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Abstract. We provide L1 estimates for a transport equation which contains

singular integral operators. The form of the equation was motivated by the

study of Kirchhoff-Sobolev parametrices in a Lorentzian space-time verifying
the Einstein equations. While our main application is for a specific problem in

General Relativity we believe that the phenomenon which our result illustrates

is of a more general interest.

1. Introduction

The goal of this paper is to prove an L1 type estimate for solutions of the following
transport equation,

∂tu(t, x)− a(t, x)Mu(t, x) = g(t, x), u(0, x) = 0. (1)

Here a = a(t, x) and g = g(t, x) are assumed to be smooth, compactly supported
functions defined1 on [0, 1]×R2 and M is a classical, translation invariant, Calderon-
Zygmund operator in R2, given by a smooth2 multiplier. Though, for simplicity, we
shall proceed as if the equation (1) is scalar, all our results extend easily to systems,
i.e. u and g take values in RN and aM is a N ×N matrix valued operator.

Ideally, the desired estimate would take the form

sup
t∈[0,1]

‖u(t)‖L1(R2) ≤ C(‖a‖L∞([0,1]×R2)) ‖g‖L1([0,1]×R2)

As it is well known however such L1-type estimates cannot possibly hold due to
the failure of L1 boundedness of Calderon-Zygmund operators. To illustrate this
consider first the case of a constant coefficient transport equation with a ≡ 1. In
this case we may write

u(t, x) =
∫ t

0

e(t−s)Mg(s)ds (2)

where,

etM = I + tM +
1
2
(tM)2 + · · ·+ 1

n!
(tM)n + · · ·
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1Similar results can be easily extended to higher dimensions.
2The smoothness assumption is only imposed to eliminate logarithmic divergences at infinity

in R2, is irrelevant to our main concerns.
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The problem of L1 estimates for (1) is then reduced to the corresponding question
for the operators Mn. Each of Mn is a Calderon-Zygmund operator and as such
does not map L1 to L1. A well known way to resolve this problem is to consider
instead mapping properties of the Hardy space3 H1 to L1. Since translation invari-
ant Calderon-Zygmund operators M map H1 into H1 (see [Ste2]) we easily infer
that a solution u of the transport equation

∂tu−Mu = g, u(0, x) = 0

belongs to the space L∞([0, 1];H1). Indeed,

‖u(t)‖H1 ≤
∞∑

n=0

∫ t

0

(t− s)n

n!
‖Mng(s)‖H1 ≤

∞∑
n=0

∫ t

0

Cn(t− s)n

n!
‖g(s)‖H1 ds

≤ eCt

∫ t

0

‖g(s)‖H1 ds

While this may be considered a satisfactory solution of the problem for the transport
equation (1) with constant coefficients, the situation changes drastically in the
variable coefficient case. Consider the transport equation

∂tu− a(x)Mu = g, u(0, x) = 0 (3)

with a time-independent coefficient a(x). As before we may write

u(t, x) =
∫ t

0

e(t−s)aMg(s)ds (4)

where,

et aM = I + t aM +
1
2
(t aM)2 + · · ·+ 1

n!
(t aM)n + · · ·

The multiplication operator a and Calderon-Zygmund operator M do not commute4.
We need instead that the operator aM has the same mapping properties as M , i.e.
it maps H1 to itself, in which case we would easily conclude that solutions of the
transport equation (3) belong to the space L∞([0, 1];H1). To insure this condition
we are led to the requirement that multiplication by the function a = a(x) maps
Hardy space into itself. It is well known however that a multiplication by a bounded
function does not preserve H1. Instead, such a function a should satisfy the Dini
condition ∫ ∞

0

sup
|x−y|≤λ

|a(x)− a(y)| dλ

λ
< ∞,

see [Steg]. Functions satisfying the Dini condition can not be sharply characterized
in terms of the standard Lebesgue type spaces. Specifically, one can easily see that
even if a is a single atom in the Besov space B0

∞,1(R2) or even in B1
2,1(R2), both

sharp Besov refinements of the L∞(R2) space, does not guarantee that the Dini
condition is satisfied. Yet, in view of the specific applications we have in mind,
we need to consider precisely the situation when a belongs to the space B1

2,1, and

3The classical Hardy space H1, defined by the norm ‖f‖H1 = ‖f‖L1(R2) +

supj=1,2 ‖Rjf‖L1(R2), is a can be viewed as a logarithmic improvement of L1. Here Rj =

(−∆)1/2∂j are the standard Riesz operators in R2.
4If they did we could write (aM)n as anMn and derive ‖u(t)‖L1(R2) ≤

C
R t
0

‖a‖n
L∞(R2)

(t−s)n

n!
‖Mng(s)‖L1(R2) ds ≤ e

Ct‖a‖
L∞(R2)

R t
0 ‖g(s)‖H1 ds.
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allow even more general functions in the time-dependent case. As a consequence
to accomplish our goal we need to give up on the Hardy space H1 and consider in
fact estimates5 for solutions u of transport equation (3) of the form,

sup
t∈[0,1]

‖u(t)‖L1(R2) ≤ C(‖a‖B1
2,1(R2))N(g), (5)

where the expression N(g) reflects a logarithmic loss6 relative to the L1 norm of
g. The proper definition of N(g) is given below in (14). In the particular case of g
with compact support N(g) becomes simply ‖g‖L1(R2) log+ ‖g‖L∞(R2) + 1.

The key feature of estimate (5) is that only one logarithmic loss is present. This
means that we are not able to attack the problem by merely considering the mapping
properties of the operator aM . Indeed the best we can prove is the estimate,

sup
t∈[0,1]

‖aMg(t)‖L1(R2) ≤ C(‖a‖B1
2,1(R2))N(g),

which leads, by iteration, to a loss of
(
log+ ‖g‖L∞(R2))n for (aM)n. Instead we

analyze directly the mapping properties of the multilinear expressions

(a(x)M)n = a(x) M a(x) M .... a(x)M (6)

and their sums. Using commutator estimates and appropriate interpolations be-
tween the weak L1 and L2 mapping properties of the operators M we are able to
show that in fact we lose only one logarithm for ‖(aM)ng‖L1 , regardless of the
exponent n. Note however that under our assumptions on a(x) the commutator
[a(x),M ] is not a bounded operator7 on L1(R2) and thus the problem can not be
simply reduced to the weak-L1 estimate for the Calderon-Zygmund operator Mn.
Instead using the assumption that a ∈ B1

2,1 we first reduce the problem to the case
where in the multilinear expression (6) the function a is replaced by its atoms

Mak1M...akn−1M,

with ak = Pka and the Littewood-Paley projection Pk associated with the dyadic
band of frequencies of size 2k. We then decompose

M = M≥k1 + M<k1 = P<k1M + P≥k1M

and observe that [M≥k1 , ak1 ] is a bounded operator on L1. It follows that

Mak1M...akn−1M = ak1M≥k1M...akn−1M + [M≥k1 , ak1 ]M...akn−1M

+ M<k1ak1M...akn−1M.

We now proceed inductively. The first two terms can be reduced to the problem
of L1 estimates for the multilinear expressions M2ak2 ...akn−1M and M...akn−1M ,

5To prove such estimates we need the the symbol m(ξ) of M is smooth at the origin, i.e.,

|∂αm(ξ)| ≤ c(1 + |ξ)−|α|, ∀ξ ∈ R2.
6Recall that according to the result of Stein [Ste1] the Hardy space H1 contains precisely such

logarithmic loss, as the finiteness of the local, i.e. the norm ‖f‖L1 +‖Rjf‖L1 computed over balls

B, H1 norm of g is equivalent to bounds on
R

B |f(x)| log+ f(x) dx.
7The classical result of Coifman-Rochberg-Weiss [CRW] requires only that a ∈ BMO for the

commutator to be bounded on Lp with p ∈ (1,∞). Extensions of this result from Lp to the Hardy
space H1 however impose once again a Dini type condition on a.
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each containing only (n− 1) Calderon-Zygmund operators and (n− 2) atoms aki
.

The remaining term M<k1ak1M...akn−1M can be written in the form

M<k1ak1Mak2 ...akn−1M =
∑

`2,...,`n−1

M<k1ak1Mk1ak2M...akn−1M`n−1 .

