A GEOMETRIC THEORY OF LITTLEWOOD-PALEY THEORY

SERGIU KLAINERMAN AND IGOR RODNIANSKI

ABSTRACT. We develop a geometric invariant Littlewood-Paley theory for ar-
bitrary tensors of a compact 2 dimensional manifold. We show that all the
important features of the classical LP theory survive with estimates which
depend only on very limited regularity assumptions on the metric. We give
invariant descriptions of Sobolev and Besov spaces and prove some sharp prod-
uct inequalities. This theory has being developed in connection to the work of
the authors on the geometry of null hypersurfaces with a finite curvature flux
condition, see [KI-Rodnl], [KlI-Rodn2]. We are confident however that it can
be applied, and extended, to many different situations.

1. INTRODUCTION

In its simplest manifestation Littlewood-Paley theory is a systematic method to
understand various properties of functions f, defined on R™, by decomposing them
in infinite dydic sums f = >, ., fx, with frequency localized components fy, i.e.

fk(g) = 0 for all values of ¢ outside the annulus 2¥~! < |¢| < 2F+1. Such a
decomposition can be easily achieved by chosing a test function xy = x(|§|) in Fourier
space, supported in % < €] < 2, and such that, for all £ # 0, Zkezx(Q_kf) =1

Then set f(€) = x(2%¢)£(€) or , in physical space,
Pof = fx =muy = f
where my(x) = 2""m(2*z) and m(z) the inverse Fourier transform of x. The

operators Py, are called cut-off operators or, improperly, LP projections. We denote
Py =3 1cj P for all intervals J C Z.

The following properties of these LP projections are very easy to verify and lie at
the heart of the classical LP theory:

LP 1. Almost Orthogonality: The operators P, are selfadjoint and verify
Py, Py, = 0 for all pairs of integers such that |k; — k2| > 2. In particular,

1FI72 = Y |1 PFII7
k
LP 2. [LP-boundedness: For any 1 < p < oo, and any interval J C Z,
I1PrF e S (1 Fl e (1)
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LP 3.  Finite band property: We can write any partial derivative VP f in the
form VP, f = 2FP,f where P, are the LP-projections associated with a slightly
different test function y and verify the property LP2. Thus, in particular, for any
1<p<o

IVP:Flle S 2% F|ze
NP F e S IVFL
LP 4. Bernstein inequalities. For any 2 < p < oo we have the Bernstein
inequality and its dual,
|PeFllzw S 25T Fllge,  [[PeFllze S 2507 Pl

The last two properties go a long way to explain why LP theory is such a useful
tool for partial differential equations. The finite band property allows us to replace
derivatives of the dydic components fi by multiplication with 2¥. The L? — L
Bernstein inequality is a dyadic remedy for the failure of the embedding of the
Sobolev space H % (R™) to L>(R™). Indeed, in view of the finite band property, the
Bernstein inequality does actually imply the desired Sobolev inequality for each LP
component f, the failure of the Sobolev inequality for f is due to the summation

f:Zkfk-

Just like Fourier transform, Littlewood-Paley theory allows one to separate waves of
various frequencies for linear partial differential equations with constant coeflicients
and therefore its usefulness in this context is not that surprising. It took longer
to realize that it is helpful, in fact even more helful, for the analysis of nonlinear
equations. It turns out that multiplication properties of various classical spaces
of functions are best understood by decomposing the corresponding functions in
dyadic LP components. This allows one to isolate and treat differently interactions
of various components of the functions. Moreover the LP calculus allows one to ma-
nipulate a nonlinear PDE to derive coupled equations for each particular frequency.
A first systematic application! of LP theory to nonlinear PDE’s was developed by
Bony in the form of what is called the paradifferential calculus [B]. Notable applica-
tions of LP theory include recent advanced in fluid dynamics, nonlinear dispersive
as well as nonlinear wave equations( both semilinear and quasilinear), see e.g. [Ch],
[Ba-Ch], [Bour], [Tat], [Tac], [Sm-Ta.

In this paper we develop an invariant LP theory for compact 2-surfaces. Our
immediate goal is to apply this theory to study the geometric properties of null
hypersurfaces, in Einstein-vacuum manifolds, with a finite curvature flux condition,
see [KI-Rodn1]-[Kl-Rodn2]. We believe however that the theory we develop can have
far wider applications.

Following a well-known procedure (see Stein [Steinl]) we base our approach on heat
flow,

0,U(r)F — AU(7)F =0, U(0)F = F 2)

IThe first manifestation of these type of ideas can be traced to the work of J. Nash on the
isometric embedding problem [?]
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with A = ¢“V,;V; the usual Laplace-Beltrami operator defined on the space of
smooth tensorfields of order m > 0.

We then define LP projections Py according to the formula,
P.F = / my(T)U(T)Fdr (3)
0

where my (1) = 228m(22%7) and m(7) is a Schwartz function with a finite number
of vanishing moments.

Under some primitive assumptions on the geometry of our compact 2-dimensional
manifold S we prove a sequence of properties for these geometric LP projections,
similar to LP1- LP4. Some of our results are necessarily weaker?. For example
the pointwise version of the almost orthogonality property LP1 does not hold. We
can replace it however by its sufficiently robust LP analogue. We also find satis-
factory analogues for LP2-LP4. However we discover that the minimal geometric
assumptions, we impose, restrict the range of p in LP 3 to p = 2 and p # oo in
LP 4. Moreover, the L? — L> Bernstein inequality requires additional geometric
assumptions which differ dependent on whether F' is a scalar or a tensor.

In section 2 we state our main regularity assumptions on a 2-D manifold S and
establish some basic calculus inequalities. This is the only place in the paper where
we make use of special coordinates. Our assumption of weak regularity is meant to
guarantee the existence of such coordinates.

Section 3 discusses the Bochner identities for scalar functions and general tensor-
fields. Note that the Bochner identity for tensorfields has an additional term, not
present for scalars, which requires stronger assumptions on the Gauss curvature K
of our manifold.

In section 4 we define the heat flow generated by the Laplace-Beltrami operator
A on tensorfields of arbitrary order. The properties of the heat equation derived
in that section requires no regularity assumptions on S beyong the fact that the
metric must be Riemannan.

In section 5 we use the heat flow to develop an invariant, tensorial, Littlewood-
Paley theory on manifolds. We prove analogues of the LP1-LP4 properties of the
classical LP theory. Once more, for most properties of our LP projections, we need
no regularity assumptions on the metric, beyond the fact that it is Riemannan. We
do however make use of the weak regularity assumption on our manifold S in the
proof of the weak Bernstein inequality and its consequences.

In sections 7 and 8 we define fractional Sobolev and Besov spaces.

In Section 9 we show how to use the geometric LP theory developed so far to prove
some( non sharp) product estimates in fracational Sobolev and Besov spaces.

QIndeed, even in Euclidean space the LP projections constructed by the heat flow do not possess
sharp localization properties in Fourier space
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In section 10 we discuss the sharp L? — L* Bernstein inequality. In addition to the
main weak regularity assumptions on the 2-D manifold S we have to impose condi-
tions on its Gauss curvature K. We detect a sharp difference in the requirements
imposed on K dependent on wheteher we consider the scalar or the the general
tensorial case.

In section 11 we return to the earlier product estimates and prove their sharp
versions under the additional conditions needed for the sharp Bernstein inequality.

In section 12. we consider the mapping property of the covariant differentiation V
on the Besov space Bj ;.

2. CALCULUS INEQUALITIES

In this section we establish some basic calculus inequalities on a smooth, compact,
2 -D maniflold S. We say that a coordinate chart U C M with coordinates z!, 22 is
admissible if, relative to these coordinates, there exists a constant ¢ > 0 such that,

cHEP < vap(p)E2E” < €|, uniformly for all pe U (4)
We also assume that the Christoffel symbols I'f, verify,

Z/U|I‘§C|2dx1dx2 < (5)

a,b,c

Definition 2.1. We say that a a smooth 2-d manifold S is weakly regular (WR)
if can be covered by a finite number of admissible coordinate charts, i.e., charts
satisfying the conditions (4), (5).

