and the properties of the function y proved in section [l

In section [6] we construct a global, rotational Killing vector-field Z which commutes
with T, as a linear combination of the vector-fields T and K. We also give a simple proof,
specialized to our setting, that the span of the two Killing fields T, Z is time-like in E.

2. PRELIMINARIES

2.1. A system of coordinates along X°. Let 0;,0,,9; denote the vectors tangent to
30, induced by the diffeomorphism ®,. Let 3, = ®y(E,), where, as before, E, = {z € R :
|z| > r}. In particular, for our original spacelike hypersurface, we have ¥° = 3, /2. Using
(L) and the assumption that X0 is spacelike, it follows that there are large constants
Ay and R; > Ry, such that R; > A}, with the following properties: on Y3/, for any
X = (X' X% X3,

3 3
ATIXP < Y XX < AXP and ) [g(0a, T)| + [g(Th, T)| < Ay (2.1)

a,f=1 a=1

In ®3(R x Eg,), which we continue to denote by M©"¥ T = g, and (see notation in
footnote [),
6

6
SN 0™ (g — )+ Y 20 (oo + 1 — 2M /)]

3
m=0 j,k=1 m=0 (2 2)

6 3
+ Z pmts Z 0™ (goi + 2€56. 572" r™3)| < Ay

m=0 =1



STATIONARY BLACK HOLES IN VACUUM 7

We construct a system of coordinates in a small neighborhood M of X° N E, which
extends both the coordinate system of M©"® in (ZZ) and that of ¥°. We do that with
the help of a smooth vector-field 77 which interpolates between T and T,. More precisely
we construct 7" in a neighborhood of 33,4 such that 7" = T in ®y(R x Esg,) and 17" =
n(r/Ry)To+(1—n(r/Ry))T on X34, where  : R — [0, 1] is a smooth function supported in
(—o0, 2] and equal to 1 in (—o0, 1]. Using now the flow induced by 7" we extend the original
diffeomorphism &g : Ey/p — »% to cover a full neighborhood of ¥;. Thus there exists

g0 > 0 sufficiently small and a diffeomorphism @4 : (—g¢,€0) X F1_, — M, which agrees
with ®¢ on {0} X Ey_.,U(—¢q,€0) X Ear, and such that dy = d,0 = T". By setting €y small
enough, we may assume that @, := ®;((—eg,e0) x {x € R® : |z] € (1 —&¢,1+¢0)}) C O,
where () is the open set defined in the assumption SBS. By construction, using also (2.2))
and letting ¢, sufficiently small depending on R;,

3
Z 8o;| + |goo + 1| < Ay/(Ry +7) in M. (2.3)

J=1

With g.5 = 8(0a, 03) and T = T0,, let

6 3 3
Ay =sup D7 [ 3 10" gan(p)| + Y 07T (p) ] (2.4)
PEM m=0 " a,3=0 a=0

Finally, we fix

A =max(Ry, Ay, g5t (M? — J)71). (2.5)
The constant A is our main effective constant. The constant z in (L4 will be fixed
sufficiently small, depending only on A. To summarize, we defined a neighborhood M of
YN E and a diffeomorphism ®; : (—eg, &) X Ei_., — M, ¢ > 0, such that the bounds
1), 22), 3), Z4) hold (in coordinates induced by the diffeomorphism ®).

2.2. Optical functions in a neighborhood of S;. We define two optical functions
u,u in a neighborhood of Sy. We fix a smooth future-directed null pair (L, L) along S,
satisfying

g(L,L)=g(L, L)=0, g(L, L)=-1, (2.6)
such that L is tangent to H™ and L is tangent to H~. In a small neighborhood of Sy,
we extend L (resp. L) along the null geodesic generators of H™ (resp. H~) by parallel
transport, i.e. DL = 0 (resp. Dy L = 0). We define the function u (resp. u) along
H*t (resp. H™) by setting u = u = 0 on Sy and solving L(u) = 1 (resp. L(u) = 1).
Let S, (resp. S,) be the level surfaces of u (resp. u) along H* (resp. H™). We define
L at every point of HT (resp. L at every point of H™) as the unique, future directed
null vector-field orthogonal to the surface S, (resp. S,) passing through that point and
such that g(L, L) = —1. We now define the null hypersurface H, to be the congruence
of null geodesics initiating on S, C H™ in the direction of L. Similarly we define H; to
be the congruence of null geodesics initiating on S, C H™ in the direction of L. Both
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congruences are well defined in a sufficiently small neighborhood of Sy in . The null
hypersurfaces H, (resp. H;}) are the level sets of a function u (resp u) vanishing on H~
(resp. H™). By construction

L = —g'"0,ud,, L = —g"0,u0,. (2.7)
In particular, the functions u, u are both null optical functions, i.e.
g oud,u=g(L,L)=0 and g"0,ud,u=g(L, L)=0. (2.8)

To summarize, there is ¢y = co(A) € (0,¢0] sufficiently small and smooth optical func-
tions w,u : @, — R, where @, = ®;((—co,c0) X {z € R® : |z] € (1 — ¢y, 1+ ¢o)}). In
local coordinates induced by the diffeomorphism ®; we haw

4
sup > (|07 u(@)| + [P u(x)]) < C = C(A). (2.9)
r€Dc =0

In addition,

H N, ={p e, :ulp) =0}, H N ={p € D, : u(p) = 0}. (2.10)

In @, we define
Q=g"0,ud,u=g(L, L).

By construction Q = —1 on (HTUH ™ )NA,, (we remark, however, that 2 is not necessarily
equal to —1 in ,,). By taking ¢y small enough, we may assume that
Qe[-3/2,-1/2] in Q. (2.11)

Finally, by construction, we may assume that the functions |u|, |u| are proportional to
|1 — r| on the spacelike hypersurface XN @, i.e.

/(1 —7)|, lu/(L=7)] € [C71,C]  onX°NQ,, (2.12)
where, as in (2.9), C is a constant that depends only on A.

2.3. Definitions and asymptotic formulas. We recall now the definitions of the Ernst
potential o and the Mars—Simon tensor SS (see [24, Section 4] for a longer discussion and
proofs of all of the identities). In M we define the 2-form,

F.s =D,Ts
and the complex valued 2-form,
Fop=Fop+ i1 "Fop=Fog+ (i/2)€a5" F . (2.13)
Let F? = F,3F*. We define also the Ernst 1-form
0, = 2T°F,, =D, (-TT,) — i €,3,; T’D'T°. (2.14)

"Recall the notation |87 f| = D jotin ot ds =i 920071012 9° f|, where 9y, 1, 2,05 are the derivatives
induced by the diffeomorphism ®;. This notation will be used throughout the paper.
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It is easy to check that, in M

D,o, —D,o, = 0;
Dto, = —F?; (2.15)
o,0" = g(T, T)F>
Since D, 0, = D,0,, and the sets M = &, ((—£0,£0) X E1_.,) and E are simply connected,
we can define the Ernst potential 0 : M UE — C such that 0, = D,o, ¥o = —T*T,,

and o0 — 1 at infinity along %°.
We define the complex-valued self-dual Weyl tensor

Rapuw = Ragu + (1/2) €™ Rappo = Ragw +1 " Ragu- (2.16)
We define the tensor Z € T(M),
Lopuw = (gaugﬁu — Baw8pu T 1 eaBuV)/4- (2.17)
Let M/ = {p € M : o(p) # 1}. We define the tensor-field Q € TI(M'),

1
Qugw = (1 = 0) (FapFuw — 5]-"2Iaﬁw,). (2.18)
It is easy to see that the tensor-field Q is a self-dual Weyl field, i.e.

Qa,@,uz/ = _Qﬁa,uz/ = _Qaﬁyu = Quua,@;
Qaﬁ/ﬂ/ + Qauuﬁ + Qauﬁu = Oa

g% Qupu = 0,
and
"Qapuy = % Cppo Lap™ = <_i)Qa6uv-
We define now the self-dual Weyl field S5, called the Mars—Simon tensor,
SS=R+609. (2.19)

We observe that (1 — 0)§ is a smooth tensor on M. Using the Ricci identity
D, Fas = T"Rupap, (2.20)
and proceeding as in [24) formula 4.33], we deduce that, in M’ ,
D, [F*(1 - o)™ =2(1—0)*T"SS,,sF"°. (2.21)

This identity will play a key role in the analysis in section [3 Finally, we define the
functions y,z : M’ — R
y+iz=(1—-o0)""

8Using the assumption PK, we will prove in section Bl that ¥ C M.