The operator M<k1 is handled with the help of the weak-L1 estimate, which comes
on one hand with a logarithmic loss but on the other hand has a certain important
redeeming property in the choice of the constants, which in particular made depen-
dent on the multi-index `1, .., `n. The remaining argument consists in showing that
the operator Mk1ak2M`2 ...akn−1M`n−1 is bounded on L1 with the bound reflecting
exponential gains in the differences of either of the adjacent frequencies |`m−`m−1|
or |km − km−1|.

The problem of L1 estimates for the transport equation (1) with variable time-
dependent coefficient a(t, x) exemplifies even more the need for such multilinear
estimates. In this case a solution u does not quite have an exponential map repre-
sentation similar to (4). Instead it can be written in the form

u(t) =
∫ t

0

T
{

e
R t

s
a(τ)M dτ

}
g(s) ds.

Here T is the Quantum Field Theory (QFT) notation for the time ordered product.
Thus, we have

u(t) =
∫ t

0

∞∑
n=0

1
n!

T
{∫ t

s

∫ t

s

...

∫ t

s

a(t1)Ma(t2)M...a(tn)M dt1 ... dtn

}
g(s) ds

=
∫ t

0

∞∑
n=0

∫ t

0

a(t1)Mdt1

∫ t1

0

a(t2)M dt2....

∫ tn−1

0

a(tn)M
∫ tn

0

g(s) ds (7)

The time ordering T arranges variables t1, ..., tn in the decreasing order t1 ≥ t2 ≥
... ≥ tn. Our method for deriving L1 estimates for solutions of the transport
equation (1) involves analyzing each of the multilinear expressions in the above
expansion. As in the case of the time-independent coefficient a we will be able to
derive an L1 estimate with a logarithmic loss under the assumption that a is a B1

2,1

valued function with an appropriate (in fact L1) time dependence. The infinite
series representation (7) will also help us to uncover another phenomenon. In the
case when the time-dependent coefficient a can be written as a time derivative of a
function b, i.e., a = ∂tb, the L1 estimate for solutions of the transport equation (1)
does not require Besov regularity of the coefficient a and instead needs L2([0, 1];H1)
regularity of a together with L2([0, 1];H2) regularity of b. Our main result is the L1

estimate for solutions of the transport equation (1) with the coefficient a = ∂tb + c
with c ∈ L1([0, 1];B1

2,1) and b satisfying the above conditions.

To treat this general case we consider multilinear expressions appearing in (7) and
decompose each of the a(ti) into its Littlewood-Paley components to form a term

Jn.k(t) =
∫ t

0

∫ t1

0

...

∫ tn

0

ak1(t1)Mak2(t2)M...akn
(tn)Mg(s) dt1...dtn ds
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with k = (k1, ..., kn). For each k will be able to show the desired estimate

sup
t∈[0,1]

‖Jn,k(t)‖L1(R2) ≤ CN(g).

The constant C above depends on the L1([0, 1];H1) norms of aki and grows with n.
As a consequence we face two major summation problems: first with respect to a
given multi-index k followed by summation in n. Difficulties with summation over
k are connected with the fact that a no longer has Besov regularity B1

2,1. This lack
of regularity is due to the term ∂tb in the decomposition of a. We notice however
that upon substitution into Jn(t) the term ∂tbkj can be integrated by parts which
results in a gain of 1/2 derivative8 or, alternatively, a factor of 2−kj/2. The problem
however is that this gain needs to be spread across all remaining (n − 1) terms in
Jn(t), which leads us to choose kj to be the highest frequency among all ki. If the
highest frequency is occupied by a Besov term ckj

, appearing the decomposition
of a we select the second highest frequency and continue the process, which in the
end ensures summability with respect to k. This analysis may potentially lead to
violent growth of the constant C with respect to n and extreme care is needed. We
ensure that C decays exponentially in n by imposing smallness conditions on the
space-time norms of the coefficients b and c.

We now state our result precisely. Consider the transport equation

∂tu− a(t, x)Mu = g(t, x), u(0, x) = 0.

We assume that for the coefficient a

‖a‖1 := ‖a‖L2
t H1 = (

∫ 1

0

‖a(t)‖2H1(R2))
1/2 ≤ ∆0. (8)

In addition a can be decomposed as follows,

a = ∂tb + c (9)

where,

‖b‖2 := (
∫ 1

0

‖b(t)‖2H2(R2) +
∫ 1

0

‖∂tb(t)‖2H1(Rd))
1/2 ≤ ∆0 (10)

‖c‖3 :=
∫ 1

0

‖c(t)‖B1
2,1(R2)dt ≤ ∆0 (11)

with B1
2,1(R2) the classical inhomogeneous Besov space defined by the norm,

‖v‖B1
2,1(R2) = ‖P≤0v‖L2 +

∑
k∈Z+

2k‖Pkv‖L2(R2).

The operator M is the classical translation invariant Calderon-Zygmund operator
on R2, given by the symbol m(ξ) verifying

|∂αm(ξ)| ≤ c(1 + |ξ)−|α|, ∀ξ ∈ R2. (12)

We prove the following theorem,

8The fact that the gain is only 1/2 derivative rather than the whole derivative is due to the
L2 in time integrability assumption on b.
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Theorem 1.1 (Main Theorem). Under the above assumptions , if ∆0 is sufficiently
small, we have the estimate,

sup
t∈[0,1]

‖u(t)‖L1(R2) . CN(g) (13)

where,

N(g) = ‖g‖L1([0,1]×R2) log+
{
‖ < x >3 g‖L∞([0,1]×R2)

}
+ 1. (14)

Remark 1.2. For a function g of compact support the expression N(g) can be
controlled as follows

N(g) . ‖g‖L1([0,1]×R2) log+ ‖g‖L∞([0,1]×R2) + 1 (15)

Remark 1.3. Condition (12) implies that the symbol of the operator M is smooth
at the origin, which in principle eliminates a large class of Calderon-Zygmund oper-
ators from our consideration. We argue however that this condition is not particu-
larly restrictive and can be replaced with assumptions of additional spatial decay on
the coefficients a(t, x). Moreover, in our application (see the paragraph below) we
consider the corresponding transport equation on a compact manifold (2-sphere)
instead of R2, where the existence of a spectral gap ensures that condition (12)
holds. In that context a prototype for M is the operator (−∆)−1∇2. Moreover, in
that case N(g) can be replaced by the L log L type expression (15).

The above theorem is a vastly simplified model case for the type of result we need in
[Kl-Ro6] to prove a conditional regularity result for the Einstein vacuum equations.
The main assumption in [Kl-Ro6], concerning the pointwise boundedness of the
deformation tensor of the unit, future, normal vectorfield to a space-like foliation,
allows us to bound the flux of the space -time curvature through the boundary
N−(p) of the causal past of any point p of the space-time under consideration.
In [Kl-Ro1]–[Kl-Ro4], see also [Q], we were able to show that the boundedness of
the flux of curvature through N−(p) suffices to control the radius of injectivity of
N−(p). This result, together with the construction of a first order parametrix in
[Kl-Ro5], is used in [Kl-Ro6] to derive pointwise bounds for the curvature tensor
of the corresponding spacetime. To control the main error term generated by the
parametrix one needs however to bound the L1 norm of the first two tangential
derivatives of trχ along N−(p), with trχ the trace of the null second fundamental
form of N−(p). One can show that the second tangential derivatives of trχ verifies
a transport equation along the null geodesic generators of N−(p) which can be
modeled, very roughly, by (1), with g a term whose L1 norm along N−(p) is
bounded by the flux of curvature . In fact a more realistic model would be to
consider a transport, similar to (1), along the null geodesics of a past null cone
N−(p) in Minkowski space R3+1 with t denoting the value of the standard afine
parameter along null geodesics and x = (x1, x2) denoting the standard sperical
coordinates on the 2-spheres St, corresponding to constant value of t along N−(p).
Thus the singular integral operator M would act on St.