Remark 2.2. Although we assume that our manifold S is smooth our results below
depend only on the constants in (4) and (5). The notion of weak regularity is
introduced to emphasize this fact.

Whenever we have inequalities of the type A < C - B, with C a constsnt which
depends only on ¢ above, we write A < B.

Under the WR assumption a it is easy to prove the following calculus inequalities:

Proposition 2.3. Let f be a real scalar function on a 2-d weakly reqular manifold
S. Then,

Iflle> S IV Al + (1 flle (6)

Ifllzee S UV Flles + 11l 22 (7)

Proof: Both statements can be reduced, by a partition of unity, to the case when
the function f has compact support in an admissible local chart U C S. Let z!, 22
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be an admissible system of coordinates in U. Then,

s = | [ sty [ ot iy

A

/ 00 f (g, %) dy - / 9o f (2t )\dy
Hence,

/|f(x1,x2)\2da:1dx2 < /|81f(x1,m2)\dxldx2-/ |0 f (2, 2?)|da* da?
R2 R2 R2

A

/ |V f(zh, 2?)|dat da?.
R2
Thus, since in view of (4) ¢ < +/|g| <71,
([ 1#@PVigdstas)* < ( [ 1946)PVIglda'da?).
U U
as desired. Simmilarly,
fatat) = [ [ oourt )yt
Hence,

A < [ (93 + TSR]

/ V2] + ( / TP 9 £ 2s)
S U
S IVl + IV £llpzs)

A

As a corollary of the estimate (6) we can derive the following Gagliardo-Nirenberg
inequality:

Corollary 2.4. Given an arbitrary tensorfield F' on M and any 2 < p < oo we
have,

1—2 2
[Flle S IVEl " IFl g2 + 1F 22 (8)

Proof: For any p > 2 we can write,
IFIE = WPl SUVIFP? I+ [1FP]
< (IVFlee + 1Flze) - 1Pl
Thus, inductively, for all p =2k, k =1,2,...
1Flle S (IVFlle + 1F]2) % - |F)E

The result for general p now follows by interpolation in the scale of LP spaces. H

As a Corollary to (7) we also derive
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Corollary 2.5. For any tensorfield F on S,

1 1
1F Nl SUVEFIZ. - IF 2 + 1F] e (9)
Moreover, we have a more precise estimate for any 2 < p < oo,
2 =2 < =1
[FllLe S IVPFI 22 (IVEN 5 IIFIZ: +1FILE ) +IIVE| 2. (10)

Proof : We apply the estimate (7) to the scalar |F|? as follows,

IFIZ < IV2FPlee + 1IFP e
< IVEFl 2l Fllzz + IVEIZ2 + 1P 7

In view of (8),
IFIZe SIVEl 2l Fllzz + IFI1Zs
Hence,
1Pz S IVAF L2l Fllzz + IVEI L2 + IVF | L2 Fllzz + | Fll72

The desired estimate now follows by Cauchy-Schwartz. To prove the estimate (10)
we observe that applying (7) to |F'|P we obtain

p—1

1
1Flzee S IVZFIZIF] s + IVF e

By the Galgiardo-Nirenberg inequality (8) we have that
p=2 1
IFl 20 SIVENz [Fllz2" + 1Flze
Thus, finally
1 p=2 1 p=1
1Fllz SUVEFIZ(IVEIE NFNL +1FIE )+ [IVF 2

as desired. |

3. BOCHNER IDENTITY

In this section we recall the Béchner identity on a 2-D manifold. This allows us to
control the L? norm of the second derivatives of a tensorfield in terms of the L?
norm of the laplacian and geometric quantities associated with a given 2-surface.

Proposition 3.1. Let K denote the Gauss curvature of our 2-D riemannian man-
ifold M. Then

i) For a scalar function f

Jiwese = [1age - [ K (11)
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ii) For a vectorfield Fy,

/|V2F|2:/ |AF|2—/K(2|VF|2—| div F|* — | curZF\2)+/K2\F|2
S S S S (12)

where div F =YV F,, curl F = div (*F) =€4 V.F,

Proof : Recall that on a 2-surface the Riemann tensor

Raped = (’Yac'}/bd - 'Yad'ch)K7 Rap = var KK, (13)

To prove i) observe that, relative to an arbitrary orthonormal frame (eq)q=1,2,

Vuo(Af) = Vu(VeVef) = VeVoVef + [Va, Ve Ve f
= V.VeVaf + RedacVaf
= A(Vaf) = RaaVaf

Thus,

iare

as desired.

- / Va(Af)-Vaf = / AVof - Vaf — RaVafVof
S S

= [vere- [ K

Similarily for a vector F;,
Va(AF;) = Vo(VVeEF) =V VVeF + [V, V]V F;
= VeVeVafi +Ve([Vas Vel F) + RedacVaFi + RidacV e Fa
A(VoF;) + Ve(RidacFa) + RedacVaF; + RigacV e Fy
= A(VoF) + Ve(RidgacFa) — RaaVaF; + RigacV e Fy

- [1arE = [ vian

= _/ |v2F|2_/RidachvcvaFi
S S

Hence,

- / RdavdﬂvaFi + / RidacchdvaFi
S S

Now observe that,
1 1
/ Ritac FaVoVoFy = = / Ritac Fa(VoVuFy — VoV Fy) = - / Ridoc Romea FaFrn
S 2 S 2 S
Therefore,

1
/ AF|? = / |v2F|2+5 / RaiacRmiac FaFom + / R4aVaFiV  F;
S S S S

_ / RiaeVoFaVoFy
S
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Using the formulas (13) and observing that V,F, — V,F, =€, curl F we find,

RdiacRmiachFm = 2K25dedFm = 2K2|F|2
Ry VaFiV.F; = K|VF|?
RigacV FaV F; = K(|div F|? = V,F,V,F,)

K(| div F|? = |VF|? = Vo F,(VyF, — Vo F))
= K(|div F? + | cutl F|> — |VF]?)

Therefore,

/|AF|2:/ |V2F|2—/ |K\2|F|2+/K((2|VF|2—(| div F|* +| curl F|?))
S S S S

as desired. ]

Corollary 3.2 (Béchner inequality). For any tensorfield F' and an arbitrary 2 <
p<oo

1
IV2FlL: < AP e + (1K 2 + 1Kl 7) [ VFI| 2 (14)

~

_p_ p=2 1
+ Kl (IVEIZEIE " + 1F ) (15)

Proof : The Bochner identity (12) implies that
1
IV2Fll 2 SIAF|zz + 1K 2 IVl Lo + | Kl 2]l Fl e (16)
Using the Gagliardo-Nirenberg inequality (8) and the estimate (10) we infer that
for any 2 < p < o0
1 1
IVF|l s SIVEF|2IVF| 7. + [V F| L2,

p—1

1 =2 1
1F N~ SUVAFIz(IVEIE NEI7: + 15 ) + I VE|L
Substituting this into (16) we obtain

~

1 1 1
IV2Flle S IAFz + 1K1 2 (IV2FI IV EI Z + [ VFL: )

1 p—2 1 p—1
+ K (IV2F 17 (IVFILE IFIZ + 1P E ) + IVE L)
This, in turn, implies that
1 _P_ p=2 1
IV2Fllzs S IAFI (K Lo+ KN ) IV Flla+ KR (IVFI IS+ Fl22)

as desired. ]

4. HEAT EQUATION ON S

In this section we study the properties of the heat equation for arbitrary tensorfields
FonS.
0, U(T)F — AU(T)F =0, U(0O)F = F,
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with A = A, the usual Laplace-Beltrami operator on S. Observe that the operators
U(r) are selfadjoint® and form a semigroup for 7 > 0. In other words for all, real
valued, smooth tensorfields F, G,

/ U(T)F-G= / F.-U(1)G, U(r)U(12) =U(11 + 72) (17)
S S

We shall prove the following L? estimates for the operator U (7).
Proposition 4.1. We have the following estimates for the operator U(T):

[U(T)FllL2cs) < 1 FllL2(s) (18)

IVU(T)Fllr2csy < IVF L2 (s) (19)
V2 1

IVU@)Fllas) < 57 2 I1F ] zags) (20)
V2

||AU( )F||L2 < 77 1||F||L2‘(S) (21)

We also have,

V2

|U(T)VF[L2(s) < 57 2| Fllz2s) (22)

Proof: To prove (18) we multiply the equation
O, U(T)F — AU(T)F =0
by U(7)F and integrate over S.

