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ON EMERGING SCARRED SURFACES FOR THE EINSTEIN VACUUM

EQUATIONS

SERGIU KLAINERMAN AND IGOR RODNIANSKI

1. introduction

This is a follow up on our work [K-R:trapped] in which we have presented a modified, simpler version
of the remarkable recent result of Christodoulou, see [Chr:book], on the formation of evolutionary
trapped surfaces in vacuum. The approach in [K-R:trapped], based on a different scaling1 than that
of [Chr:book], allowed us not only to reprove Christodoulou’s trapped surface result, but also enabled
us to localize with respect to small angular regions. This led us, in particular, to a simple result
concerning the formation of pre-scarred surfaces2. Both results were based on the proof of a semi-
global existence theorem which established the propagation of precise estimates, for both curvature
and Ricci coefficients, starting with non-trivial initial conditions on an outgoing null hypersurface.

In this paper we provide a considerable extension of our result on pre-scared surfaces to allow for
the formation of a surface with multiple pre-scared angular regions which, together, can cover an
arbitrarily large portion of the surface. In a forthcoming paper we plan to show that once a significant
part of the surface is pre-scared, it can be additionally deformed to produce a bona-fide trapped
surface. This result implies, in particular, that Christodoulou’s crucial uniform lower bound initial
condition necessary for the formation of a trapped surface can be relaxed to an average condition,
which requires only that the lower bound holds true only on a sufficiently large angular portion of
the initial outgoing null hyper-surface.

In this paper we state and discuss three related results.

(1) We state an optimal propagation result, critical with respect to the natural null scaling of Ein-
stein vacuum equations introduced in [K-R:trapped] (which dealt with the subcritical regime),
see theorem 1.14. In this paper, prompted, in part, by our interest on pre-scarred surfaces
and in part by reflecting on the scale transformation in the work of Reiterer and Trubowitz
[R-T], we note that the argument of the main propagation theorem in [K-R:trapped] proves

1991 Mathematics Subject Classification. 35J10

.
1The natural null, parabolic, scaling of the Einstein vacuum equations
2These are surfaces for which the outgoing expansion is negative in an open subset of the surface
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in fact a stronger, indeed optimal result. We are happy to acknowledge that a related result
is stated in theorem 8.1. of [R-T], in a different setting. We would like to thank Reiterer and
Trubowitz for drawing our attention and making an effort to explain its formulation to us.

(2) We state, see theorem 2.4, an angular localized version of the global energy estimates for the
null curvature components of theorem 1.14. The proof relies on a natural modification of the
proof in theorem 1.14 and is discussed in section 5.

(3) We give a large class of critical, sufficient conditions on the initial data, which lead to the
formation of pre-scarred surfaces. The main result is stated in theorem 2.8. The proof
rests on theorem 1.14 as well as on a localized version of the Ricci coefficient estimates in
[K-R:trapped]. As mentioned above, the importance of this result is due to the fact that once
a significant part of a surface is pre-scarred, it can be deformed to a real trapped surface.

Concerning the new propagation result stated in theorem 1.14, we note that the main new idea is to
use, in addition to the small parameter δ > 0, originating in the short pulse method of [Chr:book],
a new small parameter ǫ with δ1/2ǫ−1 sufficiently small. The parameter δ is used to define scale
invariant norms, similar to those we have introduced in [K-R:trapped] but with one important modi-
fication. In the main result of [K-R:trapped], for example, the scaling was such that all null curvature
components, except the component denoted by α, were bounded (in its scale invariant norms) . The
behavior (in the scale invariant norm) of the anomalous component α, on the other hand, was δ−1/2.
Here we choose the scaling with respect to δ such that the scale invariant norm of α is bounded, inde-
pendent of the second parameter ǫ, and the scale invariant norms of all other curvature components
are proportional to ǫ, i.e. small. All results in [K-R:trapped] correspond precisely to the case when
ǫ is chosen to be proportional to δ1/2. It is quite remarkable that the proof of the stronger propa-
gation result in theorem 1.14 is exactly the same as in [K-R:trapped]. This is surprising, especially

considering that the initial data in theorem 1.14 is allowed to be δ−
1
2 ǫ times bigger3 than that in

[K-R:trapped] (as measured in absolute, unscaled norms). In [K-R:trapped] nonlinear non-anomalous
interactions were controlled by the scale invariant Hölder estimates

‖ψ · φ‖Lp

(ṡc)
. δ

1
2‖ψ‖Lr

(ṡc)
‖φ‖Lq

(ṡc)
,

1

r
+

1

q
=

1

p
.

In this work the new critical scaling does not generate a small factor of δ
1
2 in such interactions.

Instead we have

‖ψ · φ‖Lp

(sc)
. ‖ψ‖Lr

(sc)
‖φ‖Lq

(sc)
,

1

r
+

1

q
=

1

p
.

For non-anomalous ψ and φ the scale invariant norms on the right hand side are both of size ǫ and
so is the expected value of the left hand side norm. This analysis indicates that with the new scaling
the factor δ

1
2 of quadratic interactions is effectively replaced by the independent small parameter ǫ.

3More precisely all components of the curvature tensor , except α, are δ−
1

2 ǫ times bigger. The α component behaves
exactly the same as in [K-R:trapped].
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In the result on the formation of a pre-scarred surface we describe a set of initial data which lead
to a space-time with a surface containing approximately δ−

1
2 q angular regions of size δ

1
2 q−1, each of

which is pre-trapped for some sufficiently small parameter q.

We start by recalling the framework of double null foliations in which the results of both [Chr:book]
and [K-R:trapped] are formulated.

1.1. Double null foliations. We consider a region D = D(u∗, u∗) of a vacuum spacetime (M, g)
spanned by a double null foliation generated by the optical functions (u, u) increasing towards the
future, 0 ≤ u ≤ u∗ and 0 ≤ u ≤ u∗. We denote by Hu the outgoing null hypersurfaces generated by
the level surfaces of u and by Hu the incoming null hypersurfaces generated level hypersurfaces of u.

We write Su,u = Hu ∩Hu and denote by H
(u1,u2)
u , and H(u1,u2)

u the regions of these null hypersurfaces
defined by u1 ≤ u ≤ u2 and respectively u1 ≤ u ≤ u2. Let L, L be the geodesic vectorfields associated
to the two foliations and define the null lapse Ω and connection, or Ricci, coefficients, χ, ω, η, η, χ, ω,

1

2
Ω2 = −g(L, L)−1 (1)

χab = g(Dae4, eb), χ
ab

= g(Dae3, eb),

ηa = −
1

2
g(D3ea, e4), η

a
= −

1

2
g(D4ea, e3)

ω = −
1

4
g(D4e3, e4), ω = −

1

4
g(D3e4, e3)

(2)

where e3 = ΩL, e4 = ΩL and Da = De(a). As usual we decompose the null second fundamental forms
χ, χ into their traceless parts χ̂, χ̂ and traceless parts, or expansions, trχ, trχ. We also introduce the
null curvature components,

αab = R(ea, e4, eb, e4), αab = R(ea, e3, eb, e3),

βa =
1

2
R(ea, e4, e3, e4), β

a
=

1

2
R(ea, e3, e3, e4),

ρ =
1

4
R(Le4, e3, e4, e3), σ =

1

4
∗R(e4, e3, e4, e3)

(3)

Here ∗R denotes the Hodge dual of R. We denote by ∇ the induced covariant derivative operator
on S(u, u) and by ∇3, ∇4 the projections to S(u, u) of the covariant derivatives D3, D4. We note
the formulas,

ω = −
1

2
∇4(log Ω), ω = −

1

2
∇3(log Ω), η + η = 2∇(log Ω) (4)

We recall also the formula for the Gauss curvature K of S(u, u),

K = −ρ+
1

2
χ̂ · χ̂ −

1

4
trχ · trχ (5)
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As well known, our space-time slab D(u∗, u∗) is completely determined (for small values of u∗, u∗) by
specifying, freely, the traceless parts of the null second fundamental forms χ̂, respectively χ̂ , along the
null, characteristic, hypersurfaces H0, respectively H0, corresponding to u = 0, respectively u = 0,
and prescribing trχ together with trχ on S(0, 0). Following [Chr:book] we assume that our data is
trivial along H0, i.e. assume that H0 extends for u < 0 and the spacetime (M, g) is Minkowskian for
u < 0 and all values of u ≥ 0. Moreover we can construct our double null foliation such that Ω = 1
along H0, i.e.,

Ω(0, u) = 1, 0 ≤ u ≤ u∗. (6)

We also introduce the notation,

t̃rχ = trχ− trχ
0
, trχ

0
= −

4

u− u+ 2r0
(7)

where trχ
0
is the flat value of trχ along the initial hypersurface H0. We denote by γ the induced

metric on the surfaces S(u, u) of intersection between Hu and Hu. A space-time tensor tangent to
S(u, u) is called an S− tensor, or horizontal tensor.

