SHARP TRACE THEOREMS FOR NULL HYPERSURFACES ON
EINSTEIN METRICS WITH FINITE CURVATURE FLUX

SERGIU KLAINERMAN AND IGOR RODNIANSKI

ABSTRACT. The main objective of the paper is to prove a geometric version of
sharp trace and product estimates on null hypersurfaces with finite curvature
flux. These estimates play a crucial role to control the geometry of such null
hypersurfaces. The paper is based on an invariant version of the classical
Littlewood -Paley theory, in a noncommutative setting, defined via heat flow
on surfaces.

1. INTRODUCTION

To motivate the problems studied in this paper we start with the simplest example
of a sharp trace theorem. This applies to smooth functions f = f(¢,z',2?) on
I x R? C R with I an interval in R, for simplicity I = [0,1]. We denote by || ||12
the standard L? norm on I x R? and by || ||+, k positive integer, the usual norm
of the Sobolev space H*(I x R?) . Thus,
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Il = Wl = ([ [ 15 deas)’?
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i+j<k
with V7 the partial derivatives of order j with respect to the = variables. We shall
also use the mixed norm notation,

Q=

1fllLgez
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with the obvious modifications when either p = oo or ¢ = oco.

s =

Proposition 1.1. The following inequality holds for an arbitrary, smooth, scalar
function f = f(t,z',2?) in R3:

10 fll Lo L2(rxr2) S I fll2(1xR2) (1)
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The inequality can be easily derived with the help of the W21 (R2?) C L*° imbedding
and a standard integration by parts. Observe that the estimate is false if one
replaces 0; with the other partial derivatives 0,1, 0,2.

Using the a standard Littlewood-Paley theory it is not too difficult to prove a
stronger version of (1) in Besov spaces!.

I [ 1015ty oy S 1 sy @
Here, for a function g = g(z!, z?),

lgllBg | (m2) = > 28| Prgllzez2) + |P<ogllz> 2
k>0

denotes the standard, inhomogeneous, Besov norm in R?> with # > 0 and P, the

usual Littlewood Paley (LP) projections, see for example [Steinl], [Stein2] and[B]

for applications to paradifferential calculus. Also, P<o =, o Px. Observe that,
lgllss, < I¥gllng, + llgllz2

and therefore (2) follows easily from its following bilinear version:

Proposition 1.2 ( Sharp bilinear trace). The following inequality holds for an
arbitrary, smooth, scalar function g,h on I x R?:

I ] 219 Bllsg s Sl oz -l 3)

In addition to the bilinear sharp trace estimate (3) we also signal the following
related estimate,

Proposition 1.3 ( Sharp integrated product). The following inequality holds for
an arbitrary, smooth, scalar function g,h on I x R?:

1] 9 bl mer S ol oin + lgllozesz) - Wz (4)
where,
1
1/
lizms = ([ Gy  oydt)*"
0 :
Also,
t
lg- [ bllsmg S ol s + lglligerz) - 1lss 5)
0
Remark 1.4. Proposition 1.3 is intimately related with the following well known
estimate for functions in R?:
I1f - 9llBg 2 S (gl ey + 1lgllL=(=2) - 17l 5y , =2 (6)

LThis is not just a minor technical improvement. It turns out that this type of Besov space
improvement of the sharp trace estimate plays a fundamental role in [KI-Rodn1].
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Propositions 1.1 and 1.3 can be easily reformulated in terms of functions defined on
null hypersurfaces in Minkowski space R*t!. For simplicity consider the standard

null hypersurface defined by the equation v = —1 where u is the optical function
u=t—r,r= \/2?:1(93i)2- Let H denote the portion of this null hypersurface

contained between ¢t = 0 and ¢ = 1. An arbitrary null geodesic I' = I',, along H can
be parametrized by (¢, tw) where w is a unit vector in R®. Given a scalar function f
on H we denote by [ f = fol f(t,tw)dt. We denote by V, f its derivative along the

null geodesic, i.e. Vi f = %f(t, tw). We also denote by V f the angular derivatives
of f and by Vf all tangential derivatives of f along H, i.e. V.f = (V. f,Vf). To
adapt proposition 1.2 to the case of the null hypersurface # we need to define a
Besov space B |(S?) analogous to BY ;(R?) with S the standard unit sphere in
R3. LP projections can, of course, be easily defined locally, in coordinate charts,
and extended to all of S? by a partition of unity. Besov spaces on S? can then be
formally introduced as before. A more intrinsic way to define such spaces would
be based on spherical harmonic decomposition. Yet another way to achieve the
same result is to introduce a definition of LP projections based on a heat flow for
the corresponding Laplace-Beltrami operator on the leaves of the geodesic sphere
foliation of #H given by the level surfaces of the standard time function ¢, see (12).
This is in fact the approach we develop here to deal with null hypersurfaces in non
flat spacetimes.

The propositions below are straightforward adaptations of propositions 1.2, 1.3 to
the case of the null hypersurface H. The norms used in the proposition are,

t 1
Iflleey = (/O/Ig(t,tw)|2dtdw)§

Nig) = IVLflleeey + IV Fll2e) + 1 fllz2on
fllpmr: = sup ( / 1772)?
wES?2 T,
Il = ([ 150ty eoyt)

Proposition 1.5. Let g, h be arbitrary smooth functions on H. then the following
estimates hold true, uniformly in w € S2,

] (Fia- Wllag o S X5(0)- A5 (0) ()
1] - Hlag, o5 S Wio) + Nl - Wil ®)
|I£I-/F hllpo S (Ni(g) + lgller2) - 1hllpo 9)
As a corollary of (7) we have the standard sharp trace theorem,
sup, [ [VL77 S Na)? (10)
wesS2Jr,,

with,
No(f) = IVE fllzzae) + IVV L fllpzae + IV Fll 2y + Ni(f)
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The goal of this paper is to adapt the estimates (7), (8) and (10) to null hy-
persurfaces in curved backgrounds, verifying the Einstein-Vacuum equations, and
verifying the bounded curvature flux(BCF) condition of [KI-Rodn1]. These results,
which formed the content of the main lemma in [Kl-Rodn1], played a crucial role
in that paper. We recall that the main result of [Kl-Rodnl] was to prove that the
(BCF) condition suffices to control the local geometry of null hypersurfaces. The
(BCF) condition comes naturally in connection with the bounded L* curvature
conjecture and the result of [KI-Rodnl] is a crucial ingredient in the resolution of
that conjecture.

To illustrate the techniques needed in our work we give, in section 2, a quick proof
of propositions 1.2 and 1.3. They are based on the properties of the standard,
euclidean, Littlewood -Paley(LP) projections P, which we recall below.

The LP-projections (P, ) ez, acting on functions g(z), z € R?, are defined as Fourier
multipliers according to the formula,

(Prf)(€) = x(27")F ()

with f7(€) denoting the Fourier transform of f and x(§) = x(|£|) a real smooth test
function supported in % < €] < 2. Moreover, for all £ € RZ\ 0, >, x(27%¢) = 1.
We denote Py =3, ., P for all intervals J C Z.

The following properties are at the heart of the classical LP theory:

LP 1. Almost Orthogonality: The operators P, are selfadjoint and verify
Py, P, = 0 for all pairs of integers such that |k; — k2| > 2. In particular,

1£1lz2 2 > 1P flloe
k

LP 2. LP-boundedness: For any 1 < p < oo, and any interval J C Z,
1P fllze S I fllLe (11)

LP 3. Finite band property: We can write any partial derivative VP f in the
form VP, f = 2¢P, f where P, are the LP-projections associated with a slightly
different test function x and verify the property LP2. Thus, in particular, for any
I<p<o

IVPeflle S 28 fllee
2| Peflle S IV Fllze
LP 4. Bernstein inequalities. For any 2 < p < oo we have the Bernstein

inequality and its dual,

1Pefllice S 281 Fllz= I1Peflle S 2811 Flee
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LP 5. Commutation properties Given functions f(t,z), if we denote by Py f the
action of the LP projections in z, we have, trivially

1 1
OPuf = Pidif, By / fdt = / Py fdt
0 0

The proof of proposition 1.2 is a typical illustration of the power of paradifferential
calculus. Clearly one needs, somehow, to integrate by parts, but because of the
symmetry of the estimate (3) with respect to f, g one does not achieve anything by a
direct integration by parts. The idea is to decompose both functions f =3",, Py f
and g = ), Pprg in the bilinear expression fol Vi f - g and integrate by parts
only those integral terms fot (Osfrr - grrr) where k' > k. This illustrates a general
philosophy; the paradifferential calculus gives us the flexibility to deal differently
with various parts of nonlinear expressions and thus allows us to separate and
focus on various difficulties of the problem at hand. It is truly a divide and conquer
strategy.

In order to extend the results mentioned below to general null hypersurfaces H
we need to replace the LP theory based on Fourier transform with a more intrinsic
geometric definition. Given a Riemannian manifold M we can define LP projections
Py, according to the formula,

P, F = /000 my(T)U (1) Fdr (12)

where my (1) = 226m(2%%7) and m(7) is a Schwartz function with a finite number
of vanishing moments. The operator U(7)F denotes the unique solution of the heat
flow on S with initial data provided by F’,

8,U(r)F — AU(r)F =0, U(0)F = F.

where A denotes the standard Laplace-Beltrami operator for tensors, A = % ViV;.
We apply this definition to the 2-dimensional leaves of the geodesic foliation on our
null hypersurface 7. Under some simple assumptions on the geometry of these
leaves we prove, in [KI-Rodn2], a sequence of properties of the LP projections
similar to LP1, LP4. Some of our results are, of course, weaker. For example the
pointwise version of the almost orthogonality property LP5 cannot possible be true.
We can replace it however by a sufficiently robust L? analogue of it. We also find
satisfactory analogues for LP2-LP3, though we have to be quite careful about what
we can in fact prove with our very limited regularity assumptions. For example, we
can prove a version of the Bernstein inequalities of LP4 for scalars f but not for
tensorfields. Of course, LP5 plays a fundamental role in the proof of propositions
1.2, 1.3. Such a property, however, does not hold for the nonflat backgrounds
we deal with in our work. This lack of commutativity compounded by the weak
regularity properties of the foliation, consistent with the (BCF) assumption, leads
to considerable conceptual and technical difficulties.

Once we have set up a satisfactory geometric LP theory we can formulate and prove
results, on non flat backgrounds, similar to those of proposition 1.5. We prefer to
state these results only after a thorough discussion of the geometric framework and
the properties of the intrinsic LP projections.
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We give complete proofs of both propositions 1.2, 1.3 in section 2 in order to prepare
the reader for the methods used in the non flat situation.

In section 3 we discuss the main geometric notions concerning null hypersurfaces in
a curved background. We also introduce our main assumptions BA1, BA2, WS,
K1 and K2. All these assumptions are consistent with the bounded curvature flux
(BCF) condition of [Kl-Rodnl1]. The main results of this paper depend only on
these assumptions. We also introduce our geometric LP projections and state their
main properties, proved in [Kl-Rodn2]. Finally we define our main Besov spaces
and recall some of the properties proved in [Kl-Rodn2].

In section 4 we state a sequence of theorems which extend the results of (1.5) to
nonflat backgrounds. These results were stated in section 5 of [Kl-Rodnl], and

played an essential role in the proof of the main result there.

The remaining sections of the paper contain the proofs of these results.

2. PROOF OF PROPOSITIONS 1.2 AND 1.3

We shall make use of the properties P1-P5 of the classical LP projections men-
tioned in the introduction.

2.1. Proof of proposition 1.2. By definition,

1 1 1
I / g hdtllsg = Y IPs / Brg - hdt]| 2 + || Peo / Brg - ht]| 2
0 ’ 0 0

£>0
1

S 1IP / Brg - ht]| 2
k 0

We decompose, with respect to the x variables, f = >, fr, 9 = >, gx With fi =
P.f, g = Pig, and write,

174N

1
Pk/ (8tg'h):Ak+Bk+Ck+Dk
0

1 1
A = Pk/ (0:g9) <k * h>k, By = Pk/ (0:g)>k - het (13)
0 0
1 1
Cr = Pk/ (0e9) <k * her, Dy = Pk/ (0¢9) >k - h>r
0 0

Observe that P, commute with the integral fol and that O} is essentially? zero.
Thus we only have to estimate Ay, By, D,.

2With the possible exception of a finite, < 8, number of terms which can be made part of
either Ay, By, Dy,. This corresponds to the classical trichotomy formula and is due to LP1.)
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1.) Estimates for Ay = Py, fot((?tg)<k “h>g: We use first LP2 followed by the
the direct Bernstein inequality LP4, and then LP3, LP2. We also use LP5 freely.

1 1
A < % / @ hrlzdt S S / 1@eg)i o - Ihae 1z e
0 0

k' <k<k' K <k<k'"
1
S X 2 [ N@gwls - Wrellzz
k' <k<k' 0
< ri_k/r a ) Vh
~ Z ¢ tg)k’“L%Lg I k"||L§Lg
k' <k<k'

Therefore, writing 28 =% = 2K =k)/2+ (K =k")/2 < 9(K'=k)/2+(k=F") /2 summing over
k and using LP1,

SllAllzer: <Y YT 2W 2 K20, 0) | o g2 IV 212
k>0 k k' <k<k"

S 2 29TRN@ e e VA llere
k/<kl!
S ||3tg||L$L§ '||Vh||L§Lg-
2.) Estimates for Dy, = Py, fot((?tF)Zk “G>p: We write, Dy, = D} + Di where,
1 1
Di= ¥ B[ @oe-h,  Di= ¥ P G he
k<k' <k 0 K<k <k’ 0

The term D}, can be treated in a straightforward manner, without integration by
parts. We start by using the dual Bernstein inequality LP4, followed by the finite
band property LP3,

1
Dz € 2 50 0 @ hwolley S2 ST Norgwllazie - s
E<k' <k 0 <k <k
S 2Ok llzre NIV il 22
Thus, summing in k£ and using the L? orthogonality property LP1

YoIDi: S >0 D 20w Nz IV Ak llzes

k>0 k k<k <k’
’ n
S S 2 dgeluzee - Vb llnzrs S W0gllzzre - IIVAIlLz 2
k' <k

To treat D7 we need to transfer the ; derivative from the low frequency term gg to
the high frequency term hy. After integration by parts we can treat the resulting
integral exactly as D}, the only terms we need to worry about are the boundary

terms ||7x(1) = Ix (0)[|£2 < supo<s<t Mk (t,)llzz = [kllLgo 2, where
Iy = Z Py (g - har)-
E<k'<k'

To treat them we need the following

Lemma 2.2. For any k, k', k", we have

1|k~ "_
1P (g1 - hao )l zoz < 27 (K =R =R 0 g
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Using the lemma we derive,

DD S DS Do 2 NGk llzrz - Vbl
k

b k<k'<k'
T D D B L) P R T
k k<K' <K"
N A A
< 3 27 K gl - el S gl - bl
B <k

as desired.