10 S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN

Simple asymptotic computations using the formula ([2.2), see Appendix [Al show that,
for R sufficiently large depending only on A,

Fop =002, SSups =00, a,8,7,0=0,...,3. (2.22)
More precisely,
l—o=2Mr""+0(r7?), F’=-AM*""+0(r°) (2.23)
in ®;((—eo,e0) x Eg). In particular, ®;((—co, £0) x Er) € M’ and
—AM*F*(1—0) ™ =14+0(@Fh in  ®((—eo,20) X Eg). (2.24)

In addition
B Sl 4+ 5222 4§33

T
- toq
4 +0(), M2

2M
in ®;((—ep,€0) X Egr). Finally,

+ 0™ (2.25)

2

4MH*
All these asymptotic identities are proved in Appendix [Al and will be used in section Bl

22+ 4AM?(y* + 2*)D,2DVz = +0(r in  ®y((—e0,c0) X ER). (2.26)

3. ANALYSIS ON THE HYPERSURFACE X;

In this section we use assumption PK to prove several approximate identities on the
hypersurface ¥; = X° N E = ®y(E,). The general idea is to prove approximate identities
such as (Z24) and (220) first in the asymptotic region, using the asymptotic flatness
assumption (Z2)), and then extend them to the entire hypersurface 3; using the fact that
the Mars—Simon tensor is assumed to be small. We will prove also that 1 — ¢ does not
vanish in ¥;. All of our results in this section are summarized in Proposition [3.4]

We will use the notation in section @l We fix first a large constant R which depends
only on our main constant A (see ([Z.5)). We fix 7 the smallest number in [1, R — 1] with
the property that

1-0/>R° on¥,\Zs (3.1)
where, as before, ¥, = ®y(E,), E, = {z € R?® : |z| > r}. Such an ry exists if R is
sufficiently large, in view of (2.23) and the continuity of 1 — o. We will prove, among
other things, that ro = 1. In this section we let C denote various constants in [1,00) that
may depend only on R (thus on A once R is fixed sufficiently large depending on A). The
value of £ in ([[L4]) is assumed to be sufficiently small depending on the constants C. To
summarize, log(4) < log(R) < log(C) < log(z™Y).

We will work in the region ®,[(—%,2) x E,]. Since |0y(1 — o)| < C, it follows from
BI) and (2.23) that

1—0|' <Cr in®[(—5,2) x E,]. (3.2)
Using the assumption ([.4]) and the asymptotic identities (2.22)), we have

(1= 0)T"SS, 5] < Cmin(g,r™)  in &[(—F,8) x E,), (3.3)
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in the coordinate frame 0y, 01, 02, 03. Using (2.21]), (222) and the last two inequalities, it
follows that

10,(F*(1—0)™Y| < CrPmin(z, r™?)  in &[(—5,8) x B, (3.4)
We prove now that
11+ 4M2F*(1 —0)~Y < Cmin(r~",2/%) in &[(-%,2) x E,,]. (3.5)

Indeed, let H =1+ 4M?F?(1 — o). Using ([2.24)) and (3.4),
4
[H|<Cr™' and > |9,H| < CrPmin(E,r™")  in &1[(—E,E) x E,]. (3.6)
p=0
The bound (B.35) follows from the first inequality in ([3.6]) at points p for which r(p) > e~1/°.
To prove ([3.5) at points p with 7(p) < e™¥/° we fix a point p’ € &,[(—F,8) x E,,] with
r(p') = e~'/°. We integrate along a line joining the points p and p’ and use the second
inequality in 36). The result is |H(p) — H(p/)] < Ce™*/°%, which gives [3.3) since
[H(p)| < Cr(p/)™ = Ce™'°.
It follows from (B.4) and (B.5]) that there is a smooth function G; : ®4[(—¢,8)x E,,] — C
with the properties

OPF (-G (Gl +Y RG] <O ()
p=0
on ¢,[(—¢,%) x E,,]. In particular, using also (3.2,
F2 > (Cr)™  in @[(—7,2) x E,,). (3.8)
We define the smooth function P =y + iz : &1[(—¢,¢) x E,,| — C,
P=y+iz=(1-0)"" (3.9)
We construct now a special null pair, similar to the principal null pair in [29] Section 4].
Lemma 3.1. There exists a future-directed null pair 1,1, g(l, ) = —1, such that
Fopl? = (1+ G1)dMP?) My, Fupl® = —(1+ G1)(4MP?) 7', (3.10)
in ©1[(—¢,2) x E,,].
Proof of Lemma[31l. Let Z, be complex eigenvector F,37° = \Z, with complex eigen-
value A. Using the relation Fo,F57 = (1/4)g.sF? (see [24, formula 4.2]) we derive,
1 1
A= _Zfz ~ 16M2
Thus, A = £(4MP?)7(1 + G;). The reality of the corresponding eigenvectors [, [ is a

consequence of the self duality of F. They must both be null in view of the antisymmetry
of F and can be normalized apropriately. O

(1—o0)* 14+ Gy)>



12 S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN

Let ey = [, eay = . We fix vector-fields ey, e(2) in ®1[(—F, &) x £, | such that together
with e(3) = [, eqy = [ they form a positively oriented null frame, i.e.,

g(l,eq)) =gl ew) =8l ew) =8l e@) =8gleq, e@) =0,

(3.11)
gleqy: em)) = 8le), e@) =€mEE)@w= 1.

In view of (3.8)), the vector-fields e(,) = e‘()‘u)&l, iw=1,2,3,4 can be chosen such that

a=0

4 3
YD led) < C in @[(—EF) x By, (3.12)
p=1

According to (310), (BII) and the self duality of F, the components of F are,
Fayn = Fue = Fou = Fee = 0 and Fuys) = iFga) = (1+G1)/(AMP?). (3.13)

This is equivalent to the identity,

1+d .
w1 = grpa (Lol + lole — i €apu I'1). (3.14)
By contracting (3.14) with 2T* and using 2T*F,3 = 03 = Dgo we derive
, 1+G o o : iy
Dﬁ(y + ZZ) = INM : [_ (T la)lﬁ + (T Lx)lﬁ — 1 €apur Tl ]
In particular, if G; = RG; + 1SG4, we have
1+ RG 3G
Dy =~ (T + (TL)ls] + ot €npe TOHL,
12%% e 2M (3.15)
1 Qv 1 o «a
Dz = == g TV + St [ = (D) + (T°L,)15).

It follows from (B.15) and (3.7) that
|D(1)y| + |D(2)y| + |D(3)Z| + |D(4)Z| < 5min(7’_1,51/5) in ¢,[(—¢,8) x E,,]. (3.16)
A direct computation using the definition of P and (215 shows that

D,ocD% (1+ G1)*T°T,
D, PD®P = = — . 3.17
(1—o0)* 4M? (8:17)

Since —T*T,, = Ro =1 — y/(y* + 2*) we have
(1+RG1)* - (SG1)? (1 y )

D,yD% — D,zD%z =

4M? T2 22
3.18
D yD% — (1 + %Gl)gGl ( _ Yy ) ( )
oY AM? y? 4 22 )
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3.1. A lemma of Mars. The following lemma is an adaptation to our situation of an
important calculation which first appears in [29)].

Lemma 3.2. With B = J?/(4M*) < 1/4 we have in ®;[(—F,2) x E,,),
[AM? (12 4 22)DzD’z + 2* — B| < C min(r~!, /%), (3.19)

Proof of Lemma[Z3. We show that the function H := 4M?*(y? + 22)DszDPz + 22 is
almost constant by computing its derivatives with respect to our null frame (B.IT)). In
the particular case SS = 0, the constancy of H was first proved in [29] using the full
Newman-Penrose formalism. A similar proof was later given in [24]. Here we give instead
a straightforward proof based only on the formulas we have derived so far.

We will prove that

3
> |0 H(p)| < CEY*  if p € By[(—7,7) x E,,] and r(p) < e /. (3.20)

a=0

Assuming this, the bound @I9) follows from the bound |H — B| < Cr~! in ®,[(—%,7) X

E,.], see (Z20]), in the same way the bound (B.5]) follows from (34) and (2.24)).
We differentiate H and derive,

D, H = 8M*(y* + 22)D,DszD’z + 8M?*(yDoy + 2Do2)DpzD?2 4+ 22D, 2. (3.21)

To calculate the main term 8 M?(y?+22)D,DgzD”2z we first calculate the second covariant
derivatives of P = (y + iz), using the definition of S5 and (2.20),

D,DsP =2(1—0)*D,0Dso + (1 — o) ?D,Dso
=2(1 - 0)*DyoDso +2(1 — o) 2 (F. Fpp + T’T" Ryaps)
=2(1 - 0)*DyoDso +2(1 — o) *F,"F,5
—12(1 — 0) *T’T" Quaps + 2(1 — ) >*TPTVSS,aps
=2(1—0)?F,"Fp+2(1 — ) >T*T"SSvaps
—(1=0)0,05+ (1 — 0) > F?[gas(TT,) — T, Tp)
=2P*F,"F,5+ P '[(D,PD’P)g,s — Do PD3P]
+ 2P*T?T"SS 0 — PPF*T,Tp.
Thus, we have the identity
D,DsP =— P7'D,PDsP + P~ '(D,PD’P)g,z
—2P?F,PF5, — PP F*T,Tp + 2P*TTVSS, 0 pp-
Since T(z) = 0 we deduce,
D,D;PD’z = P7/(D,PD’P)D,z — 2P*F,"F;,D"~
— P7'D,PDsPD?2 + 2P*TPT"SS,0,53D" 2.

(3.22)

(3.23)
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Observe that D,DgzD?z = §[D,DzPD?z]. Thus, in view of (3.23)
D,D32D%z = §[ = 2P*F,  F5, Dz + 2P*TT" S5 0,5D" 2]

3.24
[P7'D,PDsPD’z] + S[P~'(D,PD’P)D,z2]. (3:24)

=g
-9

Now,
(y* + 2°)S[P'D,PDsPD’z] = D:S3((y — i2)Da(y +i2)Dg(y + iz))]
= (yDoy + 2Du2)D?2Dgz + (yDaz — 2D4y)DyDgz
and,
(y* + 2%)S[P7'D,PD’PD,2] = D.zS[[(y —i2)D,(y +iz)D’(y + i2)]
= 2yD,zD,yD’z — 2D, 2(D,yD’y — D,2D"z).
Therefore, back to (3.24)),
(y* + 2°)DDyzDPz = (v + 2*)S| — 2P°F," F3, D’z + 2P*T*T" S5, 05D’ 2]
—yDayD, 2D’z + (yDyz + 2Doy) D,yD’z — 2D,z D ,,yD"y.
Going back to ([3.2I]) we derive,
D H = 8M?*(y* + 2*)S| — 2P°F," F3, D"z + 2P*T*T"585,4,5D" 2]
+8M?2D,z(D,2D’z — D,yD”y) + 22D,z + 8M?*(yD,z + 2D,y) D,yD">.