We define systems of, local, transported coordinates along the null hypersurfaces H and H . Starting
with a local coordinate system θ = (θ1, θ2) on U ⊂ S(u, 0) ⊂ Hu, we parametrize any point along the
null geodesics starting in U by the the corresponding coordinate θ and affine parameter u. Similarly,
starting with a local coordinate system θ = (θ1, θ2) on V ⊂ S(0, u) ⊂ Hu we parametrize any point
along the null geodesics starting in V by the the corresponding coordinate θ and affine parameter u.

1.2. Signature. To every null curvature component α, β, ρ, σ, β, α, null Ricci coefficients components
χ, ζ, η, η, ω, ω, and metric γ we assign a signature according to the following rule:

sgn(φ) = 1 ·N4(φ) +
1

2
·Na(φ) + 0 ·N3(φ)− 1 (8)

where N4(φ), N3(φ), Na(φ) denote the number of times e4, respectively e3 and (ea)a=1,2, which appears
in the definition of φ. Thus,

sgn(α) = 2, sgn(β) = 1 + 1/2, sgn(ρ, σ) = 1, sgn(β) = 1/2, sgn(α) = 0.

Also,

sgn(χ) = sgn(ω) = 1, sgn(ζ, η, η) = 1/2, sgn(χ) = sgn(ω) = sgn(γ) = 0.

Consistent with this definition we have, for any given null component φ,

sgn(∇4φ) = 1 + sgn(φ), sgn(∇φ) =
1

2
+ sgn(φ), sgn(∇3φ) = sgn(φ).

Also, based on our convention,

sgn(φ1 · φ2) = sgn(φ1) + sgn(φ2). (9)
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1.3. Main equations. As in [K-R:trapped] we denote all Ricci coefficients {χ, ω, η, η, t̃rχ, χ̂ , ω} by

ψ(s), with s the signature of the specific component. We further differentiate between the components

ψ
(s)
4 ∈ {χ, η, ω}, which verify transport equations in the e4 direction, and ψ

(s)
3 ∈ {ω, η, t̃rχ, χ̂ } which

verify transport equations in the e3 direction. We denote by Ψ(s) the null curvature components of
signature s. With these notation the null structure equations, see precise equations in section 3 of
[K-R:trapped], take the form,

∇4ψ
(s)
4 =

∑

s1+s2=s+1

ψ(s1) · ψ(s2) +Ψ(s+1) (10)

∇3ψ
(s)
3 = trχ

0
· ψ

(s)
3 +

∑

s1+s2=s

ψ(s1) · ψ(s2) +Ψ(s) (11)

Similarly we write the null Bianchi identities in the from,

∇4Ψ
(s)
4 = ∇Ψ(s+ 1

2
) +

∑

s1+s2=s+1

ψ(s1) ·Ψ(s2) (12)

∇3Ψ
(s)
3 = ∇Ψ(s− 1

2
) +

∑

s1+s2=s

ψ(s1) ·Ψ(s2) (13)

where Ψ4 ∈ {α, β, ρ, σ} and Ψ3 ∈ {β, ρ, σ, β, α}.

1.4. Scale invariant norms. For any horizontal tensor-field ψ with signature sgn(ψ) we define the

following scale invariant norms along the null hypersurfaces H = H
(0,δ)
u and H = H(0,1)

u .

‖ψ‖L2
(sc)

(H) = δsgn(ψ)−1‖ψ‖L2(H), ‖ψ‖L2
(sc)

(H) = δsgn(ψ)−
1
2‖ψ‖L2(H) (14)

We also define the scale invariant norms on the 2 surfaces S = Su,u,

‖ψ‖Lp

(sc)
(S) = δsgn(ψ)−

1
p‖ψ‖Lp(S) (15)

We have,

‖ψ‖2
L2
(sc)

(H
(0,u)
u )

= δ−1

∫ u

0

‖ψ‖2L2
(sc)

(u,u′)du
′, ‖ψ‖2

L2
(sc)

(H
(0,u)
u )

=

∫ u

0

‖ψ‖2L2
(sc)

(u′,u)du
′ (16)

We denote the scale invariant L∞ norm in D by ‖ψ‖L∞

(sc)
.

Remark 1.5. These norms correspond to a different scaling than that introduced in [K-R:trapped].
Indeed in [K-R:trapped] the scale invariant norms were based on the definition of the scale of an
horizontal component of scale sc(ψ) = −sgn(ψ) + 1

2
. The norms introduced here would correspond

to a new definition of scale give by sc(ψ) = −sgn(ψ). To distinguish between them we denote the
old scaling by ṡc. Thus, for example,

‖ψ‖Lp

(sc)
(S) = δ−1/2‖ψ‖Lp

(ṡc)
(S)
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Remark 1.6. With the new scale invariant norms introduced here we have,

‖ψ1 · ψ2‖L2
(sc)

(S) . ‖ψ1‖L∞

(sc)
(S) · ‖ψ2‖L2

(sc)
(S) (17)

or,

‖ψ1 · ψ2‖L2
(sc)

(H) . ‖ψ1‖L∞

(sc)
(H) · ‖ψ2‖L2

(sc)
(H) (18)

These differ from the situation in [K-R:trapped] where the corresponding estimates (with (sc) replaced
by (ṡc)) had an additional power of δ1/2 on the right.

Curvature norms. We introduce our main curvature norms

R0(u, u) : = ‖α‖
L2
(sc)

(H
(0,u)
u )

+R′
0(u, u

′)

R′
0(u, u

′) : = ǫ−1‖(β, ρ, σ, β,K)‖
L2
(sc)

(H
(0,u)
u )

R1(u, u) : = ‖∇4α‖L2
(sc)

(H
(0,u)
u )

+R′
1(u, u)

R′
1(u, u) : = ǫ−1‖∇(α, β, ρ, σ, β,K)‖

L2
(sc)

(H
(0,u))
u )

R0(u, u) : = ‖β‖
L2
(sc)

(H
(u,0)
u )

+R′
0(u, u

′)

R′
0(u, u) = ǫ−1‖(ρ, σ, β, α,K)‖

L2
(sc)

(H
(0,u)
u )

R1(u, u) : = ‖∇3α‖L2
(sc)

(H
(u,0)
u )

+R′
1(u, u)

R′
1(u, u) : = ǫ−1‖∇(β, ρ, σ, β, α,K)‖

L2
(sc)

(H
(0,u)
u )

(19)

Also,

R = R0 +R1, R = R0 +R1 (20)

Remark 1.7. We have included the Gauss curvature K with the null components. Since K =
−ρ+ 1

2
χ̂ · χ̂ − 1

4
trχtrχ we easily deduce that,

ǫ−1‖K‖
L2
(sc)

(H
(0,u)
u )

. ǫ−1‖ρ‖
L2
(sc)

(H
(0,u)
u )

+
(
1 + (ǫ−2δ)

1
2

)
(S)O0,∞

(S)O0,2.

Remark 1.8. All curvature norms above have a factor of ǫ−1 in front of them except for ‖α‖
L2
(sc)

(H
(0,u)
u )

,

‖∇4α‖L2
(sc)

(H
(0,u)
u )

and ‖β‖
L2
(sc)

(H
(u,0)
u )

. These correspond exactly to the anomalous curvature norms of

[K-R:trapped].

To rectify the anomaly of α we introduce, as in [K-R:trapped], an additional scale-invariant norm,

R
(ǫ)
0 [α](u, u) := sup

(ǫ)H⊂H

ǫ−1‖α‖L2
(sc)

((ǫ)H),



TRAPPED SURFACES 7

where (ǫ)H is a piece of the hypersurface H = H
(0,δ)
u obtained by evolving an angular disc Sǫ ⊂ Su,0

of radius ǫ relative to our transported coordinates. We define the initial quantity R(0) by,

R(0) = sup
0≤u≤δ

(
R(0, u) +R

(ǫ)
0 [α](0, u)

)
(21)

1.9. Connection coefficients norms. We introduce the Ricci coefficient norms, with the supre-
mum taken over all surfaces S = S(u′, u′), 0 ≤ u′ ≤ u, 0 ≤ u′ ≤ u,

(S)O0,∞(u, u) = ǫ−1 sup
S

‖(χ̂, ω, η, η, t̃rχ, χ̂ , ω)‖L∞

(sc)
(S)

(S)O0,2(u, u) = sup
S

(
‖χ̂‖L2

(sc)
(S) + ‖χ̂ ‖L2

(sc)
(S)

)
+ (S)O′

0,2(u, u)

(S)O′
0,2(u, u) = ǫ−1 sup

S
‖(trχ, ω, η, η, t̃rχ, ω)‖L2

(sc)
(S)

(S)O0,4(u, u) = ǫ−1/2 sup
S

(
‖χ̂‖L4

(sc)
(S) + ‖χ̂ ‖L4

(sc)
(S)

)
+ (S)O′

0,4(u, u)

(S)O′
0,4(u, u) = ǫ−1 sup

S
‖(trχ, ω, η, η, t̃rχ, ω)‖L4

(sc)
(S)

(S)O1,4(u, u) = ǫ−1 sup
S

‖∇(χ, ω, η, η, t̃rχ, χ̂ , ω)‖L4
(sc)

(S)

(S)O1,2(u, u) = ǫ−1 sup
S

‖∇(χ, ω, η, η, t̃rχ, χ̂ , ω)‖L2
(sc)

(S)

(H)O(u, u) = ǫ−1‖∇2(χ, ω, η, η, t̃rχ, χ̂ , ω)‖
L2
(sc)

(H
(0,u)
u )

(22)

and,

O = (S)O0,2 +
(S)O0,4 +

(S)O0,∞ + (S)O1.4 +
(H)O (23)

Remark 1.10. Note that the only norms which do not contain powers of ǫ−1 are the L2
(sc)(S) norms

of χ̂ and χ̂ . This anomaly is also manifest in the L4
(sc)(S) norms of the same quantities. These are

precisely the same quantities which were anomalous in [K-R:trapped], with respect to the ṡc scaling.