Finally we believe that our result, or rather our proof of the result, can be applied to
other situations where one needs to make L1 or L∞ estimates for singular transport
equations, where a simple logarithmic loss is unavoidable.
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2. Preliminary results

We recall briefly the classical Littlewood-Paley decomposition of functions defined
on Rd,

f = f0 +
∑

k∈Z+

fk

with frequency localized components fk, i.e. f̂k(ξ) = 0 for all values of ξ outside the
annulus 2k−1 ≤ |ξ| ≤ 2k+1 and a function f0 with frequency localized in the ball
|ξ| ≤ 1. Such a decomposition can be easily achieved by choosing a test function
χ = χ(|ξ|) in Fourier space, supported in 1

2 ≤ |ξ| ≤ 2, and such that, for all ξ 6= 0,∑
k∈Z χ(2−kξ) = 1. Then for k > 0 set f̂k(ξ) = χ(2kξ)f̂(ξ) or, in physical space,

Pkf = fk = pk ∗ f

where pk(x) = 2nkp(2kx) and p(x) the inverse Fourier transform of χ, while

f̂0(ξ) =

1−
∑

k∈Z+

χ(2−kξ)

 f̂(ξ)

and f0 = P0f . The operators Pk are called cut-off operators or, somewhat improp-
erly, Littlewood-Paley projections.

Let M be a Calderon-Zygmund operator with multiplier m, i.e.,

M̂f(ξ) = m(ξ)f̂(ξ) (16)

Here m is a smooth function satisfying

|∂α
ξ m(ξ)| ≤ c(1 + |ξ|)−|α|, ∀ξ ∈ Rd (17)

for all multiindices α with |α| ≤ d + 6 and a fixed constant c > 0. According to
Michlin-Hörmander theorem we have,

|m(x)| ≤ c|x|−d, |∂xm(x)| ≤ c|x|−d−1 (18)

Due to the smoothness of the symbol of M at the origin we can also add the estimate

|m(x)| ≤ c(1 + |x|)−d−6 (19)

We shall make use of the standard Calderon-Zygmund estimates in Lp, 1 < p < ∞,

‖Mf‖Lp ≤ Cp‖f‖Lp

as well as the weak-L1 estimate

|{x : |Mf(x)| > λ} ≤ Cλ−1‖f‖L1

Our first result is a global version of the standard local L1 estimate for a multiplier
M . The local estimate in a ball BR does not require the condition (19) and takes
the form

‖Mf‖L1(BR) ≤ CR(‖f‖L1 log+ ‖f‖L∞ + 1).

We have the following
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Lemma 2.1. Let M be a multiplier satisfying (19). Fix an L1(Rd) positive function
β and a constant µ > 0. Then for any smooth function f of compact support

‖Mf‖L1 ≤ CNµ,β(f),

where

Nµ,β(f) = µ‖β‖L1 + ‖f‖L1 log+{ sup
a∈Zd

∑
|b−a|≤3 ‖χbf‖L∞

µ‖χaβ‖L1
},

χa is a partition of unity adapted to the balls of radius one with centers at integer
lattice points a and log+ x = log(2 + |x|).

Proof We first note that the problem can be reduced to the case when the kernel
of M , given by the function m(x), has compact support. This follows since

Mf(x) = M0f(x) + M1f(x), M1f(x) =
∫

χ(x− y)m(x− y)f(y) dy,

where χ is a smooth cut-off function vanishing on the ball of radius one. Assumption
(19) guarantees that χ(x)m(x) is integrable. As a consequence,

‖M1f‖L1 ≤ C‖f‖L1 .

To deal with M0 we proceed in the usual fashion by writing

‖M0f‖L1 =
∫ ∞

0

|{x : |M0f(x)| > λ}| dλ ≤
∫ ∞

0

|{x : |M0f<λ(x)| > λ}| dλ

+
∫ ∞

0

|{x : |M0f≥λ(x)| > λ}| dλ,

where f<λ(x) is the function coinciding with f(x) on the set where |f(x)| < λ and
vanishing on its complement, and f≥λ = f(x) − f<λ. To estimate the term with
f<λ we use the weak-L2 estimate∫ ∞

0

|{x : |M0f<λ(x)| > λ}| dλ ≤ C

∫ ∞

0

‖f<λ‖2L2

λ2
= C

∫ ∫ ∞

|f(x)|
λ−2|f(x)|2 dλ dx

= C

∫
|f(x)| dx

To estimate the term with f≥λ we decompose f≥λ into the sum of functions fa
≥λ =

χaf≥λ

f≥λ =
∑
a∈Zd

χaf≥λ,

where χa is a partition of unity, parametrized by integer lattice points in Rd with
the property that the support of χa is contained in the ball of radius two around
the point a ∈ Rd. Since the kernel of M0 is supported in a ball of radius one,
the support of M0f

a
≥λ is contained in the ball of radius three around k. As a

consequence, there are at most 3dC functions M0f
a
≥λ containing any given point x

in their support. Therefore,

|{x : |M0f≥λ(x)| > λ}| ≤
∑
a∈Zd

|{x : |M0f
a
≥λ(x)| > λ(3dC)−1}|.

We also have the trivial estimate, with another constant still denoted C,

|{x : |M0f
a
≥λ(x)| > λ(3dC)−1}| ≤ 3dC.
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Thus, using a weak-L1 estimate we obtain

Ja : =
∫ ∞

0

|{x : |M0f
a
≥λ(x)| > λ(3dC)−1}| dλ

≤
∫ λ0

0

3dC + 3dC

∫ ∫ ∞

λ0

λ−1‖χαf≥λ‖L1 dλ

≤ 3dCλ0 + 3dC

∫ ∞

λ0

∫
|f(x)|≥λ

λ−1|χaf(x)| dx dλ

≤ 3dCλ0 + 3dC

∫
χa(x)|f(x)|

∣∣ log
|f(x)|

λ0

∣∣ dx

. 3dCλ0 + 3dC

∫
|f(x)|≥λ0

χa(x)|f(x)| log
|f(x)|

λ0
dx

. 3dCλ0 + 3dC

∫
χa(x)|f(x)| log+ |f(x)|

λ0
dx

for some λ0 > 0. We now choose λ0 = µ
∫

χa(x)β(x) dx. The above estimate then
becomes

Ja ≤ 3dC

(
µ‖χaβ‖L1 +

∫
χa(x)|f(x)| log+ |f(x)|

µ‖χaβ‖L1

)
.

. 3dC

(
µ‖χaβ‖L1 +

∫
|f(x)|χa(x) | log+

∑
b

χb(x)|f(x)|
µ‖χaβ‖L1

)

. 3dC

µ‖χaβ‖L1 +
∫
|f(x)|χa(x) log+

∑
|b−a|≤3

χb(x)|f(x)|
µ‖χaβ‖L1


. 3dC

µ‖χaβ‖L1 +
∫
|f(x)|χa(x) log+

∑
|b−a|≤3

‖χb(x)|f(x)|
µ‖χaβ‖L1


. 3dC

µ‖χaβ‖L1 + ‖fχa‖L1 log+ sup
a∈Zd

∑
|b−a|≤3

‖χbf‖L∞

µ‖χaβ‖L1


Now,

‖M0f‖L1 .
∫ ∞

0

|{x : |M0f<λ(x)| > λ}| dλ +
∫ ∞

0

|{x : |M0f≥λ(x)| > λ}| dλ

. C‖f‖L1 +
∑
a∈Zd

Ja

. C‖f‖L1 + 3dC

µ‖β‖L1 + ‖f‖L1 log+ sup
a∈Zd

∑
|b−a|≤3

‖χbf‖L∞

µ‖χaβ‖L1


as desired.
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We also need to consider powers of Mn of M with multipliers m(n)(ξ) = m(ξ)n.
Clearly, there exists a constant C > 0 depending only on c and d such that,

|m(n)(x)| ≤ Cn|x|−d, |∂xm(n)(x)| ≤ Cn|x|−d−1, |m(n)(x)| ≤ Cn(1 + |x|)−d−6 (20)

Thus, for a similar C > 0,

‖Mnf‖L1 ≤ CnNµ,β(f) (21)

Let mk(ξ) = χ(2kξ)m(ξ) and denote by Mk the operator defined by the multiplier
mk. Clearly Mkf = Pk(Mf). We shall also denote by MJ the operator PJM with
multiplier mJ =

∑
k∈J mk for any interval J ⊂ Z. In physical space,

Mkf(x) =
∫

Rd

mk(x− y)f(y)dy, M≥kf =
∫

Rd

m≥k(x− y)f(y)dy

We have the following,

Lemma 2.2. Let k ∈ Z+ ∪ {0} and assume that ak is a function whose frequency
is supported in the band 2k−1 ≤ |ξ| ≤ 2k+1, or in the case k = 0 in the ball |ξ| ≤ 1.
Then, there exists a constant C > 0 such that for all n ∈ N,