3.) Estimates for By, = P, fot(c’)tg)zk cheg: We start by decomposing,

Z Pk/ (O )k - e

k' <k<E'

Integrating by parts and using lemma 2.2 to estimate the boundary terms, we
derive, we obtain, with Ji =>4 p<pr Pr (grr - har ),

1Bills < I / e @) oz + Vil e
k’<k<k”
_1 _ "__
Wiz 5 30 27 B UK R k) o g
K <k<k'
Now,
I / g @Ml: S lgerllooe - 1@ luzrs
k’<k<k” k' <k<Kk"
< S Vgelle @R o
K <k<k'

Thus, summing as before,

!_ n
SBill: S S 2 Vg llzre - 10w Nz
k kEok<k<k'
TR DD DI 1 o ) I P (R T
kK <k<E"
_ 1yt
S N 2 T gl el S lglla - Bl
k' <k

as desired.

Proof of lemma 2.2: By symmetry it suffices to consider the following cases:

E>KE'">k k>k>E", kE>K>EK'
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Observe that the last case, which we call “low-low” interaction, cannot occur. We
are thus left with only two cases:

Casel. k'>K'>k
1Pe(gir - b )llnserz S 28lgw - b llogers S 28lgwrllnge 2 har [ pge L2

We now make use of the simple calculus inequality,

1 1
1l zz S 0F I E e 17 Ea g + 1 2z

Thus,
1 1
lgwlloerz S 110w llzape - llgw 722 + 19w llzL2
< ok/2 3 1 3 i
~ 2 (Hatgk’”LtZLg : ||v.gk’||LgL§ + Hgk’”LfLi : ||v.gk’||L%L§)
’ 1 1
< 2 /2||ng'||igL§ (19egnellr2z2 + llgerllzzr2)
1 1 .
< 2 P2gu iz - llgw 12, = 2% 72| gkl
Thus,
lgrlloemre < 25 2gilla,  Nharllosmre S 28 bl (14)

Therefore, since k' > k" > k,

W
1Pe(grr - o) llpzere S0 252 = Mlgwe e - e o

9 5 (K K1 IK" K1) | g1 e - [ (Lo

as desired.

Case 2. k' >k > k" Using once more the estimates (14),

1P(gr - b )lzzerz S lNowllpeore - Mo llnerze S 25 Ngwllngers - 1w llpge e
S 22 gl -l = 282 gl g
2 S (W kL 41) g o g
as desired. |

2.3. Proof of proposition 1.3.
Proof of (4): As before we have to estimate the sum,
1
S p [ g nt
. 0

For each integer k we decompose, h = h<p + h>p with hep = > . hgr, and
hzk = Ek’zk hk’- Thus,

1 1 1
Pk/ g-hdt = Pk(/ g-hzk)+Pk(/ g-hey) = Ay + By
0 0 0
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1.) Estimates for By,. Observe that® Py(g - h<i) = Py(9>k - h<k). Thus, using
freely LP5, By, = Py ( fol >k -h<k). We now rely on the Bernstein and finite band
inequalities LP3 , LP4,

1
1Bill: < | / g5k herllee < llgsillzers - Nhellzare
0

S 2* Z ||glc’||Lt2L§c '||hk“||L§L;°
k' <k<k'
Lt
S Z 28k ||ng’||L§Lg : ||hk”||Lt2L§
k' <k<K'
Therefore,
II_ ’
SoBillez £ >0 D0 22 MIVarllzare - hwllzzze
k ko k7 <k<k'
B!
S Z 27> ||ng'||L§Lg ) ||hk”||L%L§ S ||Vg||L§L§ ’ ||h||Lt2L§-
k!lSkl

2.) Estimates for Ay. To estimate Ay we have to be more careful. According 4
to LP3, A.Pkf = 22kPkf

1 1
4kll: = [P / g-Ahsi)llis S S0 27| P / g M)z
0 WSk 0
1 1
< 3 2RV / (g Vi)l + 3 272 | Py / Vg Vi) 2
k' >k 0 k' >k 0
= S+

Now, using LP3,
1 1
o= Y ok ||Pk(V/ (- Vhe))llpz S > 272 +k||/ g-Vhe|lre
0 0

K>k k' >k
, 1 1 1 1
S S eyt (V) s
e 0 0

— ’ - '
S 2 2 M glliz sy VR liznz S 30 27 lalliz sz el s
Sk k' >k

On the other hand, using the dual Bernstein inequality
1 1
Jo= Y2 ||Pk(/ Vg Vie)lz S Y27 +’°||(/ Vg Vi)l
k'>k 0 k' >k 0
S Z 272k +k||v.g”Lt2L§ NVl gz S Z 27+ +k||v.g”Lt2L§ il 22
K>k K>k
Hence,

1Akl £ >0 27F el 222 - (IVallrzre + llgllpeer2)
K>k

3In fact Pr(9-hek) = Pr(9>k+1 - h<k), neglecting a finite number of terms does not matter.
“In fact AP, f =22k P, f with a slightly modified LP -projection.
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and therefore,

Yokl S D Mhwllzerz - (IVgllzzre + llglloer2)
k k'

174N

(||v.g||Lt2L§ + ||g||L;°L§) “[[hllzzBo

as desired.

Proof of (5): We have to estimate the sum,

t
NLACE / W) e
k 0

11

For each integer k we decompose, h = h<p + h>p with hep = D5 har, and

hzk = Ek’zk hk’. Thus,

t t t
Pk(g-/ h) dt = Pk(g-/ hzk) +Pk(g-/ h<k) = A + By,
0 0 0

1.) Estimates for By. Observe that® Py(g - fOt het) = Pe(g>k - fOt h<i).

using freely LP5, By, = Py (gzk . fOt h<k). We rely on LP3 |, LP4,

t t
1Billzze < llgsk- / hellzse < llgsllzzss - | / heillzerz
0 0

S 2% N lgwllezre - Nhwellprpe
K <k<k'

5 Z 2kl,_k’||vgk’||Lt2L§ . ||hk”||L%L§
k”<k§k’

Therefore,

> 1Bkl 2z
k

N

LI gt
Yo > 2 FIVawllizee el

ko k' <k<k'

Thus,

B — k!
S Z 22 ||V9k’||L§L§ '||hk”||L}L§ S ||V9||L§L§ ) ||h||L}L§-

k<K'

2.) Estimates for A;. To estimate Aj we proceed as in the proof of (4).

| Akl L2z
K>k

t
S Y IR [ )l
K>k 0
t
+ Z 22k ||Pk(Vg'/ Vhi )|l 212
K>k 0
= L+

t t
||Pk(g'/ hor)llr2rz S 272 || P, (g/ Ahp)llz2re
0 0

5In fact Pr(9 - hek) = Pr(9>k+1 - h<k), neglecting a finite number of terms does not matter.
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Now, using LP3,

¢ t
o= IR [ V)l S 52 [ Tl
et 0 K>k 0
t
<SS 2 gl - ||/ Vhiollzze S D2 27 llglloers - 1w lloyre
K>k 0 K2k

On the other hand, using the dual Bernstein inequality

¢ t
Bo= Y IR [ V)l S Y 2 I [ Vil
k' >k 0 K2k ’
t
S X2 H IVl | [ Vheoloes
K >k 0
SED DR R | /[ PYRR [ PP
K >k
Hence,

_ !
||Alc||Lt2L§c S Z 27+ +k||hlc’||LgL§c : (||V9||L§Lg + Hg”L;"L?)
k'>k

and therefore,

Z lAkllLzre S Z P llLrre - (||V9||L§Lg + ||9||Lg°L§)

IN

(||V9||L§Lg + ||9||Lg°L§) ||hllL1Bo

as desired. ]

3. GEOMETRIC SET-UP. GEOMETRIC LP- PROJECTIONS

We assume given an Einstein spacetime (M, g) a space -like hypersurface ¥ and an
outgoing null hypersurface #, initiating on a compact 2 surface Sy C ¥ diffeomor-
phic to S2, given by the level hypersurfaces of an optical function u, i.e. solution
to the Eikonal equation

g%, udsu = 0. (15)

We briefly recall the main geometric definitions, see section 2 of [Kl-Rodnl], asso-
ciated with H.

1.) Geodesic foliation: Let L = —g®?8,u 8 be the corresponding null generator
vectorfield and s its affine parameter, i.e. L(s) =1, s|g, = 0. The level surfaces
Ss of s generates the geodesic foliation on 7. We shall denote by V the covariant
differentiation on Ss; and by V the projection to Ss of the covariant derivative
with respect to L, see section 2. We also denote by r the function on A defined
by r = r(s) = \/(4m)~1|Ss|, with |Ss| the area of Ss. Let H; be the portion of H
between s = 0 and s = t and, for simplicity, assume H = H;.
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2.) Null pair:  With our choice of L we have
<L,L>=0, DrL=0

where <, >=<, >, denoting the metric of M. At any point P € S, C H we
denote by L the null vector conjugate to L relative to the geodesic foliation, i.e.

<L,L>=-2, <L, X >=0 forall X €T,(Ss).

We shall say that L, L form the canonical null pair associated to the foliation. We
denote by v the induced metric on S,, by V the induced covariant derivative and
K the Gauss curvature. An arbitrary orthonormal frame on S, will be denoted by
(ea)a=1,2- Clearly,

<ey,L>=<e,, L>=0, <eyep>=0du.

A null pair together with an orthonormal frame (e,)q=1,2 as above is called a null
frame associated to the foliation.

3.) Total curvature flux: We introduce the total curvature flux along H to be
the integral®, see precise definition of the null curvature components a, 3, p, o, B in
section 2 of [Kl-Rodnl],

=

Ro = (||Oé||2L2(H) +11BI720) + ol 2230y + 10 l17220) + Hﬁ”%%?—[)) 16)
16

with a, 3, p, o, B null components of the curvature tensor R of the spacetime, back-
ground metric g.

In [KI-Rodnl] we worked under the assumption the Ry is sufficiently small. In this
paper the only curvature components we shall need are 8 and the Gauss curvature
K of the S, surfaces. We will make specific assumptions about this, consistent with
the small curvature flux condition, i.e. Ro sufficiently small.

4.) Null connection coefficients: The null second fundamental forms x, x of the
foliation S, are given by

Xab =< DoL, e >, X,y =< DaL,ep > (17)
The torsion is given by,
1
Ca:§<DaL,L> (18)

ryd.

We also denote try = §*®y 4 and try = 5“”X ap and x = x — %trx&, X X
2.

1
=X~ 3t
Recall the definition of the mass aspect function yu = —div ¢ + %)2 X —p+I[¢

5.) Commutator formulas Commutation formulas between V; and V play an
important role in the paper. We recall, see section 2.15 of [Kl-Rodnl],

1
SHere 1Fll 23y = (fol ds [ |F|?)> where [q |F|? denotes the integral with respect to the
volume element dus of Ss.
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Proposition 3.1. Consider an arbitrary k-covariant, S-tangent vectorfield F, =
Fal...a Then7

k

vabFQ - VI)VL-FQ - _Xbcchg + Z(Xuib Cc — Xbe Cai+ Eaic *Bb)Fal...c...ak

In particular for scalars f,
ViV =ViVif = —xucVef (19)

Also, for a one form F,
1
L(div F) = div (VLF) = —x-VF + (5try - C+%-C = B) - F

and again for scalars,

LAf) = A(Lf) = —tryAf —2%-V2f+ (v-trx+2>z-c+tm<-<> -Vf

6.) Bochner identity Bochner identity holds for scalars and tensors on surfaces
§=58,0<s<1,

Proposition 3.2.

i) For a scalar function f,

[wese = [1ane - [ xiwse (20)

ii) For a tensorfield F

/|V2F|2 :/|AF|2—/K(2|VF|2—|div F|2)+/K2|F|2 (21)
S S S S

Remark 3.3. The difference between scalars and tensors is substantial as terms
quadratic in the curvature are much more difficult to control, see the properties
K1-K2 we state in the next section.

3.4. Main geometric properties of 7. The proof of the Main Theorem of
[KI-Rodnl] was based on the bootstrap assumptions BA1-BA4 concerning the
geometric quantities try, x, (, try, x-. In this paper we make a consistent but
somewhat different set of assumptions, A1, A2, WS, K1, K2 concerning try, ¥,
¢ and the Gauss curvature K. In the following theorem we stress the fact that
these assumptions follow from the bootstrap assumptions BA1-BA3, the small

curvature flux and initial conditions Ry, Zp of [KI-Rodnl].

Proposition 3.5. The geometric properties of the geodesic foliation of H described
below in A1, A2, WS, K1, K2 follow from the bootstrap assumptions BA1-BA3,
the small curvature flux and the initial conditions Ro, Iy of [KI-Rodnl]
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Proof: It will become obvious that A1, A2 are contained in assumptions BA1,
BA2. Properties WS, K1, K2 have been carefully derived in section 4 of [KI-Rodn1]
as consequences BA1-BA3, the small curvature flux and the initial conditions Ry,
To. ]

We now describe properties A1, A2, WS, K1, K2 and their immediate conse-
quences.

The most primitive assumption is, as in [KI-Rodn1]:

Al. supy r [trx — 2| < A,, supy 7 [trx — trx| < Ag. where 0 <
Ag < % is a sufficiently small constant.

Based on the assumption A1 we could easily deduced, see section 3.7 in [Kl-Rodn1],
N 1 <r <ot 3
To 28 STrsSsTro 28.