To cure the above anomaly we define the auxiliary norms,

(S)O
(ǫ)
0,4(u, u) = ǫ−1 sup

S
sup
Sǫ⊂S

‖(χ̂, χ̂ )‖L4
(sc)

(Sǫ)

with Sǫ - an angular subset of S of size ǫ relative to our transported coordinates.

Finally we define the initial data quantity:

O(0) = sup
0≤u≤δ

(
O(0, u) + (S)O

(ǫ)
0,4(0, u)

)
(24)
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1.11. Initial conditions. Define the main initial data quantity,

I(0)(u) =
∑

0≤k≤2

‖∇k
4χ̂0‖L2

(sc)
(0,u)

+ ǫ−1

(
‖χ̂0‖L∞

(sc)
(0,u) +

∑

0≤k≤1

∑

1≤m≤4

‖∇m−1∇k
4 ∇χ̂0‖L2

(sc)
(0,u)

) (25)

or, in the natural norms,

I(0)(u) =
∑

0≤k≤2

δk+1/2‖∇k
4χ̂0‖L2(0,u)

+ǫ−1

(
δ‖χ̂0‖L∞(0,u) +

∑

0≤k≤1

∑

1≤m≤4

δ
m+1

2
+k‖∇m−1∇k

4 ∇χ̂0‖L2(0,u)

)

1.12. Main propagation result. The first result establishes the boundedness of the initial curva-
ture and Ricci coefficent scale invariant norms R(0), O(0) in terms of I(0).

Proposition 1.13. Assume that the initial data along H0 is flat and that I(0) < ∞ along H
(0,δ)
0 .

Then, for δ1/2ǫ−1 and ǫ > 0 sufficiently small we have, with C a fixed super-linear polynomial

R(0) +O(0) . I(0) + C(I(0)) (26)

Also, starting with R(0) < ∞ and δ1/2ǫ−1, ǫ sufficiently small, we have, with C a fixed super-linear
polynomial,

O(0) . R(0) + C(R(0)) (27)

We can now state our main propagation result.

Theorem 1.14 (Main Theorem I). Under the assumption R(0) <∞, if δ1/2ǫ−1 and ǫ are sufficiently
small then, for 0 ≤ u ≤ 1, 0 ≤ u ≤ δ, with C a fixed super-linear polynomial,

(R+R+O)(u, u) . R(0) + C(R0)

Remark 1. The results presented extends all the results of [K-R:trapped]. Indeed, to derive
the results of propositions 2.5, theorems 2.6, and 2.7 there, it suffices to choose ǫ = µδ1/2 with µ
sufficiently small.

Remark 2. The additional smallness assumption on δ1/2ǫ−1 is due to the lower order terms which
appear in some of the calculus inequalities presented in the next section.

In the remaining part of this section we introduce norms for the deformation tensors of the geodesic
null generators L, L and rotation vectorfields O and give a short sketch of the proof of theorem 1.14.
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1.15. Deformation tensors norms for L, L. If π is the deformation tensor of either L or L we
denote by π(s) its null component of of signature s. We now introduce the norms for (L)π and (L)π
as follows,

Π0 = Π0,4 +Π0,∞, Π0 = Π0,4 +Π0,∞ (28)

with,

Π0,4 = ǫ−1
∑

s∈{0, 1
2
}

‖ (L)π(s)‖L4
(sc)

(S) + ǫ−
1
2‖ (L)π(1)‖L4

(sc)
(S),

Π0,∞ = ǫ−1
∑

s∈{0, 1
2
,1}

‖ (L)π(s)‖L∞

(sc)
(S),

Π0,4 = ǫ−1
∑

s∈{ 1
2
,1}

‖ (L)π(s)‖L4
(sc)

(S) + ǫ−
1
2‖ (L)π(0)‖L4

(sc)
(S),

Π0,∞ = ǫ−1
∑

s∈{0, 1
2
,1}

‖ (L)π(s)‖L∞

(sc)
(S)

(29)

We introduce also the first derivative norms,

Π1 = ‖∇4
(L)π(0)‖L4

(sc)
(S) +

∑

s∈{ 1
2
,1}

ǫ−1‖∇̄ (L)π(s)‖L4
(sc)

(S),

Π1 = ‖∇4
(L)π(0)‖L4

(sc)
(S) + ‖∇3

(L)π(0)‖L4
(sc)

(S)

+ ǫ−1‖∇̄ (L)π( 1
2
)‖L4

(sc)
(S) + ǫ−1‖(∇,∇3)

(L)π(1)‖L4
(sc)

(S),

(30)

We also set,

Π = Π0 +Π1, Π = Π0 +Π1

1.16. Deformation tensor norms for O. We recall the rotation vectorfields (i)O obeying the
commutation relations

[(i)O,(j)O] =∈ijk
(k)O,

were defined, see section 13 in [K-R:trapped], by parallel transport starting with the standard rotation
vectorfields on S

2 = Su,0 ⊂ Hu,0 along the integral curves of e4. Suppressing the index (i) we have,

∇4Ob = χbcOc. (31)

The only non-trivial components of the deformation tensor παβ = 1
2
(∇αOβ+∇βOα) are given below:

π34 = −2(η + η)aOa,

πab =
1

2
(∇aOb +∇bOa) =

1

2
(Hab +Hba),

π3a =
1

2
(∇3Oa − χ

ab
Ob) :=

1

2
Za.
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The quantities, H and Z can be assigned signature and scaling, (consistent with those for the Ricci
coefficients and curvature components) according to.

sgn(H) = 0, sgn(Z) = −
1

2
. (32)

Similarly, assigning signatures to all other components of (O)π , we introduce the norms,

(O)Π0 = ǫ−1‖ (O)π ‖L4
(sc)

(S) + ǫ−1‖ (O)π ‖L∞

(sc)
(S),

(O)Π1 =
∑

(µ,s)6=(3,0)

ǫ−1‖Dµ
(O)π (s)‖L4

(sc)
(S)

+ ǫ−1‖D3
(O)π (0) −∇3Z‖L4

(sc)
(S) + ǫ−1‖ sup

u
|∇3Z|‖L2

(sc)
(S),

(33)

1.17. Proof of Main Theorem I. To prove the theorem we start by making a bootstrap assumption
on the Ricci coefficient norm O. More precisely we assume that,

O . ∆0 (34)

Based on this assumption we state various preliminary estimates in section 3, which are simple
adaptation of results proved in [K-R:trapped]. It is interesting to remark that this is the only place
when we need to make a restriction for the size of δ1/2ǫ−1. Using these preliminary estimates we then
indicate how, by a simple adjustment of the curvature estimates in [K-R:trapped] we can prove, see
section 4, the following.

Theorem 1.18 (Theorem A). There exists a positive constant a > 1
8
such that, for δ1/2ǫ−1 and ǫ

sufficiently small,

R(u, u) +R(u, u) . R(0) + Cǫa(R+R) (35)

with C = C(Π,Π, (O)Π,R,R).

Next we rely on a theorem which bounds the norms Π,Π and (O)Π, for the deformation tensors of
L, L and O, to the Ricci coefficients norms O.

Theorem 1.19 (Theorem B). Under the assumptions δ1/2ǫ−1 and ǫ sufficiently small we have,

Π+ Π+ (O)Π . C(O,R,R) (36)

Finally we state the theorem which relates the norms O to the curvature norms R,R.

Theorem 1.20 (Theorem C). Under the assumptions δ1/2ǫ−1 and ǫ sufficiently small we have, with
a constant C = C(O(0),R,R),

O . C(O(0),R,R) (37)



TRAPPED SURFACES 11

Combining theorems B and C with theorem A we deduce, under the bootstrap assumption 34,

R(u, u) +R(u, u) . R(0) + ǫaC(R,R)(R+R),

from which, for ǫ sufficiently small,

R(u, u) +R(u, u) . R(0). (38)

Thus, back to (37) and using also proposition 1.13,

O . C(R(0))

which allows us to remove the bootstrap assumption and confirm the result of the main theorem I.

2. Formation of pre-scars

Relying on the results of theorem 1.14 we prove a new result concerning the formation of pre-scars.
Throughout this section we assume that the assumptions and conclusions of theorem 1.14 hold true.