Recall that we are looking to prove (3.20) at points p with r(p) < Y40, In view of
B2) and (B3.3)), at such points we have

16M?(y* + 2*)DP 2P’ TP TS S, 0ps = O1(3),

where, for simplicity of notation, in this lemma we let O;(2) denote any quantity bounded
by Cz'/?. According to (3.7) and (3I8) we also have,

1 Y ~=1/5
D,yD’z| + ‘DpZDpz “DyDy+ (- z2)‘ < 2\,

Thus, using again (3.2,
2yzD,
8M%:D,z(D,2Dz ~ DyyD’y) +2:D,z =~ + 0s(e).
Y2+ z
Consequently,
292Dz
y2 + 22

D H = —16M*(y* + 2*)3[P*Fu* F5, D 2] + +O1(8).

For (B.20) it only remains to check that,

2yzD,,
~ 16M + IS [PPESF, DY+ 5P~ 04(6) (3.25)
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We prove this in the null frame ey, e(2), €3), (), see (B.11)). Recalling (3.13) and (3.16)
we easily see that both terms on the left are bounded by CzY/2 for o = 3,4. For a =1,

using (B.13) and (3.7),
—16M2(y* + 22)S[P2F 1) Fiay) DP 2] = —16M2(y* + 2*)S[P*Fy Faye) Day?)

_ 2/ 2 2 2 1 2yz -
= —16M(y* + 2D | PP Py +z2)2] +0(2).
The approximate identity (3.25) follows for « = 1. The proof of ([B.28) for a = 2 is
similar, which completes the proof of the lemma. 0]
3.2. Conclusions. It follows from (B.I8)) and Lemma [3.2] that
B — 22 Z B
DD’z = Y 10@), DyDy=-L Y7 0@ (3.26)

in ®,[(—¢,2) x E,,], where O(€) denotes functions on @1[(—_,_) X E,,] dominated by

C min(r~!,gY4). Using (3I5) we deduce that DPyDgy = 57z (T6)(TPLg) + O(e).

Hence,

v —y+B

2(y* + 2%)
We prove now that the value of ry in (BII) can be taken to be equal to 1. It view of the

definition of ry, it suffices to prove the following lemma:

(T1.)(TLy) = +O(E)  in ®1[(-5,2) x E,,). (3.27)

Lemma 3.3. Assuming R is chosen sufficiently large, we have
1—0|>2R "> on%,\ g
Proof of Lemmal3.3. The conclusion of the lemma is equivalent to
IPI<R/2 on¥,\Sx (3.28)

To prove this, we recall that we still have the flexibility to fix R sufficiently large depending
on A. In view of (223)), for (B:28) it suffices to prove that

0. P| < C(A) on %, (3.20)

for @ = 1,2, 3 and some constant C'(A) that depends only on A. The bound (B.29) follows

from [222) and [Z23) at points p for which r(p) > R(A). Since P = (1 — o)~! and
|1 —o] > [R(1 —0)| = |1+ T*T,|, the bound ([.29) also follows at points p for which
r(p) < R(A) and g, (T, T) ¢ [=3/2,—1/2) -

It remains to prove the bound (3.29) at points p € X, for which r(p) < R( ) and
g,(T,T) € [-3/2,—1/2]. Since |1 — 0| < C(A) on ¥, we have |y|+ |z| > C(A)~" on X;.
It follows from (3.26]) that

DszDz| + |DgyD"y| < C(A)  on %, (3.30)

In addition, T(o) = 0 therefore T*D,z = T*D,y = 0. Since g,(T,T) € [-3/2,—-1/2] it
follows that T, is timelike, thus the vectors Y = D%y and Z¢ = D%z are spacelike at
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the point p. The elliptic bounds (2I]) show, in fact, that Zg L 10ayl* < C(A)|DgyD?y|
and Zﬁ L 10a2]? < C(A)|DgzDP2|, so (3.29) follows from (3.30). O

We summarize the main conclusions of our analysis so far in the following proposition:

Proposition 3.4. There is a constant C = C( ) sufficiently large such that
1 —o| > (C’r)_1 on ¥i_z,

provided that Z is sufficiently small (depending on A). Therefore the frame Cla), O =
1,...,4, the Mars—Simon tensor SS, and the functions P,y,z,G1 are well defined in

®1[(—E,8) X E1_¢|. In addition, the identities and inequalities (B.3)), (3.1), B12), BI3),
BI9), BI6), BI8), (22), B24), B27) hold in ®1[(—¢,2) X F1_¢|.

In view of the assumption GR on the orbits of T, it follows that the functions y =
R[(1 — o) and z = S[(1 — o)~'] are well defined smooth functions on E.

4. PROPERTIES OF THE FUNCTION Yy

Our next goal is to understand the behaviour of the function y defined in (3:9) on ¥;.
Most of our analysis in the next section depends on having sufficiently good information
on y, both in a small neighborhood of the bifurcation sphere Sy and away from this small

nelghborhoodﬁ In this section we use the notation C to denote various constants in

[1,00) that may depend only on the main constant A. We assume implicitly that 7 is

sufficiently large compared to all such constants C.

4.1. Control of y in a neighborhood of S;. We analyze first the function of y in a
neighborhood of the bifurcation sphere Sy.

Lemma 4.1. On the bifurcation sphere Sy,
3
ly— (1+V1—4B)/2|+ > |0.y| < Ca/*. (4.1)
a=0

Moreover, there are constants 1 = 1 (A) > 1 and C; = C1(A) > 1 such that
Ci(r=12+CEY > y—(1+V1—4B)/2> C7 (r—1>=CigV*™  on 3\ %,,. (4.2)

Proof of Lemma[{.1. Recall the vector-fields L, L defined in a neighborhood of Sj in
section 2l It is easy to prove, see for example [24] Section 5|, that

Fopl? = F(L, L)L, and F.s3L°=F(L,L)L, onSp.

Since the vectors [ and [ constructed in Lemma [3.T] are the unique solutions of the systems
of equations (Fns £ fgas)V? = 0, up to rescaling and relabeling, we may assume that

9For comparison y = r/(2M), in the Kerr space of mass M and angular momentum .J, in standard
Boyer—Lindquist coordinates.
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L=1land L=1[on S, Thus, we may also assume that e(), e2) are tangent to Sy. Since
T is tangent to Sy,

L(o) = LPoy = 2L°T*F,5=0 on Sp.
Similarly, L(o) =0 on Sy. Using also (3.16]), we conclude that
c)(y) =ew) =0 and |eq)(y)| + le@ ()| < C27°  on S (4.3)

The inequality on the gradient of y in (A1) follows from (£3). For the remaining
inequality we use first (3.26). It follows from (&3] that |DsyD’y| < Cz2/® on Sy, thus

> —y+ B| < CeY*  on S,
Since B = J?/(4M*) € [0,1/4) (see (L2) and (2.3))), it follows that
ly—(1+v1—4B)/2| < CeY* on Sy or |y—(1—v1—4B)/2| < Cg"/* on S,. (4.4)

To eliminate the second alternative we start by deriving a wave equation for y. Since
D'D,o = —F? DtoD,o = —F*Ro (see 215)), and —F? = (1 — 0)*(1 + G1)?/(4M?)

we derive
DD, P = (1 - 0) *D*D,0 +2(1 - 7) *DroD,0

(14+Gy)? . 2P—-1
Thus, using (B3.7)
2y —1 ~=1/5
DD,y = +E, |E|<Cg/°, on Xz (4.5)

IR( + 22)

We now compare y with a function y’ which coincides with y on H* and verifies L(y) =

0. We use the notation in section 2l For e; = 1(A4) € (0, ¢o| sufficiently small we define
the function

y:0.,—R ¢y =yon H' NO.,, LE)=0inQ,,. (4.6)
The functions y and y’ are smooth on ., and, using (4.3]) and the definition of 3’
y—y' =0 on(H"UH )NA,,. (4.7)

In addition, using again (4.3)), we infer that |e(y')| < Cz'/5 on Sy, for all @ = 1,2, 3, 4.
Using B.I8) ey (y') = (2M)'SG1 €(a)@)(w)) T on Sy, a = 1, 2. It follows from (B.7)
and the inequality |e()(y')] < C2'/5 that |D(yDwy/| < Ceon Sp, a = 1,2. Using L(y') =
0 and |e ()] < C2Y5, we have |D(gDy/| + [DwDey| < Cz on S,. Therefore,

O.y| < C2Y%  on S 4.8
g

In view of (L1), there is g5 = e9(A4) € (0,&1) such that y —y = wuf in O.,, where
f ., — R is smooth. Since u =u = 0 and 2D*uD,u = —2 on Sy, it follows from (5]
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and (4.8) that
1—2y ~
=—(1/2)D*Do(y — ) = =55 + E', |E| < C/® So. 4.9
F==/DDDuly— ) = g+ B IS G on s (1)
To summarize, y = y' + uuf in O,, where f satisfies (€3] on Sp.