Moreover,

1< Vil §2(§)6, forall 0<s<t<1 (22)

~ Vol 2

i.e. the volume elements of S; and Sy remain comparable in the interval 0 < s < 1.
As a consequence of (22) we also infer that the L?(H) norm, defined in the footnote
6 below, is equivalent to the product norm on [0,¢] x So,

t 1 t
1Flle = 1 Flluesz = ( / /S |F|2dsduo)2=( / ds /S IF (s, 0)]? \/|70|dw2
0 0 0 0

We shall also make use of the following norms,

1
2

23)

t 1
1Pl r2 = sup ( / ds |F(s,0)%) (24)
wWESH 0
IFllzzze = | sup | F(s,0)] llz2(sy) (25)
0<s<1

as well as, for 1 < p < oo,

Fllisie = sup [|F(5) luncso) (26)
0<s<t
t 1
1Pl = ( / 1F(s) 21 s,)5) (27)

Observe that ||F'||peep2 < [|[F||p2pe. We recall the following transport lemma, see
section 3.7 in [KI-Rodnl].

Lemma 3.6. Consider the equation Vi F + ktryF = G for S-tangent tensors F,G
on H. Then, for any p> 1,

I1Flzzree S NIEO)ze(so) + 1Fllrers (28)
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We shall also make us of the following notations:

Definition 3.7. Given an arbitrary S-tangent tensor H on H = H; we denote
IVE|z> = IVF||g2 + [[VLF]| 2.

We also introduce the following norms ,

Ni(F) = ||Fllgz + [VFl|
= [Flle2 +[[VFl[L2 + [[VLF |2
Nao(F) = |IFlle2 +[[VFlL2 +[[VVF||

= |IFllz2 + IVFlg2 + IV Fll 2
+ IVLFle2 + IV - VLF|| >

where L? here stands for L7 L2.

The second set of assumptions we need is:

A2,

||>2||Lg°L§: ||C||Lg°L§: Ao,
IVerxllezee - M), M) Ao

Remark 3.8. The assumptions A2 are essentially the same as BA2 of [Kl-Rodnl]
except for the bound on g which is not needed here.

<
<

As in [KI-Rodn1] we can simplify our various calculations by introducing the fol-
lowing symbolic notations for connection coefficients.

Definition 3.9. We denote by A the collection formed by the connection coeffi-
cients: A = try — %,)2,(

With these notation the assumptions, A1 and A2 take the form,
2
lorx = Mz, IVOXllezee, Az, MA]S Ao (29)
The following inequalities are straightforward consequences of A1 and A2, see[Kl-Rodn1]:

Lemma 3.10. The following estimates hold for an arbitrary, smooth, S-tangent
tensorfield F':

M[F]
Na[F]

WEFlrgerz, 1Fllrgers, [Flsre S
IFllere S

Lemma 3.11. Let w be a solution of the scalar transport equation

Viw=f,  wls, =0, (30)
For any p > 1,

IVwllzzre S IV Flleery- (31)
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Proof : We only need to differentiate according to the commutator formula of
proposition 3.1, [V, Vlw = —%trx -Vw — ¥ - Vw and then apply lemma 3.6 to the
transport equation,

1
VLVw+§trx-Vw:Vf—>2-Vw

The notation introduced in definition 3.9 allows us to express in a compact form
the commutator formulas of proposition 3.1 More precisely,

Proposition 3.12. In what follows we denote arbitrary S tangent tensorfields by
capital letters F and scalars by low case letters f.

ViV = gt Vi +A-V] (32

Vi, Alf = V((%+A)-Vf)+VA-Vf+A-A-Vf (33)
Vo, VIF = —%trx-VF+A-VF+B-F+(A+%)-A-F
Vi, AlF = —trfo+A-V2F+VA-VF+(A+%)-A-VF

+ ,B-VF+V(,8-VF+(A+%)-A-F)

Lemma 3.13. For a given I-form F let w be a solution of the scalar transport
equation

Viw = div F, wls, =0, (34)
and let 1-form W be a solution of the equation
VW —x-W =F, Wls, = 0. (35)
Then for any 1 <p <2,
ldiv W —wllizae S AollFI| 2o, (36)

Proof: We commute the equation (35) with div , using the commutation formula
of proposition 3.12, and subtract the transport equation for w we obtain

1
Vi(div W —w) :VX'W-FB-W#—(A—{—;)-A-W
Applying the estimate (28) of lemma 3.6 we infer that

1
IVx - Willgepr + 18- Wllgepr + [I(A + ;) A Wlep

JANT 2 - Wz pge + (1Bl p2r2 + IV AllL2r2) - Wi

| div W — w||L§L§° N
S 20

2
t
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Again applying the estimate (28) of lemma 3.6 to the transport equation for W
and using the conditions A1, A2 we derive

ldiv W = wllzre S Ao (IF] 2+ Ao IFllzesy) S Ao lIFI| 2
LI Pl L7 Ly

(37)

as desired. ]

In addition to A1-A2 we need two other type of assumptions.

WS. The initial surface Sy can be covered with a finite number of coordinate
charts (w!, w?) such that relative to the transported coordinates (s,w?®) on H, with
s the afine parameter, the metric v and its partial derivatives 0+, relative to the
coordinates (s,w), verify the estimates

Meeres I leere S0 100 =7 llezee S Ao (38)

where 7, = (1 + )27 and 5 denotes the standard metric on S, isometric to that of
S2. We shall also make assumptions on the Gauss curvature K of the surfaces Sj.

K1. The Gauss curvature K of the S surfaces and the null curvature component
B, see (16), verify:

1
1K = llzzrz, W8llzze S Ao

K2. The Gauss curvature K of the S, surfaces satisfies
A=Y (K — 7°_2)||L§L;>° S Ag
with A7 = (1 — A)*Wz, for any v > %
The properties WS, K1, K2 allow us to apply all the results of [KI-Rodn2]. In

what follows we shall present a summary of the results proved in [Kl-Rodn2] which
shall be needed in this paper.

3.14. Calculus inequalities on surfaces.

Proposition 3.15. The following calculus inequalities hold true for our surfaces
S =S, for any tensorfield F.

I1Fllze(s) S IIVFIILz IIFIILz s) T IFlle2s),  2<p<oo (39)
Also, for every 2 < p < oo,
I1F L= (s) < ||V2F||L2(S IVFILE, S)IIFIILz sy T IVEllL2s) (40)

As a consequence of the Bichner identity for tensors, see proposition 3.2

IVFliresy S IIAF L )+||K||Lz(5 IVFl7a; S)IIFIILz (s)

~

+ K2 IVElL2s) (41)
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while for scalars f,

||V2f||L2(s) +IV£llzzes)y S NAfllz2cs) (42)

Proof : For the first three inequalities see [Kl-Rodn2]. The proof of (42) can be
found in [KIl-Rodnl] section 4. [ |

3.16. Properties of the heat flow. Given a tensor F on S = S we define the
corresponding heat flow U(7)F to be the unique solution of the equation,

0. U(r)F — AU(r)F =0, U(0)F =F.
Here A denotes the standard Laplace-Beltrami operator on tensors,
AG =+79V,;V,G.

Proposition 3.17. The heat flow U(7)F verifies the following properties:

NWU(T)Flles)y S NFllirs), 1<p<oo (43)
IVU(T)Fllz2s)y S IVFlr2s) (44)
INUMPFllizs) S 7 2l1F s (45)
IUEVElzs) S 7 2lIFlleas) (46)
IAU(T)Fll2s) S 7 IFlLas) (47)
Also, for 2 <p < oo,
IU(T)Fllzeesy S (L+7 2P ||F|| 12 s) (48)
and the dual estimate, for 1 < q < 2,
1U(7)Fllzzs) S (14702 D)||F|| Lags) (49)
In addition, if f is a scalar function”
WU fllzesy S (X +771) 1 flle2s) (50)
and its dual
WU fllzecsy S (L+771) 1 Fllzics) (51)
Proof: See [KI-Rodn2]. |

TWe do not know if such estimate holds in the tensor case. This failure is also connected with
the absence of strong tensor Bernstein inequality, to be discussed in the next subsection.
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3.18. Geometric LP-projections. Finally we recall below the definition and
main properties of the Littlwood-Paley(LP) projections introduced in [Kl-Rodn2].

Definition 3.19. Consider the class M of smooth functions m on [0, 00), vanishing
sufficiently fast at oo, verifying the vanishing moments property:

/ Mok (r)dr =0, |ki|+ k2] < N (52)
0
We set,

mp(T) = 2%m(2%7)

and define the geometric Littlewood -Paley (LP) projections Py, associated to the
LP- representative function m € M, for arbitrary tensorfields F' on a given surface
S=25,,0<s5<1,tobe

o0
P.F = / my(T)U(7)Fdr (53)
0
where U(7)F is the heat flow on S.

Given an interval I C Z we define

P =Y Pf.

kel

In particular we shall use the notation Pcy, P<g, P>y, P>p.

Observe that P, are selfadjoint. They verify the following properties:
Proposition 3.20. The following properties of the LP projections depend only on
the conditions WS, K1, K2.
i) LP-boundedness For any 1 <p < 0o, and any interval I C Z,

|PrELe(s) S Fze(s) (54)

i)  LP- almost orthogonality Consider two families of LP-projections Py, P,
associated to m and respectively m, both in M. For any 1 < p < oco:

1Pk P Fllpo(s) S 275K Fll (s (55)
iii)  Bessel inequality
D P25y SIFNTes)
k

i) Reproducing property®  Given an appropriately defined m € M there exists
m € M such that such that m = m*m. Thus,

(m) p, =(m) p_.(m) p_

Whenever there is no danger of confusion we shall simply write Py = Py, - Py,.

8see precise statement in[KI-Rodn1].
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v) Finite band property For any 1 <p<oo, k>0,

IAPFllpes)y S 2%%I|F|lLos) [AFB]
1PeFllLesy S 27 F[|AF s [AFB™]
In addition, the L? estimates
IVP.Fll2sy S 28I1FIlLas) [VFB]
|PeFllz2sy S 2 "|IVF|z2 [VEB ]

hold together with the dual estimate
1PV F|lL2(s) S 281F (S)]| 2

vi)  Weak Bernstein inequality.  For any 2 < p < 0o
IPeFlocs) S @Y79F + DI Fllags), [wB]
IP<oFllLr(s) S I1FllL2(s)

together with the dual estimates
1Pk Fllzzgsy S 1 72% + D|F || ), [wB’]
1P<oFllL2(s) S IF |l Lo s

vii) Strong Scalar Bernstein Inequality For any scalar function f and k > 0
1P fllzees) S 2511 flle(s) [ssB],
1P<ofllze=(s) S I fllz2cs)

and the dual estimates,
1P fllLr(s)

1P<ofllzi(s)

25| £l £2cs) [ssB*]
Ifllz2s)

S
S

In addition we have the following curvature dependent estimates.

viti) Strong Tensor Bernstein Inequality — For any tensor-field F', k > 0
IPLF (s S (28 + 2857 IIKIILz(s ) NI lIe2s), [stB]

[1P<oFllpe(s) S (1+ ||K||L2 as))  I1Flz(s)

iz) Dyadic Béchner inequality For any tensor-field F and 2 < p < oo, k > 0,
IV2PeF s S (22 + 24K o) + 255 K1 750s)) - 1Pl as)s
IV?PeoFll2cs) S (1+ 1Kl p2s) + ||K||L2(15)) NFL2cs)

x) Dyadic L* inequality For any tensor-field F and 2 <p < o0, k > 0,

IPuFllpe S (2 + 255 IIKlle + 251 K |7 ) E 2,

[1P<oFlL= <

~

(L4 K2 + 1K) - 1P e
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Proof: See [KI-Rodn2]. |

In what follows we outline some of the main differences between the properties
of geometric LP theory projections recorded in theorem 3.20 and the properties
LP1-LP5.

(1) The simple, pointwise, orthogonality property LP1 does not hold. The
replacement by the almost orthogonality (55) is not going to create major
difficulties, however the usual trichotomy properties of products are not
longer valid. More precisely, in the classical LP theory low-low interactions
of the type? Py(f<k - g<) are forbidden. This is no longer valid for our
geometric LP theory.

(2) The geometric LP projections commute with the geometric laplacean A
but fail to commute with covariant derivatives. Because of this one has to
be very careful when applying the finite band properties recorded in v).

(3) In our applications to null hypersurfaces we don’t have a bound!? for the
quantity || K —-5[/12(s). Because of this we have to be very careful when we
apply the strong Bernstein estimates ( L2 — L>°) for tensorfields. However,
we do have an unconditional strong Bernstein inequality for scalars.

(4) In flat Minkowski space both the classical and geometric LP projections
commute!! with V derivatives. This is no longer true for the geometric
LP projections for null hypersurfaces on curved backgrounds. Moreover,
due to our weak regularity assumptions BA1 — BA2 as well as WS, K1,
K2, the commutators are often not any better, in terms of their regularity
properties, than the principal term.

3.21. Besov spaces on surfaces S = S;.

The following result was proved in [KI-Rodnl]

Proposition 3.22.
i.) Consider the LP projections Py associated to an arbitrary m € Ma. Then,

S NPeAlFasy S Nl (56)
k

S 2H|Pflliasy S VT (57)
k

ii.) If in addition the LP-projections Py verify:

=1 (58)
k

In fact Py(f<k—2 - g<k—2)

10 A ccording to assumption K1 we only control ||K — %2 l2(3)- The only bound for the Gauss
curvature, on a fixed surface S = S, we posses is given by K2.

Hmodulo a % term generated by the mean curvature of the sphere foliation of the Minkowski
null cone.
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Then,
1fllz2s) = D I1Pefll7es) (59)
k
IVl S D 2 1P fll72s) (60)
k

Using a family of LP projections P, verifying Y. P? = I we can now define our
main Besov type norms:

Definition 3.23. Given an arbitrary tensor F' on a fixed S = S we define the
Besov norm Bg ; (S) for every 0 < a < oo,

Il g ,(s) = (> 2"MIPeFliz2s)) + 1> PrFllras)- (61)
k>0 k<0

We recall the following product estimates:

Proposition 3.24. Let a,a’,b,b' > 0 such that a + b =a' + b > 1. Then for all
tensorfields F,G and any 0 < c < 1,
IF - Gliss ,(s) S A" Fllzags) IA"Glla(s) + 1A Gllza(s) A"+ Gllracs) o)
62

Proof: See [KI-Rodn2]. |

We shall also need the following estimate connecting the norms Bj (So) and
B3 | (So) for scalars.