2.1. Local scale invariant norms. Consider a partition of S0 = S(0, 0) into angular sectors Λ
of a given size |Λ|. Let ( Λ)f(0) be a partition of unity associated to this partition, They can be
extend trivially, first along H0 and then along each Hu, to be constant along the corresponding null
generators. In particular we have,

∇L
( Λ)f = 0, ( Λ)f |H0

= ( Λ)f(0) (39)

Then, under the assumptions and conclusions of theorem 1.14 we can easily deduce,

Lemma 2.2. We have,

∑

Λ

(Λ)f = 1 (40)

Also,

|∇ ( Λ)f |L∞ . |Λ|−1, |∇L
( Λ)f |L∞ . ǫδ1/2|Λ|−1 (41)

or, in scale invariant norms (assigning to f signature 0),

|∇ ( Λ)f |L∞

(sc)
. δ1/2|Λ|−1, |∇L

( Λ)f |L∞

(sc)
. ǫδ1/2|Λ|−1
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We now introduce the localized curvature norms,
(Λ)R0(u, u) : = ‖ (Λ)fα‖

L2
(sc)

(H
(0,u)
u )

+ (Λ)R′
0(u, u

′)

(Λ)R′
0(u, u) : = ǫ−1‖ ( Λ)f(β, ρ, σ, β,K)‖

L2
(sc)

(H
(0,u)
u )

(Λ)R1(u, u) : = ‖ (Λ)f∇4α‖L2
(sc)

(H
(0,u)
u )

+ (Λ)R′
1(u, u)

(Λ)R′
1(u, u) : = ǫ−1‖ ( Λ)f∇(α, β, ρ, σ, β,K)‖

L2
(sc)

(H
(0,u))
u )

(Λ)R0(u, u) : = ‖ (Λ)fβ‖
L2
(sc)

(H
(u,0)
u )

+R′
0(u, u

′)

(Λ)R′
0(u, u) = ǫ−1‖ ( Λ)f(ρ, σ, β, α,K)‖

L2
(sc)

(H
(0,u)
u )

(Λ)R1(u, u) : = ‖ (Λ)f∇3α‖L2
(sc)

(H
(u,0)
u )

+R′
1(u, u)

R′
1(u, u) : = ǫ−1‖ ( Λ)f∇(β, ρ, σ, β, α,K)‖

L2
(sc)

(H
(0,u)
u )

(42)

and,
[Λ]R0(u, u) : = sup

Λ

(Λ)R0,
[Λ]R1(u, u) := sup

Λ

(Λ)R1

[Λ]R0(u, u) : = sup
Λ

(Λ)R0,
[Λ]R1(u, u) := sup

Λ

(Λ)R1

(43)

with the supremum taken with respect to all elements of the partition. and,
[Λ]R = [Λ]R0 +

[Λ]R1,
[Λ]R = [Λ]R0 +

[Λ]R1 (44)

2.3. Angular localized curvature estimates. Using a variation of our main energy estimates,
with an additional angular localization, we can prove the following.

Theorem 2.4. Under the assumptions and conclusions of theorem 1.14, if in addition δ
1
2 |Λ|−1 is

sufficiently small, then, for 0 ≤ u ≤ 1, 0 ≤ u ≤ δ,

( [Λ]R+ [Λ]R)(u, u) . [Λ]R(0)

Moreover,

( (Λ)R+ (Λ)R)(u, u) . (Λ)R(0) + δ
1
2 |Λ|−1 [Λ]R(0) (45)

Remark 2.5. By the standard domain of dependence argument the energy estimate can not fully
localized to individual sectors (Λ)Hu and (Λ)Hu contained in the support of the function (Λ)f . This

explains the need for the supremum in Λ in the definition of the [Λ]R, [Λ]R norms for the first part
of the theorem. The second part of the theorem gives a bound for each sector individual Λ with the
second term on the right hand side of (45) accounting for the defect of localization.

A proof of the theorem is sketched in section 5.
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2.6. Emerging scars.

Definition 2.7. We say that the data R(0) is uniformly distributed on the scale δ
1
2̟−1 if there exists

a partition {Λ} such that |Λ| ≈ δ
1
2̟−1 and

[Λ]R(0) . δ
1
2̟−1R(0) (46)

Our second main result of this paper is the following.

Theorem 2.8 (Main theorem II). Assume that, in additions to the conditions of validity of theorem

1.14, the data R(0) is uniformly distributed on the scale δ
1
2̟−1 for some constant ̟ << 1 and ǫ̟−1

sufficiently small. Let Λ be a fixed angular sector of size |Λ| = q−1δ
1
2 with q = ǫ̟−1 sufficiently

small. Then, if

inf
θ∈Λ

∫ δ

0

|χ̂0|
2(u, θ)du >

2(r0 − u)

r20
(47)

the Λ-angular section (Λ)Su,δ of the surface Su,δ must be trapped, i.e. trχ < 0 there.

Alternatively, if for some constant c > 0 independent of δ, ǫ, q, ̟,

sup
θ∈Λ

∫ δ

0

|χ̂0|
2(u, θ)du <

2(r0 − u)

r20
− c (48)

then trχ > 0 throughout the angular sector (Λ)Su,δ.

We postpone a discussion of the proof of this theorem to the last section of the paper.

Remark 2.9. Observe that the parameters δ, ǫ, ̟ in theorem 2.8 verify the conditions:

0 < δ1/2 < ǫ < ̟ < 1, δ1/2ǫ−1 << 1, q = ǫ̟−1 << 1.

3. Preliminary estimates

3.1. Transported coordinates. As mentioned in the previous section we define systems of, local,
transported coordinates along the null hypersurfaces H and H. Staring with a local coordinate
system θ = (θ1, θ2) on U ⊂ S(u, 0) ⊂ Hu we parametrize any point along the null geodesics starting
in U by the the corresponding coordinate θ and affine parameter u. Similarly, starting with a local
coordinate system θ = (θ1, θ2) on V ⊂ S(0, u) ⊂ Hu we parametrize any point along the null
geodesics starting in V by the the corresponding coordinate θ and affine parameter u. We denote
the respective metric components by γab and γab.

Proposition 3.2. Let γ0ab denote the standard metric on S
2. Then, for any 0 ≤ u ≤ 1 and 0 ≤ u ≤ δ

and sufficiently small δ
1
2∆0
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|γab − γ0ab| ≤ δ
1
2∆0, |γ

ab
− γ0ab| ≤ δ

1
2∆0.

The Christoffel symbols Γabc and Γab, obey the scale invariant estimates4

‖Γabc‖L2
(sc)

(S) . ǫ (S)O[1], ‖∂dΓabc‖L2
(sc)

(S) . ǫ (S)O[2], (49)

‖Γabc‖L2
(sc)

(S) . ǫ (S)O[1], ‖∂dΓabc‖L2
(sc)

(S) . ǫ (S)O[2], (50)

The proof is a trivial adaptation of proposition 4.6 in [K-R:trapped].

3.3. Calculus inequalities. We simply adapt here the results of section 4.9 in [K-R:trapped].

Proposition 3.4. Let S = Su,u and let Sǫ ⊂ S denote a disk of radius ǫ relative to either θ or θ
coordinate system. Then for any horizontal tensor φ and any p > 2

‖φ‖L4
(sc)

(S) . ‖ψ‖
1
2

L2
(sc)

(S)
‖∇φ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖φ‖L2

(sc)
(S), (51)

‖φ‖L∞

(sc)
(S) . ‖ψ‖

p

p+4

Lp

(sc)
(S)

‖∇φ‖
4

p+4

Lp

(sc)
(S)

+ δ
1
p‖φ‖Lp

(sc)
(S). (52)

and

‖φ‖L4
(sc)

(Sǫ) . ‖∇φ‖L2
(sc)

(S2ǫ) + (ǫ−2δ)
1
4‖φ‖L2

(sc)
(S2ǫ), (53)

‖φ‖L∞

(sc)
(S) . sup

Sǫ⊂S

(
‖∇φ‖L4

(sc)
(S2ǫ) + (ǫ−2δ)

1
4‖φ‖L4

(sc)
(S2ǫ)

)
. (54)

As a consequence of the proposition we derive.

Corollary 3.5.

(S)O0,∞ . (S)O
1
2
1,2 ·

(S)O
1
2
2,2 + (ǫ−2δ)

1
4

(S)Oǫ
0,4

3.6. Codimension 1 trace formulas. The following is a straightforward adaptation of proposition
4.15 in [K-R:trapped]

Proposition 3.7. The following formulas hold true for a fixed S = S(u, u) = H(u)∩H(u) ⊂ D and
any horizontal tensor φ

‖φ‖L4
(sc)

(S) .
(
δ1/2‖φ‖L2

(sc)
(H) + ‖∇φ‖L2

(sc)
(H)

)1/2(
δ1/2‖φ‖L2

(sc)
(H) + ‖∇4φ‖L2

(sc)
(H)

)1/2

‖φ‖L4
(sc)

(S) .
(
δ1/2‖φ‖L2

(sc)
(H) + ‖∇φ‖L2

(sc)
(H)

)1/2(
δ1/2‖φ‖L2

(sc)
(H) + ‖∇3φ‖L2

(sc)
(H)

)1/2

4We attach signature 1/2 to both Γ and Γ.
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3.8. Estimates for Hodge systems. Here we make straightforward adaptations of the results
(more precisely propositions 4.17 and 4.17) in section 4.16 of [K-R:trapped] for Hodge systems.