‖[(Mn)≥k , ak]f‖L1 ≤ Cn‖ak‖L∞‖f‖L1

Proof : We have,

C(ak)f : = (Mn)≥k(akf)(x)− ak(x)(Mn)≥kf(x

=
∫

m(n)
≥k(x− y)

(
ak(y)− ak(x)

)
f(y)dy

To show that the the integral operator C(ak) maps L1 into L1 it suffices to show
that,

I = sup
y

I(y)

I(y) =
∫
|m(n)

≥k(x− y)||ak(y)− ak(x)|dx ≤ Cn‖αk‖L∞

We write,

I(y) ≤ I1(y) + I2(y)

I1(y) =
∫
|x−y|≥2−k

|m(n)
≥k(x− y)||ak(y)− ak(x)|dx

I2(y) =
∫
|x−y|≤2−k

|m(n)
≥k(x− y)||ak(y)− ak(x)|dx

We have,

|ak(y)− ak(x)| ≤ |x− y| sup
z∈[x,y]

|∂ak(z)| . 2k|x− y| ‖ak‖L∞

We also have,

|m(n)
≥k(x)| ≤ Cn|x|−d

Thus,

I2(y) ≤ Cn‖ak‖L∞

∫
|x−y|≤2−k

|x− y|−d2k|x− y|dx . Cn‖ak‖L∞



TRANSPORT EQUATIONS 11

Also, since,

|m(n)
≥k(x)| ≤ Cn2−k|x|−d−1

I1(y) ≤ Cn‖ak‖L∞

∫
|x−y|≥2−k

2−k|x− y|−d−1dx . Cn‖ak‖L∞

as desired.

We shall now prove the following,

Proposition 2.3. Let M be a Calderon-Zygmund operator on R2 with the symbol
satisfying (17) and a = a(x) a smooth function verifying the bound,

‖a‖B1
2,1(R2) ≤ A (22)

Then, for every positive integer n we have,

‖(aM)nf‖L1 ≤ CnAnN(f) (23)

with N(f) defined by (13).

Remark 2.4. Observe that the proposition remains valid if we replace (aM)n by
a(1)M(1)a(2)M(2) . . . a(n)M(n) with

‖a(i)‖B1
2,1(Rd) ≤ A, i = 1, . . . n

and M1,M2, . . . Mn translation invariant Calderon-Zygmund operators with sym-
bols which are uniformly bounded by the same constant c, see (17).

The proof follows immediately from the following lemma.

Lemma 2.5. Let (k1, ..., kn) be an n-tuple of non-negative integers and assume
that the functions aki

with 0 ≤ i ≤ n have frequencies supported in the dyadic shells
[2ki−1 , 2ki+1 ], or in the case ki = 0 in the ball |ξ| ≤ 1. Then for some positive
constant B,

‖Mak1M . . . aknMf‖L1 . BnAk1...knN(f) (24)

where

Ak1...kn = ‖ak1‖H1 · · · ‖akn‖H1 (25)

Proof : We prove by induction on n the following stronger version of estimate
(24),

‖M lak1M . . . aknMf‖L1 . Bn+l
1 Bn

2 Ak1...knN(f) (26)

with appropriately chosen constants constants B1, B2. Assume that the estimate
has been proved for (n− 1) and any l ∈ N. Splitting M̄ := M l = M̄<k1 + M̄≥k1 we
need to prove,

‖M̄≥k1(ak1Mak2 . . . akn
M)f‖L1 . Bn+l

1 Bn
2 Ak1...kn

N(f) (27)

‖M̄<k1(ak1Mak2 . . . aknM)f‖L1 . Bn+l
1 Bn

2 Ak1...knN(f) (28)

To deal with the first inequality we write,

M̄≥k1ak1Mak2 . . . aknM = ak1M̄≥k1Mak2 . . . aknM

+ [M̄≥k1 , ak1 ]Mak2 . . . akn
M
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According to Lemma 2.2 and the Bernstein inequality ‖ak‖L∞ . ‖ak‖H1 , we have,

‖[M̄≥k1 , ak1 ]Mak2 . . . aknMf‖L1 . Cl‖ak1‖H1‖Mak2 . . . akn
Mf‖L1

Also,

‖ak1M̄≥k1Mak2 . . . akn
Mf‖L1 . ‖ak1‖L∞‖M l+1ak2 . . . akn

Mf‖L1 (29)

Thus, taking into account our induction hypothesis,

‖M≥k1(ak1Mak2 . . . aknM)f‖L1 . Cl‖ak1‖H1 · ‖Mak2M . . . aknMf‖L1

+ ‖ak1‖H1‖M l+1ak2 . . . akn
Mf‖L1

. (ClBn
1 Bn−1

2 + Bn+l
1 Bn−1

2 )Ak1...knN(f)

. Bn+l
1 Bn

2 Ak1...kn
N(f)

as desired, provided that the constants B1, B2 are sufficiently large, in fact we need
B1 ≥ C and B2 ≥ 1.

We now consider the more difficult term

M̄<k1(ak1Mak2 . . . akn
M)f = M̄<k1

(
ak1M(g)

)
= M̄<k1

(
ak1Mk1(g)

)
with g = (ak2Mak3 . . . akn

M)f . Note that if k1 = 0 the operator M̄<k1 is a multi-
plier with a smooth symbol of compact support. As a consequence it is bounded
on L1 and, with a0 = ak1 ,

‖M̄<0(a0Mak2 . . . akn
M)f‖L1 ≤ Cl‖ak1‖H1‖Mak2 . . . akn

M)f‖L1

. ClBn
1 Bn−1

2 Ak1...kn
N(f).

Therefore to prove (28) we need to consider the case k1 > 0 and estimate,

‖M̄<k1(ak1Mak2 . . . akn
Mf)‖L1

We further decompose as follows,

M̄<k1(ak1Mak2 . . . akn
Mf) =

∑
[l]n

M̄<k1M[k]n,[l]n(f) (30)

M[k]n,[l]n(f) = ak1Ml1ak2 . . .Mln−1akn
Mlnf

with [l]n denoting an arbitrary integer n-tuple (l1, ..., ln) ∈ (Z+ ∪ {0})n and [k]n =
(k1, . . . , kn). Whenever there is no possibility of confusion we shall drop the index
n and write simply simply write [k], [l]. By the triangle inequality

‖M̄<k1(ak1Mak2 . . . aknMf)‖L1 ≤
∑
[l]n

‖M̄<k1M[k]n,[l]n(f)‖L1

We note that in the expression M̄<k1ak1Ml1(ak2 . . . akn
Mlnf) the frequency l1 is

forced to be of the order of k1. This allows us to insert a factor of 2−|k1−l1| in the
above expression. Using (21) we then derive,

‖M̄<k1M[k],[l](f)‖L1 . 2−|k1−l1|Bl
1B2Nµ( [l] ),β

(
M[k],[l](f)

)
(31)
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Here, the notation µ( [l] ) indicates that the scalar µ will be chosen dependent on
the multi-index [l] = [l]n. Recall that9,

Nµ,β(g) = µ‖β‖L1 + ‖g‖L1 log+{ sup
a∈Zd

‖χag‖L∞

µ‖χaβ‖L1
}

We now make the following choice for the scalar µ. The choice will be justified in
the lemmas below.

µ([l]) = Ak1...kn
2−α([l]n),

α([l] =
1
2

n∑
m=2

min
(
|lm − lm−1|, |lm − km|

)
We also choose the function

β = (1 + |x|)−3.

Observe that the following holds true,(
< b >

< a >

)−3

‖χbβ‖L1 ≤ ‖χaβ‖L1 ≤
(

< b >

< a >

)3

‖χbβ‖L1 (32)

We will need to make use of the following,

Lemma 2.6. The following estimates hold true for the expression,

M[k],[l](f) = ak1Ml1ak2 ....akn
Mlnf,

‖M[k],[l](f)‖L1 . Cn2−2α([l]n)Ak1..kn
‖f‖L1 (33)

‖χaM[k],[l](f)‖L∞ . CnAk1..kn

∑
b∈Z2

< |b− a| >−3 ‖χbf‖L∞ (34)

We postpone the proof of the lemma to the end of this section.