Proposition 3.25. Given a scalar function f on S we have the inequality:
1Ny sy S WfllBy ,(s) T [IVSIIBg () (63)

Proof: See [Kl-Rodn2].

3.26. Besov spaces on null hypersurfaces H.
Using the geometric LP projections we are ready to define our main Besov type
norms on H.

Definition 3.27. For S-tangent tensors F' on H we introduce the norms, for 0 <
a<l:

IFllge = > 2| PuF|lzpors + [P<oFllzore, (64)
k>0
IFllpe = > 2%||PFll212 + |P<oFll 1212 (65)

k>0
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The following is a crucial result allowing us to pass from tensorial B estimates to
their B scalar counterparts.

Proposition 3.28. There exist a finite number of vectorfields X1, ... X, verifying
the following properties'?,

1X,VXllzere S 1, [[(V = V)Xp2pee S Aoy IV(V X)Lz S1

An arbitrary S-tangent tensor F' € L°L2 is in B if and only if F - X; € B° for
all 1 < i < 1. Moreover the X;’s can be chosen to be coordinate vectorfields with
V5 X; =0.

Proof : To prove the proposition we first choose the vectorfields X to be the
coordinate vectorfields associated to the transported coordinates (¢,w). The con-

o
ditions || X||peere S 1 and [[(V = V)X||2pee S Ap are equivalent to our WS

condition. Moreover V 2X are clearly bounded and the condition on VVX follows
from ||67||L§Lr SL

With the help of these vectorfields we note the following characterization of the
L L2 norm for tensors'? F.

|F'||poor2 ~ max | X+ Fllpeor2 (66)

We now proceed as follows'?:

1Pls = S IPFllsrrz ~ max, Y 1K PPl
k>0 k>0

= IHSI?%(ZI;)HPk(Xi “F)lpgere +O(I;)||[Pk , X Fllpers)

It suffices to prove that,

S NP, X1+ Flliggere S MV = VX2 | Fllgo + |1 Fllpgerz (67)
k>0

S Aol Fllge + || Fl|Leerz- (68)

o
12pecall that V represents the covariant derivative with respect to the background metric

(1+9)%3.

Bfor simplicity of notations we restrict to 1-forms.

L4We only show the X; - F € B° implies F € B°. This is the implication which will be needed
later. Observe that we also drop the term ||P<0F\|L?0L§ < ||F||L?0L§, which is trivial, in the

expression for ||F||zo
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To prove (67) we have to recall the formula

P X F = [ e
d(r;k) = /OT U(r —)[A, X]JU(TFdr' = ®1(1) + ®2(7) + ®3(7) + P4(7)

By (k) = /OT Ur = 7)(V = V)X - VU (') Fdr'

Oy(ri k) = /OT Ulr —)div (V = V)X - U(+')F)dr’

By(rsk) = /OT Ur - )VX - VU (') Fdr'

oy (k) = /OTU(T — )div (VX - U(')F)dr’
since

o

[AX]F = Vi(V,X-F)+ VX -ViF=Vi((V;=V)X-F)+(V;,— V)X - V'F
+ VI(ViX - F) 4+ VX -ViF

To estimate ®; we observe that U(r — 7') corresponds to a scalar heat flow and
therefore we make use of the following scalar heat flow estimate (51):

_1
U =) fllez S A+ |r =772l flles-
Remark 3.29. In what follows, we shall systematically replace the above estimate,

and all other heat flow estimates like it, with their slightly incorrect versions where
we ignore the non-singular term 1. We thus write

WU —7)fllez S 1m =712 flla-
Therefore,

1®1(73 K)oz S /|T_TI|_%||(V_V)X'VU(TI)F”L;”L;
0

~

< / [ =772V = V)Xlzzr - IVU () Fllzore
0

~

S B0 [ = HIVUE Pl
To estimate the integral '

10 = [ I =P HIVUGE) Pl
we decompose it as follows: ’

CEDY / 7= VP U () iz = 3 Jun(r)

Next we make use of
Lemma 3.30.
T (7) S min (277527775 || P F| o 2 (69)
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and proceed as follows:

> > . m_ L aom_ 1
/ m(7)[| @1 (73 k)| Lo 12 SZIIPmFIILgOLg/ my(7) min (2772,27 "7 2)
0 o 0

2—2m

) = 2m/0 my(7)7? +2m/2OO my ()7 2

—2m
— 2m—k /
0

< 9—|k—m|

=
N

Now,
/ my,(7) min (272,27 "
0

92(k—m) o

m(T) + 2k—m/ m(r)

22(k—m)

Here m(7) = 72m(7) and m(7) = 7~ 2m(7). Moreover, to arrive at the inequality
above we used the following bounds:

/Ooom(T), /Ooom(T)sl, /Oam(f)ga, /Aoom(T)SA—l

which hold for all sufficiently small ¢ and all sufficiently large A. Thus,
Z/ m (@1 (75 k)22 S B0 DY 2 ™ M PuFl 202 S Aol Fllpo
£>070 k>0 m

To estimate ®» we first observe that the following estimate for the scalar heat flow
holds for any 1 < p < 2:

1U(r = 7)div gllzz S (7= 7) 77 llgllze (70)

Using this we obtain for some p < 2 sufficiently close to p = 2,

@il S [ (=) T = DX UGl
0
S [ E=DT DXz IVEFI e
0 o2 P
’ n—1 '
DY [ LT,
’ n—=1 ] 2_% ' %_1
S AOZ o (r=1)"?[|VP,U(r )F”LgoLgHPmU(T )FHLgOLg
m

The remaining argument now is a straightforward modification of the proof for ®;.
We infer that

o0
Z/ mi (D1 (75 F) ez S Do D 0 27O KPPl e ra S Aol Pl
0

k>0 k>0 m

It only remains to estimate the easier terms ®3, ®4.
O3(13k) = / U(r =" \VX - VU (7" Fdr' = ®31(1; k) + ®32(7; k)
0

- /T U(r — 7)(VVX) - U(')Fdr' + /T U(r —7)V(VX - U(")F)dr'
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Now, starting as for &, ®,,

T

@31 (5 k)||Lgerz S /(T—T')*%HVVX-U(T’)F||L?OL;

0
S [ =) VR s IV Fllez S 7HIFlzss
0

@32 (T k)lpgerz S / (r—7)73|VX - U(r')Fllpser2 S T2|F||nser2
0

Hence,
/ mk ||(§3Tk7||LooL2<Z/ szk dTSZQ k
k>0 k>0 k

and similarly for ®4. Thus, going back to (69) we have

Y Py X1l rz S NollFllso + 1F 12
k

Proof of lemma 3.30. Recall that our goal is to prove the estimate
/ (r =) 2V PRU(F) Fll =z S min (277,277 77 %) || P F|pgez
0

We first observe that,

IV Pl (7)) Fll o2 < 27 mim (1,277 (77)2) || Py F Lo 2 (71)
Indeed we have both

IVPoU(T")Fllpeorz S 2™ (| P Fl|Leor2
and
IVPuU( ) Fllpper: S 2" IPnU(T) Fllzzr2

S 2m2_4m||PmA2U(TI)F||L§°L§
S 2m274m(7')72||PmF||L§°Lg
To show that,

In() = WPuFllikss - [ =) VRV Pl
< min (2m %,Q_mT_%)
it suffices to prove
I (7)
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For 7 < 272™ we have,

For 7 > 272m,
T 27 2m
In(r) < 2_3m/ (r—7)"2 - () 2dr' + Qm/ (r —7")"2dr’
2-2m 0
< 2~mr=3
as desired. [ |

4. MAIN RESULTS

We are now ready to state our main results. They can be viewed as extensions of
results mentioned in the introduction, see proposition 1.5, to null hypersurfaces H
verifying the assumptions A1, A2, WS and K1, K2. The first is a generalized
sharp bilinear trace theorem.

Theorem 4.1 (Bilinear-Trace-Transport). Consider the transport equation along
H:
ViW =VLF -G
for S-tangent tensors W, F, G. Then,
[Wllso S W lsollsg ,(s0) + NilF] - (M[G] + |Gl Lo 12) (72)

Remark 4.2. We have a stronger estimate in the case of a transport equation for a
scalar function w.

lwllgo < llwls,llsg , (s0) + N1 [F] - M[G]. (73)

The next two theorems are the noncommutative versions of the sharp product
estimates of proposition 1.3.

Theorem 4.3 (Product-Transport I). Consider the transport equation along H.:

VW =F -G
for S-tangent tensors W, F, G. We have the estimate,
[Wllso S IWlsollsg ,(s0) + [1Fllpo - (M[G] + |Gl Lo 22) (74)

Theorem 4.4 (Product-Transport IT). Given any pair of S-tangent tensors G, W,
of same type such that W satisfies a transport equation, of the form,

VW =F.
Then,
IG - Wllpo S (IFllpe + IWlsollBg , (50)) - (MG] + 1Gll Lo 12) (75)

As a consequence of theorems 4.1, 4.3 we derive the following.
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Theorem 4.5 (Sharp-Trace). For any S-tangent tensor F', which allows a decom-
position of the form VF =V F + G, we have

1Fllpeerz S NUIF] + MUF] + |G lpo (76)

Proof :  The proof can be found in section 5 of [KI-Rodnl]. The idea is to
introduce the scalar function f(t) = fot |F|?> and observe that it verifies the transport
equation,

vif=IFP,  U(0)=0.
Differentiating it one derives,

Vi(Vf)+ %trx(Vf)

2F -VF —x - (V)
= 2F-V F+2F-G-x-(Vf)
and apply'® propositions 4.1, 4.3. [ |

In particular, we have the following noncommutative version of the classical sharp
trace theorem.

Corollary 4.6. For any S-tangent tensor F

t
[ IVLEE S [ (I RE IV 4 FF) ()
0 H

4.7. Reduction to scalar estimates.

The first two transport theorems can be reduced to the case of a scalar transport
equation. More precisely, we have the following

Proposition 4.8. Assume that the conclusions of theorems 4.1 and 4.3 have been
verified for scalar transport equations. Then they also hold true in the tensor case.
Moreover , in the particular case of theorems 4.3, and 4.4 we can reduce the corre-
sponding estimates to a fully scalar situation, i.e both F and G are scalar functions.

Proof: In view of the scalar characterization of the space B° stated in proposition
3.28 it suffices to do the following. We multiply the transport equation for a tensor!®
W, in either of the theorems, by the vectorfields X to derive a scalar equation

Vi(X-W)=VL.F-(G®X) <0r F- (G@X))

where ® denotes either a tensor product or a contraction. It only remains to
observe that the norm NV [GRX]+ ||G(§’X||L;>0L§ is invariant with respect to a tensor
multiplication by a vectorfield X with the properties guaranteed by proposition
3.28. To prove the second part of the proposition consider the case of theorem 4.3
where we have already reduced to the case Vyw = F - G with w scalar and F - G
denotes the scalar product between two tensorfields. Clearly F'-G can be expressed,
at every point, as a product between various scalar components of F' and G inner

150ne has to take some care to eliminate the term try - V f first, as it is done in [KI-Rodn1].
16 Assume for simplicity that W is a 1-form
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product with the vectorfields X; and the components of the metric y. Therefore we
can apply the proposition 3.28 to each of the scalar components'” and derive our
result in view of the invariance of the norms involved. [ |

The reduction to scalar equations is a very important simplification in so far as it
allows us to work with integral estimates. We state below a result which, in view
of the reduction made above, implies theorems 4.1, 4.3.

Theorem 4.9. The following statements hold true for arbitrary S tangent tensor-
fields F,G of same order':

I / ViF - Gllso S Mi[F]-Mi[G] (78)

t
| /0 F-Gliso SIFllpo - (MG] + [|Gllzz2z) ™

Moreover for solutions of the homogeneous scalar transport equation Viw = 0 we
have,

[wllzo S [lwls, |lso (80)

Indeed, once we are in the scalar case, for example in the case of theorem 4.1,
Viw = F -G, we can integrate and therefore reduce the statement of the theorem
to,

t
S 1P / FGllyerz S MIF]- (MIG] +IG]l = 12)
k

Remark 4.10. We can also prove a more precise dyadic version of the estimate (79):
for any k£ > 0 and some ¢ > 0,

t
1P [ PGl S (2P P Flizas +2 Pl )
0 k!

(MG + 61 (81)

5. SOME DYADIC ESTIMATES

In the proof of the theorems we shall need the notion of an A, envelope of a
tensorfield. It plays the role of an LP -localized version of the Ni norm of definition
3.7.

7The components of the metric vy can be combined with G.
185uch that F - G denotes a scalar.
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Definition 5.1. For a given smooth S-tangent tensor-field F' and a sufficiently
small € > 0 we define its \V; -envelope (of order'? €) to be any sequence of positive
real numbers N [F}] satisfying the following properties:

MI[Fy] < 2€|k*k’U\/1[Fkr], for any k, k',
> MIF]? MIF)?,
k

X

The existence of an envelope follows from the following elementary construction.
Let Ai[F}], be defined as follows:

NiFe] = [|Fillzzre + IV Eellpzz + 1(VLF)ellzrz (82)
Note that, in view of proposition 3.22,

Y Ni[FJ* = M[FP.
k

We now easily check that the sequences

Nl[Fk] = Z 2_6“6_]6"./\71 [Fk’]
I

are desired envelopes. The following simple result provides us with a useful tool in
handling various error terms.

Lemma 5.2. Let {N1[F;]} be an envelope (of order €) for a tensor-field F. Then
for any 0 < a < € the sequence {N1[Fy]+2~** N1[F]} is also an envelope. Moreover,
for any a > € the sequence {N1[Fy] +2=*¢N[F]} is dominated by an Ni-envelope
for F.