Proposition 3.9. Let ψ verify the Hodge system

Dψ = F, (55)

with D one of the Hodge operators defined in section 3.5 of [K-R:trapped]. Then,

‖∇ψ‖L2
(sc)

(S) . ‖K‖L2
(sc)

(S)‖ψ‖L2
(sc)

(S) + ‖F‖L2
(sc)

(S) (56)

Also,

Proposition 3.10. Let ψ verify the Hodge system

Dψ = F (57)

Then,

‖∇2ψ‖L2
(sc)

(S) . ‖K‖L2
(sc)

(S)‖ψ‖L∞

(sc)
(S) + ‖K‖

1
2

L2
(sc)

(S)
‖∇ψ‖L4

(sc)
(S) + ‖∇F‖L2

(sc)
(S) (58)

3.11. Trace theorems. We state the straightforward adaptations of the results of section 11 in
[K-R:trapped] concerning sharp trace theorems.

We introduce the following trace norms for an S tangent tensor φ, with signature sgn(φ), along

H = H
(0,u)
u , relative to the transported coordinates (u, θ) of proposition 3.2:

‖φ‖Tr(sc)(H) = δsgn(φ)−
1
2

(
sup

θ∈S(u,0)

∫ u

0

|φ(u, u′, θ)|2du′
)1/2

Also, along H = H(0,u)
u relative to the transported coordinates (u, θ) of proposition 3.2

‖φ‖Tr(sc)(H) = δsgn(φ)
(

sup
θ∈S(u,0)

∫ u

0

|φ(u′, u, θ)|2du′
)1/2

Proposition 3.12. For any horizontal tensor φ along H = H
(0,u)
u ,

‖∇4φ‖Tr (sc)(H) .
(
‖∇2

4φ‖L2
(sc)

(H) + ‖φ‖L2
(sc)

(H) + ǫC(‖φ‖L∞

(sc)
+ ‖∇4φ‖L4

(sc)
(S))

) 1
2

×
(
‖∇2φ‖L2

(sc)
(H) + ǫC(‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S))

) 1
2

+ ‖∇4∇φ‖L2
(sc)

(H) + ‖φ‖L∞

(sc)
+ ‖∇φ‖L2

(sc)
(H)

(59)

where C is a constant which depends on O(0),R,R.
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Also, for any horizontal tensor φ along H = H
(u,0)
u , and a similar constant C,

‖∇3φ‖Tr (sc)(H) .
(
‖∇2

3φ‖L2
(sc)

(H) + ‖φ‖L2
(sc)

(H) + ǫC(‖φ‖L∞

(sc)
+ ‖∇3φ‖L4

(sc)
(S))

) 1
2

×
(
‖∇2φ‖L2

(sc)
(H) + ǫC(‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S))

) 1
2

+ ‖∇3∇φ‖L2
(sc)

(H) + ‖φ‖L∞

(sc)
+ ‖∇φ‖L2

(sc)
(H)

(60)

4. Global Curvature Estimates

In this section we discuss the proof of theorem A, 1.18, which is a straightforward modification of
the curvature estimates of sections 14 and 15 in [K-R:trapped].

4.1. Zero order estimates. As in [K-R:trapped] all curvature estimates are based on the energy
identities for the Bel-Robinson tensor Q[W ] of a Weyl field W which we take here to be either the

Riemann curvature tensor R or its modified Lie derivatives L̂UR = LUR− 1
8
trUπR− 1

2

U
π̂ ·R, relative

to well chosen vectorfields U . Recall

Proposition 4.2. The following identity holds on our fundamental domain D(u, u),

∫

Hu

Q[R](L,X, Y, Z) +

∫

H
u

Q[R](X, Y, Z, L) =

∫

H0

Q[R](L,X, Y, Z)

+
1

2

∫ ∫

D(u,u)

Q[R] · π(X, Y, Z),

where π(X, Y, Z) is a linear combination of the deformation tensors of the vectorfields X, Y, Z.

The global estimates corresponding to the norms R0 and R0 are obtained, as in section 14 of
[K-R:trapped] by making the choices (X, Y, Z) = {(L, L, L); (L, L, L); (L, L, L); (L, L, L)}. and fol-
lowing precisely the same steps as before. We summarize the result in the following,

Proposition 4.3. There exists a positive constant a > 1
8
such that, for δ1/2ǫ−1 and ǫ sufficiently

small,

R0(u, u) +R0(u, u) ≤ R0(0, u) + ǫaC(Π0,Π0,R,R)(R+R) (61)
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We sketch the proof in the particular case when X = Y = Z = L in proposition 5.2. We obtain,
schematically, by signature considerations,

∫

Hu

|α|2 +

∫

H
u

|β|2 =

∫

H0

|α|2 +
3

2

∫ ∫

D(u,u)

Q[R]( (L)π, L, L)

.

∫

H0

|α|2 +
∑

s1+s2+s3=4

(L)π(s1) ·Ψ(s2) ·Ψ(s3)

Passing to the scale invariant norms we have,

‖α‖2
L2
(sc)

(H
(0,u)
u

+ ‖β‖2
L2
(sc)

(H
(0,u)
u

≤ ‖α‖2
L2
(sc)

(H
(0,u)
0

+
∑

s1+s2+s3=2s=4

δ2
∫ ∫

D(u,u)

(L)π(s1) ·Ψ(s2) ·Ψ(s3)

The worst term occur when s2 = s3 = 2 and s1 = 0. Observe also that, since the signature of a Ricci
coefficient (L)π(s1) may not exceed s1 = 1, neither s2 or s3 can be zero, i.e. α cannot occur among
the curvature terms on the right. We use the estimate ‖ (L)π(s1)‖L∞

(sc)
≤ ǫΠ0 to deduce,

‖α‖2
L2
(sc)

(H
(0,u)
u )

+ ‖β‖2
L2
(sc)

(H
(0,u)
u )

. ‖α‖2
L2
(sc)

(H
(0,u)
0 )

+ ǫΠ0 · R0(u, u)
2

There other estimates are derived in the same manner, see [K-R:trapped]

4.4. First derivative estimates. As in [K-R:trapped] the first derivative curvature estimates are
based on the following.

Proposition 4.5. Let U be a vectorfield defined in our fundamental domain D(u, u), tangent to H0.
Then, with Hu = Hu([0, u]),

∫

Hu

Q[L̂UR](L,X, Y, Z) +

∫

H
u

Q[L̂UR](X, Y, Z, L) =

∫

H0

Q[L̂UR](L,X, Y, Z)

+
1

2

∫ ∫

D(u,u)

Q[L̂UR] · π(X, Y, Z) +

∫ ∫

D(u,u)

D(R,U)(X, Y, Z)

with D(U,R) the 3-tensor of the form, schematically.

D(U,R) = (L̂UR) ·
(
π ·DR +Dπ · R)

We apply these estimate for the following the choice of vectorfields,

(U ;X, Y, Z) = {(L;L, L, L); (L;L, L, L); (O;L, L, L); (O;L, L, L); (O;L, L, L); (O;L, L, L)},

As in [K-R:trapped], see section 15, we make the choice (U ;X, Y, Z) = (L;L, L, L) to the estimate
∇4α and the choice (U ;X, Y, Z) = (L;L, L, L) to estimate ∇3α. The four choices U = O and
X, Y, Z ∈ {L, L} lead to bounds for ∇α,∇β,∇(ρ, σ),∇β, which coupled with the Bianchi identities
are sufficient to estimate all first derivatives of the null curvature components. We outline below a
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typical estimate involving O. Let Ψ(s)(L̂OR) and Ψ(s)(DR) denote the null components of the Weyl

field L̂OR and DR of signature s. Then
∫

Hu

|Ψ(s)(L̂OR)|
2 +

∫

H
u

|Ψ(s− 1
2
)(L̂OR)|

2 =

∫

H0

|Ψ(s)(L̂OR)|
2

+
∑

s1+s2+s3=2s

∫ ∫

D(u,u)

( (L)π(s1), (L)π(s1)) ·Ψ(s2)(L̂OR) ·Ψ
(s3)(L̂OR)

+
∑

s1+s2+s3=2s

∫ ∫

D(u,u)

(O)π (s1) ·Ψ(s2)(DR) ·Ψ(s3)(L̂OR)

+
∑

s1+s2+s3=2s

∫ ∫

D(u,u)

(D (O)π )(s1) ·Ψ(s2) ·Ψ(s3)(L̂OR)

Using our scale invariant norms, and proceeding exactly as in section 15 of [K-R:trapped] we can
easily derive the estimate, for some a > 1

8
,

∑

s∈{ 1
2
,1, 3

2
,2}

ǫ−1

(
‖∇Ψs‖2

L2
(sc)

(H
(0,u)
u

+ ‖∇Ψs− 1
2‖2

L2
(sc)

(H
(0,u)
u

)
.