We eliminate now the second alternative in (4.4]). The main point is that if y is close to
(1-+v1—-4B)/2 <1/2o0n Sy then f is strictly positive on Sy (see (£9)). In quantitative
terms, there is e3 = e3(A) € (0,e2) such that f > C~!in @,,. Since uu < 0 on ¥; N O,
and y' < (1 —v/1—4B)/2+ C&Y% on (., (using the second alternative in (&4) and the
construction of '), it follows that

y<(1—+vV1—=4B)/2 — C Yuu| + CzY*° on 21 NO,,.

In particular, using (2.12), y < (1 — 1 —4B)/2 — 5;1 at some point in ¥; (provided,
of course, that £ is sufficiently small depending on A). Using also (2.25)), it follows
that function y : ¥; — R attains its minimum at some point p € ¥;, and y(p) <

(1—+v1—-4B)/2—C7!. Thus T1(y) = Ta(y) = T3(y) = 0 at p (where Ty, T, T5, T3 is the
orthonormal frame along ¥y defined in assumption PK), and
D.yDy = —(Tp(y))* < 0

at p. This is in contradiction, however, with the identity (8.26]) and the inequality y(p) <
(1—+1—=4B)/2—C~*. We conclude that the first alternative in (@) holds.

We prove now the second statement of the lemma: since y is close to (1++/1 —4B)/2 >
1/2 on Sy, it follows from (E9) there is e5 = e3(A) € (0,¢5) such that f € [-C, —C~]
in @.,. Also |y — (1 + 1 —4B)/2| < CeY% in @, and uu/(r — 1)* € [-C, —C™] (see
(Z12)). The inequalities in ([@2]) follow since y = 3’ + fuu. O

4.2. Regularity properties of the function y away from S;. We derive now the
main properties of the level sets of the function y. Recall first the main inequality proved
in Lemma LT} there are constants r; = r1(A4) > 1 and C; = C1(A) > 1 such that

Ci(r—124+Cg"® > y—(1+vV1—4B)/2> C7 (r—1)2=CigY/*  on £,\%,,. (4.10)

We define N
yo=(14++v1—4B)/2+ C; ', (4.11)

where we fix 52 = 52 (Z) a sufficiently large constant depending on the constants 6’1, 71
in (£10) and ¢ in Proposition .1l As in [24], Section 8|, for R € [yo, 00) we define

Ve ={p € X y(p) <R}

Ur = the connected component of Vi whose closure in ¥° contains Sp.

In view of (4.10),
N} \ 21—1—(45152)*1/2 C Vyo N (21 \ Eﬁ) - Vyo_;.é;l N (21 \ Em) c \ E1+(4515;1)1/27

(4.12)
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provided that C, is sufficiently large and € is sufficiently small. In particular, we deduce,
21 \ 214—(45162)*1/2 - uyo - uy0+62*1 - 21 \ 21_,_(4516;1)1/2- (413)
For p = ®1(0,¢q) € ¥; and r < g5 we define,
B,(p) = @1 ({(t.q) € (—e0,20) X Biey 1 2 + g — ¢ <17}).

For any set U C X let 0y, (U) denote its boundary in ;. Clearly, if p € dx, (Ur) for some
R > yo then y(p) = R.

We define the vector-field Y = D*yD,, in ®[(—¢,%) X E;_z| and its projection Y’ along
the hypersurface »;_z,

3
Y =Y +g(V.To)Ty = Y _(Y')*0a. (4.14)
The vector-field Y’ is smooth, tangent to the hypersurface ¥;_z, and
3
S IY) < Cot on ..
a=1

In addition,
Y'(y) =g(Y",Y) =g(Y.Y) +g(Y.To)* > g(¥.Y) = DayD"y. (4.15)
In particular, if p € ds, (Ur) for some R > yo then y(p) = R thus, using [B.26)), Y'(y)(p) >
C~!. Therefore if p € 0y, (Ur) then
{z € Bs(p) N %1 : y(x) < R} = Bs(p) NUg, (4.16)

for any § < 6, = 01(A) > 0.
We prove now that the regions Ug, R > yo, increase in a controlled way:.

Lemma 4.2. There is 62 = d2(A) >€ (0,01) such that, for any § < 3 and R € [yo, 00),

Upettr (Bss(p) N 21) € Uris2 € Upeyn (Bs(p) N 21). (4.17)
In addition
Ursy Ur = X1 (4.18)
and
Ur = Vg for any R > yq. (4.19)

Proof of Lemma[{.3 The first inclusion in (AI7]) is clear: since y is a smooth function in
a neighborhood of ¥ (see Proposition B.4)), it follows that y(q) < R + 2 for any p € Ug
and ¢ € Bss(p) N X, provided that ¢ is sufficiently small.

To prove the second inclusion, it suffices to prove that

Upys2 CUR U [Upesy, ) (Bs/a(p) N21)], (4.20)

for § sufficiently small, R > y,. Assume, for contradiction, that ¢ is a point in Ug 52 which
does not belong to the open set in the right-hand side of (A.20)). Let 7 : [0, 1] — Urs52USy
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be a continuous curve such that v(0) € Sy and v(1) = ¢ (see definition (AI2)). Let
¢ =~(t), t € (0,1], denote the first point on this curve which does not belong to the
open set in the right-hand side of ([4.20). Clearly, ¢’ does not belong to the closure of
Ur in X1, thus ¢’ belongs to the closure of the set Upegzl(uR)(B5/4(p) N 34) in ¥;. Since
ds, (Ug) is a compact set (see (2.25) and (£13), it follows that

q' € Bsja(po) N Xy for some py € s, (Ur). (4.21)

For p € X\, ,6,6,)-1/2 and [t] < ¢, ¢ > 0 sufficiently small, let ,(¢) C 3y denote the
integral curves of the vector-field Y’ defined in (4.14)), starting at p. Using (4.13]), the fact
that y(po) = R > yo, and (3.26)), it follows that

Y'(y) > C™'  in Bs(po) N 2y, (4.22)

provided that ¢ is sufficiently small. With ¢’ € Bj/(po) being the point constructed
earlier, we look at the curve v (t), t € [—0%2,6%?]. Clearly, this curve is included in
Bs(po) N Xy, assuming § sufficiently small. Using (£22]) and the fact that y(¢') < R + 62
(since ¢’ € Urys2), we derive that there is a point ¢” on the curve v, (t), t € [-§%2,6%/2],
such that y(¢”) < R. It follows from (£10) that ¢” € Ug. Since ¢’ ¢ Ur (by construction),
there is a point ¢” = v, (t"), t" € [—6%/%,8%?], such that ¢" € &x, (Ug). Tt follows that
q" € Bsss(¢"), in contradiction with the fact that ¢’ does not belong to the set in the
right-hand side of (4.20). This completes the proof of (Z.20).

The completeness property (£I8]) follows easily from the asymptotic formula (2Z:25]) and
the fact that y is a smooth function on ;.

To prove (AI9) we notice that, in view of (AI3]), it suffices to prove that Vg N

)y _172 € UR, for any R > yo. Assume, for contradiction, that

1+(46162)
there is Ro > yo and ¢ € X, ,5,5,)-1/2 such that y(q) < Ry and g & Ug,. (4.23)

Let I = {R € [Ro,0) : q ¢ Ur}. Since I is bounded, due to ([{.18), we can take R’ its
least upper bound. We analyze two possibilities: ¢ € Ur and q & Ug.

If ¢ € Up then, using (£23)), R > Ry. For 0 > 0 sufficiently small (depending on
R’ — Ry and A), it follows from (EI7) that there is R = R’ — 6% > Ry + 6/ and a point
¢’ € Uy such that |g—¢'| < 6. However, y(q) < Ry, see (E23), thus y(x) < Ry+0'/? < R”
for any x € Bs(q). Since Bs(q) NUr» # 0, it follows that ¢ € Ug, in contradiction with
the definition of R'.

Finally, assume that ¢ ¢ Up. Then q ¢ Jdx, (Ur), in view of (LI0) and ([A23). For
J sufficiently small (smaller than the distance between ¢ and the compact set dy, (Ur/)),
it follows from (£.20)) that ¢ ¢ Uprr4s2. This is in contradiction with the definition of R',
which completes the proof of (£.19]). O

4.3. T-conditional pseudo-convexity. In this subsection we prove a T-conditional
pseudo-convexity property of the function y away from the bifurcation sphere Sy. This
pseudo-convexity property, which was first observed in [25] in the case of the Kerr spaces
and used in [24], plays a key role in the Carleman estimates and the uniqueness arguments
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in the next section. We remark that the main condition for pseudo-convexity is the
assumption (£.24) below.
Since Uy, = {p € X1 : y(p) < Yo}, see ([A.19) and the definition (A.I2), it follows from

(EI3) that y > (1++/1—4B)/2+Cy " in 2114665 1y/2- Using also ([410)), it follows that

y>(1+v1-4B)/2+Cy? in 14 (88,5172

Lemma 4.3. Assume p € 2 4 (861 Ga)-1/2 thus

y(p) > (1++V1—4B)/2+ C;2. (4.24)

There there is a constant co = c3(A) > 0 and p = p(p) € R such that
XX (pgas(p) — DaDyy(p)) > co X|* (4.25)
for any real vector X with the property that
| X*To(p)| + [X*Day(p)| < c2| X|. (4.26)

Proof of Lemma[4.3 The bound ([@.25]) follows easily with p = 1 if r(p) > C is sufficiently

large (see (Z3) and (Z25)). Assume that r(p) < C. We shall make use of the null frame
€(a) defined in section

Using (8.22)), we write
X*XD,Dpy = XX R[-P'D,PDsP] +g(X,X)R[P(D,PD"P)]
2XXPR[P2F, Fp,) — (XOT L) R(PPF?) + | X[*0(3),
where, in this proof, O(g) denotes quantities bounded by C2/4°. Since X (y) = |X|O(c»),

ayvB -1 _ Y 2 2

where, in this proof, O(cs) denotes quantities bounded by Ccy. Using (BI7) and (377),

-1 ) 1 Y _
RP~'(D,PD’P)] = W4M2(1—W)+0(5),

thus
y(y* +2* —y)
4M2(y2 + 22)2

To calculate X*XPR[ P F,, *Fp,] we recall, see (3I3) that all components of F vanish,
with the exception of f34 = —f43 = —ﬁ + O(E) and f12 = —f21 = W + O(E),
a,b=1,2. Since F' = R(F) we also have,

Fy = —F3=—AM)""R[P?]+ O(), Fiz=—Fy=—(4M)"'S[P?]+ O(e).