Proof: The first part of the lemma is obvious from the definition. From a purely
technical point of view {N;[Fj] + 2 “*N1[F]} is not an an envelope of order € if
a > € yet it can be clearly dominated by one. [ |

We now formulate and prove a number of results which will be routinely used in
the proof of our main theorem. The next result allows us to treat the multitude of
commutator terms with V which will appear throughout the next sections.

Lemma 5.3. For any smooth S-tangent tensor field F' and all ¢ < 2 sufficiently
close to g = 220,

I[P, VEIFlparz + 27V [Pk, VLI Fllpore S 275N [F] (83)
while for ¢ =1,

[P, VEIF|lpire + 27 V[P, Vi Fll e S 275 M[F] (84)
Proof: See section 12. [ |

As a corollary of this we see how to control the V-derivative of the LP pieces of
a tensor-field f in terms of its envelope.

19Unless otherwise specified we shall assume that ¢ is a fixed, sufficiently small constant.
k
20By 275+ we mean 279 with a < 1/2 arbitrarily close to 1/2.
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Lemma 5.4. For all ¢, 1 < q < 2 sufficiently close to ¢ = 2 and any smooth
S-tangent tensor-field F,

IVeFellpare S Ni[Fk] (85)

for some N7 -envelope for f.

Proof: We write
ViF, =P,V F + [Pk,VL]F

The commutator estimate of Lemma 5.3 implies that
1P, VLIFllngrz S 27 * M[F)
Thus,
IVeFlleges S NPV LFlloges +27 2 Ni[F] S Mi[Fi]
|

The above result can be complemented by a dyadic Gagliardo-Nirenberg estimate
with respect to the time variable .

Lemma 5.5. For any smooth S-tangent tensor field f, any 2 < q < 0o, we have
the following dyadic Gagliardo-Nirenberg inequality

1Fillpere S 27FE+ DN R [GNy]

Proof: First, we trivially estimate
—2
1FlS g < el s IFill 422
On the other hand,
| B[ 0=

AN

IVLE: - filloy + | Eell7
I(VEE)k - Fillpy + [Pk, VEIF - Fillps + | Fell72

AN

Thus,
1F 72 rse S NVLF)ellpzozllFillizre + 1Pk VLIF - Fillioy + [1Fell72 e

We choose an exponent r < 2 sufficiently close to r = 2 and estimate the commu-
tator term as follows.

[P, VLIF - Fillprp1 WPk, VEIF 2 1Frll gy g2

S
S 2R NI[F)| Bl

Combining all the estimates we obtain that

a
2

_k
1Pl Tz S I1FEll7p L0 (II(VLF)kIILngIIFkIILng + 2 2 MF)|Fill py g2 + IIFkIILng)

It follows that for all ' > 2 sufficiently close to 1’ = 2,

_ 1

kol

11 141 k11 11 11 2
IFelloans < WOTLFI a5 1Bl HIF e +2~ 50D MG IFDE S IF 5 Il
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Using the above estimate with ¢ = r’ and then plugging the result into the above

estimate for a given ¢, we obtain that for any o < + — 2%,

1Fkllzgre S 274G (MR +27°F AL [F]).
The desired result now easily follows. [ |

Lemma 5.6. For any smooth S-tangent tensor-field F' and any Lebesque exponent
2<q<4,

IV Fillpzrs S 28070 M[F] (86)

Proof By Gagliardo-Nirenberg (39),

1 1
IVFillrers S [IIV2ERlIZ IV FRlZ: |

On the other hand, according to the Bochner inequality21 (41),
IV?Fillr2 S I1AF Iz + K17 1||VFk||L2

for any 2 < p < 0o. Choose the exponent p such that
qap
2=——
2(p—-1)

The existence of such p is guaranteed by the condition that ¢ < 4. Thus, using
Holder inequality and condition K1,

1 1
||VFk||L§L§ 5 ||AFk||sz§||VFkHsz§+||VFI¢||L;>°L§

3k
S 272 ||Fyllperz + 2k||Fk||L;>°Lg
It remains to apply the Gagliardo-Nirenberg inequality [GNy] of Lemma 5.5. H

Our next result is the integrated version of the strong Bernstein inequality.

Lemma 5.7. For any S-tangent tensor—ﬁeld F and exponent 2 < q < 00,
1Fellngre S 24570 ML[E) (87)

Proof : Observe that the dyadic L* inequality of x) of proposition 3.20 implies
that for all sufficiently large p

1Felloe S 2801+ 2"'“IIKIILZ N 2 )1 Fkll
Taking the L} norm we and using the condition K1 we obtaln

_1
1 Fellne S 281 Frllporz +2 "k||Fk||L22;_”qL +2 P Fy | Zeteon)
t

L (p—1)—q L2

Thus, applying the dyadic Gagliardo-Nirenberg estimate of Lemma 5.5 we derive

Filie < (M9 1o 3k ob3 250 4 g sk M- %0) vy
S 2KG7D . (14 275k 4 27Tk A [F)
< Qk(%*ﬁ)N1[Fk]

21Simpliﬁed a bit and ignoring lower order terms.
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as desired. ]

6. NOTATIONS. OUTLINE OF THE REMAINDER OF THE PAPER

In the proof we shall often refer to various properties of the LP calculus and other
analytical tools developed above. To help the reader we give below a glossary of
our main notations:

[H6] - Holder inequality

[Leib] - Leibnitz rule

[GN] - Gagliardo-Nirenberg estimates in (39)

[Env] - envelope properties of definition 5.1

[ VFEB] - derivative finite band condition of v) of proposition 3.20
[FBV] - dual derivative finite band condition of v) of proposition 3.20
[VFB~!] - inverse derivative finite band condition of v) of proposition
3.20

[AFB] - laplacean finite band condition of v) of proposition 3.20
[AFB~!] - dual laplacean finite band condition of v) of proposition 3.20
[wB] - weak Bernstein inequality of vi) of proposition 3.20

[wB*] - dual weak Bernstein inequality of vi) of proposition 3.20

[ssB] - strong scalar Bernstein inequality of vii) of proposition 3.20
[ssB*] - dual strong scalar Bernstein inequality of vii) of proposition
3.20

[GNy] - dyadic Gagliardo-Nirenberg inequality of lemma 5.5

[,] - commutator estimates of lemma 5.3

The remainder of the paper is focused on the proof of theorems 4.4 and 4.9.

We start with section 7 where we prove an integration by parts lemma which is the
noncommutative counterpart of lemma 2.2.

Section 8 contains the proof of the sharp bilinear trace estimate of theorem 4.9.
The proof follows the outline of the corresponding flat statement with modifica-
tions taking into the account non-commutativity and absence of the strong tensor
Bernstein inequality.

Sections 9 and 10 provide the proofs of the integrated sharp product estimates I
and IT of theorems 4.9 and 4.4.

In section 11 we finish the proof of theorem 4.9 by establishing the B° estimates for
solutions of a homogeneous scalar transport equation. The proof is quickly reduced
to an estimate for the commutator [V, P;] applied to a scalar B° function.

Finally, section 12 contains the proof of non-sharp tensor commutator estimates for
[V, Pr] needed to control various error terms throughout the paper.
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7. DYADIC INTEGRATION BY PARTS

In this section we shall deal with an integration by parts lemma which is needed
in the proof of the sharp bilinear trace theorem of theorem 4.9. The lemma is the
non-commutative analogue of the integration by parts argument in the proof of the
flat sharp bilinear trace estimate of proposition 1.2.

We shall estimate the time integral of the expression
«“ VL” (Fk’ - Gk”) = (VLF)]C’ . Gk” —|— Fk’ - (VLG)]CH’
where F, G are tensors of the same order and - denotes the scalar product. Observe

that the expression above differs from the perfect derivative dis (Fkr : Gku) by the
commutator terms

[Per, VL]F -Gy, Fi - [P, V|G

Proposition 7.1. Let F,G be tensors of same order. Then for any k, k', k",
t ! n ’
||Pk/ “Vi" (Fiy - G lpzerz S 27 7UF K HIRED AL [Fo] - N1 [Grr]
0

with a strictly positive o independent of k, k' k"

Proof : By symmetry it suffices to consider the following three cases:

a) k' >k >k, b) k' >k > k", c) k>k >k

In all of the cases the proof of the proposition reduces to the estimate for the
commutators

t
||Pk/ [Prr, VLIF - Gp||peerz S 27 K=K IHIF =KD NG [F] - M1 [Grr], (88)
0
t I n ’
||Pk/ F - [P VLG pere S 27 R =FTHIR=RD NG [FL] - N1 [Gro] (89)
0

as well as the estimate for the boundary terms

[P (Fier () - G (£) = Fir (0) - G (0)) || o £z S 277K KIHIRZED A [F ] - N (G ]
(90)

Since k" < k' the estimate (89) is more sensitive than (88) and we shall only prove
it and (90) in what follows.

We start with the easier of the three case.

a) We start by applying the dual strong Bernstein inequality for scalars followed by
Cauchy-Schwartz with ¢ < 2, the dyadic Gagliardo-Nirenberg inequality of Lemma
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5.5 and the commutator estimate of Lemma 5.3, to infer that

t
1P, / Fo - [Por,VilGlierz < 2% Fi - [Por VAIGllL o [ssB”]
0
< 2 Fully 2 Phr, ViIGllrg e [H&|
[GN] &, ] < 2k M BHI)o=5 N FL] - MG
< 27(%+$)(k’7k”)27(k”7k)./\/’1[Fk/]-27‘71']6”./\/’1[G]
[Env] < 2T EE R 9= =k L TF ] NG (Gl

The estimate for the boundary terms proceeds as follows. Using the dual strong
Bernstein inequality for scalars followed by the Cauchy-Schwartz and the dyadic
Gagliardo-Nirenberg estimate of Lemma 5.5 with ¢ = oo, we obtain

1P (Fre - G )lleerz S 280Fw - Gl [ssB”]
S 2P |l 2 |G ll g2 [HO]
S 21@—%’—%”/\/1[1;”] - M [Gir] [GNy]
< 9 EW =Ko=K =R A TF] - NG [Ger]

b) We apply the Holder inequality with ¢ < 2 followed by the Gagliardo-Nirenebrg
and weak Bernstein inequalities in the x variable, the dyadic Gagliardo-Nirenberg
inequality of Lemma 5.5, and finally the commutator estimates of Lemma 5.3, to
infer that

t
||P/c/0 By [P, VilGlloer: S I1Fwll e palllPrrs ViIGllars [H6]

® 1 1

[WB] & [GN] S 27 Fell e o VP, VLG Eo s [Pers V)Gl a2
_ 1t

[GNy]& [, ] < 2 7P MIF] - MIG)

< 97 ar W=RDg= sy (=K N 1T 277 AL [G)
[Env] < 2w e KD N (R MGG

The boundary terms are estimated with the help of the Holder inequality followed
by the weak Bernstein inequality and the dyadic Gagliardo-Nirenberg estimate of
Lemma 5.5.

Pk (Frr - G )lpgors S ||Fk’||LOOL§||Gk”||L§’°L§ [Ho]
[wB] < 2N B e 121G e 22
[GN] < 27 RO N R N (G

< 2—%(k'_k”)2—§(k—k“)N1[Fk,] - N1 [Gror]

c) We start by applying the inverse finite band condition followed by Lemma 3.11
and Holder inequality with an exponent 1 < g < 2 chosen to be sufficiently close to
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q=2,
t t
I1Pe [ B 1P, VulGllipr: S 27HI9 [ B[P ValGlozr:  [VEBT)
0 0
S 278V (B - [P, V] G) i
[H3) & [Leib] < 2 MVl g I1Per Vi) Gl
b 2Bl L VTP Vi Gl

_ (1) (2)
- C’kk!k” +C’kk/k”
To estimate the first term above we use the derivative Bernstein inequality of

Lemma 5.6 together with the Gagliardo-Nirenberg estimate followed by the com-
mutator estimates of Lemma 5.3,

< 2 kNG PN B VP, Vi GlE o [P, VI G2
M, < "NilFie] IV P, Vil Gl g 1P, V11 Gl
S Q—ka'(l_;_’Nl[Fkr] -Nl[G]

273 (M=K g5 K A ] 27 A )
9 a7 (K k") g =gy (k=k") \r. [Fr] - N1 [Grr]

To estimate the term C’,Ei), w We apply the integrated version of the strong Bernstein
inequality of Lemma 5.7 together with the commutator estimate of Lemma, 5.3.

AR AN

Ci S 2742 D27 MR- M[G)
< 2Tk AR ] 27 ag []
< 2 e WD R N R T A [Gr]

To estimate the boundary terms for the low-low interaction (k" < k' < k) we argue
as follows. We start by applying the finite band property,

|Pe(Frr - Gr)llpeerz S 272 A(Fr - Gro)llpger2 [AFB™]

[Leib] S 27AFy - Gerllierz + 2% Fo - AGho || e r2
+ 27M|Py(VEy - VGio)llpeor2

[AFB] < 272 F Gl pee e + 272K | By - G llpse e
+ 27| P (VFy - VGro)llpeor2

The most difficult is the last term. We apply the dual strong scalar Bernstein
inequality followed by Holder inequality, finite band property, and the dyadic
Gagliardo-Nirenberg inequality of Lemma, 5.5,

27| Po(VFy - VG )ler: S 2 IV - VGiollpeorn [ssB”]
[H6] S 27 IVEu e 2 IVGrrll ez
[VFB] S 27 Bl e 2 |G e 12
[GN] S 2 MEHE N F] NG
< 2m s =K o= g (k=K Af (R ] - N2 (G ]
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8. PROOF OF THE SHARP BILINEAR TRACE THEOREM

In this section we provide the proof of the sharp bilinear trace estimate (78) of
theorem 4.9:

t
I / VLF -Gl S MF]- MG, (01)
0
In fact it suffices to prove,

t
S 1P / VLF - Gllper2 < M[F]- M[G). (92)
0

k>0

Indeed for the low frequencies we can use the dual strong scalar Bernstein inequality
[ssB*],

t t
1P [ ViF Gluzrz S Il [ ViP Gllipy asB"]
0 0
S WVeFllpzre - Gllzre S MF]- MI[G].
We start with the LP - decompositions of Vi F - G.