∑

s∈{ 1
2
,1, 3

2
,2}

ǫ−1‖∇Ψs‖2
L2
(sc)

(H
(0,u)
0

+ ǫaC(Π0,Π0,
(O)Π0,R,R)(R+R),

Similarly,

‖∇4α‖
2

L2
(sc)

(H
(0,u)
u

. ‖∇4α‖
2

L2
(sc)

(H
(0,u)
0

+ ǫaC(Π0,Π0,Π1,R,R)(R+R),

‖∇3α‖
2

L2
(sc)

(H
(0,u)
u

. ‖∇3α‖
2

L2
(sc)

(H
(0,u)
0

+ ǫaC(Π0,Π0,Π1,R,R)(R+R),

Combining, we derive the desired first derivative estimates

Proposition 4.6. There exists a positive constant a > 1
8
such that, for δ1/2ǫ−1 and ǫ sufficiently

small,

R1(u, u) +R1(u, u) . R1(0, u) + Cǫa(R+R)

with C = C(Π,Π, (O)Π,R,R).

Combining this with proposition 4.3 we derive,

R(u, u) +R(u, u) . R(0) + Cǫa(R+R) (62)

which ends the proof of theorem 1.18.
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5. Localized Energy estimates

5.1. Localized zero order estimates. We start by modifying slightly proposition 5.2,

Proposition 5.2. The following identity holds on our fundamental domain D(u, u),

∫

Hu

( Λ)f 2Q[R](L,X, Y, Z) +

∫

H
u

( Λ)f 2Q[R](X, Y, Z, L) =

∫

H0

( Λ)f 2Q[R](L,X, Y, Z)

+
1

2

∫ ∫

D(u,u)

( Λ)f 2Q[R] · π(X, Y, Z) + 2

∫ ∫

D(u,u)

( Λ)fQ[R](D ( Λ)f,X, Y, Z)

where π(X, Y, Z) is a linear combination of the deformation tensors of the vectorfields X, Y, Z.

As in the derivation of the global estimates we make all the choices,

(X, Y, Z) = {(L, L, L); (L, L, L); (L, L, L); (L, L, L)}.

In each case the only new term that needs to be estimated is due to
∫ ∫

D(u,u)
( Λ)fQ[R](D ( Λ)f,X, Y, Z).

Consider again the particular case X = Y = Z = L. Then,

∫

Hu

| ( Λ)f α|2 +

∫

H
u

| ( Λ)f β|2 =

∫

H0

| ( Λ)f α|2 +
3

2

∫ ∫

D(u,u)

( Λ)f 2Q[R]( (L)π, L, L)

+ 2

∫ ∫

D(u,u)

Q[R](D ( Λ)f, L, L, L)

Clearly, recalling (41),

|Q[R](D ( Λ)f, L, L, L)| . |∇3
(Λ)f ||α|2 + |∇ (Λ)f ||β| · |α|

. ǫδ1/2|Λ|−1|α|2 + |Λ|−1|β| · |α|

Recalling also,
∑

Λ̃
( Λ̃)f = 1, and ( Λ)f · ( Λ̃)f = 0 except for a a few neighboring Λ̃,

| (Λ)fQ[R](D ( Λ)f, L, L, L)| . ǫδ1/2|Λ|−1
∑

Λ̃

| ( Λ)f α| · | ( Λ̃)f α|+ |Λ|−1| ( Λ)f α| · | ( Λ̃)f β|

. ǫδ1/2|Λ|−1| ( Λ)f α| · sup
Λ̃

| ( Λ̃)f α|+ |Λ|−1| (Λ)f α| · sup
Λ̃

| ( Λ̃)f β|
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Therefore, passing to scale invariant norms, and treating the term in (L)π exactly as before,

‖ (Λ)f α‖2
L2
(sc)

(H
(0,u)
u )

+ ‖ (Λ)f β‖2
L2
(sc)

(H
(0,u)
u )

. ‖ ( Λ)fα‖2
L2
(sc)

(H
(0,u)
0 )

+ ǫΠ0 ·
(Λ)R2

0(u, u)

+ ǫδ1/2|Λ|−1‖ ( Λ)f α‖
L2
(sc)

(H
(0,u)
u )

· sup
Λ̃

‖ ( Λ̃)f α‖
L2
(sc)

(H
(0,u)
u )

+ |Λ|−1‖ (Λ)f α‖
L2
(sc)

(H
(0,u)
u )

· δ1/2 sup
Λ̃

‖ ( Λ̃)f β‖
L2
(sc)

(H
(0,u)
u )

. ‖ ( Λ)fα‖2
L2
(sc)

(H
(0,u)
0 )

+ ǫΠ0
(Λ)R2

0(u, u)

+ |Λ|−1δ1/2
(
ǫ (Λ)R0[α] ·

[Λ]R0[α] +
(Λ)R0[α] ·

[Λ]R0[β]
)

Therefore, taking the supremum over Λ on both sides, we derive

[Λ]R2
0[α](u, u) +

[Λ]R2
0[β](u, u) . [Λ]R2

0[α](0, u) + ǫΠ0 ·
[Λ]R2

0(u, u)

+ |Λ|−1δ1/2
(
ǫ [Λ]R2

0[α] +
[Λ]R0[α] ·

[Λ]R0[β]
)

Proceeding in the same manner with all other curvature components we derive,

Proposition 5.3. Consider a partition of unity ( Λ)f of of length |Λ| such that δ1/2|Λ|−1 is sufficiently
small. There exists a positive constant a > 1

8
such that, for δ1/2ǫ−1 and ǫ sufficiently small,

[Λ]R0(u, u) +
[Λ]R0(u, u) ≤

[Λ]R0(0, u) + ǫaC(Π0,Π0,
[Λ]R, [Λ]R)( [Λ]R+ [Λ]R) (63)

5.4. Localized derivative estimates. We start with a localized version of proposition 4.5.

Proposition 5.5. Let U be a vectorfield defined in our fundamental domain D(u, u), tangent to H0.
Then, with Hu = Hu([0, u]),∫

Hu

( Λ)f 2Q[L̂UR](L,X, Y, Z) +

∫

H
u

( Λ)f 2Q[L̂UR](X, Y, Z, L) =

∫

H0

( Λ)f 2Q[L̂UR](L,X, Y, Z)

+
1

2

∫ ∫

D(u,u)

( Λ)f 2Q[L̂UR] · π(X, Y, Z) +

∫ ∫

D(u,u)

( Λ)f 2D(R,U)(X, Y, Z)

+2

∫ ∫

D(u,u)

( Λ)fQ[L̂UR](D
( Λ)f,X, Y, Z)

with D(U,R) = (L̂UR) ·
(
π ·DR +Dπ · R).

We apply these estimate, as before, for same choice of vectorfields,

(U ;X, Y, Z) = {(L;L, L, L); (L;L, L, L); (O;L, L, L); (O;L, L, L); (O;L, L, L); (O;L, L, L)},

The only new terms which need to be treated are due to
∫ ∫

D(u,u)
( Λ)fQ[L̂UR](D

( Λ)f,X, Y, Z). For

all choices of vectorfields U, ,X, Y, Z we can proceed precisely as in the proof of proposition 4.5 and
thus derive.
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Proposition 5.6. Given a partition of unity ( Λ)f of length |Λ|, such that δ1/2|Λ|−1 is sufficiently
small, we can find a > 1

8
such that, for δ1/2ǫ−1 and ǫ sufficiently small,

[Λ]R1(u, u) +
[Λ]R1(u, u) . R1(0, u) + ǫaC(Π,Π, (O)Π, [Λ]R, [Λ]R)( [Λ]R+ [Λ]R)

Combining propositions 4.6 and 5.6 we derive,

Theorem 5.7. Given a partition of unity ( Λ)f of length |Λ|, such that δ1/2|Λ|−1 is sufficiently small,
we can find a > 1

8
such that, for δ1/2ǫ−1 and ǫ sufficiently small, we have,

[Λ]R(u, u) + [Λ]R(u, u) . [Λ]R(0) + ǫaC(Π,Π, (O)Π, [Λ]R, [Λ]R)( [Λ]R+ [Λ]R) (64)

6. Deformation tensor estimates

In this section we sketch the proof of the estimates which relate the norms Π of the deformation
tensors for L, L and O to the Ricci coefficient norms O, stated in theorem 1.19. Throughout the
section we assume that δ1/2ǫ−1 and ǫ are sufficiently small.

6.1. Estimates for Π and Π. The null components of (L)π and (L)π are simply expressed in terms
of null Ricci coefficients according to the lemma.

Lemma 6.2. Below we list the components of (L)παβ and (L)παβ.