1d
5 7 lUEFas) + VUM Ias) =

|
o

Therefore,

1 T 1
SN sy + [ IVUE) P15y = 51 s (23)

and (18) follows. On the other hand, multiplying the equation by TAU(7)F, we

similarly obtain the identity
1d 1
TTIVU@Els) + T AU Pl 72 (5) = 5IVU M) F 725

Integratmg thls in 7, with the help of (23),

T T 1 /(7 1

SINU@ Py + [ 7 IAUEFIRssydr’ < 5 [ VU@ P s < 11F Bags
0 0 (243

which implies (20). Proceeding in exactly the same way with the multiplier TAU (1) F
replaced by AU (1) F yields (19). Furthermore, multiplying the equation by 72A2U (1) f,
we have
1d
2dr
Integrating in 7 and using (24), we obtain

T AU(T)F |72 s) + T2 IVAU(T) Fll72(5) = TI|AU (1) F[72(5)

T

72 T 1
AU F s+ / (2 [VAU () F |2 g dr' = / AT F sy i < ZIFags)

3Indeed observe that A is selfadjoint and formally U(r)f = >on %t”A”.
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This immediately yields (21).

To prove (22) we observe that
|U(T)VE|3: =< U(T)VF, U(T)VF >=< div U(1)U(1)VF, F >
Therefore,
IU)VFIZ: < VU (DU(T)VE)||L2 ] FllL2

V2,
< 5 UM VE e Fllza

whence [|[U(T)VF| 2 < gT_%HFHLz as desired. [

In the next proposition we establish a simple L? estimate for U(7).

Proposition 4.2. For every 2 <p < oo
NU(T) e < [[F|[ze

Proof : We shall first prove the Lemma for scalar functions f. We multiply the
equation 0.U(7)f — AU(7)f =0 by (U(7)f) 71 and integrate by parts. We get,
2 g IUOFIE, + 2o =1) [ IVU@)PIUe) P2 =0

Therefore,

[U(T)F | z2e < [|F|| 20
The case when F' is a tensorfield can be treated in the same manner with multiplier
([U@FP) UmE. .

5. INVARIANT LITTLEWOOD-PALEY THEORY

In this section we shall use the heat flow discussed in the previous section to develop
an invariant, fully tensorial, Littlewood-Paley theory on manifolds. Though we
restrict ourselves here to two dimensional compact manifolds it is clear that our
theory can be extended to arbitrary dimensions and noncompact manifolds.

Definition 5.1. Consider the class M of smooth functions m on [0, 00), vanishing
sufficiently fast at oo, verifying the vanishing moments property:

| ekmnr =0, il + ol < N (25)
0

We set, mg(7) = 2%*m(22%7) and define the geometric Littlewood -Paley (LP)
projections Py, associated to the LP- representative function m € M, for arbitrary
tensorfields F' on S to be

P.F = /000 my(T)U (1) Fdr (26)
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Given an interval I C Z we define

P = Z P,F.

kel
In particular we shall use the notation Pcy, P<g, Psj, P>p.

Observe that Py, are selfadjoint?, i.e., P, = P}, in the sense,
< P.F,G >=< F, P,G >,

where, for any given m-tensors F, G
< F, G >= / ,}/i1j1 .. .’}/imjmFil___imGjlmjdeOLY
s
denotes the usual L? scalar product.

Consider two LP projections associated to a,b

PP F = / / dridraa(m)b(2)U (T + m2) F
o Jo

/OOO dm /:o dr a(m)b(t —m)U(T)F

/Ooo drU(r)f /OT dry a(r)b(r — 71)

/000 draxb(t)U(T)F

where
a*xb(T) = / dr a(m)b(t — 1) (27)
0
Lemma 5.2. Ifa,b € M so does axb. Also, (a*b)r = ap *bg. In particular if we

denote by (D P, and ®) P, the LP projections associated to a,b then,
(@ p, .0 p —(axb) p,

Proof : We only need to show that [(a = b)(7)dr = 0. Then, we can easily
check that 7 - (axb)(7) and %(a * b) also verify the same property as well as any
combination of these. Clearly fooo axbdr = fooo a(r)dry - fooo b(12)dms = 0. []

Motivated by this Lemma we define:

Definition 5.3. Given a positive integer ¢ we define the class M, C M of LP-
representatives to consist of functions of the form

m=mxmx*... «m=(mx)",

for some m € M.

4This follows easily in view of the selfadjoint properties of A and U(t).
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Lemma 5.4. For any ¢ > 1 there exists an element m € My such that the LP-
projections associated to m verify:

P=1 (28)
k

Proof: See [Steinl]. [ |

Theorem 5.5. The LP-projections Py associated to an arbitrary m € M wverify
the following properties:
i) LP-boundedness For any 1 <p < oo, and any interval I C Z,

|1P1F|| e S| F|lLo (29)

i)  LP- Almost Orthogonality —Consider two families of LP-projections Py, P,
associated to m and respectively m, both in M. For any 1 < p < oo:

1Py Flle S 2721 Pl (30)

~

iti)  Bessel inequality

Y IPFIZ: S IFI
k

iv) Reproducing Property  Given any integer £ > 2 and m € M, there exists
m € M such that such that m = m*m. Thus,

(m) p, =(m) p_.(m) p,

Whenever there is no danger of confusion we shall simply write P, = Py, - Pg.

v) Finite band property For any 1 <p < co.
IAPF| S 22 P
1PeFlle S 27| AF L
Morever give m € M we can find m € M such that AP, = 2% Py, with Py the LP
projections associated to m.
In addition, the L? estimates
IV P Fl| >
| PeF'l| >
hold together with the dual estimate
[PV F| L2 < 2°|1F)| 2

2 F e

<
< 27NV

vi)  Weak Bernstein inequality For any 2 <p < 0o

1PF||e S (2075 4 1)[|F|| 2,

~

[1P<oFllzr S |IF 22
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together with the dual estimates
I1PeF e S @079 £ D|F] 0,
[P<oFllr2 S I1Fl Lo

vii) Commutator Estimate  Given two tensorfields F,G and F - G any contrac-
tion of the tensor product F'® G we have the following estimate for the commutator
[P, F]-G=P,(F-G)—F- PG

I[P, F1-Glize S 27 IV F ) L |Gll 2.