Now, using (31)

‖M̄<k1(ak1Mak2 . . . akn
Mf)‖L1 ≤

∑
[l]n

‖M̄<k1M[k],[l](f)‖L1

.
∑
[l]

2−|k1−l1|
(

µ( [l]) ‖β‖L1 + ‖M[k],[l](f)‖L1 log+{ sup
a∈Zd

‖χaM[k],[l](f)‖L∞

µ( [l] )‖χaβ‖L1
}
)

Given our choice of µ( [l] ) we have,∑
[l]

2−|k1−l1|µ( [l] ) = Ak1...kn

∑
[ l ]

2−|k1−l1|2−α( [l])

= Ak1...kn

∑
[l]

(
2−|k1−l1| · 2− 1

2 min(|l2−l1|,|l2−k2|) · . . . · 2− 1
2 min(|ln−ln−1|,|ln−kn|)

)
. Ak1...kn

9For simplicity of notation we drop the summation
P
|b−a|≤3 which will only adds a finite

number of terms of the same type.
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Thus, in order to end he proof of (28) it suffices to show that∑
[l]

2−|k1−l1|‖M[k],[l](f)‖L1 log+{ sup
a∈Zd

‖χaM[k],[l](f)‖L∞

µ( [l] )‖χaβ‖L1
} . CnAk1...knN(f) (35)

Using (33) and (34) and recalling the definition of µ[l], β(x), we obtain∑
[l]

2−|k1−l1|‖M[k],[l](f)‖L1 log+{ sup
a∈Zd

‖χaM[k],[l](f)‖L∞

µ( [l] )‖χaβ‖L1
}

. CnAk1...kn

∑
[l]

2−|k1−l1|2−2α([l])‖f‖L1 log+
{

Cn−1 sup
a∈Zd

∑
b 6=a

< |b− a| >−3 2α([l])‖χbf‖L∞

‖χaβ‖L1

}
. C2nAk1...kn

∑
[l]

2−|k1−l1|2−α([l])‖f‖L1 log+
{

sup
a∈Zd

‖χaf‖L∞

‖χaβ‖L1

}
. C2nAk1...kn

‖f‖L1 log+
{

sup
a∈Zd

< |a| >3 ‖χaf‖L∞

}
. C2nAk1...knN(f),

as desired. Here we have used,

(1 + |a|)3 . (1 + |b− a|)3(1 + |b|)3

and the finiteness of the sum∑
[l]

2−|k1−l1|2−α( [l] ) =
∑
[l]

(
2−|k1−l1|2−

1
2 min(|l2−l1|,|l2−k2|) · . . . · 2− 1

2 min(|ln−ln−1|,|ln−kn|)
)

It remains to prove Lemma 2.6. Estimate (33) follows recursively provided that we
can establish the following

‖Mlm−1akm
Plmh‖L1 . ‖akm

‖H12−min(|lm−lm−1|,|lm−km|)‖h‖L1 (36)

In fact, since Mlm−1 is bounded in L1, it suffices to prove,

‖Plm−1akm
Plmh‖L1 . ‖akm

‖H12−min(|lm−lm−1|,|lm−km|)‖h‖L1 (37)

On the other hand, estimate (34) is a localized version of the trivial estimate

‖ak1Ml1ak2 ....aknMlnf‖L∞ . CnAk1..kn‖f‖L∞ ,

which holds since each of the frequency localized Calderon-Zygmund operators Ml

are bounded on Lp including p = 1,∞. Its localized version follows inductively
from the estimate,

‖χaMlχbg‖L∞ ≤ C(1 + |b− a|)−3‖g‖L∞ , l ≥ 0 (38)

which holds true on account of the sharp localization of the kernel of Ml, in physical
space, due to the smoothness of the symbol of M at zero. Indeed the kernel of
m(x− y) of the operator χaMlχb verifies,

|m(x− y)| ≤ Cχa(x)(1 + |x− y|)−6χb(y) ≤ C(1 + |b− a|)−3m1(x− y)

with m1(x− y) = (1 + |x− y|)−3 in L1.

To prove (37) we distinguish the following cases.
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(1) Assume lm−1 < km. Observe that Plm−1(akm
Plmh) = 0 unless |lm − km| ≤

2. Therefore, since

min
(
|lm − lm−1|, |lm − km|)

)
≈ 1

we have ,

‖Plm−1(akm
Pkm

h)‖L1 . ‖akm
‖H1‖h‖L1

. 2−min(|lm−lm−1|,|lm−km|)‖akm‖H1‖h‖L1

as desired.
(2) Assume lm−1 > km . In this case Plm−1(akm

Plmh) = 0 unless |lm−1− lm| ≤
2. Therefore we have again,

min
(
|lm − lm−1|, |lm − km|)

)
≈ 1

and

‖Plm−1(akmPlm−1h)‖L1 . ‖akm
‖H1‖h‖L1

. 2−min(|lm−lm−1|,|lm−km|)‖akm‖H1‖h‖L1

(3) If lm−1 = km, then Plm−1(akmPlmh) = 0 unless lm ≤ km. Then, using the
Bernstein inequality ‖Plmh‖L2 . 2lm‖h‖L2 we derive,

‖Plm−1(akm
Plmh)‖L1 . ‖(akm

Plmh)‖L1 . ‖akm
‖L2‖Plmh)‖L2

. 2−km‖akm‖H1‖Plmh‖L2

. 2−km+lm‖ak‖H1‖h‖L1

Since in this case lm ≤ km = lm−1 we have,

min
(
|lm − lm−1|, |lm − km|

)
= km − lm

Therefore,

‖Plm−1(akm
Plmh)‖L1 . 2−min(|lm−lm−1|,|lm−km|)‖akm

‖H1‖h‖L1

as desired.

Thus in all cases inequality (37) is verified.

3. Proof of the main theorem

We need to prove the estimate

sup
t∈[0,1]

‖u(t)‖L1(Rd) . CN(g)

where d = 2 and

N(g) = ‖g‖L1([0,1]×R2) log+
{

sup
a∈Z2

|a|2‖χag‖L∞([0,1]×R2)

}
+ 1

for a solution to (1)

∂tu− a(t, x)Mu = g, u(0, x) = 0,
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where the coefficient a admits the decomposition

a = ∂tb + c (39)

with a, b and c satisfying the conditions (8), (10) and (11).

We define the iterates u0 = 0, u1, . . . un, un+1 according to the recursive formula,

∂tu
(n+1)(t, x) = a(t0, x)Mu(n)(t, x) + g(t, x), u(n+1)(0) = 0. (40)

3.1. First iterates. To illustrate our method consider first the case of the iterate,

u(2)(t0) =
∫ t0

0

g(t1)dt1 +
∫ t0

0

a(t1)dt1M

∫ t1

0

g(t2)dt2

Thus,

‖ sup
t0∈[0,1]

u(2)(t0)‖L1(Rd) . ‖ sup
t0∈[0,1]

∫ t0

0

g(t1)dt1‖L1 + ‖ sup
t0∈[0,1]

I(t0)‖L1

I(t0) =
∫ t0

0

a(t1)dt1M

∫ t1

0

g(t2)dt2

The first term is trivial. To estimate the second term we need to make use of the
decomposition (39). Thus,

I(t0) = Ib(t0) + Ic(t0)

Ic(t0) =
∫ t0

0

c(t1)dt1

∫ t1

0

Mg(t2)dt2

Ib(t0) =
∫ t0

0

∂t1b(t1)dt1

∫ t1

0

Mg(t2)dt2

= b(t0)
∫ t0

0

Mg(t2)dt2 −
∫ t0

0

b(t1)Mg(t1)dt1

:= Ib,1(t0) + Ib,2(t0)

To estimate Ic we use the fact that, for d = 2, the Besove space B1
2,1(Rd) embedds

in L∞(Rd) and the estimate,

‖Mg(t)‖L1(Rd) . ‖g(t)‖L1(Rd) log+ ‖g(t)‖L∞(Rd) + 1 . N(g(t))

Thus,

‖ sup
t0∈[0,1]

Ic(t0)‖L1 .
∫ 1

0

‖c(t1)‖L∞dt1

∫ t1

0

‖Mg(t2)‖L1(Rd)dt2

.
∫ 1

0

‖c(t1)‖B1
2,1(Rd)dt1

∫ t1

0

N(g)(t2)dt2

. ‖c‖3N(g)
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On the other hand, decomposing b = b0 +
∑

k∈Z+
bk,

‖ sup
t0∈[0,1]