(VLF . G) = (VLF)<k -sz + (VLF)Zk . G<k + (VLF)Zk . sz
+ (VoF)<r Gep

Thus,

t
Pk/ ViF -G = Ay, + B + Ci, + Dy,
0

Ay,

t t
Pk/ (VL) <k - G,y By, = Pk/ (VLE)>r -G (93)
0 0

Ch

t t
Pk/ (VLEF) <k - Gy, Dy = Pk/ (VLE)>k - G>p
0 0

8.1. Estimates for A, = P, fOt(VLF)<k -G>p.

This is the easiest term. We start by giving a “slightly wrong ” proof based on the
use of strong, tensorial form, of the Bernstein inequality “[stB]”:

|PeF||pe < 28| F| 22 (94)

which we don’t in fact possess. We shall indicate however how to circumvent this
problem in remark 8.2.
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Indeed, using (94),

Aller: < / (V2P - Gl dt
k' <k<E'
[H3) < / (VL F) e Gl dt
k’<k<k”
“[stB*]” Y 2‘/ I(VLF)w 2 |IGrr |z dt
k' <k<E'
[VFB '] S Y 2 ENVLE) w2 IVGaollzre
k' <k<k'
Therefore,
leAkllL:oLg N Z 2" MN(VL )k lr2r2 Vg I r2r2
k k’<k<k”
S e llLzrz IVGrr gz S MF] - MG
k/<klf

Remark 8.2. 1t is easy to see that we don’t need (94); indeed we can replace it with
the weak Bernstein inequalities for LP', LP" | with p' ™" +p" ' = 21 and p" << p/,
as follows

Mellprre S 3 / I(VLF) - Gl dt
k' <k<E'

[HS]

AN

) / IVl Gl o dt

k' <k<E'
[wB] S Z gF (1= )gh" (1 =5in) / (VL F )l |Gl 2 dt
<k<E'

[VFB '] < Z 2 TN (VL F) w202 IV Gl 2
k' <k<k'

The proof then follows as before.

8.3. Estimates for Dk = Pk fOt(VLF)Zk - GZk'

We write, D, = D}, + D} where,
t
Di= 3 n [ (ViFw-Gu, D= Y pk/ (VL F)r - G
E<k' <k 0 <k <k

We only provide the proof for the term D? which is more difficult to treat since the
V1, derivative there falls on the factor with a higher frequency. The term Dj can
be treated in the same way without the integration by parts.

We need to apply the integration by parts estimate of proposition 7.1 followed by
the scalar dual strong Bernstein inequality, Holder, finite band and the property of
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envelopes,
Ni[Fm] S22 UNI[R], Ym, 120
Thus, writing

(VLF)kH -G = “VL”(FW -Gk/) — Fyor - (VLG)k/.

we derive, for o > e,

t
Wil S Y 1A [ Fo- (ViGellie: [prop. 7.1]
k<k' <K'’ 0
N Z 2_U(|k,_ku|+\k—k1\)NI[Fk,,].NI[Gk,]
k<K' <k''
t
[ssB] & [Env] < 2k Z ||/Fku-(VLG)k'HL;oL;+N1[Fk]-N1[Gk]
k<k' <k 7O
[Ho] S 28 Y Bl (Ve@)wllizre + NiFL] - MG
E<k <k
[Env] < > 22 MN[Fe] - MIGe] + M[EF - Ni[Gi] S Ni[Fi] - MG
k<K <k

Thus,
S D Ler2 D MIF] - MIGi] S Mi[F] - M[G]
k k

8.4. Estimates for B, = P, fOt(VLF)Zk -Gcpe

We start by decomposing,
t
By = Z Pk/ (VLF)pr - G
k' <k<k! 0
Integrating by parts with the help of proposition 7.1 we obtain,
IBrllpsorz S Z (H/ Fr - (VLG llpeorz + 2_0(“6 —HT =k ‘)NI[FI@”] 'Nl[Gk’]>
k' <k<k' Tt

t
< Zu/mwwmmm+wmwmu
0

b <k<k'

To estimate the sum on the right hand side we proceed exactly as in the proof for
Apg.

Estimates for Cy = Py [y (Vi F)<p-G<x  This term, which is absent in the
classical paradifferential calculus, is by far the most difficult and requires a lot more
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work than the previous ones. We further decompose
Cy = 0,9) +0o),

= > Pk/ (VLF)p - Gy,

k' <k" <k
Z Pk / VLF)kH Gk’
<k"" <k

As before we ignore the term Ck since the term C,Ez) is clearly the more difficult
one as the V, derivative falls on a term with higher frequency and thus requires
an integration by parts.

We first integrate by parts with the help of proposition 7.1.

t
CPNere S Y IR / For - (VG| 2 + N3 [Fel - M3 (Gl
0

kI <E'"<k

To control the first term above we need to use first the finite band condition
[VFB™'] followed by Lemma 3.11 and the Leibnitz rule

t t
1Pe [ B V1Gwlazrz § 279 [ Po (Vi@ [VEB ]
0
[Le 3.11] S 27 M(IV(Fer - (Ve@w)llpize + 1Fer - (Ve@wllzrpz)
[Leib] < 27MIVEe - (Vi@)wllpize + 271 Fer - V(VLG) k|12
+ 278 Fpr - (Ve@wllpare

To continue it suffices to consider only the first term since in that case the derivative
falls on a term with higher frequency. Using Holder followed by the inequality (86)
of Lemma 5.6 and the weak Bernstein inequality, we infer that,
IVEer - (Vi@ llpire S IVFellpzpa [(VEG)rllpzrs [Ho]
[(86)] S Ni[Fir] - Mi[G]

This leads to the estimate

k+k

Z Z ||Pk/ Fyr - (ViGpllperz S Z Z 9 _kNl[Fk”] -MN1[Gr]
k k' <k’ <k k k' <k <k
< MIF] - MG

9. INTEGRATED SHARP PRODUCT ESTIMATE I

In this section we prove the integrated sharp product estimate (79) of theorem 4.9.
We have already shown that it suffices to prove the estimate only in a fully scalar
case. Namely, that for two scalar functions f and g,

t
II/0 frgllso SUfllpo - (Nilg] + llgll e r2) (95)
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Observe that it suffices to prove,

t
> ||Pk/0 frgllere S Nfllpo - (Vilg] + llgllpeer2) (96)

k>0

Remark 9.1. The proof below will show that we have, in fact, a stronger dyadic
estimate: for all £ > 0,

t
||Pk/ frglloere S (Mgl + ||g||Lg°L§) : (22_|k_k ‘”Pk’f”L%Lg +2_k||f||LfL§)a
0 k!

needed to establish the second part of theorem 4.3.

We start by applying the LP-decomposition to f - g.
f-9=Ff<k -9+ f>1-9
Thus,
t
Pk(/ f-9) = Ay + By,
0

where

t t
Ak:Pk/f<k‘g> Bk:Pk/ka'g
0 0

9.2. Estimates for A, = P fOt f<k 9.

Applying the dual finite band condition followed by (31) of Lemma 3.11 and the
Leibnitz rule we obtain

t
iz € 27409 [ fengllers VFB ]
0
S 27V (far - Dllpzr
[Leib] S 27V <k -gllzzny + 27 1< - Vallzzr
[HO] S 278V i<klliarzllgllieors + 27 1 f<klliz Lo IV gl L2 L2
[FB] & [ssB] S Z 2* 7k||fk’||L?L§ (||g||Lg°L§ + ||Vg||L§Lg)
k' <k
Therefore,
Z lAkllzerz S (lgllperz +IVgllrzr2) Z Z 25 M| firll a2
k k K<k
S (lglezrs +1Vgllezez) D I furlleze
k’
S fllpo - (||g||L;°L$ + ||V9||L$L§)
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9.3. Estimates for B, = P, fot f>k-g9. Wedecompose f>p =/~ frr and on
each k" dyadic LP-piece apply the finite band condition f &~ 272K A fy..

t t
1Bullizre S WP [ forvgllizre S 3 IR [ fur- glus
0 0

k' >k

t
[AFB~] S T I [ At gl
K>k 0
t
S S e [ dv (Vi o)l

K >k 0
t

+ S IR [ Vi Valluer = B + B
0

K>k

To estimate B,(Cl) we use a result of Lemma 3.13 according to which for any vector-
field F

t
/ div F=divW + E, (97)
0
where W is a solution of the transport equation
VW —x-W=F, Wls,=0
and the error term FE satisfies the estimate

1Bl 2o SIFllpzc (98)
LI Py

for any 1 < p < 2. Note that for any r > 1 we have the following estimate for W:
IWlleyre SWFpyry (99)

Therefore we use the representation (97) with F' = V fys - g, apply the dual finite
band condition together with strong scalar Bernstein inequality followed by the
estimates (98) and (99) with p = 1 and r = 2, and finite band condition.

BI(:) < Z 22 || Pydiv WLz + Z 2—2k'||pkE||L;oLg

k' >k k' >k
[FBV] & [ssB7] S D 2T \Wlpgere + Y 26K E| e

k' >k k' >k

S Z 262k IV fr '9||L§L} + Z 2k 2k IV fu 'g“LgL}
K>k K>k

S Y 2RIV fullpz e gl pee s
k' >k

[VFB] S Z 2N fwllrzrz gl peor2

k//Zk

Thus,
1 !
S B SN 2wl gl S N llpollgll e
k k

K >k
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We now estimate the term B,(f). Using the dual strong scalar Bernstein inequality

followed by Holder inequality and the finite band property, we obtain

t
BY g 30 okm2) / Ve Vol [ssB"]
K >k 0
< D 2NV fullparz ]IVl pare
k' >k
[VFB] S ZQk_k | fillpzrzllgll ez
k' >k

Therefore, as in the case of B,(cl),
2
> B < Ifllpollgll ez
k

It then follows that
> IBillzerz S Ifllpoligllpere
k

10. INTEGRATED SHARP PRODUCT ESTIMATE II

In this section we indicate how to prove the sharp product estimate of theorem 4.4,
which has already been reduced to the fully scalar case. For scalar functions w, g.
where w is a solution of the transport equation

Viw = f, f|So:f07
we need to prove the estimate
lw-gllpo S (Ifollsg, + I1fllpo) (Nilg] + gl r2) (100)

Proof : We define the functions w <), w(x),w(>k) as solutions of the transport
equations

Viwery = f<k, wi<kyls, = fock
Viwg = f<k,  wwlse = for,
Viwsg) = f<ks W(styls, = fosks

Observe that according to the results of lemmas 3.6 and 3.11 we have

lwsmlleere < M forallze + | fsellzzrs, (101)
IVoamllzzee S IIVoselle + IV fiagrllze e (102)

where [s]k =< k, k,> k. We now consider the following LP-decomposition of F' - G:
W-g =Wk g+ Wk g
Thus, P (w . g) = Ay + By, where

Ay = Pe(wicry - 9),  Br = Pr(wsk) - f)-
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10.1. Estimates for Ay = P(w(<y) - 9)-

We have
lAkllrere S 27|V (w(<p) “Dllrzr2 [VFB ']
[Leib] S 2_k||vw(<lc) '9||L§Lt2 + 2_k||w(<1c) 'Vg”LgL?
[H6] S 27 MIVwer 2o lgllpers + 2 llwer oz VallL2re
S 27> IVwan 2o lgllpeerz + 27w lloe e IVl pare
k' <k
[(101)] S 278 (IVfowllez + 1V fellzzen) 9l oz
k' <k
+ 27 (I fowllee + fwllLert)IVgll2L2
IVFB]&[ssB] 5 D 2" *(Ifowllez + Ifwllzzez) (l9llozrz + 1V gllzzz)
k' <k
Therefore,
> Skl S (ollsg, + 1 llpo) - (lgllzeerz + IVallz2z2)
k

10.2. Estimates for By = Pi(w>p) - 9)-

We define the functions [Aw] ) as solutions of the transport equations
VL[Aw](k/) = Afkr, [Aw](kr)|50 = Afokr
Observe that Afy ~ 22% ., and therefore [Aw]() ~ 2%’10(1@')- In view of this,
1Bellezrz € D 272 I1Ps ([Awlwey - ) ez
K >k
Now, according to lemma 3.13 for p = 1, we can write
where,
ViWaeny —=x - Way = Ve, Waels, = V(fo)w
IEawnllzze S V()i llLaise) + IV Ferllzap

The proof continues essentially as in the proof of the estimates for By, in the previous
section. [ ]

11. SHARP SCALAR COMMUTATOR ESTIMATES

The goal of this section is to prove the last part of theorem 4.9. In other words we
have to show that any solution f of a homogeneous scalar transport equation

vazoa f|SO :fO
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verifies the estimate

11l S 1follsg , (s0) (103)

We first observe that it is trivial to take care of the low frequency component

|P<ofllzeer2 of ||f|lgo. Indeed, ||P<ofllzeers S I fllzserz and clearly [|f||psrz <
I follz < ||f0||Bg L(S0)- Therefore we only have to show that,

D Pefllrgerz S I follsg,(s0) (104)
k>0
Commuting the equation with the LP-projection we obtain
ViPof = [V, Plf, (Pef)ls, = Pufo
Thus, Pyf = Pyfo + [3[V1, Pif and,

t
1Pif()llzsorz S |1 Prfollzz(sy) + ||/ Vi, Pelfllpsorz
0

Remark 11.1. During the argument below we need to keep track of the intervals
of integration in ¢. For this reason we denote by ||f(¢)[[ 2z spacetime norms in
the interval [0,¢]. Often though, when no confusion is possible, we will drop the
explicit dependence on t.

Consequently,
YRS @)z S lfollsg sy + 2 II/ Vi, Pelf ()l rz
£>0 k>0 70

In the proposition below we shall prove the following inequality:

S / V0 Pl (Ollzr2 S Do S IPf Dl 2 + / S P F(3) ] o1 .

k>0 k>0 0 >0
Thus, for small Ay,

SRS Ollera S follng, s + / SO 1Pf ()| 12 s

k>0 0 >0

and the desired estimate follows by a straightforward Gronwall inequality. There-
fore to prove (104) it suffices to establish the following;:

Proposition 11.2. Let f be a scalar function on H. Then

S / V2, P lierz < ellfllas + / 1)l 3o ds (105)

k>0

where [|f(s)llgo = 2 k50 [|1Pef ()| Lzor2 + || P<of(5)||Lgo 12 in the spirit of the remark
above.