We also have the estimate of the form

| P, F]-Gllus < (2-2’€||AF|LM n 2-’“|VF||Lm) 1l

Proof :

i) The L? boundedness of Py follows from the L? mapping properties of the heat
flow U(7).

ii) Assume that ks > ki. By definition and in view of the semigroup property of
U(T) we write,

Pklﬁ)sz = / / U(T1 + Tz)f my, (Tl)mk2(7'2)d7'1d7'2
0 0

Writing U(m + 72) = U(my) + fol L U(ry + s72)ds and then using the vanishing of
J5~ 1k, we infer that,

Pklpsz = / / d’T‘l/ 7'1+S7’2)f mk1<7'1)7'2mk2(7'2)d7'1d7'2

d
— / / / (11 +sm2)f an —m, (11) TN, (T2)dT1dT0
— mg (0 / dro ToMk, (T2) / Ul(sms)fds
0

Now setting 7(7) = 7m(7), and n(r) = m/(7) we infer that,
00 0o 1
Py, P, f = —22(k1_k2)/ / / U(ry + s72) f ng,y (T1) gy (T2)d71dT2
o Jo Jo

oo 1
22(k1=k2)(0) / drafig, () / Ul(smy)fds
0 0

Therefore, using the LP mapping properties of U,

1Py Py Flle = 22kl By, / / 2t (70)| [y (72) s Iy
0 0

+

9-2lks k21 1 (0)] |7 o / ik ()|
0

2726l )

AN
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Remark 5.6. One can give a slicker proof of the almost orthogonality properties
of LP projections by using the algebraic formula 22* P, f = APy f, see (35) below.
Moreover, if sufficiently many moments of m are zero, s.t 7%m,7%m are good
symbols, then in fact,

1Py, Prop Fll 2 S 2724l ) 2 (31)

iii) To prove the Bessel type inequality we write,

STIPFZ: =3 < PuPif, £ >< IO P2F| 2| Fl 2
k k k

To show that the operator P =), P]f is bounded on L? we appeal to the Cotlar-
Stein Lemma, see [Stein2]. Observe first that, in view of Lemma 5.2, P2 = (™*™) p; .
Since m x m € M we can, without loss of generality, simply write P2 = P,. The
conditions of applicability of the Cotlar-Stein Lemma® are satisfied in view of the
almost orthogonality established in part ii) as well as P, = P}}.

iv) The proof is immediate in view of the definition 5.3.

v) According to the definition of Py f we have

ang = [ m@ave)f = [ v

OV - [ (U
2%QM®f+AmWﬂMﬂUUV>

In view of the LP properties of U(7)f and the obvious bound fo Vi (T)|dT <
AP F|e S 22k||F||LP 3 )
To prove the second estimate we introduce m(r — f m(7) such that m =

m(7) and [;° |m(7)|dT < co. Observe also that m( ) =0. Set also
mk( )_22k (22k )
d

#rg = [ 2 wﬂuﬂflmmﬁmvwvw

- [Tmmgues=- [ s
- /0 Mn(F)U (1A S (33)

Therefore, using the estimate |[U(7)AF | L» S ||AF| Lr, we infer that,

22| PiFl|ze S IIAFIILP/ (Mg (7)]dT S [|AF |z (34)
0

5Notice that we are in the special case of commuting selfadjoint operators.
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Observe also that, according to (33) we have
2?*P.F = AP, F (35)
where P, is defined by the symbol m(r) = — [7° m(7') € M.

To prove the L? estimates involving one derivative we observe that

|VP.F||2. = <VP,F,VP,F >=— < AP,F,P,F >
< JAPF | 2| PoFl| L2 S 2°%(|F |17

On the other hand, using (33)
o0
22%| Py F||2, = 2%% < P.F, PyF >= —/ my(1) < AU(T)F, P F >
0
— / i(r) < VU(r)E,VEF > < / (7)] - VU ()| 12 [V P F 12 S [IVF|a,
0 0

where we used the inequality (19), [|[VU(7)F||2 < ||VF| 12 together with the
bound ||VPF||r2 < ||[VF| L2, which follows from it.

vi)  The proof of the LP Bernstein inequality is an easy consequence of the
Gagliardo-Nirenberg inequality (8):

1-2 2
1PeFlLe S IVPF || e " | PeFl 72 + [ PF | 22 (36)

for 2 < p < oo and the finite band property.
vii) By definition
[P, FIG = / (U(T)(F -G)—F- U(T)G)mk(’r)dT
0

Let w =U(7)(F-G) — F-U(7)G. Clearly,

0w — Aw V(VF-U(T)G) + VF -VU(1)G

AF -U(T)G+2VF -VU(1)G
Consequently, since w(0) = 0,
w = Wi+ we

wy(r) = /OT Ut —7)(AF-U(7)G)dr’

S
\V)
B
~—
I

/T Ut —7')(VF-VU(r"G)dr'
0
and,

lor (D)l < /0||U(T—T’)(AF-U(T’)G)||L2d7"5/0 [(AF - U(+')g|| g+

A

|AF] / UGGl = < Tl AF||z~ - Gl
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[wa(T)l[zz S /0 IIU(T—T')(VF'VU(T’)G)\IL2dT’5/0 (VE-VU(7")G||2d7’

N

IVFle= [ IVUG)Ge S I9F - 6l [ 73

1
T2|VF| L~ - |Gl 2

N

Therefore,

IR, FIGI| < / () e ma(n)ldr

~

S (2HIAFI + 2KV Fli ) 16l
Remark 5.7. To get the inequality
I[P, FIG|| S 27"V F| 1= |G|l 2
we need the L2 estimate |U(7)VF||2 < 72| F| 12 established in (22). We rewrite
w (1) = w11 (1) — w12(7),

wiy(T) = /OT U(r —7)V(VF-U(r"G)dr,

wy2(T) = /OT U(r —7')(VF-VU("G)dr'

The term w1y is exactly the same as ws(7) and gives rise to the desired estimate.
To estimate wy; we use (22) and write

T _1 1
[w11(7)] 22 §/ T 2VE - U(T)G|2dr’ S T2 ||V E| L |G| 2
0

which again leads to the desired estimate.

6. SOBOLEV SPACE H'(S).

Before discussing the general, fractional, Sobolev spaces in the next section it is
instructive to see how the the standard Sobolev space H'(S) can be characterized
by our LP projections. We prove the following:

Proposition 6.1.
i.) Consider the LP projections Py associated to an arbitrary m € Msy. Then,

d_IPFIZ: < IIFIZ (37)
k

Y 2HIPFl7: S IVF3e (38)
k
ii.) If in addition the LP-projections Py verify:

Ypi=1 (39)
k
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Then,

IFNZ: = > IPFI (40)
k

~

IVFIZ: < D 2% |PFe (41)
k

Proof :  The first statement of part i) is nothing else but the Bessel inequality
established above. To prove the second statement of i) we write P, = I:’,? and make
use of of the L2-finite band properties of the P;’s, as well as the L2- boundedness
of the operator ) , P = >, ]5,3 We shall also make use of the following simple
formula based on the standard definition of (—A)z,

VG2 =< VG, VG >= — < AG,G >=< (—A)2G, (—A)2G >= ||(—=A)2 G 12
Therefore,

Y 2H|PeFlz: S D IVPF7e = Y (A)2 PeFllze = D [|Pu(=A)2 F|a
k k k k

Nl
ol

=D < P(-A)f, Pu(-A)2 f >=< > PE-A)f, (-A)>f >
k

k
~ 1 1 1
SID PA=A)2 Fllgel[(-=A)2 Fl2 S [(-A)2F|7. = |VF|72
k
as desired.

The first identity of part ii) is trivial,

1Fl72 =< Y Pifof>=) |PFz:
k k

To prove the second inequality of part ii) we introduce Py = ]5,3 and and make use
of ", P2 =1, the L?-finite band inequality |APxg| 2 < 2%(|g|/L2, the inequality
(51), as well as as the commutation properties of our LP projections with A:

IVF7: = <—=Af, f>=<-A)_P)f, f>=) <-APf, Pf >
k k
S D AP 2 ||PeF |z < 2% || PeF[ 2| Pe F| 2
k k
~ 1 1 1
< (Oo2MIBF)72)2 (D 2% PeFI172) 2 SIVE|2 (D 2° | PeF7:)*
k k k

whence,

(S

IVELe S (D2 IPeFIIZs)
k

as desired. |
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7. FRACTIONAL POWERS OF A AND SOBOLEV SPACES.