Ib,1(t0)‖L1(Rd) . ‖ sup
t0∈[0,1]

b(t0)‖L∞(Rd)

∫ t0

0

‖Mg(t2)‖L1(Rd)dt2

. N(g)‖ sup
t0∈[0,1]

b(t0)‖L∞(Rd)

. N(g)
∑

k∈Z+∪{0}

‖ sup
t0∈[0,1]

bk(t0)‖L∞(Rd)

We now appeal to the following straightforward lemma,

Lemma 3.2. The following calculaus inequality holds true (see (10)) for k ≥ 0,

sup
t∈[0,1]

‖bk(t)‖H1(Rd) . ‖∂tbk‖1/2

L2
t H1‖bk‖1/2

L2
t H1 . 2−k/2‖bk‖2

Also,

‖ sup
t∈[0,1]

bk(t)‖L∞(Rd) . ‖∂tbk‖1/2

L2
t H1‖bk‖1/2

L2
t H1 . 2−k/2‖bk‖2

In view of the Lemma we deduce,

‖ sup
t0∈[0,1]

Ib,1(t0)‖L1(Rd) . N(g)
∑

k∈Z+∪{0}

‖bk‖L2
t H1

. N(g)
∑

k∈Z+∪{0}

2−k/2‖bk‖2 . N(g)‖b‖2

Similarly,

‖ sup
t0∈[0,1]

Ib,2(t0)‖L1(Rd) . ‖
∫ 1

0

b(t1)Mg(t1)dt1‖L1(Rd)

. N(g) sup
t1∈[0,1]

‖b(t1)‖L∞

. N(g)‖b‖2
Therefore,

‖ sup
t0∈[0,1]

u(2)(t0)‖L1(Rd) . N(g)
(
‖b‖2 + ‖c‖3

)
Remark 3.3. Observe that there is room of a 1/2 derivative in the estimates for Ib.
This room will play an important role for treating the general iterates u(n+1).

Consider now the more dificult case of the iterate u(3),

u(3) =
∫ t0

0

g(t1)dt1 +
∫ t0

0

a(t1)Mu(2)(t1)dt1

=
∫ t0

0

g(t1)dt1 +
∫ t0

0

a(t1)dt1M
( ∫ t1

0

g(t2)dt2
)

+
∫ t0

0

∫ t1

0

∫ t2

0

a(t1)Ma(t2)Mg(t3)dt1dt2dt3
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We concentrate our attention on the last term,

I(t0) =
∫ t0

0

∫ t1

0

∫ t2

0

a(t1)Ma(t2)Mg(t3)dt1dt2dt3

As we decompose each a(ti) = ∂tb(ti) + c(ti) with i = 1, 2 we notice that we can
only integrate by parts only one of the potentially two terms containing ∂tb(ti). We
need to make that choice judiciously, based on the relative strength of the terms.
We begin by decomposing a(t1), a(t2) into their Littlewood-Paley pieces and write,

I(t0) =
∫ t0

0

∫ t1

0

∫ t2

0

∑
k1,k2∈Z+∪{0}

ak1(t1)Mak2(t2)Mg(t3)dt1dt2dt3

=
∫ t0

0

∫ t1

0

∫ t2

0

∑
0≤k1<k2

+
∫ t0

0

∫ t1

0

∫ t2

0

∑
0≤k1=k2

+
∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2≥0

In what follows we will tacitly assume that all the integer indices ki take values
in the set of non-negative integers and will not write this constraint explicitly.
Consider the last term,

J(t0) =
∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

ak1(t1)Mak2(t2)Mg(t3)dt1dt2dt3

We further decompose,

ak1(t1) = ∂tbk1(t1) + ck1(t1)

and concentrate on the term,

Jb(t0) =
∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

∂t1bk1(t1)Mak2(t2)Mg(t3)dt1dt2dt3

=
∑

k1>k2

bk1(t0)
∫ t0

0

∫ t2

0

Mak2(t2)Mg(t3)dt2dt3

−
∑

k1>k2

∫ t0

0

∫ t1

0

bk1(t1)Mak2(t1)Mg(t3)dt1dt3

Let,

Jb1(t0) =
∑

k1>k2

bk1(t0)
∫ t0

0

∫ t2

0

Mak2(t2)Mg(t3)dt2dt3

and estimate

‖Jb1(t0)‖L1 .
∑

k1>k2

‖bk1(t0)‖L∞

∫ t0

0

∫ t2

0

‖Mak2(t2)Mg(t3)‖L1dt2dt3

Using Lemma 2.6 we have,

‖Mak2(t2)Mg(t3)‖L1 . ‖ak2(t2)‖H1N(g)(t3)

Also, according to Lemma 3.2, using the norm ‖ ‖2 introduced in (11),

‖bk1(t0)‖L∞ . 2−k1/2‖bk1‖2
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Hence,

‖Jb1(t0)‖L1 .
∑

k1>k2≥0

2−k1/2‖bk1‖2
∫ t0

0

‖ak2(t2)‖H1dt2

∫ t2

0

N(g)(t3)dt3dt3

. N(g)
∑

k1>k2≥0

2−k1/2‖bk1‖2‖ak2‖1 . N(g)‖b‖2‖a‖1

The term Jb2 =
∑

k1>k2

∫ t0
0

∫ t2
0

bk1(t1)Mak2(t1)Mg(t3)dt1dt3 can be treated in ex-
actly the same fashion. Thus,

‖Jb(t0)‖L1 . N(g)‖b‖2‖a‖1 (41)

Consider now the term,

Jc(t0) =
∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

ck1(t1)Mak2(t2)Mg(t3)dt1dt2dt3

We further decompose

ak2(t2) = ∂tbk2(t2) + ck2(t2)

We show how to treat the term,

Jc(t0) =
∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

ck1(t1)M∂tbk2(t2)Mg(t3)dt1dt2dt3

=
∑

k1>k2

∫ t0

0

∫ t1

0

ck1(t1)Mbk2(t1)Mg(t3)dt1dt3

−
∑

k1>k2

∫ t0

0

∫ t1

0

ck1(t1)Mbk2(t2)Mg(t2)dt1dt2

Hence, using first Lemma 2.6 followed by Lemma 3.2,

‖Jc(t0)‖L1 .
∑

k1>k2

∫ t0

0

∫ t1

0

‖ck1(t1)Mbk2(t1)Mg(t3)‖L1dt1dt3

+
∑

k1>k2

∫ t0

0

∫ t1

0

‖ck1(t1)Mbk2(t2)Mg(t2)‖L1dt1dt2

.
∑

k1>k2

∫ t0

0

∫ t1

0

‖ck1(t1)‖H1‖bk2(t1)‖H1N(g)(t3)dt1dt3

+
∑

k1>k2

∫ t0

0

∫ t1

0

‖ck1(t1)‖H1‖bk2(t2)‖H1N(g)(t2)dt1dt2

.
∑

k1>k2

sup
t∈[0,1]

‖bk2(t)‖H1

∫ t0

0

∫ t1

0

‖ck1(t1)‖H1N(g)(t2)dt1dt2

. N(g)
∑

k1>k2≥0

2−k2/2‖bk2‖2‖ck1‖L1H1 . N(g)‖b‖2
∑
k1

‖ck1‖L1H1

. N(g)‖b‖2‖c‖3
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3.4. General case. Treatment of the general case will follow the scheme laid down
for the third iterate u(3). Additional challenge however is presented in controlling
constants in the estimates, which may grow uncontrollably with respect to the order
of the iterates. Recalling (40) we write,

u(n+1)(t) =
∫ t

0

g(t1)dt1 +
∫ t

0

a(t1)dt1

∫ t1

0

Mg(t2)dt2 + . . .

+
∫ t

0

∫ t1

0

. . .

∫ tn

0

a(t1)Ma(t2)M . . . a(tn)Mg(tn+1)dt1dt2 . . . dtn+1

To simplify notations introduce the simplex ∆n(t) defined by,

t ≥ t1 ≥ t2 . . . ≥ tn ≥ tn+1 ≥ 0

and write,

u(n+1)(t) = u(n)(t) + Jn(t) (42)

where,

Jn(t) =
∫

∆n(t0)

a(t1)Ma(t2)M . . . a(tm)Mg(tn+1)

:=
∫

. . .