(L)π44 = 0, (L)π43 = 0, Lπ33 = −2Ω−1ω,

(L)π4a = 0, (L)π3a = Ω−1(ηa + ζa) + Ω−1∇a log Ω,

(L)πab = Ω−1χab

(65)

and,

(L)π33 = 0, (L)π43 = 0, (L)π33 = −2Ω−1ω,

(L)π3a = 0, (L)π4a = Ω−1(η
a
+ ζa) + Ω−1∇a log Ω,

(L)πab = Ω−1χ
ab

(66)

As a result we can easily derive the estimates,

Π0,4 .
(S)O0,4, Π0,∞ . (S)O0,∞,

Π0,4 .
(S)O0,4, Π0,∞ . (S)O0,∞

Similarly we can estimate the first derivative norms,

Π1 . C( (S)O1,4,
(S)O0), Π1 . C( (S)O1,4,

(S)O0).

These can be summarized in the following:
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Proposition 6.3. The following estimates hold true for the deformation tensors (L)π and (L)π.

Π+ Π . C(O) (67)

which establishes half of theorem B (1.19).

6.4. Estimates for (O)Π. Recall that the only non-vanishing components of (O)π are given by

π34 = −2(η + η)aOa,

πab =
1

2
(∇aOb +∇bOa) := H

(s)
ab =

1

2
(Hab +Hba),

π3a =
1

2
(∇3Oa − χ

ab
Ob) :=

1

2
Za.

The quantities Z and H verify the following transport equations, written schematically,

∇4Z = ∇(η + η) · O + (η − η) ·H + ωZ + (σ + ρ) · O + (η − η) · (η + η) · O,

∇4H = χ ·H + β · O +∇χ ·O + χ · η · O
(68)

In view of equations (68) we derive, by integration,

‖Z‖L∞

(sc)
. ‖∇(η, η)‖Tr(sc) + ‖(ρ, σ)‖Tr(sc) + ‖ψ‖L∞

(sc)
(‖ψ‖L∞

(sc)
+ ‖H‖L∞

(sc)
+ ‖Z‖L∞

(sc)
)

Using the trace estimates for (η, η) and (ρ, σ) we derive,

ǫ−1‖Z‖L∞

(sc)
(S) . C + C(‖H‖L∞

(sc)
+ ‖Z‖L∞

(sc)
)

with a constant C = C(I0,
(S)O,R,R). Similarly,

ǫ−1‖H‖L∞

(sc)
. ǫ−1

(
‖∇χ̂‖Tr(sc) + ‖∇trχ‖L∞

(sc)
+ ‖ψ‖2L∞

(sc)
(‖ψ‖L∞

(sc)
+ ‖H‖L∞

(sc)
)
)

. C + C(C + ‖H‖L∞

(sc)
),

Following precisely the same steps as section 13 of in [K-R:trapped] we derive,

ǫ−1‖ (O)π ‖L4
(sc)

(S) + ǫ−1‖ (O)π ‖L∞

(sc)
(S) + ǫ−1‖Dπ‖L2

(sc)
(S) . C = C( (S)O,R,R).

Also all null components of the derivatives D (O)π , with the exception of (D3
(O)π )3a, verify the

estimates,

ǫ−1‖D (O)π ‖L4
(sc)

(S) . C

Moreover,

ǫ−1‖(D3
(O)π )3a −∇3Z‖L4

(sc)
(S) + ǫ−1‖ sup

u
|∇3Z|‖L2

(sc)
(S) . C

Recalling the definition of the norms (O)Π we deduce,
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Proposition 6.5. The following estimates hold true with a constant C = C(O,R,R),

(O)Π . C(O,R,R). (69)

This establishes the remaining part of theorem B(1.19).

7. Estimates for the Ricci coefficients

In this section we discuss the proof of theorem C(1.20). We make the point that the proof can be
derived by a straightforward modification of the arguments in sections 5-10 of [K-R:trapped].

Relying on the bootstrap assumption the boot-strap assumption (34) we first derive, see section 4.1.
in [K-R:trapped],

‖Ω−1 − 2‖L∞(u,u) .

∫ u

0

‖ω‖L∞(u′,u)du
′ . ǫ (S)O0,∞[ω] . ǫ∆0.

Thus, if ǫ is sufficiently small we deduce that |Ω− 1
2
| is small and therefore,

1

4
≤ Ω ≤ 4.

Using this fact we can deduce, as in section 4.1. of [K-R:trapped],

Proposition 7.1.

‖ ψ‖Lp

(sc)
(u,u) . ‖ψ‖Lp

(sc)
(u,0) +

∫ u

0

δ−1‖∇4ψ‖Lp

(sc)
(u,u′) du

′

‖ ψ‖Lp

(sc)
(u,u) . ‖ψ‖L2

(sc)
(0,u) +

∫ u

0

‖∇3ψ‖Lp

(sc)
(u′,u) du

′.

(70)

7.2. Estimates for χ, η, ω. The null Ricci coefficients χ, η and ω verify transport equations of the
form,

∇4ψ
(s) =

∑

s1+s2=s+1

ψ(s1) · ψ(s2) +Ψ(s+1) (71)

we have

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(u,0) +

∫ u

0

δ−1‖∇4ψ
(s)‖L4

(sc)
(u,u′)

To estimate ‖∇4ψ
(s)‖L4

(sc)
(u,u′) we make us of the scale invariant estimates

‖φ · ψ‖L4
(sc)

(S) . ‖φ‖L∞

(sc)
(S)‖ψ‖L4

(sc)
(S)
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Hence,

‖∇4ψ
(s)‖L4

(sc)
(S) . ‖Ψ(s+1)‖L4

(sc)
(S) +

∑

s1+s2=s+1

‖ψ(s1)‖L∞

(sc)
(S)‖ψ

(s2)‖L4
(sc)

(S)

If all scale invariant norms were small, i.e. O(ǫ), we would proceed in a straightforward manner as
follows,

‖∇4ψ
(s)‖L4

(sc)
(S) . ‖Ψ(s+1)‖L4

(sc)
(S) + ǫ2 (S)O0,∞ · (S)O′

0,4

. ‖Ψ(s+1)‖L4
(sc)

(S) + ǫ2∆0 ·
(S)O′

0,4

This in fact works for s < 1, i.e. for ω and η. In that case we have, by integration,

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(u,0) +

∫ u

0

δ−1‖Ψ(s+1)‖L4
(sc)

(u,u′) + ǫ2∆0 ·
(S)O′

0,4

. ‖ψ(s)‖L4
(sc)

(u,0) + ‖Ψ(s+1)‖
1/2
L(sc)(Hu)

‖∇Ψ(s+1)‖
1/2
L(sc)(Hu)

+ ǫ2∆0 ·
(S)O′

0,4

. ‖ψ(s)‖L4
(sc)

(u,0) + ǫ(R′
0)

1/2(R′
1)

1/2 + ǫ2∆0 ·
(S)O′

0,4

i.e.,

ǫ−1‖ψ(s)‖L4
(sc)

(u,u) . I ′
0 +R+ ǫ∆0 ·

(S)O′
0,4

On the other hand, for s = 1,

‖χ‖L4
(sc)

(u,u) . ‖χ‖L4
(sc)

(u,0) + ‖α‖
1/2
L(sc)(Hu)

‖∇α‖
1/2
L(sc)(Hu)

+ ǫ∆0 · ‖χ‖L4
(sc)

(u,u) + ǫ2∆0 ·
(S)O′

0,4

. ‖χ‖L4
(sc)

(u,0) + ǫ1/2R+ ǫ∆0 · ‖χ‖L4
(sc)

(u,u) + ǫ2∆0 ·
(S)O′

0,4

i.e., for small enough ǫ,

ǫ−1/2‖χ‖L4
(sc)

(u,u) . ǫ−1/2‖χ‖L4
(sc)

(u,0) +R+ ǫ3/2∆0 ·
(S)O′

0,4

Proposition 7.3. Under the bootstrap assumption (S)O0,∞ ≤ ∆0 and assuming that ǫ∆0 is suffi-
ciently small we derive,

(S)O0,4[ω, η] . I ′
0 +R+ ǫ∆0 ·

(S)O′
0,4

(S)O0,4[trχ] . 1 +R+ ǫ∆0 ·
(S)O0,4,

(S)O0,4[χ] . R+ ǫ∆0 ·
(S)O0,4

Remark. As in [K-R:trapped] we can get improved estimates for trχ, i.e. ‖trχ‖L∞

(sc)
. ǫ2 and

‖trχ‖L2
(sc)

. ǫ
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7.4. Estimates for χ, η, ω. The Ricci coefficients η, χ and ω verify equations of the form

∇3ψ
(s) = −

1

2
k trχ

0
ψ(s) +

∑

s1+s2=s

ψ(s1) · ψ(s2) +Ψ(s) (72)

with k a positive integer. If s ≥ 1/2 we have, after a simple Gronwall inequality, (since Ψ(s) 6= α),

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(0,u) +

∫ u

0

‖Ψ(s)‖L4
(sc)

(u′,u) + ǫ2∆ · (S)O′
0,4

. ‖ψ(s)‖L4
(sc)

(0,u) + ǫ(R′
0)

1
2 (R′

1)
1
2 + ǫ2∆0 ·

(S)O0,4

Hence,

ǫ−1‖ψ(s)‖L4
(sc)