X*XPRP~HD,PD’P)lg.s = g(X, X) +|XPOE). (4.28)
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Therefore,
XX F,PFg, = 2X°X"F3y Fau + (X')* + (X?)?) FiaFin + | X[*O(E)
1 3v4 -2 . 1\2 2\2 -2 2 =
Thus,
y2 — 2
—2X*XPR[P*F,Fs,) = —X3X* + | X2O(E). (4.29)

AM?(y? + 22)?
Therefore, denoting E(X, X) := X*X?(ug,s — D,Dgy), we write

R e
4M2( +22)2

or, since g(X, X) = —2X3X* + (X1)?2 + (X?)?,

+ X3x* + 1 X|P0E) + | X|?O(cy),

2 2 2 2

+2°—y) y -2 y
B(X.X) = axixt[W A X(2)?
(X, X) [4M2(y 24 22)2 +8M2(y2+z2)2 d y? + 22 (2)

b0 ) (- WL LE ) PO + | XPO(e)

2y —1 Y >
s ) - X
8M?2(y? + 22) 2 y? + 22 (2)
X124 (X2)2 _ yly XI120(z X2 .
We now make use of our main identity (3.19) as well as (3.10]), and derive,

2X° X4 (

B — 2
(D12)2 + (Dgz) = DﬁZDﬁZ + O( ) Wj—) + 01(5).
Thus, using also D3z = O(g) and D4z = O(E) by Cauchy Schwartz,
X(2)? < ((Xx1)? 2)2) ((D12)* + (D22)?) 4+ O(E)
< (X <X2>2>B;22 e
- R
We deduce,
29 — 1
> 2 (= 2 34 _
E(X,X) > |X]?0()+ |X]°0O(c2) + 2X°X l8M2(y2+z2) u}

1,2 212 y(y?+ 2 —y) y(B - 2%)
t ) {M_ AM?(y? + 2°)? 4M2(y2+z2)2]’
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or,

2y — 1
> 1Y 120(= 2 3 y4 _
E(X,X) > |X|°O(E) + | X|"O(c2) + 2X°X {8M2(y2+22) ,u} o)

(P4 (0P [a- i

Since X (y) = X°D,y = |X|0(c2), it follows from @IH) that X*(Tl,) — X3(T°L,) =
| XO(Z) + | X|O(c2). On the other hand, according to (3:27),
*—y+B
T°L)(TL) = 222 4 0

() (L) = T 0
and therefore, in view of @24) and B < 1/4, (T°,)(TPl;) > ¢ = (A) > 0 (recall
r(p) < C). We infer that,

2X3X* > C7Y(X?)? + (XY))? — C2lX| — Cey| X|.

Thus the expression in ([£30) is bounded from below by cy| X |? if ¢, is sufficiently small
and the coefficients of ((X')%+ (X?)?) and 2X3X* are both positive, for a suitable choice
of p. This holds if and only if,

yy'—y+B) __ 2y—1

R+ 222 TRt 2y

Such a choice exists since,

2y—1  y—y+B) P21 +yly—2B) 5.
8M2(y? + 22)  AM?(y* + 22)? 8M?2(y? + 22)? - ’
This last inequality holds because B < 1/4, y > 1/2 + ¢1, and r(p) < C. O

5. CONSTRUCTION OF THE HAWKING KILLING VECTOR-FIELD K

In this section we construct a second Killing vector-field K in E U O, for some small
constant ¢ = ¢(A) € (0,¢p). The first step, the existence of K in a neighborhood of S,
was proved by the authors in [2]. We summarize first the main results in [2], see Theorem

1.1, Proposition 4.5, Proposition 5.1, and Proposition 5.2, in a suitable quantitative form.

Proposition 5.1. There is a neighborhood ' of the bifurcation sphere Sy, a constant

¢ =7¢(A) > 0 such that Oz C ', and a smooth vector-field K in @ such that K = ul—u L
on (HFUH)NQ,

Lxg =0, [T,K]=0, Klo,=0 nQ, (5.1)
and
g K K)<—¢(r—1?% onXn@. (5.2)
In addition, there is \g € R such that the vector-field
Z =T+ K
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has complete periodic orbits in @.

The inequality (5.2) follows from [2, Proposition 4.5] and (212). In this section we
extend K to the exterior region E. The main result is the following:

Theorem 5.2. The vector-field K constructed in Qs can be extended to a smooth vector-
field in the exterior region E such that

Lxkg=0, [T,K]=0, K'o,=0 inEUQ,. (5.3)

The rest of this section is concerned with the proof of Theorem 5.2l We construct the
vector-field K recursively, in increasingly larger regions defined in terms of the level sets
of the function y. We rely on Carleman estimates to prove, by an uniqueness argument
similar to that of [2], that the extended K remains Killing at every step in the process.
The initial step is, of course, that given by Proposition 5.1l

Recall the definitions (A1) and ([AI2), and the identity Ugr = Vg, see (4.I19). Using
the flow U, 1 associated to T and the assumption GR on the orbits of T, we define the
connected open space-time regions,

Er={peE yp) < R} =Uer¥:ixUr) CE, R >y. (5.4)

Clearly, E = Ug>,,Er. The main step in the proof of the theorem is the following:

Main Claim: For any R > y, there is a smooth vector-field K defined in the con-
nected open set Ex, which agrees with the vector-field K defined in Proposition 5] in a
neighborhood of U,, in E, such that

Lxkg =0, [T,K]=0, K'o,=0 inEpg. (5.5)

The Main Claim follows for R = yo from Proposition B.Il we define K in a small
neighborhood of U,, in E as in Proposition 5.1l and extend it to E,, by solving the
ordinary differential equation [T, K] = 0 (recall that T does not vanish in E). The
remaining identities in (5.5) hold on E,, since they hold in a small neighborhood of U,
in E and T is non-vanishing Killing vector-field.

Assume now that the Main Claim holds for some value Ry > y9. We would like to
prove the Main Claim for some value R = Ry + &', for some &' = §'(A, &) > 0. We will
use the results and the notation in section [l

Recall that y, z, 0 are smooth well-defined functions in E and y + iz = (1 —o)~!. As
in the proof of Lemma let Y* = D%y, which is a smooth vector-field in E. Using the
last identity in (5.5), K*Y, = 0 in Er,. We compute in Eg,

K,Y]; = K*D,Y; — Y*D, Kz = K°D;sD,y + D*yDsK, = Ds(K*D,y) = 0.

Thus
K, Y] =0 in Eg,. (5.6)
For R > yy and 0 > 0 small we define

Ds,r = Upessy, wr) Bs(p)-
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Clearly, for ¢ sufficiently small and R >
ErNQsr={p€Dsr:ylp) <R} (5.7)

The vector-field K is defined in Eg, N 657 Ry, by the induction hypothesis. We would like
to extend it to the full open set 657 R, as the solution of an ordinary differential equation
of the form [K,Y] = 0, where Y is a suitable vector-field in @57 Ro- We summarize this
construction in Lemma [5.3] below.

Lemma 5.3. There is a constant 65 = 03(A) > 0, a smooth vector-field Y = Y 0, in
@53730, Zi:o Y| <65t in @53730, and a smooth extension of the vector-field K (originally
defined in @5371%0 NEg,) to @53,30 such that

DY =0 [KY]=0 Y(y)>6  inQsn, (5.8)
Proof of Lemmali.3. For § sufficiently small we define
Ss.pe = {2 € D5y : y(x) = Ro}.

Clearly, s, (Ug,) C Ss.z,. Since y is a smooth function and D*yDay > C~' in 65730, the
set Ssr, is a smooth imbedded hypersurface. We define Y = Y on S g,, and extend Y
to an open set of the form @y g,, & < § by solving the geodesic equation DY = 0.