Proof : Since Py, = [~ mi(1)U(7)f we have,

/Ot[VL,Pk]f = /000 my,(T)dr /Ot[VL,U(T)]de
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or, introducing the notation

0/ = / V0 U@, (106)

we have,
/[VL,Pk]f = / my(7)L(7) fdT (107)
_ / mu(F)L(7) fdr + / " () L(r) fdr
0 1

Observe that the integral [ my(7)L(7)fdr is a lot easier to estimate. In fact all
we need to treat it is to show that £(7)f verifies the estimate,

IL(D) fllegore S TN fllperz,  for 721 (108)

for some positive value of K. Indeed (108) easily implies the better estimate
I [ e sz $ sz

In what follows we shall only concentrate on the more difficult term fol my(7)L(7) fdr
and ignore the contribution of 7 > 1.

We start with a simple property of a B° function in terms of the heat semigroup
U(r).

Lemma 11.3. For any smooth scalar function f on H

/ V20U () flls 1z dr < [ flles

Proof : First, in view of the scalar Bochner inequality (42),
IV2U () fllzz S NAU(T) fllzz

We now decompose

IAU(T) fllzz S D IAPU ) fllez + [1f |z

k>0
We note the following,
IAPU(R)fllzz S min(2%,2 27 2)|| P S|z (109)
Indeed we have both,
IAPU (D) fllzz S 2°*1Pef Iz, (110)

IAPU (1) flirz S 77 IPU(T/2) fllzz S 2725772 |1 Pefll 2 (111)
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Therefore,
1 1
0 £>070
o—2k 1
S HSlprzdr+ [ 2 Rl radr)
k>0 0 9—2k
S NP fllzserz + 1£llzz S 1 llso
k>0
as desired. -

The main step in proving the proposition is the following:

Lemma 11.4. The following estimates hold:
sup [I£(7)f(D)llLgerz S 1fllso (112)
0<r<1

Moreover for any T ~ 272m0,

t
L fOlleerz S 2*E'm°*k'(Ao-IIPkf(t)IIL:oLg+/0 1Pef()llz2)

(113)

We postpone the proof of the lemma and show now how (113) implies proposition
11.2. Indeed observe that estimate (113) is equivalent to the bound,
t
. 1 — _1l\e
I£(0) f(D)llLgerz S D min (2m72,277 7 3) (Aollpmf(t)lngOLng/ 1P f ()] 22 ds)
- 0

Therefore, in view of (107),

t 1
o orz < L\ T ,C T oo 1,2
II/0 Vi, Pelllpgerz N/o m (ML) f ()|l g r2

N

1 t
3 / mi(r) min (2774, 270 1) (Aol P f (D)l e 12 + / 1P fll12)
m 0 0
2—2771.
— 226771/
m 0
+ 2276771/
m 2
92(k—m) ¢
= 3 gmh / () (Doll P f (Ollurss + / 1P fll22)

e(k—m)
+ %:2 /2

t
227\k7m|(AOHme(t)HL?OLE +/0 ||me||L§)

m

t
()75 (Aol|Pon f (1) | 1o 12 + / 1P fl122)

1

t
()7 E (Dol P ()llzsezz + / 1P fllz)

—2m

22k

t
(7)) (Dol| P f (Bl 112 + / 1P fl122)

2(k—m)

IN
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Hence,

Sl / Vi Pilllzess S 3 (Ao 1P ()l 1er2 + / 1P fl2)

k>0

as desired. ]

Remark 11.5. In the argument above we have used the following simple bounds for
m(7) = 72m(r) and m(r) = 77 3m(7):

/Ooom(T), /Ooom(T)sl, /Oam(f)ga, /Aoom(,r)sAl

which hold for all sufficiently small a and all sufficiently large A. Proposition 11.2
now easily follows.

Proof of Lemma 11.4: We prove lemma 11.4 by a bootstrap argument. More
precisely we assume that for any 7 ~ 272" and any g,

IL(T)gllpeere S M Z g clmoH |1 Pegllpze L2 (114)
k>0

with some positive sufficiently large constant M and a fixed positive constant € > 0,
both independent on the function?? g. Also, since the estimate above holds for all
positive values of my we deduce,

sup [I£(T)gllzzerz S Mllgllso (115)
0<r<1

We shall show that the bounds (114) and (115) implies the stronger estimate

t
1L gllnerz S S 27mH (AGM - | Prgllyare + / 1Pegllzzez)
£>0 0 (116)

from which the desired estimates (113), 112 follow.
We shall often use the following heat flow estimate similar to (109)
1PU(T) fllez S (L4225 7) 72| Pefll 2 (117)

We derive

VLU = [ U =T AU ds

0
Recall, see proposition 3.12, the following commutator formula for scalars,
Vi, Alf = —tryAf+A-V2f+Vtry - Vf+ (A+ ) A-Vf
= ——Af+A V2f +Vitry -Vf+ (4 + ) A-Vf

22Clearly this estimate holds true with a constant M which might depend on more derivatives
of the background metric.
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Therefore,

E(T)f = Il + IQ + I3 + I4 (].].8)
t T
= d d - [A-V? !
I /0 3/0 TU (T T)( VU(T)f)

L = /Ot ds/OT dTU(T—T')(VA-VU(T’)f)

t T
I; = —%/0 ds/0 drU(r — AU (") f

I = /Otds/OTdTU(T—T')((A+%)-A-VU(T')f)

Estimate for I,. Using the dual strong scalar Bernstein inequality for U(r — 7')
followed by Holder and the heat flow estimate (117) , we infer

IL(T)llLgerz S /(T_TI)_%HVA'VU(TI)JCHL}L;
0

S IVAllLzL: /0 (r =) 2|VU () fllp2r2
S AOZ/ (T —7-/)7%||V_F)’rn(](,rl)f”LtZLg
m Y0
S AOZQmHmeHL?Lg/ (1+22mr)2(r — 1) "2dr’
0

m

Hence,

1) lnere S Q0 2™ ™| Pufllgzry for 7272 (119)

The last statement follows from the following:

Lemma 11.6. For 7 ~ 272™0 we have,

Jm = Qm/ (14 22" (1 — T')féd"r' < 2~ Im=mo
0

Proof: Indeed for 7~z 272m0 < 272m
In S 2m/ (r—7')"2dr’ S 2mrs oMo = 2 Imome
0

For 7~ 272m0 > 2=2m
T/2 . T L
In < zm/ (1+22m7")_2(r—7")_5dr'+2m/ (142202 — )~har
0 T/2
T/2
5 2m7_71/2/ (1+22m7_/)72d7_/+2m(1+22m7_)727_1/2 SQfmT71/2 S/ngfm
0

— 9-lm—mo]
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Estimate for Is. We rewrite I3 as follows?3,

t T t T
t / ds/ dr'U(r —T)AU(T) f = / ds/ dr'U(r = YU (')A f
0 0 o o
t
= T/ dsAU(T)f
0
Hence, using (117) and 7 ~ 272m0,

1L(ler: S TIAUM flleiz ST Y IAUT) P fllLice

< ZT 22 (147 - 22m)72||me||L}L§

< 3 2memo (14 22(m—m0))_2||me||LgL§
S 2R, flyys. 120

Estimates for I,. We proceed precisely as for I, by noticing that ||A|| i S Ao
in view of (29) and lemma 3.10,

T . 1
Ma(Pllzerz < /(T—T’) A+ ) - A- VU fllpiy
0

S N+ DAl - [ =) VU

S MY [ - TP s

S M X IPafluzez [ (@2 ) a2
S A0'2:27|mfmo‘||me||L}L§ (122)

for 7 s 272mo

Estimates for Iy This is the most delicate term; indeed it is because of this term
that we need to make the bootstrap assumption (114). The difficulty stems from the
fact that we need to use the trace norm assumption ||A||p 2 S Ag which means

we have to bring the integration fot , along null geodesics, in front of U(7 —7') in the

formula for I, see (118). This brings in the commutator between fot and U(r —71")
which we shall treat according to the formula:

[/Ot,Uw—T')]g:/Ot[vL,Uw—T')] /Ot’gzw—f)/otg. (123)

23We neglect the factor —% which plays no role in the estimates.
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Thus,

L

/OTU(T—T')(/OtA-V2U(T’)f) dT'+/OT£(7—_7—’)(/OtA.V2U(7J)f) dr'
= I+ 1e

Using Lemma 3.13 and the dual strong scalar Bernstein inequality, we estimate

T t
I (llzer: < / (- ) / div (A VU () )12

T t
+ / UG - / VA-VU () |l
0 0
< / (r— ) bar' (|4 VUG fllizss +IVA- VUG L)
0
S (Mileesz +1940z22) [ (=) VU sz
0

S A [ (=) HIVUE s
0
Thus, continuing exactly as for I,

~

11 (Dllzger: S Aoy 27 ™ ™| Pyy fllp2ge, for 7 272m (124)

We now estimate I with the help of the bootstrap assumption (114),(115) Ac-
cording to these we have, for any smooth function g, the following bounds,

-
IL(T")gllpeer2 < QMZTE‘m*mOlHng”LrLg, T ez,7], Ta27Y

2
m
sup [|L(T)gllrorz < Mlgllpeo,
0<r/<1
Therefore,

T t
Mzl S [ £r=m)( [ 4 VU@ sl
0 0

N

/05 1£(7 — T’)(/Ot A-V2U()f ) dsllpz 1z
+ /; I£(r - r')(/OtA V2U() ) dslliers

N

z t
oM / " $ " g-elmemal p,, / A-VUE) flpos2
((— 0

+

T t
M/ ||/ A VU fllgo =T + I
% 0
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Using the product Besov estimate (79) and the estimates (110), (111) we obtain
that

/ I / A-VUE) flmdr < Ay / VU)o dr”

< Aoty min(2%,27%772) || Py fl 212
k>0
S Aoy 27 molP £l e
k>0
We conclude that
Ty S DMy 272l Pl ps (125)
k>0

To estimate Z; we observe that according to the estimate (81) of the remark 4.10

1Py / ANV fllizrz S (ML + ALz ) - 27 M PV20 () o

k>0
S A 27 N PNRU(T) fllare
k>0

for some positive constant o > €. Therefore, with the help of lemma 11.7 below,

A O R A R [T 101
k>0
S A - pmelmemol / 1P V2U(T) fllzzez = AoM - T
m 0
S AOM'ZZielkimo‘”PkaL%Lg (126)
k>0

Thus,
ellriz © MA Y 2R flags, for 727
m

which ends the proof of the improved estimate (116) and therefore also of lemma
11.4. [ |

It only remains to prove the following,

Lemma 11.7. For 7 ~ 272™° the integral 7 = J+ 4+ J~ defined by

3
j+ — Z 2*6|m7m0\/ ||PmV2U(T,)f||L§L§
m>mo 0
z
7= e [ s
0<m<mo 0

verifies the estimate,

VS ZQ_dk_mo‘HpkaL?Lg

k>0
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Proof :

1) Estimates for 7. We are in the case m > mq ( or 272™ < 1) We decompose
further

|1PaV2U (T fllLzr: S Z 1P V2 PU(T") fllp212
k>0
S 2 PRVPRUE) fllzzrz + Y 1PaVPUE) fllz
k<mg k>m
+ Y NPaVPRU ) fllzzre = T+ T+ T3
mo<k<m

Let, j1+, j;', j3+ be the corresponding contributions to J. The term J3 is easiest
to estimate,

J3 = Z 1P V2 PU(T) fllr2r2 S Z IV?PeU (") fl 212
mo<k<m mo<k<m

Using lemma 11.3 we obtain

[rns X [F1a0nflne s X 1Pl
0 0

mo<k<m mo<k<m
Therefore,

T = Z 9—elm—mo| Z ||Pkf||LfL§ 52276|k7m0\“Pkf”L%Lg

m>mo mo<k<m k>0

To estimate J;© we proceed as follows. Applying the dual finite band property
followed by the finite band property of the P s, we obtain

B S2m Y WVPU ) fllzze S D 2" IPU ) fllpzre
k>m m>k

S Z 2" AU ) Prf 222
k>m

Once again, lemma 11.3 gives

3
/ 5SS 2k P flane

0 E>m
Thus,
Jt= Z 2 clm=mol Z 2_‘m_k||lpkf||Lt2L§ S AOMZ 2‘6"“‘m°'||Pkf||Lng-
m>mo k>m k>0
Finally, we have for .J,.
B S IVERUE) flleere SO 2% 1Pufllpzre
k<mo k<mo

Therefore,

3
/ TS Y 2P Sz S Y 27N P Sl 2
0

k<mo k<mg
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and we infer that

I = Z 9—¢elm—mo| Z 2_2|m0_k||lpkf||L$Lg < 22—e|k—mo\|lpkf”L%Li_

m>mgo k<mg k>0

2) Estimate for J~. We are in the case m < mg (272™ > 7) As before we
decompose further as follows:

1PaV2U () fllizy S Y NPaVPPU ) fllzL2

k>0

S Z 1P V2 PRU(T") fll 212 + Z 1P V2 PLU () fll2r2
k<m k>mo

+ Z 1PV PpU (') fllp202 = N+ No + N3
m<k<mg

and denote by J;,J5 ,J5; the corresponding contributions to J~. The estimates
for N3 and J; are identical to that for Js, 75".

To estimate N1 we proceed as follows.
N S IVPRUE) fllezee S Y 2% 1Pefllzere
k<m k<m
Integrating in s and using that 7 ~ 272™° we obtain the bound
Jio= oy amedmemel Y ammon kP f ey S Y27 RN P Sl e
m<mg k<m k>0
Finally, we have for IV,.
No S D NPaVERU ) fllpzre S Y 2™ FIAUG) Pefllre
k>mo k>mgo
Integrating in s, using lemma 11.3, we obtain the estimate
Jyo= Y 2 cmomol N o ik P fllpare S0 2 P fll e
m<mg k>mo k>0
Combining the estimates involving j1+, j;, j3+ and J;,J5 ,J3 we conclude that
J S ZQ_E‘k_m()lHPkaLng-
k>0

as desired. ]

12. COMMUTATOR ESTIMATES

This section we prove the commutator lemma 5.3 which we recall below.