(u,u) . ǫ−1‖ψ(s)‖L4
(sc)

(0,u) +R+ ǫ∆0 ·
(S)O0,4 (73)

To estimate χ̂ we use the estimate,

∇3χ̂ = −α + trχ
0
χ̂ − t̃rχ χ̂ − 2ωχ̂

Thus, after a standard application of the Gronwall inequality,

‖χ̂ ‖L4
(sc)

(Su) . ‖χ̂ ‖L4
(sc)

(S0) +

∫ u

0

‖α‖L4
(sc)

(S
u′
) + ǫ2 ·∆ · (S)O′

0,4

i.e.,

‖χ̂ ‖L4
(sc)

(Su) . ‖χ̂ ‖L4
(sc)

(S0) + ǫR+ ǫ2 ·∆ · (S)O′
0,4

Now observe that,

‖χ̂ ‖L4
(sc)

(S0) . ǫ1/2I(0)

Indeed, along H0 (where ω = 0),

∇4χ̂ +
1

2
trχχ̂ = ∇⊗̂η − 1

2
trχχ̂+ η⊗̂η

or,

∇4χ̂ = −
1

2
trχ

0
χ̂ +∇⊗̂η + ψg · ψ

Hence,

‖χ̂ ‖L4
(sc)

(0,u) . ‖χ̂‖L4
(sc)

(0,u) + ǫ3/2C

i.e.,

ǫ−1/2‖χ̂ ‖L4
(sc)

(0,u) . ǫ−1/2‖χ̂‖L4
(sc)

(0,u) + ǫC

. I(0) + ǫC
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8. Proof of theorem 2.8

We denote by Ṙ amd Ȯ the curvature and Ricci coefficient norms which can be obtained by formally
choosing ǫ = δ1/2 in the definitions (20) and (23). These correspond precisely to the R,O norms
used in our paper [K-R:trapped]. Since we have assumed that the initial data quantity R(0), defined
in (21), is uniformly distributed on the scale δ1/2̟−1,

[Λ]R(0) . δ
1
2̟−1R(0) (74)

from which we also deduce, according to theorem 2.4,

( [Λ]R+ [Λ]R)(u, u) . δ
1
2̟−1R(0) (75)

Observe that, with respect to the old scaling ṡc in [K-R:trapped], we deduce, for all 0 ≤ u ≤ 1,

ǫ‖ ( Λ)fα‖L(ṡc)(Hu) + ‖ (Λ)f(β, ρ, σ, β)‖L(ṡc)(Hu) . ǫ̟−1R(0)

‖ ( Λ)f∇α‖L(ṡc)(Hu) + ‖ (Λ)f∇(β, ρ, σ, β)‖L(ṡc)(Hu) . ǫ̟−1R(0)

or, for ǫ̟−1 . 1

̟‖ (Λ)fα‖L(ṡc)(Hu) + ‖ ( Λ)f(β, ρ, σ, β)‖L(ṡc)(Hu) . R(0)

‖ (Λ)f∇α‖L(ṡc)(Hu) + ‖ ( Λ)f∇(β, ρ, σ, β‖L(ṡc)(Hu) . ǫ̟−1R(0)
(76)

In particular, if δ1/2 . ̟ we deduce, relative to the old scaling ṡc,

[Λ]Ṙ(u, u) . R(0). (77)

with [Λ]Ṙ the localized version of the norms Ṙ, i.e. [Λ]Ṙ = supΛ
(Λ)Ṙ.

Moreover, with ǫ̟−1 := q a small parameter, we have,

sup
Λ

‖ ( Λ)f∇(β, ρ, σ, β)‖L(ṡc)(Hu) . q (78)

which, restricted to u = 0, is precisely the localized version of estimate (32) of proposition 2.8
in [K-R:trapped]. In view of theorem 2.6 in [K-R:trapped], the global version of estimate (77),
i.e. Ṙ < ∞, allows one to deduce the boundedness of the global Ȯ norms, i.e. for some universal
constant C, Ȯ . C. The global version of condition (78), with q sufficiently small (which corresponds5

to condition (32) of proposition 2.8), was necessary in the proof of theorem 2.7 in [K-R:trapped] to
insure the formation of a trapped surface. The proof of formation of a trapped surface was based, in
addition, on the crucial lower bound condition,

∫ δ

0

|χ̂0|
2(u, θ)du >

2(r0 − u)

r20
.

5With the small quantity ǫ replaced by q here.
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We note that the proof of formation of a trapped surface argument6, is purely local in θ. More
precisely, to show that trχ(u, δ, θ) < 0 requires only the control of the Ricci coefficients in the
domain7 {(u′, u, θ) : 0 ≤ u′ ≤ u, 0 ≤ u ≤ δ}. We further note that the global versions (unlocalized)
of (77), (78) make no reference to the support of the quantities involved and in particular are entirely
compatible with the possibility that most or even all of the norm is concentrated in the support of
( Λ)f for some specific Λ.

In view of the above discussion we conclude that we could adapt the proof used in [K-R:trapped]
for the formation of a trapped surface to our situation provided that we could derive bounds for the
localized Ȯ norms from the boundedness of the localized Ṙ norms. More precisely we need to prove
the following:

Proposition 8.1. Let {Λ} be a partition of S0 of size |Λ| ≈ δ
1
2 q−1 with q sufficiently small. Then

assuming that [Λ]Ȯ(0) <∞,
[Λ]Ȯ ≤ C([Λ]Ȯ(0), [Λ]Ṙ, [Λ]Ṙ)

The proof of this proposition is based on the observation that all arguments used in sections 5-12 of
[K-R:trapped] can be appropriately localized. This is particularly obvious for those estimates which
are derived from transport equations. Consider, for example, the transport equations of the form

(71) or, simply, ∇4ψ = ψ · ψ +Ψ. Since ∇
(Λ)
4 f = 0 and

∑
Λ

(Λ)f = 1 we deduce,

∇4
(Λ)fψ = ( Λ)fψ · ψ + ( Λ)fΨ

=
∑

Λ̃

( Λ)fψ · ( Λ̃)fψ + ( Λ)fΨ

Hence, with respect to the old scaling,

‖ ( Λ)fψ‖L4
(ṡc)

(u,u) . ‖ ( Λ)fψ‖L4
(ṡc)

(u,0) + δ−1

∫ u

0

δ1/2 sup
Λ

‖ ( Λ)fψ‖L∞

(ṡc)
(u,u′) sup

Λ
‖ ( Λ)fψ‖L4

(ṡc)
(u,u′)du

′

+ δ−1

∫ u

0

δ1/2 sup
Λ

‖ (Λ)fΨ‖L4
(ṡc)

(u,u′)du
′

Proceeding as in [K-R:trapped] we derive,

sup
Λ

‖ ( Λ)fψ‖L4
(ṡc)

(u,u) . [Λ]Ṙ+ δ1/2 [Λ]Ȯ0,∞ · [Λ]Ȯ0,4

In the case of the transport equations of the form (72), i.e., ∇3ψ = ψ · ψ +Ψ we obtain,

∇3(
(Λ)f ψ) = (Λ)fψ · ψ + (Λ)fΨ+ ǫδ

1
2 |Λ|−1 (Λ)f̃ ψ,

6See the original argument in [Chr:book] and its outline in the introduction to [K-R:trapped].
7In actuality, because of the difference between the θ and θ coordinates defined respectively by parallel transport

along Hu and H
u
, the domain has to be enlarged to include all angles θ′ such that |θ′ − θ| ≤ δ

1

2 .
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where f̃ is a function similar to f but with slightly large support. Using that δ
1
2 |Λ|−1 . q we easily

obtain the estimate, for the corresponding Ricci components,

sup
Λ

‖ ( Λ)fψ‖L4
(ṡc)

(u,u) . [Λ]Ṙ+ δ1/2 [Λ]Ȯ0,∞ · [Λ]Ȯ0,4.

The angular localization also affects the elliptic estimates for the Ricci coefficients. For the Codazzi
equation

Dψ = ψ · ψ +Ψ

we obtain

‖ (Λ)f Dψ‖L2
(ṡc)

(u,u) . ‖ ( Λ)fψ · ψ‖L2
(ṡc)

(u,u) + ‖ ( Λ)fΨ‖L2
(ṡc)

(u,u) . δ
1
2
[Λ]Ȯ0,∞ · [Λ]Ȯ0,2 +

[Λ] Ṙ0 +
[Λ] Ṙ0

On the other hand, integrating by parts and using the identity ∆ = D∗D ±K we obtain

‖ (Λ)f ∇ψ‖L2
(ṡc)

(u,u) . ‖ ( Λ)f Dψ‖L2
(ṡc)

(u,u) + ‖∇ ( Λ)f ψ‖L2
(ṡc)

(u,u) + ‖ (Λ)f K · ψ‖L2
(ṡc)

(u,u)

. ‖ ( Λ)f Dψ‖L2
(ṡc)

(u,u) + δ
1
2 |Λ|−1 [Λ]Ȯ0,2 + δ

1
2
[Λ]Ṙ [Λ]Ȯ0,∞
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