∫
∆n(t0)

dt1 . . . dtn+1 a(t1)Ma(t2)M . . . a(tm)Mg(tn+1)

To prove (13) it will suffice to show that

sup
t∈[0,1]

‖Jn(t)‖L1(Rd) . Cn∆nN(g) (43)

We decompose each a(ti) in the expression for Jn into its Littlewood-Paley compo-
nents according to,

a(ti) =
∑

k∈Z+∪{0}

Pka(ti) = a0(ti) +
∑

ki∈Z+

aki
(ti)

Thus, writing k = (k1, . . . kn) ∈ (Z+ ∪ {0})n

Jn(t) = J(t) =
∑

k∈(Z+∪{0})n

∫
∆n(t)

a(t1)k1M . . . akn(tn)Mg(tn+1) (44)

For each 1 ≤ j ≤ n we define,

[kj ] = {(k1, k2, . . . kn) ∈ (Z+ ∪ {0})n | ki ≤ kj ∀i} (45)

to be the set on n-tuples (k1, ..., kn) with the property that for each i = 1, .., n
ki ≤ kj . In what follows we will tacitly assume that all indices ki take values in the
set of non-negative integers and will not write this constraint explicitly. Let,

Jj
n(t) = Jj(t) =

∑
k∈[kj ]

∫
∆n(t)

ak1(t1)M . . . akn(tn)Mg(tn+1) (46)

Clearly,

‖Jn(t)‖L1(Rd) .
n∑

j=1

‖Jj
n(t)‖L1(Rd)
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We now fix j and decompose in view of (39),

akj (tj) = ∂tbkj (tj) + ckj (tj) (47)

Thus,

Jj(t) = Jj
b (t) + Jj

c (t) =
∑

k∈[kj ]

Jj
b,k(t) +

∑
k∈[kj ]

Jj
c,k(t) (48)

Jj
b,k(t) =

∫
∆n(t)

ak1(t1)M . . . ∂tbkj
(tj)M . . . akn

(tn)Mg(tn+1)dt1 . . . dtn+1

Jj
c,k(t) =

∫
∆n(t)

ak1(t1)M . . . ckj
(tj)M . . . akn

(tn)Mg(tn+1)dt1 . . . dtn+1

with the summation convention,∑
k∈[kj ]

=
∑
kj∈Z

∑
k′≤kj

, k′ = (k1, . . . k̂j . . . kn).

We first estimate10 Jb = Jj
b . Integrating by parts,

Jb,k(t) =
∫

∆n−1(t)

. . . akj−1(tj−1)Mbkj (tj−1)Makj+1(tj+1) . . .Mg(tn+1)dt1 . . . d̂tj . . . dtn+1

−
∫

∆n−1(t)

. . . akj−1(tj−1)Mbkj (tj+1)Makj+1(tj+1) . . .Mg(tn+1)dt1 . . . d̂tj . . . dtn+1

= J−b,k(t) + J+
b,k(t)

Now, with the help of Lemma 2.6, we proceed as in the previous subsection,

‖J−b,k(t)‖L1 . Cn sup
t
‖bkj (t)‖H1

∫
∆n−1(t)

Ak(t1, . . . t̂j . . . tn)N(g)(tn+1)dt1 . . . d̂tj . . . dtn+1

where,

Ak,j(. . . t̂j . . . ) = ‖ak1(t1)‖H1 . . . ̂‖akj
(tj)‖H1 . . . ‖akn

(tn)‖H1

Henceforth, with the help of Lemma 3.2,

‖J−b,k(t)‖L1 . CnN(g)2−kj/2‖bkj
‖2 |∆n−2(t)|1/2

( ∫
∆n−2(t)

Ak(. . . t̂j . . . )2dt1 . . . d̂tj . . . dtn
)1/2

where |∆n−2(t)| is the volume of the n− 2 dimensional simplex11. Consequently,

‖J−b,k(t)‖L1 . Cn((n− 1)!)−1/2N(g)2−kj/2‖bkj
‖2‖ak1‖1 . . . ‖̂akj

‖1 . . . ‖akn
‖1

and, by triangle inequality and then Cauchy-Schwartz,

‖
∑

k∈[kj ]

J−b,k(t)‖L1 . Cn((n− 1)!)−1/2N(g)
∑

k∈[kj ]

2−kj/2‖bkj
‖2‖ak1‖1 . . . ‖̂akj

‖1 . . . ‖akn
‖1

. Cn((n− 1)!)−1/2N(g)(
∑

k∈[kj ]

2−kj )1/2
( ∑

k∈[kj ]

‖bkj‖22‖ak1‖21 . . . ‖akn‖21
)1/2

. Cn(
n!

(n− 1)!
)1/2N(g)‖b‖2‖a‖n−1

1

. n
1
2 CnN(g)‖b‖2‖a‖n−1

1

10For simplicity, since j is kept fix we drop the j upper index below
11In our notations it corresponds to an actual (n− 1)-dimensional simplex.
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Proceeding exactly in the same way we derive,

‖
∑

k∈[kj ]

J+
b,k(t)‖L1 . nCnN(g)‖b‖2‖a‖n−1

1

Therefore, recalling that Jb(t) =
∑

k∈[kj ]
Jb,k(t),

‖Jj
b (t)‖L1(Rd) . nCnN(g)‖b‖2‖a‖n−1

1 (49)

To estimate Jj
c (t) =

∑
k∈[kj ]

Jc,k(t) we have to do a further decomposition. We
define,

[kj , kl] = {(k1, k2, . . . kn) ∈ (Z+ ∪ {0})n | ki ≤ kl ≤ kj ∀i 6= l, j} (50)

For fixed j we have precisely n−1 such regions covering [kj ]. Fix l 6= j and consider,

Jjl
c (t) =

∑
k∈[kj ,kl]

Jjl
c,k(t) (51)

Clearly,

‖Jj
c (t)‖L1(Rd) .

∑
l 6=j

‖Jjl
c,k(t)‖L1(Rd) (52)

In view of (39) we decompose,

akl
(tl) = ∂tbkl

(tl) + ckl
(tl) (53)

Thus, dropping the upper indices j, l,

Jc(t) = Jcb(t) + Jcc(t) =
∑

k∈[kj ,kl]

Jcb,k(t) +
∑

k∈[kj ,kl]

Jcc,k(t) (54)

Jcb,k(t) =
∫

∆n(t)

ak1(t1)M . . . ckj (tj)M . . . ∂tbkl
(tl)M . . . akn(tn)Mg(tn+1)dt1 . . . dtn+1

Jcc,k(t) =
∫

∆n(t)

a(t1)k1M . . . ckj (tj)M . . . ckl
(tl) . . . akn(tn)Mg(tn+1)dt1 . . . dtn+1

Integrating by parts, and droping the operators M for a moment,

Jcb,k(t) =
∫

∆n−1(t)

. . . ckj (tj) . . . akl−1(tl−1)bkl
(tl−1)akl+1(tl+1) . . . g(tn+1)dt1 . . . d̂tl . . . dtn+1

−
∫

∆n−1(t)

. . . ckj (tj) . . . akl−1(tl−1)bkl
(tl+1)akl+1(tl+1)akl+2(tl+2) . . . g(tn+1)dt1 . . . d̂tl . . . dtn+1

= J−cb,k(t) + J+
cb,k(t)

Using Lemma 2.6 as before,

‖J±cb,k(t)‖L1 . Cn sup
t
‖bkl

(t)‖H1

∫
∆n−1(t)

Bk(t1, . . . t̂l . . . tn)N(g)(tn+1)dt1 . . . d̂tl . . . dtn+1

where,

Bk(. . . t̂l . . . ) = ‖ak1(t1)‖H1 . . . ‖ckj
(tj)‖H1 . . . ̂‖akl

(tl)‖H1 . . . ‖akn
(tn)‖H1
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Therefore, exactly as before with the help of Lemma 3.2,

‖J±cb,k(t)‖L1 . CnN(g)2−kl/2‖bkl
‖2 Pk,n−2(t)

Pk,n−2(t) =
∫

∆n−2(t)

Bk(. . . t̂l . . . )dt1 . . . d̂tl . . . dtn

Observe that,

Pk,n−2(t) ≤
∫

∆n−2(t)

‖ak1(t1)‖H1 . . . ‖ckj
(tj)‖H1 . . . ̂‖akl

(tl)‖H1 . . . ‖akn
(tn)‖H1dt1 . . . d̂tl . . . dtn

Thus,

‖
∑

k∈[kj ,kl]