We recall the definition of the Gamma function, for ®(z) > 0

I'(z) = / e = tdt (42)
0
as well as the beta function,
1
B(a,b) = / 5711 — 5)""lds (43)
0
Recall that
['(a) -T(b)
B(a,b) = ———+ 44
(a" ) F(a + b) ( )

Let j4(A), R(a) < 0, denote the function which is identically zero for A < 0 and

1
A ! A > 0. 4
F(—a) ; >0 (45)

Ja(A) =
The followwing proposition is well known, see e.g. [,
Proposition 7.1. For all a,b, R(a), R(b) <0,
Ja * Jb = Ja+b

Moreover there exists a family of distribution j,, defined for all a € C, such that,
Ja * Jb = Jat+b and jo = 6o, the Dirac delta function at the origin.

Proof : We only recall the formula j, * j, = ja1s for R(a), R(b) <0

1 1

A
Jax3p(3) = F(fa)m/o pO T A = ) g

_ 1 1 —a—b—1 ! Sfafl —s —b—1
= (o) T(h) / (1-9)

B-a,~b) |\ apr_ 1
T(—a) T(-b) T(—a—0)

AT = g (A)

Definition 7.2. We define the negative fractional powers of A2 = I — A on any
smooth tensorfield F' on S according to the formula
]. o a
A°F = 7/ T2 e TU(T)Fdr (46)
I'(=a/2) Jo
where a is an arbitrary complex number with R(a) < 0.

Proposition 7.3. The operators A® is symmetric and verify the group property,

A . Ab _ A(aer)
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Proof : According to the definition of A% and the semigroup properties of U we
have, for any tensorfield F,

1 1 R Y
ATATE = F(—a/2)F(—b/2)/o /0 P P (4 m)e T Fdmdry

1 1 Ooe,A /\T—a/Z—l )21,
I‘(—a/2)1"(—b/2)/0 U(A)F/O ) an

_ / Gasa* oya(Ne NUNF = / Jasina(Ne XUNF
0 0

ATt

as desired. ]

We extend the definition of fractional powers of A to the range of @ with £(a) > 0,
on smooth tensorfields F', by defining first

AF =A"2. (I -A)F

for 0 < R(a) < 2 and then, in general, for 0 < R(a) < 2m, with an arbitrary
positive integer m, according to the formula

AF = A*2™ (] — A)™F.
Observe that for 0 < R(a) < 2,

AF=A"2I-AF = m /OOO T 2e7TU(T)(I — A)Fdr
= 71 - i7'_‘1/ e "U(T T
- I(-a/2+1) /0 (dT DeTU(n)Fd

1 / * a1 -
= — T ¢ e "U(r)Fdr
I'(=a/2) Jo
Moreover, for a = 0, the integration by parts we have performed above yields also
a boundary term.

1 T — T=— ooe_T —i TYFdr =
)/O e~ U(r)(I — A)Fdr — /0 - Lo Far = F

ANF=A2I-ANF = —
( ) (1 dr

i.e. A2 is trully the inverse of I — A.

Remark 7.4. In a similar fashion, we can introduce the family of operators D¢ =
(—A)% for all a € C. As before, we start by defining formally, for R(a) < 0,

a 1 < —-5-1
D°F = T(—a2) /0 T U(r)Fdr. (47)
However, unlike A%, this formula makes sense only for smooth tensors F' which verify
the additional property that F' is orthogonal to the kernel of the tensor laplacean
A. In view of our smoothness assumption on the manifold S and the ellipticity of
A, the above kernel is finite dimensional. We can also extend the definition of D%
to the range of a € C with R(a) > 0 according to

Do — rDa72m(7A)m
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with an integer m such that 2m — 2 < R(a) < 2m. It follows that the operators D¢
with $(a) > 0 can naturally be extended to the space of all smooth tensors. We
also check, as before, that D° = I.

We have thus proved the following;:
Theorem 7.5. There exist two family of operators (D*)aecc , (A*)acc such that,
A0 =1, A% AP = AletD) A% = (I — A, k=0,1,2...,
DY =1, D = (—A)*, E=0,1,2...
on the space of all smooth tensorfields. In addition, the identity
De . pb — plath)

holds on the space of all smooth tensorfields provided that R(b) > 0 and R(a+b) > 0.
For the remaining values of a,b € C the above identity holds only on the orthogonal
complement of the kernel of A.

For R(a) < =2, and any tensorfield F, A°F can be defined by the formula (46),
while DF is defined in (47) for F in the orthogonal complement of the kernel of
A.
Proposition 7.6. The following estimates hold true, for any R(a) < 0.

[A“Fllz < [1F] e

Moreover, for 2k < R(a) < 2k+2, k € N,
[(A* = D" — 1 D*? — aD* * — -+ — D) F||p2 S ||F |12 (48)

where ¢; = (=13 87y

Proof : To show the boundedness of A%, R(a) < 0, we only have to use the L?
boundedness of the heat flow, ||U(7)F| r2¢s) < ||F||12(s). Thus,
1

-1 —a > —a/2—1_-—7
IFIZ APl € qoe [ e <

in the formula defining A*F,

To prove (48) we expand e~

1 1
e T =1—74+ =724+ + (_1)/677_16 + O(Tk'He_T).

2! k!
Hence,
a _ 1 > —a/2—1_—T __ Aa F(_a/2 + 1) a—2
AF = m/o T/l U(T)F_AF—WA F
+ +21'F(F(a_/a2/;)2) AR 4o (1)kl<]/:'F(F(CL_/j/;)k) Ae—2k + Ek(F)

where, in view of the L2 boundedness of U(7) and the integrability of 7—%/2**e=T
for R(—a/2) + k > —1, we have |Ex(F)||r2 < || F|lp2 as desired. [ |

The following proposition follows easily by standard complex interpolation.
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Proposition 7.7. For every smooth tensorfield F and any b > a > 0,

AP, S AP (49)
ID*F |, S |DPFS8 | )2 " (50)

We next estblish a comparison between ||[DF||r2 and ||A®F||z.

Proposition 7.8. For every a > 0 and every smooth tensorfield F' we have,
ID“Fllr2 S [A*Fll2 S D Fllr2 + || Fllre

Proof : Indeed, according to the expansion (48), we have for k € N for which
2%k < R(a) < 2k + 2,
k
I(A® = D) F[r2 S ID* 7 F| e

i=1

Thus, in view of the interpolation formulas of proposition 7.7,
k
APl < ID°Fllzz + Y 1D > Fllz2 < [DFlg2 + ||F]| 2
i=1

To prove the remaining estimate, ||DF||r2 < ||A®F|| L2 it suffices to prove that, the
operators A~%D? are bounded in L2. Observe that A=2D? = [—A~2. Thus, A=2D?
is bounded. On the other hand, since the operators A* and D* are selfadjoint and
commute with each other,

A= - DIF|2, =< A=2* . D2, F >< |A~2% - D> F| 1> - | F| 2

Thus A=%D is bounded in L? if A=2%D?? is. On the other hand if A=¢-D®, A=.Db
are bounded in L? so is A=¢~? . Dt Thus, since we already know that A=2D? is
L? bounded, we easily infer that A=¢D® are all bounded for all positive numbers
of the form m2~%, m,k € Z. The general statement follows now by a limiting
argument. |

We are now ready to define Sobolev norms as follows.