We first show that [K,Y] = 0 in Qs» g, N Eg,, 6" € (0,4']. Since K is tangent to Ss gy,
K(y) =0, and Y =Y we deduce that [K,Y]| = 0 along S5 g,. On the other hand, we
have in Oy g, N Eg, (where K is Killing),

Dy(ﬁK?) = EK(D7?) — D£K7? = _DEKVV‘

Thus, [K,Y] =0 in égw,RO NEg,, 0" € (0,¢']. We can now extend K to 653730, d3 < 6",
by solving the ordinary differential equation [K,Y] = 0. This completes the proof of the
lemma. 0

We prove now that the vector field K is indeed a Killing vector-field (and verifies the

other identities in (5.5))) in a small open set Qs g,. An argument of this type was used in [2]
Section 4]. For |¢| sufficiently small and py € o, (Ug,) we define, in a small neighborhood
of po, the map ¥, x obtained by flowing a parameter distance ¢ along the integral curves
of K. Let
gt = W:K(g) and T = \I]:K(T)

The tensor g is a smooth Lorentz metric that satisfies the Einstein vacuum equations,
and T? is a smooth Killing vector-field for g, in a small neighborhood of py and for |¢|
sufficiently small. In addition, since K is tangent to the hypersurface {y = Ry}, it follows
from the induction hypothesis that g = g and T! = T in a small neighborhood of pj
intersected with Ep,. In addition, using the second identity in (5.8]), with ¥, = ¥, k,
Ly — lim Vi Z WY g gy Lo~ YOY

dt =0 —h h—0 —h ) = —Vi(LxY) =0.
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Thus ¥;Y = Y and we infer that DY = 0 in a small neighborhood of p, for [¢|
sufficiently small, where D! denotes the covariant derivative with respect to g'. The main
step in proving the Main Claim is the following proposition:

Proposition 5.4. Assume py € 6x,(Ur,), g is a smooth Lorentz metric in Bs,(po),
ds € (0,93], such that (Bs,(po),g’) is a smooth Einstein vacuum spacetime, and T is a
smooth Killing vector-field for the metric g’ in Bs,(po). In addition, assume that

g/ =g and T =T m ERo N B(54 (po),
D’YY =0 in Bs,(po),

where D’ denotes the covariant derivative induced by the metric g'. Then g = g and
T' =T in Bs,(po) for some 05 € (0, d4].

Assuming the proposition and Lemma [5.5, which we prove below, we complete now the
proof of the Main Claim. It follows from Proposition 5.4 that K is a Killing vector-field
in Bj, (po), for any py € ds, (Ur,). In addition, since ¥} (T) = T for [¢| sufficiently small,
it follows that [T, K] = LxT = 0 in By, (po). Finally, in Bs,(po),

Og(K"0,) = K*D*D,0, = K'D,(D%,) = —Lx(F*) = 0,
(using UK = 0, DK is antisymmetric, Do is symmetric, D%, = —F?, see (2.15)), and
T(K"c,) = K(T(0)) =0.
Since K*o, = 0 in Bs,(po) N Eg, (the induction hypothesis), it follows from Lemma
below, with H = 0, that K*o, = 0 in Bs,(po), d6 € (0, 05].

To summarize, we proved that K extends to the open set @56, Ry = Upoegzl(uRo)B(SG (po),

8 = 06(A, &) > 0, as a smooth vector, and the identities in (5.5]) hold in this set. Using
the inclusion ([£.20), it follows that K is well defined and satisfies the identities (5.5 in
a small neighborhood of U, 52. Thus we can extend K to the region Eg 5, by solving
the ordinary differential equation [T, K] = 0. The Main Claim follows.

5.1. Proof of Proposition [5.4. We prove proposition £.4] following the same scheme as
in the proof of [2, Proposition 4.3]. We first fix some smooth frames vy, v(2), v(3), V1) = Y
and v'(1),v'(2),V'(3),v'(4y = Y in a small neighborhood By (py), such that, for a = 1,2, 3, 4,
Dyv(a) =0 and D’yv’(a) =0 in B5r (po);
V@ =V 0 Egr, N Bs(po).
The idea of the proof is to derive ODE’s for the differences dv = v' — v, dI' = T" — T,
dT'=T'— T and dF = F' — F, with source terms in dR = R’ — R. We combine these
ODE’s with an equation for Og (dR) and equation for T(dR). Finally, we prove uniqueness

of solutions of the resulting coupled system, see Lemma [5.5] using Carleman inequalities
as in [24], [25], [1], [2].
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As in the proof of |2, Proposition 4.3|, we define, for a,b,¢,d = 1,...4 and o, =
0,....3

(ﬂﬁww@-—r<mm» F'aoe) =8 V@), Dy, V') — 8(V(a), Do, v)
(0dT)a()@)(0) = Oal(dl')(a (bw]

(ﬂmuuc Rﬁ/ b V', V' (@) — R(V(@), v, V(o) Va));

(OdR)agarcy aa[<dR><a ) (5:9)
(dv) = v’(ﬁa) v(ﬁa) where v(,) = v(ﬁa)ﬁ and v'( ’6 08;

<adv>a(a Oal(dv)(yy)

As before, the coordinate frame 0y, ..., 03 is induced by the diffeomorphism ®;. Let
Ba)(b) = g(v(a),v(b)), gza)(b) = g’(v’(a),v’(b)). The identities Dyv(a) = D,?U,(a) = 0 show

that V(g(a)(b)) = V(gza)(b)) = 0. Since gy = gza)(b) in Eg, N By () it follows that
g(a)(b) = gEa)(b) = h(a)(b) and ?(h(a)(b)) =01in B(gn (po), (5.10)

for some constant 6" = §”(A,d) € (0,0']. Clearly, ')y = Diowa = 0. We use
g)w the definition of the Riemann curvature tensor to find a system of equations for
Y [(dL') @y@)(e))- We have
R(a o)(d) — g(v(a v(c)( v(d) ) Dv(d) (DU(C)U(b)) - D[U(c)vv(d)}v(b)>
= 8(0(a), Dy, (8" F((@@Uwﬂ%—g@w»Dw@@“mmTMMW@WmD
+ 8" T 0y ) (Comye)a) = Tomyay(e)
= v/ C@o)@) = 0@ @) + 8™ T e m Comew = Tmyae)

)
() — T my )0 000y (8™ ™))

+ 8@ [Lm)e)a) Ve (8
+ g™ (T )@ @me — L e D@m@)-

We set d =4 and use I'(q)p)1) = V(1) (g(“)(b)) =0 and g@® = p@®): the result is

Y (o)) = =™ ayeymTmiae — Ra@o)iew-
Similarly,

V(M oe) = =™ wmm K mwe — R @ee-
We subtract these two identities to derive

Eva d)(e
YD) woe)] = “Fame @D wew — [@R)woma (5.11)

for some smooth function (Y F. This can be written schematically in the form

Y (dl') = Moo (dD) + Mo (dR). (5.12)
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We will use such schematic equations for simplicity of notationJ. By differentiating (5.12]),
we also derive

Y (0dD') = Moo(dT) + Moo (0dT) + Moo (dR) + Mo (OdR). (5.13)
With the notation in (5.9), since [v(), ve)] = —Dy, v = —F(C)(4)(b)v(c), we have

« B o 8 o .
vy 0a(v) — vy 0a(v(y) = —T@@e vg,g“".

Simﬂaﬂy,
1Yo - (?j — - | B a)(c
’U( )8 ('U/(b)> 'U/(b) (’U( )) /( )( )(b)v/(c)g/( )( )

We subtract these two identities to conclude that, schematically,

Y (dv) = Moo (dD) + Moo (dv). (5.14)
By differentiating (5.14]) we also have
Y (0dv) = Moo (dT) + Moo (9dT) + Moo (dv) + Moo (9dv). (5.15)

We derive now a wave equation for dR. We start from the identity
(OeR) () 0)(0)@) — (B R) @ @))@) = Moo(dR),

which follows from the standard wave equations satisfied by R and R’ and the fact that
gm) — of (m)(n) — pm)(n) We also have

Dy Rym)@@ — D'om R @m0
= Moo(dv) + Moo (dD) + Mo (dR) + Moo (9dR).

It follows from the last two equations that

g™ W00 (Vo Riaymyo@) — 80 () (0 iy (R (@)@
= Moo(dv) + Moo (dl') + Moo (0dI") + Moo(dR)JrMoo(&dR).

Since g™ = g/™™ it follows that

g™ ) (V) (dR) @) ) 0)(@))
— Moo(dv) + Moo(adv) s Moo(dT) + Mo (9dT) + Moo(dR) + Mo (9dR).

Thus
Og(dR) = Moo(dv) + Mo (0dv) + Moo (dI') + Moo (0dL) + Mo (dR) + Mo (0dR). (5.16)

This is our main wave equation.

101y general, given H = (Hy, ... Hy) : Bsv(po) — RE we let Moo(H) : Bsw(po) — RE" denote vector-
valued functions of the form M (H), = Zlel Al H,, where the coefficients Al, are smooth on Bgs(po).
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(dl') = Moo (dl) + Moo (dR);
Adl) = Mo(dl) + Moo (0dT) + Moo (dR) + Moo (OdR);
dv) = Mg (dv) + Moo (dT);

J0dv) = My (dv) + Moo (0dv) + Moo (dT)
Og(dR) = Moo(dv) + Moo (0dv) + Moo (dl)

—~~

Mo (0dT);

Mao(9dT) + Moo(dR) + Mo (9dR).
(5.17)

_|_
_I_

This is our first main system of equations.
We derive now an additional system of this type, to exploit the existence of the Killing
vector-fields T and T'. For a,b=1,...,4 let

(dT) () = T'(a) —Tw =g (T, L{,) — (T, Lw);

/ / / (518)
(dF) e = F@e — Faoe =D'@T e —DwTe
Using the identities DU(4) @ = 0 and D’v(4) @) = 0 it follows that v (Te)) = Fla)p) and
v (T' @) = Flyygy- Thus
Y (dT) = My (dF). (5.19)

We also have, using again D, ,, v4) = 0,

U(4)
v (Faw) = D Fae = 89 ToRewme =" ToRewee-
Similarly,
v (F'@®) = hYOT @Rl
Thus, in our schematic notation,
Y (dF) = Moo(T) + Mo (R). (5.20)
Finally, we use the identities

0= (L1R)@m)©@ = T D Ro)@ + DT Rimywye@ + Doy T Raym)e) )

+ Do TR o)ty my@) + Dy T Reayvye)m)
and
0= (LoR)weow = T D mR ooea@ + D'wT "™ Rmoe
(m) (m)
+ D', TR @ + Do T ™R @@ m@ + D'@T" R @) em-
Thus

"D ()R oo — T D Rioa@ = Mec(dF) + Mu(dR),
which easily gives

T(dR) = Mo (dF) + Moo(dR) + Moo (dT) + Moo (dT) + Moo (dv). (5.21)
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We collect now equations (5.19), (5.20), and (5:21]), thus
Y (dT) = My (dF);
Y(dF) = Moo(dT) + Mo (dR): (5.22)
T(dR) = M (dF) + Moo (dl') + Moo (dT) + Moo(dL) + Moo (dR).