Proposition 12.1. For any smooth S-tangent tensor field F' and an arbitrary
1 < q < 2 the following estimate holds true

I[P, Vil fllzare + 27 IV [Pe, Vil fllpore S 275 NP (127)
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In addition,
1Pk, Vel fllpire + 27 IV [P, Vil fllpie S 275 M[F] (128)

Proof: Using the definition of the LP projection P} we obtain

[Pk,VL]F = / mk VL]FdT (129)
o(r) = 7),Vi]F (130)

To calculate [U(7), V| F we recall the commutator formula for [V, A] from propo-
sition 3.12

[Vi,AJF = —tixAF+ A-V?F+VA-VF+ (A+ ) A-VF
+ B-VF+V(B-F+(A+ ) A-F)

which we rewrite in the simplified, symbolic, form,
1 1
VL, AlJF = V((; + A)-VF + (,8+(A+;) -A) -F>
1
+ (VA+ (6+(A+;)-A)> -VF

Observe that the terms (A + 1) - A and VA have same or better estimates than §.
Therefore we can discard them and simplify,

[Vi,AlF = V((%+A)-VF+B-F>+B-VF (131)

Consequently, setting A = A + i,

3(r) = /0 Ulr — YA, VU () F
/OT U(r =)V (4 VU()F + BU(T)F)
+ ’ Ulr—1)g -VU(T)F
= D7)+ Ba(r)
In what follows we shall rely on the following heat flow estimates:

Lemma 12.2. For any 2 < p < o0,

UGy s A+IKIE)ITE /)G, (132)
IUGle S (r 7)1+ IIKII“" NGy, 2<Vr<oo (133)
IVU@Gz S (2 + ||K||§)HU(T’/2)GHH;- (134)
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Proof: The estimates follow easily, by interpolation, from the heat flow estimates
of proposition 3.17combined with the Bochner and L* inequalities (41), (40). M

Our proof will now proceed as follows:

Step 1:  We shall first establish the following estimates for ®;:
191(7)llzerz S max(rs, 72N [F]
121(Dlleizz S max(ri™, 7H)A[F]

for any 1 < g < 2 close to 2 and 7 > 0.

Step 2: We show that ®, verifies the weak estimate,
1@o (P2 S max(ra 2, 755) N [F)

for any 1 < ¢ < 2 close to 2.
Step 3: Using the results above we conclude that the estimate (128) holds true.

Step 4: With the help of (128) we can improve the estimate for &, and derive
the desired estimate (127).

12.3. L{L? estimates for ;.
Lemma 12.4. For all ¢ < 2 sufficiently close to ¢ = 2 and any 7 > 0,
@1 (P)lperz S max(rs, 7%)N[F]

Proof: We start by estimating the expression
(1) = A-VU("F+ 8 -U(TF

Applying Holder inequality followed by Gagliardo-Nirenberg (39) and the estimates
(132)-(134), we obtain

l61()llzz S A-VUE)Fllzz + 18- U Fllz2
< Allgs - IVUE)Fllgs + 18]z - UG F Loz
< VAl - IVUG)FN . - INUE)FI, + 11l - UG F g
< Al (7 + 1K) U /2)F
Bl (L IKIE ) 1

Remark 12.5. To simplify the exposition we will take p = oo in the above estimate.
Properly speaking this is not acceptable since the estimates of lemma 12.2 do not
hold true for p = co. The correct proof requires the choice of an appropriate large
value of p < oo dependent on the exponent ¢ < 2. As long as we stay away from
the critical exponent ¢ = 2 one can easily correct the slightly idealized exposition
below. We note in fact that the restriction to ¢ < 2 is due to the presence of the
Gauss curvature terms [|K|zz, which were generated by the Bochner identity and
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inequality for tensors. Many of the technical complications below are due to the
presence of these terms.

Hence,

~ 1 1 _1
o1 (™)llzz S NAllzs (7 * +IENE) U /2)Fllay + (¢ Bllzz |1 Flzs

Fix an exponent g, 1 < ¢ < 2 and use the interpolated heat flow estimate, see
proposition 3.17:

3_
4

Q=

<

2_1 3_2
UG /2 Flla MEE 12

Therefore,
/ il (7 G RTINS S L
Iz < IAls (7~ HIF Ny + @ DK IFN 2 1F15 7)
+ (7Bl s
We now take the L{-norm, use the assumptions A1, A2, K1
Al Ls L, [1Bllzpz, 1K |22 S 1,
apply the Gagliardo-Nirenberg estimate (39), and the inequality [[F|| 22 <
L

N1 [F] to obtain

4
£

_1 _(3_1 1 2_1 3_2
lorllzzze S (77 1Pz + (7~ KN 1PN i 1P 2 )

WFI 2o S HMIF)
Lt qL4

T

N

+ ('

Returning to the estimates for ®;(7) we derive

1@1(Pllperz S N[ Ulr=7)Veu(r)llpere
0

< / (= )61 () ez
< /O(T—T’r%(f*iwl[ﬂ
< max(r3, 72) N[F] (135)

12.6. L%L% estimate for ®;.

In this section we derive an improved estimate for ®;(7) in the L} L2-norm.
Lemma 12.7. For any 7 > 0,

1@1(7)|| 12 S max(r77, 7%)N,[F]
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Proof: Fix a sufficiently large exponent r < co. Then applying Hélder inequality
followed by Gagliardo-Nirenberg estimate and heat flow estimates (133), (134), we
obtain

61 (T)lez < NA-VUGE)Fllgz +118-U(T)Fllez
S MAll INUEOEN 2y + 181122 IU )l
~ 2 1—-2
S Az VU Fll VU () Fll ™ + 11Bllze - 1U () Fllpg
< NAllrg (777 +||K||"(” U 2)F Iy

+ (T8l (1+||K||”“’ INIE Ly

Once again we set p = 0o, see remark 12.5,

lén(P)llze S (77 + ||K||L2)||A||LT||F||H1 + (OBl 1 Flley (136
136

Taking L}-norm and using our assumptions A1, A2, K1 we derive
o rze S 7 Al IF N2 + Bl 2 1 F Lo
ANy UK Pz S G TPNGFL (137)
for an arbitrarily large r.

To derive the last estimate we have used lemma 12.8 below.

Finally we recall that & ( fo (t —7")V¢1 (") and proceeding as before, with
r arbitrarily large, we ﬁIllSh the proof. [ |

2
Lemma 12.8. Forany2<p<oo and 2<¢q< pr4
1Fllpere S NLF]

Proof: The proof follows immediately by interpolating between the following:
I1Fllzery SMUF], (IFllpgers S MF].

~

12.9. Lthi estimates for ®,.
Lemma 12.10. For any 1 < ¢ < 2 and all T > 0,

1®2(7)|| sz S max(ra 27, 73) N [F]

Proof: We start by estimating the function
¢o(t') =VA-VU(T)F+ p-VU(T')F
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Fix r > 1 sufficiently close to r = 1 and apply Hoélder inequality followed by the
Gagliardo-Nirenberg estimate,

sy S (IVAllz +11Bl2 ) VUG FI g

22

21
S (IVAllzz + 18lle2 ) IV*U ) FIl: " VU ()Pl

We now use estimate (134) to obtain

gp(r—1)

l62(™)lleg S (IV ANz + 181z ) (7 + K157 )T /2)Fllay

Proceeding in the spirit of remark 12.5 we set » = 1 on the right hand side and
replace the above inequality with,

lo=()llzz < (IVAllLz + 181122 ) IVU (' /2)Fllz2 (138)
For a given exponent ¢ we use the standard heat flow estimates ||[VU(7'/2)F||r2 <
P E|[Fllgs and [IVU (7' /2)Fllgs < [V Fllz2 to write
/ =(1-3) R
VU [2)F ||z ST HIVEFI L (1FlL:

Now taking the L{-norm and using, [[VAllz 22, [IBllz222 S Ao S 1, we derive
with the help of Gagliardo-Nirenberg estimate that

—(1=1 2_q 22
oo (e S 7 TINVENE 1Pl s + IV FllLass

< (DY MR

Returning to the estimates for ®»(7) and applying the dual weak Bernstein inequal-
ity L? — L", see (49), for some r > 1 sufficiently close to r = 1, we obtain

N®2(m Moz S I OTU(T_TI)¢2(TI)||L§L§
s [ = D,
S / [(r = ) D) m0h AR
0
< maX(T%+%7%,T%_%)N1[F]
< max(re 7, 72T) N{[F] (139)

We can now finish the proof of proposition 12.1 for the case of ¢ = 1. Recall that

[Pk,vL]F:/mmk(T)(ﬁ(T)dT,
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where ®(7) = ®,(7) + ®2(7). Combining the results of lemmas 12.7 and 12.10 we
derive

1P, Vel S Nl[F]'/ my,(T) max(rz =, 737)
0

S MIF] (/0 mk(T)T%_ +/100 mp(T) - 7-%+)
S MIF]- (2 / o 2 / OO m(r) T4
< 27k AG[F) (140)

To obtain the estimate for the term ||V[Py, VL]F|[|z172 we need to control V& (7)
and V®,(7). Observe that the tensor-fields ®;(7), j = 1,2 are the solutions of the
respective heat equations

67'(§1 - A(§1 - V¢1; (I>1|‘r=0 - 07
0, P2 — A®y = ¢po, Ds|;—0 =0
The standard heat flow estimates imply that

IV@illLzr2 S llénllezrz, (141)
IV®:llr2rz S ||¢2||L3_§% L I1<p<2 (142)

where || || 2 refer to the L? norm on the interval [0,7]. The proof of 141 follows by
multiplying the heat equation for ®; by ®; and integrating by parts. Estimate (142)
follows in the same manner, replacing the integration by parts by an appropriate
use of Holder and interpolation.

Taking the L2 norm of the equations (136) and (138) followed by the L} norm we
derive, for any p > 1 sufficiently close to 1 and all sufficiently large r,

1 1_ 1
loallrirere S max(r2,7277) - Mi[F]

~Y
3p—2
||¢2||L1L3_§;LZLP S 12 - Ni[F]
1 2

Therefore,
max(r?,737) - N1[F]
max(T% , T%_) M [F)

One can, by a standard argument, convert the above into the following weighted
estimates,

IV®@illpip2r: S
IV@2llpi2r: S

| min(r=2 ", 775 )V || 1120

IN

M[F]
Ni[F]

~i=, )

N

V@122
Thus

IV[Py, VL]F|Lirz S ||/0 mi(T)Ve(T)|| 112

IN

1_ 1 . _1 _1_
[l max(r2 7, 725) my (1) p2 || min(r =2, 7757) V|| 1122
2k~ N [F]

AN
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To finish the proof of proposition 12.1 for an arbitrary ¢ < 2 we first need to obtain
improved estimates for ®,.

12.11. Improved estimates for ®,.

Lemma 12.12. Forall1<qg<2 and any 7 >0

N

|®2(7)|po 2 S max(ri™, 7%) Ni[F]

Proof: We start by proceeding in the same way as in the estimates for ®5(7) of
lemma 12.10 until equation (138),

lo2()llzz S (IVAllLz + 18122 ) IVU (' /2)Fllz2

Taking the L{-norm,
62T lesry < ||VU(T’/2)F||L22_744 SIVU [2)F||per

2
z

We now estimate the term ||VU(7'/2)F||p 2. Squaring, and integrating by parts
in t and commuting Vy with V and then with U(7'/2) and then using the heat
flow estimates we derive,

IVU(T'/2)Fl[1ep2 S /HVLVU(T’/Q)F-VU(T'Q)F+(M[F])2

< / VVLU(T'/2)F -VU(T'/2)F
H
+ [V, ViU (T [2)FllLi 2 VU (7' [2) F || ez + (N [F])?
< / VU(T'/2)VLF -VU(T'/2)F
H
+ VLU /2] || 2 [|AU (T /2) F £ 12
+ NIV, VLU [2)F |2 (IVU(T' /2)F |l pe 12 + (NA[F])?
S (FTHWLFD? + [V, U [2)]F| 2 |AU (7' /2) F | Lo 12
+ NIV VLU [2)Flla 2 (INU (7' /2) Fl| pger2

Thus, since

S () TTMILF),

~ ~

AU (7" /2)Fllpserz S (T,)71||F||L5°L§

INUG [2)Fllzre S (T OMIFL+ 772 Ve, UG 2] 0 - (MIF]?
+ IV, VLU [2)Flinre (143)
The results of lemmas 12.7 and 12.12 imply that
Ve, UG /2)]F iz S max(r'2 ™, 7'27) M [F)

On the other hand, observe that we can write the commutator formula for [V, V]
in the form [V,V] = AV 4 8-. Therefore remembering the definition of ¢, (1),

[V,VL]U(T'/2)F = ¢1(7'/2)
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Thus, in view of 137,

IV, VLU (T [2)Flpyre S A(7)°7) - Mi[F]

Returning to (143) we infer that

IVU (' [2) Fl o2 < (7757 M[F).

It then follows that

1

o2 (T MILgry SIVUE'/2)Fllpgerz S (77 F7) - Mi[F].

Proceeding as in lemma, 12.10 we obtain for r > 1 sufficiently close to r =1,

1@2(D)lerz S N[ U =7)da(r)lnzre
0

IN

/ (r = )Gy ()21

0

(7' 1) M [F]

AN
o\\‘
=
|
ﬂ\
|
™
|
(VI

< max(rirT, 720 ) Ny[F]
< max(ri7, 73) N [F]
|
We can now finish the proof of proposition 12.1.
Combining the results of lemmas 12.4 and 12.12 we derive
PGV iFllgse S [ ma(nymax(ri, 7 AG[F]
0
1 1 e 1
< / mi(r) 75 NLF] + / mi(r) G [F]
0 1
22k o]
S 2*/ m(r) T Ny [F] +27F / m(r) 73 Ni[F]
0 22k
S 2 FNIF)
Arguing as in the case of the L} L2 estimates can we also obtain that
V[P VeI lluge S 2527 5% ML [F]
|

[Chr-K]]

[K11]
[K1-Nic]
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