Definition 7.9. For positive values of a we set,

IFllga(s) = [A“Fllz2(s) = (ID*Fll72(s) + 1 Fll72(s))

Nl

In the next theorem we give a characterization of the Sobolev norm defined above
with the help of LP projections. The proof depends heavily on the following lemmas:

Lemma 7.10. For all values of a € C and any family of LP projections Py with
symbol m there exists another family of LP projection Py, with symbol i = M* a2,
such that,

P,DF = D"P,F = 2*** P F.
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Proof: Since the statement is clearly true for even positive integers it suffices to
check it for R(a) < 0. In this case,

P = F(—1a/2>/ooc 7PN (7) P Fr
- F(—la/2) /oOo /O°° 7 2 my(r)U (ry + m2) Fdridry
- / T U FdA
0
where
A
Je(A) = 7“_1&/2)/0 my(T)(A — 1) dr
_ 1 2k Am 2k \ (N — )—9/2=1 g,
- am? | mena -
_ 1 2 _ 9—2k,\—a/2—1
= I‘(—a/2)/o m(z)(\ — 27 x) dx
_ 2ak22kr‘(:I'/2)/2 /\m(x)(22k)\71,)7a/271d1,:2ak22km(22k/\)
—/2) /s
and X N
") = o / @) — ) e = mx Guga(V),

is clearly a symbol in M. Therefore,
DP,F =2%*p.F

as desired. m

Theorem 7.11.
i.) Consider the LP projections Py associated to an arbitrary m € M. Then, for
any a > 0 and any smooth tensorfield F,
Y 2HPF|: S |DF|3 (51)
k
ii.) If in addition the LP-projections Py verify:

Yop=1 (52)
k

then, for® 0 < a < 2,

D Flf. S ) 2°M|PuF| e (53)
k

Proof : For a = 0 part i) is nothing else but the Bessel inequality established
earlier. To prove (51) for all @ > 0. we make use of lemma 7.10. Let P an arbitrary
family of LP projections acccording with symbol m € M. Let Py be the LP-family

6In fact the estimate holds true for large a provided that sufficiently many moments of the
symbol m of Py’s vanish, see remark 5.6.
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defined by the symbol /i = m % j_,/». In view of lemma 7.10 P,D°F = 29*P|F
with the corresponding symbols m and m’ verifying:

m' = m*]a/? = (m *j—a/Q) *]a/? =mx* (j—a/Q *ja/?) =mx0d=m.

Therefore P,D*F = 2% P, F and consequently, using Stein-Cotlar lemma as in the
proof of part iii) of theorem 5.5,

SR PF|F. = Y IIBDF|;. =< () _ P})DF,D"F >
k k k
< Q2 BYDF|| 2| DFl 2 S |D°F3
k
as desired.

To prove part ii) we observe that, if
G52 =< > PRG,G >=) | PG|z
k k

Thus, using lemma 7.10 once more,

IDF||72 = IPDFll7. = Y 2% | P2
k k

It remains to prove that,
S22k B |2, § 3 22K B2, (54)
k k

To show this we proceed as follows, with the help of the almost orthogonality
estimate || Py PuGl 2 < 27 2=F1||G]| 2. Thus setting J% = 37, 2%ak|| PLF||2,

o= Y 2P*<PFF>=) 2" <P!F,PLF >
k k.k’

= Y 2P*<PuPPuF, PF >5 Y 2°%||Py PPy F| 2 - || PoF| 2

kK’ k.k’
S 22k N P | s - || P

kK’
< 0 202k 0K | Py ) - (2K B 1)

k.k’

’ 1 — 1 ’ 1
S (D22 |PuFI.) (D] 22 R BF|7) % = T (D 2%M | PuF|3.)?
k' k k'
and thus,

TS (322 | PuF|2)?
k./

as desired. ]

As a corollary to theorem 7.11 and proposition 7.8 we derive:
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Corollary 7.12. For an arbitrary LP projection, a > 0 and any smooth tensor F
we have,

> 2% PP 7. < ||ACF[7-

k>0
Moreover, if Y, P =1,

IA“F12: <Y 2K PoF|32 + || F|3
k>0

8. BESOV SPACES

In the last section we have defined invariant Sobolev norms using the fractional
integral operators D% A% and then characterized them with the help of the LP
projections. In this section we define invariant Besov spaces using directly the LP
projections Pj.

Definition 8.1. Consider the LP projections associated to a fixed m € M such
that, >, P2 = I and define the Besov norms, for 0 < a < 2,
1
IFlls, = (D 2*|IPeF§,)* + |1 Fllr (55)
k>0

Proposition 8.2. Let the LP projections Py, verify 3, P2 =1 and consider the
(55) defined relative to them. Let Py, any family of LP-projections associated to an
arbitrary m € M. Then, for every 0 < a <1,

> 2| PFlle S IIF|sg, (56)
k>0

Proof: We shall use the fact that, in view of the almost orthogonality property iii)
of Theorem 5.5 of the P,’s we have || Py PpG|l2 < 272FF1||G| 2. In particular,

| PeP<oGl 12 S 27 %G 2,

Now,
Yo2BFe < Y 2B PR F e + ) 2| PP F e
k>0 k>0 k>0
= Y 2" PuPPuFll2 + Y 25| P<oPiP<o Fl| 2
k>0 k>0
< Y 2Rl P FYf e + ) 2MOT || P |
k' >0 k>0
S D 2Py F e+ |IF|l2 = |IFlsg,
k>0
as desired. ]

According to corollary 7.12 the norms Bg, are equivalent to the Sobolev norms
H* for 0 < a < 2. For the Besov index 1 we have the obvious inequalities,
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Proposition 8.3. For any smooth tensorfield F,

IFlBg, < IFllpy,, a<b (57)
[Fllge S IFllBg,, 0<a (58)
1FlBg, < [Flme, 0<a<b (59)

Proposition 8.4. The following, non-sharp, Sobolev inequality holds true with
2<p<oo,a=1- % and any tensorfield F,

IFle < 1F ]l B, (60)

Proof : We write ' = >, PuF' + P<oF. Thus, in view of the L? Bernstein
inequality, -

1Flle < Y IPFllee + | PoFlloe S 2" 2| PoF |2 + || Fll2 S [|F|sg,
k>0 k>0
n

9. LP - DECOMPOSITIONS AND PRODUCT ESTIMATES

Let Py the geometric LP projections associate to an m € M,. We also assume that
> P = I. Given a tensorfield F' we write, for a given k € Z

F =P, F+ P>, F (61)

where Py, = >, P, P>k = > -, P Given two tensors F,g and F' - g some
geometric product between them we decompose,

F-g = PopF PG+ PopF - Popy G+ PepF - Pop G+ P B - P G
Thus,
P(F-G) = m(F,G)+op(F,G)+pe(F,G) (62)
m(F, G) = Py(PsrF - PsiG)
Jk(FaG) Pk(P<kF P<kG)
pe(F, G) = Py(PeyF - PoyG) + Py(PsiF - PoyG)

Observe that for the classical LP theory, based on the Fourier transform, the terms
o, and py are absent. Unfortunately this is not the case for our definition of
geometric LP-projections. We shall see however that the presence of such terms
does not in any way affect the main results that can be obtained by the standard LP-
theory. In what follows we shall apply the decomposition (62) to prove a geometric
version of the classical Sobolev and Besov norm multiplication estimates. We start
with the following

Lemma 9.1. Let F,G € H' and consider (62). Then, the high-high interaction
term i (F, G) verifies,

> 2 mellze S NFle Gl
k>0
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Proof : For k > 0 we write, 7 = 7}, + 72 where,
=Y. Pu(PwF -P,G), mi= > P(PuF-PnG)
k<m’'<m k<m’'<m

By symmetry it suffices to estimate 7. Using first the dual weak Bernstein inequal-
ity for some sufficiently large p < oo, followed by Cauchy -Schwartz and then again

the direct weak Bernstein, we obtain for any k > 0, with ¢~ 1+2=1 = p/ ' = 1—p~1,

Ikl S > IP(ParF - PuG)llre

k<m/<m
< 27 3 |IPwF - PuGlly
k<m/<m
S Y 2N 2 P P |27 PG o
k<m/<m
< S 22 Py F 2|27 PG e
k<m’/<m

Thus, in view of the proposition 6.1

S mlle >0 Y g=mAm’gk=mYA+D) 1om' b B 12|27 PG| 2

k>0 k E<m/<m

< N0 2 By F| e |27 PG e

0<m’<m
S| |Gl e

We are now ready to prove the following product estimates.