This is our second main system of differential equations. Since g’ = g and T = T in Eg,N
Bsi(po), the functions dI', 9dI', dv, ddv, dT,dF,dR vanish in Eg, N Bs(pg). Therefore,
using both systems (5.17) and (5.:22)), the lemma is a consequence of Lemma [5.5 below.

Lemma 5.5. Assume § > 0, py € 0x,(Ur,) and G;, H; : Bs(po) — R are smooth func-
tions, i = 1,...,1, j = 1,...,J. Let G = (Gy,...,Gy), H = (Hy,...,Hy), 0G =
(00Gh, - .., 04Gr) and assume that, in Bs(po),

G = MOO(G) + Moo(ﬁG) + My (H);
T(G) = Mwo(G) + Moo (H): (5.23)
V(H) = Meol G) + Mec(0G) + MeclH).

Assume that G =0 and H =0 in Bs(po) NEg, = {z € Bs(po) : y(x) < Ro}. Then G =0
and H = 0 in B;(po) for some 6 € (0,0) sufficiently small.

Unique continuation theorems of this type in the case H = 0 were proved by two of the
authors in [24] and [25], using Carleman estimates. It is not hard to adapt the proofs,
using the same Carleman estimates, to the general case. The essential ingredients are
the T-conditional pseudo-convexity property in Lemma and the inequality y(pg) >

(141 —4B)/2+ C~!, see [@24). We provide all the details below.

5.2. Proof of Lemmal5.5. We will use a Carleman estimate proved by two of the authors
in [24) Section 3], which we recall below. We may assume that the value of § in Lemma
is sufficiently small. For r < § let B, = B,(py) Notice that, if T = T%09,,Y = Y“o,
in the coordinate frame induced by the diffeomorphism ®; then

sup ZZ ([P T (2)| + |7 (z)|) < C = C(A). (5.24)

Definition 5.6. A family of weights he : Bao — Ry, € € (0,€1), 61 < & will be called
T-conditional pseudo-convex if for any e € (0, ¢€)

he(po) =€, sup ZGJ |0 he(z)| < e/er, | T(he)(po) < €, (5.25)

:BEB 10 -

Dah’s(pO)Dﬁh'E(pO)(DaheDﬁhe - EDaDﬁhe)(pO) 2 6%7 (526)
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and there is i € [—e; ', e;?] such that for all vectors X = X®0, at po
(X1 + (X7 + (X7)7 + (X7)?]

a vy -2 « 2 « 2 (527)
< X XP(ugap — DaDghe)(po) + € “(IX*Ta(po)|” + [X*Dahe(z0)|").
A function e, : Bao — R will be called a negligible perturbation if
sup |Pe(x)| < € forj=0,... 4. (5.28)

z€B 10
Our main Carleman estimate, see [24, Section 3], is the following:

Lemma 5.7. Assume ¢, < 6, {hetec(o,e) @5 a T-conditional pseudo-convex family, and
e is a negligible perturbation for any € € (0,€1]. Then there is € € (0,€1) sufficiently
small (depending only on €,) and C sufficiently large such that for any X > C and any
¢ € C°(Bew)

Mle™Megll 2 + [le™

where fo =1In(h. + e.).

0¢| |12 < Ol Ol 2 + € *lle M T(@) 12, (5.29)

We also need a Carleman inequality to exploit the last equation in (5.23)).

Lemma 5.8. Assume ¢ < ¢ is sufficiently small, e. is a negligible perturbation, and
he : Bao — R, satisfies

he(po) =€, sup Zejlajh <1, [Y(he)(po)| = e (5.30)

Z‘EB 10 j

Then there is C' sufficiently large such that for any X\ > C and any ¢ € C§°(Bewo)
le™<ll2 < 4(eN) 7 e MY (9)]] 2, (5.31)

where f. = In(h. + e.).

This inequality was proved in [2, Appendix A]. See also [23, Chapter 28] for much more
general Carleman inequalities under suitable pseudo-convexity conditions.
To prove Lemma 5.5 we set

he=y—y(p) +€¢ and e =e>NP, (5.32)

where N7 (x) = |®](x) — ®;'(po)|? is the square of the standard euclidean norm.

It is clear that e, is a negligible perturbation, in the sense of (5.28)), for € sufficiently
small. Also, it is clear that h. verifies the condition (5.30)), for e sufficiently small, see
Lemma [5.3]

We show now that there is €; = ¢;(9) sufficiently small such that the family of weights
{he}ec(o,e1) s T-conditional pseudo-convex, in the sense of Definition[5.6l Condition (5.25])
is clearly satisfied, since T(y) = 0. Condition is also satisfied for e sufficiently small
since D (po)Day(po) > C7L, see B26). To prove (B27) for some vector X we apply
Lemma A3 if | X T, |+ | X“Day| < eo| X|; if | X*To| 4+ | X*Day| > ]| X| then the second
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term in the right-hand side of (5.27) dominates the other terms, provided that e; is
sufficiently small.

It follows from the Carleman estimates in Lemmas[5.7land 5.8 that there is € = (5, A) >
0 and a constant C' = C(4, A) > 1 such that

Me e 2 + lle™ <[99 || 12 < O3 [le™Me Oggl| 12 + Clle T ()] 12;
Ui \ (5.33)
A2 le Mgl < CAT2 e MY (9)] 1,
for any ¢ € C3°(Bao(py)) and any A > C, where f. = In(hc+e.). Let n: R — [0, 1] denote

1]
a smooth function supported in [1/2,00) and equal to 1 in [3/4,00). For i = 1,...,1,
7 =1,...J we define,
Gi =G, (1—=n(N™/e?)) =G -7
Hy = H; - (1—-n(N®/e*)) = H; - 7.

Clearly, Gf, HS € Cg°(Beo(po)). We would like to apply the inequalities in (5.33) to the
functions G, H;, and then let A — oo.
Using the definition (5.34]), we have

D GE. = ﬁelj G; + QDQGiDa’?]E + GiDgﬁe;
T(G;) = 1T (G:) + T(7)Gy;
Y(Hf) =n.-Y(H;) + H; - Y(7.).

(5.34)

Using the Carleman inequalities (533)), for any i =1,...,I, 7 =1,...,J we have
A fle™MenGill e + [le™e - 0G| || 2
<OV 0G| 12 + Clle™ - BT (GY) | 2 (5.35)
+C' [l - DGz + lle™ - Gil|Dgie] + |07 12
and
AP leMe || 2 < CXTV2 e N Y (H,) || g2 + C'A V2 e e H|07 |2, (5.36)

for any A > C and some constant ¢’ = C'(A,C). Using the main identities (5.23), in
Bao(pg) we estimate pointwise

(=2 G|<MZ (|0Gi| + |Gi) +MZ|H I

=1

T(Gy)| < MZ |G| + MZ | H| (5.37)

Y'(H; \<MZ 0GI| +1Gil) +MZ\H k

=1
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for some large constant M. We add inequalities (5.35]) and (5.36]) over 7,j. The key
observation is that, in view of (5.37), the main terms in the right-hand sides of (£.35])
and (5.36) can be absorbed into the left-hand sides for A sufficiently large. Thus, for any
A sufficiently large,

I I J
M e MRGillre + > le ™Ml 0Gl2 + AV |le VR Hyl 2
i=1 i=1 j=1
J I
<C"Y e MeH |02 + €7 [lle M DaGiD |22 + le™™<Gi(|Tgiiel + 107 | 2]
=1 i=1
We obseve that the functions [g7. and 07, are supported in the set {z € Beio(py) : NP >
€20/2} and 7. = 1 in Baoo(pg). By assumption, the functions G;, |0G;|, H; are supported
in {x € Bs(po) : y(x) > y(po)}. In addition,
inf e Me> M sup e Me,
B_100 (po) {z€B 10 (p0):INP0>€20 /2 and y(z)>y(po)}
which follows easily from the definition (5.32)) We let now A — oo, as in [24, Section 8],
to conclude that 1p,,, G; = 0 and 15 ,,, H; = 0. The lemma follows.

