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A large body of knowledge about wave equations can be traced down to two fundamental facts
concerning the standard linear wave equations in Minkowski space-time R"*!,

O ¢ =m"d,d,6 =0

with m,, = diag(—1,1,...,1) the standard Minkowski metric.
The first is the well known energy identity,

E[6)(6) = E[6)0) 01)
where,

B0 = Jr (1000 0) + 016 ) + -+ 0,0(¢, ) ) o
Therefore, for 0¢ = (0;p, ¢, - .., On ),

106()[|z2 < [106(0) ]2 (0.2)

The second, which I will refer to as the basic dispersive inequality, has the form,

6(t) |1 < ct™"F VT 0(0)]| (0.3)

In fact 0.3 is not quite right, the correct estimate holds if we replace the L> norm on the left by
the BMO-norm, or, the L' norm on the right by the Hardy norm H'. The inequality 0.3 is true
however, as it stands, if the Fourier transform of the data ¢(0) = f, 9;¢(0) = ¢g have their Fourier
transform supported in a dyadic shell 3 < |¢] < 2 for some fixed A € 2N.

Intepolating between these two basic facts one derives the so called Strichartz-Brenner result,

lo®ler < clt] )V (0)]]

with v(r) = (n —1)(3 — 2) , £ + & =1, r > 2 and scaling condition 2 = —y(r) —o — 1+ %. This

leads, by a standard 77" argument, Hardy -Littlewood-Sobolev inequalities and an application of
the Littlewood-Paley theory, to the generalized Strichartz inequality,



ANz, < cl|06(0)]| - (0.4)

2
. <y(r),q > 2, (¢,m,n) # (00,1,3)
1 2 1

- pn(=-2)—-1-=

7 n(2 r) q

The latter plays a crucial role in many recent advances of the theory of nonlinear wave equa-
tions. Observe that the steps involved in deriving 0.4, at fixed frequency, from the energy identity
and dispersive inequality are quite soft, they can be traced back to the Duhamel’s principle and
uniqueness of the initial value problem!. Both apply to general linear wave equations with variable
coefficients? and require very little regularity of the coefficients. Thus the main building blocks of
the Strichartz type inequalities are 0.1 and 0.3.

The identity 0.1, and the corresponding L? estimate, can easily be derived from the Fourier
representation of solutions. The beauty and power of the identity, however, is that it can be derived
directly , in physical space, by a simple integration by parts argument. Thus energy type estimates
are extremely versatile, they can be applied to large classes of linear and nonlinear equations.
On the other hand the classic derivation of the dispersive inequality is based on the method of
stationary phase applied to the specific representation of solutions as Fourier integral operators. In
more complicated situations the Fourier representation of solutions, or rather approximate solutions,
may be quite difficult to derive and not very natural.

The dispersive inequality provides two types of information:
1. The precise decay rate of ||¢(t)||p~ as t — oo.
2. Improved regularity properties of ||¢(t)||r for ¢ > 0.

It is well known that as far as the asymptotic behavior is concerned 0.3 is not very useful in
applications to nonlinear wave equations. A more effective procedure to derive the asymptotic
properties of solutions of the wave equation is based on generalized energy estimates, obtained
by the commuting vectorfields method, together with global Sobolev inequalities. We shall make
a quick review of this procedure in the first part of section 1. As far as improved regularity
is concerned the estimate 0.3 gains, for ¢ > 0, ”T’l derivatives when compared to the Sobolev
embedding L*(R") C WI™(R"). It thus may seem that the methods discussed in section 1,
based on Sobolev estimates, are not relevant to questions concerning regularity. The main new
observation of this paper, presented in the second part of section 1, is that the decay estimates
based on commuting vectorfields do actually imply, after a suitable localization in phase space?, the
dispersive inequality 0.3. This simple fact allows us to achieve an unexpected connection between
the modern Fourier based techniques of Strichartz and bilinear estimates on one hand and, on the

!See Theorem 1.2. for a straightforward derivation of 0.4 from 0.1 and 0.3

2The uniqueness of the I.V.P. is also a consequence of the basic energy inequality

3The localization method, which is the key in the proof of Theorem 1.1, was used in a different context by O.
Liess [L]. The essence of his idea was that, after localization to the unit dyadic region in Fourier space, the L' — L*>®
dispersive inequality follows from a weighted L? — L* inequality. This is done easyly by a further localization in
physical space. I am grateful to T. Tao for pointing this important fact to me.



other hand, the powerful geometric methods used in the proof of the stability of the Minkowski
space [C-K2]. We illustrate this point by showing how it can be used to give a different proof of the
recent improved regularity results for quasilinear wave equations due to Chemin-Bahouri [B-C1],
[B-C2] and D.Tataru [T1], [T2].