Proposition 9.2. Let a, o/, 3,8 € (0,1) such that « + 3 =o' + ' = 1. Then for
all tensorfields f,g and any 0 <~ < 1,

IF-Gllpy, SIATF| 2 [APGl 2 + A% P2 A7 G 12 (63)

Proof : Observe that the low frequency part |[P<o(F - G )|z can be trivially
estimated in view of the dual version of the weak Bernstein inequality with ¢—! +
271 =p~' =1—p! for some sufficiently large p,

[P<o(F-G)llL> S IIF - Gllpw S FLallGl 2

followed by the Sobolev embedding (60) with « > %,
[Fllee SIEN 2 SIAYF| L
B2,l

Consider now the high frequency part >, ., ||P:(F - G)||r2. Decomposing as in
(62) we write

Py(F-g) =m(F, G)+or(F, G)+ pp(F, G)
The estimates for the high-high interaction term 7 = 7 + 7%, k > 0 are as follows:
For k > 0 we write, m;, = 7 + 7%; by symmetry it suffices to estimate 7. Using
first the dual weak Bernstein inequality for some sufficiently large p < oo, followed
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by Cauchy -Schwartz and the the direct LP Bernstein, we obtain for any k& > 0,
with g7l 427l =p ' =1—p1,

||7TI£||L2§ Z ||Pk(Pm’F'PmG)||L2

k<m’/<m
S29 N PP PGl
k<m’<m
S Y 2 I 2 Py F 1|27 PG e
k<m/<m
S YD 2o mp g D g ey B |27 PGl
k<m’<m
s Z z—ﬁ(m—m’)zz(k;m ) ||2m/aPm/F||L2 HszPmGHLQ
k<m’/<m
Thus,
N2 rille £ Y 279 S g e B B2 |27 PG 1
E>0 k<m/<m
S Y 2 B et P Y |28 PG 2
m/<m
S IAFVE| 2 |ATG 2
since 8 > 0.

Consider now, oy (F, G) = Py (P<kF : P<kG) = o} + 03,

O’]i(F, G) = Z Pk/F~P// G, Uz(F, G) = Z Pk/F - Py G.
k'<k'" <k k" <k'<k

By symmetry it suffices to estimate oj.. Using the L? finite band condition followed
by the dual weak Bernstein inequality for p > 2 sufficiently close to p = 2 and the
direct LP Bernstein, we estimate’ with ¢=' +2~1 = p’f1 as in the case of my,

oh(F,G) S > 27 =D Py F| 1|V Por G| 12

~

k/<k”<k

< >0 MDD Py R 2 | PG e
k}'<k?”<k

S ot oW =RA=0)g=ak =0k | ok o Py, || 2 |25"P Pen G| 2
k/<k”<k

"We consider only the case when the derivative affects the higher frequency; the other case is
simpler.
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Summing over k we obtain

S ow(F, G2 S50 S 2R 0= gal k) ok a py, | 288 Py G
& k k'<k"<k
< N oMW RDA=Dgalk" KD ok a b B 1 12570 P G 12
k/<kli
S oW KNG D g py P af| 25 D PG 1
k)/<k'”
S IAF | 12 | A7 G 2

provided that 8 > %, which can be ensured by the choice of ¢, as long as 5 > 0.

We now estimate py(F, G) = Py(P<pF - Psi,G) + Po(PsiF - PG = p} + pi.
By symmetry it suffices to estimate pj, = Y owi<hem Pk (Pk/F -PnG ) Arguing as in
the estimate for o we use the dual weak Bernstein inequality followed by Cauchy-
Schwartz and the LP Bernstein inequality, we obtain with ¢! + 271 = p’fl for a
sufficiently large value of ¢,

r 2k
lpkllize S D0 IPe(PoF - PuG)lle S Y 2¥20 | Pu(PoF - PnG)l L
k'<k<m k'<k<m
< 2% K =D Py F| 12|| PG| 12
< Z Q(k_k/)%ZG(k/*m)||2k'aPk/F||L2||2mBPmG||L2
k'<k<m

Now summing over k,

SToMphlle < Y0 DD 2Rk Gast emy ke b Byl 20 P G 2

k k k'<k<m
< N 2P DEm ok e P | |20 PG e
k'<m

S ACF||2 [ APG e

we obtain the desired estimate providied that 3 > %, which can be satisfied by

the choice of ¢, as long as 3 > 0. The corresponding estimate for p? requires the
condition that o > 0.

10. THE SHARP BERNSTEIN INEQUALITY

In this section we shall prove the geometric version of the Bernstein inequality for
arbitrary tensorfields on M. The inequality requires additional assumptions on the
Gauss curvature K of the manifold M. We shall introduce the following L?- norms
depending on K,

Ky = |AT7K] |12 (64)
with 0 <y < 1.
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Theorem 10.1. Let S be a 2-d weakly regular mannifold with Gauss curvature
K. i.) For any scalar function f on S, 0 <~ < 1, any k > 0, and an arbitrary
2 <p<oo,

1 1
1Pl S 28(1+27% (K377 + K27) 4 1)|| |2, (65)

2 1
[Peoflle= < (L+E7" + K77 fllze (66)

~

ii.) For any tensorfield F on S, any k > 0, and an arbitrary 2 < p < o0,
1 . 1
|PeF e £ 2514270 KG + 27 KT )P e, (67)

~

1 L 1
[PeoFllee S (14 (K§ + Ko") + K5~ ) [F] e (68)

Proof : The proof is based on an argument involving the product estimates de-
veloped in the previous section.

In view of the estimate (10), we have for k > 0,

[PeFllLe < ||V2PkFHL2(||VPkF||L2 ||PkF||L2+||PkF||L2 )+HVP/cFHL2

< T IVREILIFIE +2¥F) e (69)

It remains to estimate the quantity ||V2PyF| 2. We do this with the help of the
Bochner identity,

10.2. Scalar Case. Recall that the Bochner identity for scalars has the form,

[ 1v2al = [ 18gP - [ K1vgP
S S S

With the help of the product estimates developed in the previous section with the
following choice of parameters « = 1—~, 8 = v and o’ = v, §/ = 1—, we estimate,

/ K|Vg]? = / (AK)(AY|VgP)
S S
K [IA Vgl S K11 Vg - Vs,

S KAV 2 |A Vgl e < KL AV LY V|

The last inequality follows from the condition that v < 1 and the interpolation
inequality (49). Since, [|[AVyg|2. S [4V2g]* + [ |Vg|* we infer that

R N SR SN

IN

Therefore,

1 2
[1w2al < [ 1agP+ 5 192 + (77 + 1) [ v
S S S S

This implies

/S V2l < /S Mgl + (KF7 +K,) /S Vgl (70)
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Applying (70) to g = Py f and using the inequalities

IVPefllLz < 2522, IAP.fL> < 227 £ 2
we obtain
_1 1
IV2Pefllee S (2% + 28 (K™ + K3 ) + 1) f] (71)
Combining (71) with (69), yields
_k %'v %,
1Pefll S 28(1+277 (K577 + K77) + 1) || fll 2, (72)
2 1
[P<oflle < (1+ K" + K57)| e (73)

as desired.

10.3. Tensor case. We recall the Bochner inequality (14) of Corollary ?7?,
IV2F 2 S NAF|| g2+ (1K | 2+ KN 2 IVE 2+ K 72T (IVEN I E N f2 T+ F )
Applying this to P, F' we obtain
1 p— P _
IV2PLFle S (2% + 25 (Ko + K ) + 2555 K3 )| P e (74)
Combining (74) with (69) we derive
. 1 i el 1o
[PeF L < 28 (14277 (K¢ + Kg") + 27 71 K7 )| F |2

as desired. |

11. SHARP PRODUCT ESTIMATES

In this section we prove the sharp version of the product estimates of Proposition
9.2 invloving Besov spaces. These estimates require an additional curvature as-
sumptions which vary from the scalar to the tensor case. The former only needs
the bound on the quantity ||A~7 K]z, while the latter requires the finiteness of
1K ]| z2

Let for 0 <y <1
1
A, =14+ K47 (75)
denote the constants appearing in the sharp Bernstein inequalities (65) and (67).