J±cb,k(t)‖L1 . Cn((n− 2)!)−1/2N(g)Q

with,

Q =
∑

kl≤kj

2−kl/2‖bkl
‖2‖ckj‖3

∑
k′′≤kl

‖ak1‖1 . . . ‖̂akj‖1 . . . ‖̂akl
‖1 . . . ‖akn‖1

with k′′ = (k1, k2 . . . , k̂j , . . . , k̂l . . . kn). Therefore, by Cauchy-Schwartz,

Q .
∑

kl≤kj

2−kl/2k
(n−2)/2
l ‖bkl

‖2‖ckj
‖3
( ∑

k′′≤kl

‖ak1‖21 . . . ‖akn
‖21
)1/2

. ‖a‖n−2
1

∑
kj∈Z

‖ckj
‖3
∑

kl≤kj

2−kl/2k
(n−2)/2
l ‖bkl

‖2

. ‖a‖n−2
1 ‖b‖2

∑
kj∈Z

‖ckj
‖3
( kj∑

kl=0

2−klk
(n−2)
l

)1/2

. ((n− 1)!)1/2‖a‖n−2
1 ‖b‖2‖c‖3

Consequently,

‖
∑

k≤kl≤kj

J±cb,k(t)‖L1 . Cn
( (n− 1)!
(n− 2)!

)1/2
N(g)‖a‖n−2

1 ‖b‖2‖c‖3

. n
1
2 CnN(g)‖a‖n−2

1 ‖b‖2‖c‖3

Therefore,

sup
t∈[0,1]

‖Jjl
cb(t)‖L1(Rd) . n

1
2 CnN(g)‖a‖n−2

1 ‖b‖2‖c‖3 (55)

To treat the term Jcc,k(t) we decompose once more. Continuing in the same manner
after m steps we arrive at the integral,

Jj1j2...jm−1
c1...cm−1

(t) =
∑

[kj1 ...kjm−1 ]

∫
∆n(t)

. . . (56)

with the integrand containing c1 = ckj1
, c2 = ckj2

. . . cm−1 = ckjm−1
and

[kj1 , . . . kjm−1 ] = {(k1 . . . kn) ∈ Zn | ki ≤ kjm
≤ . . . ≤ kj1 ∀i 6= j1, j2 . . . jm−1}
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Clearly [kj1 , . . . kjm−1 ] can be covered by precisely n − m + 1 regions of the form
[kj1 , . . . kjm ]. We have,

Jj1j2...jm−1
c1...cm−1

(t) =
∑
jm

Jj1j2...jm
c1...cm−1

(t), kjm
≤ kjm−1 (57)

Jj1j2...jm
c1...cm−1

(t) =
∑

[kj1 ...kjm ]

∫
∆n(t)

. . . (58)

In view of (39) we decompose,

akjm
(tjm) = ∂tbkjm

(tjm) + ckjm
(tjm) (59)

and, respectively,

Jj1j2...jm
c1...cm−1

(t) =
∑

k∈[kj1 ...kjm ]

Jj1j2...jm

c1...cm−1bm,k(t) +
∑

k∈[kj1 ...kjm ]

Jj1j2...jm

c1...cm,k(t)

where bm = bkjm
, cm = ckjm

Proceeding exactly as before, integrating by parts and
using Lemma 2.6, we write,

‖Jj1j2...jm

c1...cm−1bm,k(t)‖L1 . Cn sup
t
‖bkjm

(t)‖H1

∫
∆n−1(t)

Bk(t1, . . . t̂jm
. . . tn)N(g)(tn+1)

where,

Bk(. . . t̂jm
. . . ) = ‖ckj1

(tj1)‖H1 . . . ‖ckjm−1
(tjm−1)‖H1

· ‖akjm+1
(tjm+1)‖H1 . . . ‖akjn

(tjn
)‖H1

Therefore,

‖Jj1j2...jm

c...cb,k (t)‖L1 . CnN(g)2−kjm /2‖bkjm
‖2 Pk,n−2(t)

Pk,n−2(t) =
∫

∆n−2(t)

Bk(. . . t̂jm
. . . )

where kjm+1 , . . . kjn are the labels for all other frequencies different from kj1 , . . . kjm−1 .

To estimate Pk,n−2(t) we make use of the following obvious lemma.

Lemma 3.5. Let f1, f2, . . . fn be an ordered sequence of n positive, integrable, func-
tions defined on the interval [0, 1] ⊂ R among which m, say fi1 , i = 1, . . . m are in
L1 and n−m, say fj1 , . . . fjn−m are in L2. Then,∫

∆n−2(t)

f1(t1) . . . fn(tn)dt1 . . . dtn .
( 1
(n−m)!

)1/2‖fi1‖L1 . . . ‖fim‖L1

· ‖fj1‖L1 . . . ‖fjn−m
‖L1

According to Lemma 3.5 we have,

Pk,n−2(t) .
( 1
(n−m− 1)!

)1/2‖ckj1
‖L1H1 . . . ‖ckjm−1

‖L1H1 · ‖akjm+1
‖1 . . . ‖akjn

‖1

Observe that,∑
k′′≤kjm

‖akjm+1
‖1 . . . ‖akjn

‖1 .
(
kjm

)(n−1−m)/2(
∑

k′′≤kjm

‖akjm+1
‖21 . . . ‖akjn

‖21)1/2

.
(
kjm

)(n−1−m)/2‖a‖m−n
1
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where k′′ = (kjm+1 , . . . kjn
). Observe also that,∑

kj1≤kj2 ...≤kjm−1

‖ckj1
‖L1H1 . . . ‖ckjm−1

‖L1H1 .
1

(m− 1)!
‖c‖m−1

3 (60)

Indeed this follows by symmetry in view of the fact that,∑
kj1 ,... ,kjm

‖ckj1
‖L1H1 . . . ‖ckjm−1

‖L1H1 . ‖c‖m−1
3

Finally, by Cauchy-Schwartz,∑
kjm∈Z

2−kjm /2
(
kjm

)(n−1−m)/2‖bkjm
‖2 . ((n−m)!)1/2‖b‖2

Hence,∑
[kj1 ...kjm ]

‖Jj1j2...jm

c...cb,k (t)‖L1 . Cn 1
(m− 1)!

( (n−m)!
(n−m− 1)!

)1/2
N(g)‖b‖2‖a‖n−m

1 ‖c‖m−1
3

In other words, ∑
[kj1 ...kjm ]

‖Jj1j2...jm

c...cb,k (t)‖L1 . n
1
2 Cn 1

(m− 1)!
∆n

0 (61)

We are ready to estimate Jn(t) = J(t) in formula (46). We have,

‖J(t)‖L1) .
n∑

j1=1

‖Jj1(t)‖L1

and,

‖Jj1(t)‖L1 . ‖Jj1
b1

(t)‖L1 + ‖Jj1
c1

(t)‖L1

. n
1
2 Cn∆n

0 + ‖Jj1
c1

(t)‖L1

Hence,

‖J(t)‖L1 . n
3
2 Cn∆n

0 +
n∑

j1=1

‖Jj1
c1

(t)‖L1

On the other hand, for each j1,

‖Jj1
c1

(t)‖L1 .
n∑

j2 6=j1

‖Jj1j2
c1

(t)‖L1

and,

‖Jj1j2
c1

(t)‖L1 . ‖Jj1j2
c1b2

(t)‖L1 + ‖Jj1j2
c1c2

(t)‖L1

. n
1
2
Cn∆n

0

1!
+ ‖Jj1j2

c1c2
(t)‖L1

Therefore,

‖J(t)‖L1(Rd) . n
1
2 nCn∆n

0 + n
1
2
n(n− 1)

1!
Cn∆n

0 +
∑

j1 6=j2

‖Jj1j2
c1c2

(t)‖L1
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Continuing in this way we derive,

‖Jn(t)‖L1 . N(g)n
3
2 ∆n

0Cn
(
1 +

(n− 1)
1!

+
(n− 1)(n− 2)

2!
. . . +

(n− 1) . . . (n−m)
(m− 1)!

+ . . . 1
)

. n
3
2 ∆n

0Cn(1 + 1)n−1N(g) . n
3
2 ∆n

0 (2C)nN(g),

as claimed in (43).
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