6. CONSTRUCTION OF THE ROTATIONAL KILLING VECTOR-FIELD Z

In this section we extend the rotational Killing vector-field Z constructed in a small
neighborhood of Sy, see Proposition 5.1, to the entire exterior region E. In E U O; we
define

Z =T + K,
where \g is as in Proposition 5.1l Clearly Ay # 0, in view of the assumption GR that T
does not vanish in E, and Z does not vanish identically in E, since, by assumption SBS,
T does not vanish identically on Sp. It follows from (5.3) that

Lzg=0, [T,Z]=[K,Z]=0, Z'c,=0 inEUOQ, (6.1)
As in the proof of (5.6, it follows that
[Z,Y]=0 in EUQ;. (6.2)

In view of Proposition 5.1, there is ¢, > 0L such that ¥, z = Id in @'. Clearly
U,r(p) = Yer¥syz(p) = Vi zVsr(p) forany pe@zNE and seR, (6.3)

using the commutation relation [T, Z] = 0. It follows that Uy, z(p) = p for any p € E,,
recall definition (5.4)). To prove this identity for any point p € E, assume that

U,z(p) =p for any p € Eg,,

11Using the assumption that the orbits of T in E are complete and intersect X0, see assumption GR,
it is easy to see that any smooth vector-field V' in E U Oz which commutes with T and is tangent to
H* N Oz has complete orbits in E.
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for some Ry > yo. As before, it follows that W, z(p) = p for any p € Eg,. Using [Y,Z] =0
and an identity similar to (6.3), it follows that

U,z(p) =p for any p € Eg 4o,

for some ¢ = §'(A) > 0. To summarize, we proved:

Corollary 6.1. There is a nontrivial smooth vector-field Zi in EUQg, tangent to H™ N De
and H~ N D¢, and a real number tg > 0 such that

6.1. The time-like span of the two Killing fields. We define the area function

In this subsection we show that W > 0 in E. More precisely, we prove the following
slightly stronger proposition:

Proposition 6.2. The vector-field K constructed in Theorem[5.2 does not vanish at any
point in E. In addition, at any point p € E there is a timelike linear combination of the
vector-fields T and K.

Proof of Proposition[6.2. In view of (5.2)), K does not vanish at any point in U,,. It
follows that K does not vanish at any point in E,, since K is constructed as the solution
of [T,K|=01in E,,.

To prove that K does not vanish at any point p € E we use the identity [K,Y] =0 in

E, see (5.0]). Let

Ry = sup{R € [y, ) : K does not vanish at any point in Eg}.

If Ry < oo then K has to vanish at some point py € Js, (Ur,) (using the assumption that
any orbit of T in E intersects X1, and the observation that the set of points in E where
K vanishes can only be a union of orbits of T). Since [K,Y] = 0 in E, K vanishes on the
integral curve 7,,(t), |[t| < 1, of the vector-field Y starting at the point py. However, this
integral curve intersects the set Er for some R’ < Rj, in contradiction with the definition
of R;. Thus K does not vanish at any point in E.

We prove now the second part of the proposition. Let

N = {p € E: there is no timelike linear combination of T and K at p}.
Clearly, the set N is closed in E and consists of orbits of the vector-field T. In addition,
N CE\ E,,, since K itself is timelike in E,; (see (5.2))). In view of (£.24) and (£.13) we
have y > (1++/1—4B)/2+C;? in E\ E,,. On the other hand g(T, T) = y/(y*+2%) — 1,
hence 2> <y —y* = —(y> —y + B) + B in N. Consequently, for some constant C' =

C(A) > 1,
y>(1+V1—4B)/2+C' and B-z2>C"' inN, (6.4)
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Consider now the set of vector-fields T, K as well as the gradient vector-fields Y = D*yD,,,
Z =D*2D,, at some point p € N. Since T(c) = K(o) = 0 we have

g(T.Y)=g(T,Z2) =g(K,Y) =g(K, Z) =0.
In addition, using (3.26)), (3.18)), and (6.4)
gV.Y) 20 g(Z,2)2C7, |g(v.2)|<Ce N, (6.5)

for some constant C' = C(A). Since the metric g is Lorentzian, it follows that the vectors
T, K, Y, Z cannot be linearly independent at any point p € N (if they were linearly inde-
pendent then the determinant of the matrix formed by the coefficients g(T, T), g(T, K),
g(K,K) would have to be negative, in contradiction with p € N). Since the triplets
T,Y, Z and K, Y, Z are linearly independent it must follows that K, T are linearly depen-
dent at points of N. Thus

for any p € N there is a € R such that K, = aT, and g(T, T)|, > 0. (6.6)

We prove now that N = (). Assume that N # () and let py denote a point in N such
that y(po) = infyen y(p). Such a point exists since NN Xy C Xy, 45 5,12 (see (B.2)) is
compact (observe that T is timelike in X for large R). We may assume that py € N N3;.
In view of (6.0), there is ap € R such that K,, — agT,, = 0. We look at the integral
curve {7,,(t) : [t| < 1} of the vector field Y passing through py. Since [Y,K — ayT] =0
and Y, # 0, it follows that K = aT in the set v,,(?), |{| < 1. Since Y(y) = g(Y,Y) is

strictly positive at po (see (B3)), it follows that y(v,, () < y(po) if t € (=C~1,0). Since
y(po) = inf,en y(p) (the definition of py), it follows that
N O {o(t) £ € (~C1,0)} =0,
Since K = aoT in {7,,(t) : t € (=C~1,0)} it follows that g(T,T) < 0 in {y,,(t) : t €
(=C71,0)}. Using the formula g(T,T) = y/(y* + 2*) — 1, it follows that the function
y — y* — 2% vanishes at py and is strictly negative on {v,,(¢) : t € (—C~',0)}. Thus
Y(y—y*—2%)>0 at p.
On the other hand, using (6.5 and (6.4]),
DyD,(y — y* = 2°) = (1 = 2y)DYD,ay — 2:DYD,z < 0 at p,

provided that £ is sufficiently small. This provides a contradiction. O]

APPENDIX A. ASYMPTOTIC IDENTITIES

Recall, see assumption GR, that we assumed the existence of an open subset M(?)
of M which is diffeomorphic to R x ({z € R3 : |z| > R}) for some R sufficiently large.
In local coordinates {t,z'} defined by this diffeomorphism, we assume that T = 9; and,
with r = /(21)? + (22)? + ()2,

2M 257 gk

oo = —1+——+ O(r™), gy=20;+007"), gu= —€ijk— 5 T O(r=), (A1)
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for some M > 0, S*, 5%, 9% € R. Clearly,
g¥=-1+0@0"", g'=6;+00"", g"=007?). (A.2)
We compute
1
Fop = DoTps = 0u(gos) — (0o, Do, 05) = §(aag0ﬁ — 9580a)- (A.3)

Thus, using (AT, for j =1,2,3,

Foj = —(1/2)0;800 = Ma?r=> + O(r™?). (A4)
We have
gor = 2r*(S%" — §%2%) + O(r™?)
go> = 27 (S'a? = §%2h) + O(r ) (A5)
gos = 2r (%! — S'?) + O(r).
Thus
Fia = (1/2)(igoe — dagon) = S%r 7> = 3r7%2%(S'a! + S%? + §%%) + O(r™),

/
Fys = (1/2) (02803 — 03802) = S'r ™% = 3r 22! (S's! + % + 5%2%) + O(r™),  (A.6)
Fy1 = (1/2)(0s801 — Oi8os) = S%r™% = 3r22?(S'a! + S%2% + S%2%) + O(r ™).
We have
*Faﬁ = (1/2) Capuv Fpagupgua‘

Thus, using (A.2), (A.4), (A.6),

*F()l :F23+O(7’ ) :Sl -3 37’_5 1(511’1+52$2+53$3)+O(T_4),

"Fop = Fy +O(r™) —3r 2?9t + S%2? + S + O(r™Y),

*FOS _ F12 —I—O(’f’ ) — 3 51,3(511,1 + 521,2 + 531,3) +O(T_4),

*Frg=—Fu+0(r?) = —M£B3 B4 0(r?), (A7)
"Fa3 = —Fo +O(r™®) = O(r™?),
"Fa = —Fp+00r°) = O@r™?).
As a consequence,
F2 = (Fap+1 *Fop)(FP 4+ i *F%) = —4M*r~* 4 O(r™). (A.8)

By definition,
o, =2TYFou+ 1 Fqp).
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Thus
op = 0,
o =2Mz'r™ + O(r™*) + 20[S'r™" = 3r7°x! (82" + %2 + §°2°) + O(r™)]; A9
oy = 2M2*r? 4 O(r™3) + 2i[S*r ™3 — 3r°22(S'z! + S%2® + S%2°) + O(r™?)]; (8.9)
o3 = 2M2*r® 4+ O(r™3) + 2i[S3r =3 — 3r 523 (S'2! + S%2? + S%2°) + O(r™?)].
Thus
oc=1-2Mr' +0@r7?) +il2r3(S'a' + %22 + S*2%) + O(r™%))]. (A.10)
Thus
T 7 Stat 4+ 5% 4 S3a? .
y+iz=(1-o0) —2M+O(1)+Z[ e +O0(r )|,
which gives
r Stat + S5%% + 5323 .
= 1 = . A1l
Y=gz O, S o (A1)
Thus, with J = [(S1)? + (52)% + (5%)%]/2,
3
D,zD"z = (8;2)° + O(r?)
j=1
138
= 7 Z[Sjr_l —2lr3(Stet + S22 + P2+ O(r?)
j=1
= [J2r=2 —r4(St2t + S%2% 4+ S32*)Y + O(r?).
It follows that
1
22 +4M?*(y* + 2*)D,2DFz = W(Slxl + S22% 4+ SP2%)2r 7 4+ r°D,2DF 2 + O(r )
J? )
=ant O(r—).
(A.12)
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