Proposition 11.1. Let S be a 2-d weakly reqular manifold with Gauss curvature
K.
i.) For all scalar functions f,g, any 0 < a < 2, and an arbitrary 0 <~y <1,

15 alog, < WFleg, (lolsy, + Ml 3 )
2,1

ol (171, + 4011, ) (76)
2,1
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ii.) For all tensorfields F,G, any 0 < a < 2, and an arbitrary 2 < p < oo,

IFGlag, < IFlag, (161, + 477161 ) )
2,1

#161as, (1713, + 477171y ) )
2,1

Proof : The proof relies on the application of the sharp Bernstein inequalities
proved in the previous section. We shall only give the arguments for the scalar
inequality (76). The modifications leading to the tensor inequality (77) will be ob-
vious and follow by replacing the scalar Bernstein inequality (65) with its tensorial
version (67).

As in the proof of Proposition 9.2 the low frequency part ||P<o(f - g)||L2 can be
trivially estimated by means of the weak Bernstein inequality.

Consider now the high frequency part >, <, || Px(f - 9)||z2. Decomposing as in (62)
we write -

Pk(f g) = Wk(f7g) +Uk(fag) "‘Pk(f»g)

The estimates for the high-high interaction term 7y = 7 + 7%, k > 0 are as follows:
For k > 0 we write, m, = m} + wi; by symmetry it suffices to estimate 7r,£. Using
first the dual weak Bernstein inequality for some sufficiently large p < oo, followed
by Cauchy -Schwartz and the the direct LP Bernstein, we obtain for any k& > 0,
with g7l 42"l =p 't =1—p~1,

Imille S Y0 IPs(Parf - Prug)llre

k<m/<m
2k
2% 3 P f - Pugll
k<m/<m
2k
S > 20 |[PuflleallPrgllze
k<m/<m
2k _ 2m! 4
<Y 292 27 P f L2 | Pl 2
k<m’/<m
_2 r_ ’
< 2 2R P fll e | Pl
k<m/<m
Thus,
—2(m/ —k)o— - !
Domkle S D0 27 a T2 2 P £ 1227 Prngl 1
k>0 k<m’<m
<0 2 P fll 227 Pragl
m’/<m
S sy, llgllsg,

Consider now, oy (f,g) = Pi(P<if - P<g) = 0} + 0},
oh(f9)= > Puf-Pwg, oi(frg9)= >, Puf-Pug

K <k'<k k" <k'<k
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By symmetry it suffices to estimate o. Using the L? finite band condition ac-

cordinog to which |7 (£, )22 < 2-2[[ A} (£,g)l|> we decompose

Aoi(f,9)=Pc Y (Pkff - APyig+ 2V Py f - VPg+ APy f - Pk//g)
k' <k'"<k

=i (f,9) + o1’ (f.9) + 0i°(f.9)

By symmetry it suffices to estimate the terms o', 0i%. Using the Bernstein in-

equality we have

ol (fr9) S D 2MPuflr< APl e

k'<k'"<k
S Y 22N 425 A) | P flle | Pevglle
k'<k'" <k
— "2—« / K "o
< Y 2PN (198 By fllpe + AL)|2% Py fll2) 28 Povgll 2
k'<k'" <k

Summing over k we obtain for a < 2

o —(2—a R ’ L’ ,,a
Y2t (gl S D 2 CTIETED(2 P fll e 4 AL 12F Pa £l ) 125 Pergll 2
k k E'<k'"<k

’ K "0
> (12¥ Pufllze + AylI27 P fllz2) 125 Porgl 2
k/<k//<k
< (1fls1, + A5y Mallsg,

2,1

To estimate 0}%(f, g) we use the Gagliardo-Nirenberg inequality (8)

1 1
1Fllee S UV ANZANFII 22 + 1122

Using the Gagliardo-Nirenberg estimate® followed by the scalar Bochner inequality
(70)

o> (f,9) S Y. 27|V Pu fllpallV PergllLe
k' <k'"<k
—2k |2 3 o2 3 3 3
> 2 VPPNV Pergl 7 IV P fl 72 IV Progll
k' <E'"<k
_ k" ’ k1 " k1
> 2o (28 427 A2)| P fll 2 (2 + 27 AZ)||Pevglle
k'<k'"<k
ST A VA
> 27T (28 £ 25 A) | P f el Pergll e
k'<k'"<k
_ "o _ / ILI 7
Z 9—2kok" (2 a)(||2k Py fllz2 _|_A7||22 Pk’f||L2)||2k @ Prrg|l e
k' <E'"<k

A

A

A

A

SWe drop the low order term in the Gagliardo-Nirenberg inequality since we consider the case
of high frequencies k > 0.
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As before, summing over k we obtain for a < 2

" ’ k. "6,
S22 (f)lle Y0 Y 27 CTOETEI (128 P £l 12 + Ay 127 P fll2) 125 Prrgll 2
k

k E'<k'"<k
’ k' "
> (128 Puflle + A2 Py fll2) 1257 Pl 2
k' <k'"<k

S (F sy, +A5lF1 s )llgllsg,
2,1

and the estimate for o4 (f, g) follows.

We now estimate pi(f,9) = Pi(P<if - Pskg) + Pu(Psif - P<kg) = pi + pi. By
symmetry it suffices to estimate p = >, <o Pe(Pir f - Prng).

Y
okl S Y0 1P fllieelPrgllz S D (2% +27 A) [ Pe(Pir f - Pong) |l 1o
k' <k<m k'<k<m

S 1P fllp2l| Prmgll o2

—ma ! L34 ma
> 27 (|12Y P flle + Ay 127 Pa £l 12) 127 Prog | 2
k'<k<m

Now summing over k,

Yookl S D D> 27 (12Y P flle + A, 12 P fll2) 127 Pngl] 12

k k k'<k<m
S (Ifllsy, +A5lIF1 5 )llgllsg,
2,1

we obtain the desired estimate ]

12. OPERATOR V ON 32171 SPACE

Motivated by classical considerations we expect the operator of covariant differen-
tiation V to act continuously in the scale of Besov spaces: V : B3, — 3531 for
any s > 1. The weak regularity assumptions which we impose on the geometry of a
surface S gives hope to prove this mapping property only for sufficiently low values
of s. In this section we shall show this for the particular lowest value s = 1. More-
over, as in the case of the Bochner and sharp Bernstein inequalities, the regularity
assumptions needed to prove the result differ drastically dependent on whether V
is considered on the space of scalar functions or tensorfields.

Proposition 12.1. Let S be a 2-d weakly regular surface with Gauss curvature K

and let the constants A, be as in (75).

i.)  For all scalar functions f and an arbitrary 0 <y < 1
IV Flsg, S I1Flss, + A20fllmg, - (78)

ii.) For all tensorfields F' and an arbitrary 2 < p < o0

”VF”B% ||fH31 +Ap 1||fHBO

21

(79)
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Proof :
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Once again we shall only provide the arguments in the scalar case. The

proof of part ii.) is similar and relies on the tensor Bochner inequality (14).

We consider

IVFllsg, = D IPeVFlle S IPVPS e
k 14 k
S S UPVPflle + DD NPV P S| e

¢ k<t 0 k>t

Using the dual finite band property we obtain

SRR 5 S S 2P e

¢ k<t ¢ k<t

S D 20PNl Y2 S sy,
14

k<t

It remains to estimate D, > ., [[PxV P f||z2. Applying the finite band property
followed by the scalar Bochner inequality (71) we derive

1PV Pefllre S 278 V2 Pefllre € 27°(2° + A52) || Pef | e

~

Summing we infer that

SN IRVl £ 3@+ AP Y 2

¢ k>t ¢ k>t
||f||BZ},1 + 14»2y||f||13g1

A

as desired. |
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