In section 1 of the paper we present the new approach to the derivation of 0.3, in Minkowski
space, based only on energy estimates, commuting vectorfields, generalized energy estimates and
an appropriate phase space localization. Though most of the material presented in the section can
be found elsewhere in the literature I found it would be more convenient to the reader if the main
ideas, later to be developed in a curved background, were first properly reviewed in flat space. We
have divided the section in two parts. In section 1.1 we first sketch the simplest version of the
vectorfield method to derive weighted L?2-L> decay estimates for solutions to the homogeneous
wave equation in Minkowski space. We then present in details a different method, based on the
Morawetz vectorfield, of deriving similar decay estimates in dimension 3. For technical reasons this
is the method we adopt later to obtain the appropriate decay estimates in curved background. The
main goal of section 1.2 is to show how to derive the dispersive inequality 0.3 from the weighted
L?-L* decay estimates derived in section 1.1. This is done in Theorem 1.1. In Theorem 1.2 we
recall the derivation of the Strichartz estimates from the dispersive inequality 0.3 via the standard
TT* argument. We present in details an approach, based on the group properties of the wave
propagation, which we shall later adapt in the proof of Theorem 2.3, see the preview below.

In section 2.1 of the paper we start by stating our main Theorems A ,B,C. As explained above
the statements of these Theorems are not new?; they are due in fact to the combined pioneering
efforts of H. Smith [S1], [S2], Bahouri-Chemin [B-C1],[B-C2] and D.Tataru [T1],[T2]. The goal of
the section is to first review some of the basic reductions used by the above mentioned authors.
More precisely we rely on Tataru [T2] for showing how Theorem C follows from Theorem B. We
also sketch his proof of how Theorem B follows from Theorem A and also the reduction of Theorem
A to the case up = 1. We then sketch the main paradifferential type ideas needed to reduce the
proof of Theorem A(p = 1) to its microlocalized version in Theorem 2.1. This type of reduction
plays a central role in all the above mentioned references. In the second part of the section we show
how to reduce Theorem 2.1 to a dispersive type inequality stated in Theorem 2.2. This is done by
the well known 77 argument. Due to the fact that we work with the precise solutions of linear,
variable coefficents, wave equations( rather then their Fourier integral parametrix representations
as in [S1], [S2],[B-C1],[B-C2], [T1],[T2]) this reduction is not standard; we present it in full details
in the proof of Theorem 2.3. Theorem 2.1 follows then from a simple corrolary of Theorem 2.3.
Finally, in the end of the section, we show how the dispersive inequality of Theorem 2.2 follows
from an L? — L*® decay estimate stated in Theorem 2.4. This is the same, essential, phase space
localization argument described in the proof of Theorem 1.1. Thus we see that the final goal of
section 2 is to reduce the main Theorems A,B,C to Theorem 2.4. The rest of the paper is occupied
with the proof of Theorem 2.4.

In section 2.2 we start with a simple reformulation of Theorem 2.4, which becomes Theorem 2.5.
The goal of the section is to construct a curved background analogue of the Morawetz vectorfield
Ky which will be then used, in section 3, to derive generalized energy estimates analogous to
those discussed in flat space. This is achieved with the help of an optical function wu whose level

4Using a variation of the approach described here, Rodniansky and I( see [KI-R]) were recently able to improve
the result of Theorem C from o > &, due to Tataru( see [T2]), to o > % for n = 3.
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hypersurfaces are outgoing null cones with vertices on the time axis. This procedure follows closely
that used in [C-K2]. The main results of the section are the calculations(described in detail) of
the null components of the deformation tensor of Kj, summarized in Proposition 2.4., and the
asymptotic results of Theorem 2.6. which are stated without proof. The formal proof of these
results is far simpler than that of the corresponding asymptotic results of [C-K2|; we provide the
reader with precise references. A complete discussion of the asymptotic estimates will appear in
[KI-R]

In section 3 we make use of the vectorfield K to derive generalized energy estimates for the
curved background wave equation of Theorem 2.5. All the effort here goes into controlling the
error terms generated by the fact that K is no longer a conformal Killing vectorfield. Its failure
to be conformal Killing is measured by its deformation tensor (¥®)z. Thus the precise asymptotic
properties of the null components of (Ko)r  derived in section 2.2, play a fundamental role in
controlling the error terms. In section 3.1 we give a detailed account of the boundedness of the
generalized energy norm £[¢](t). Its counterpart (see 1.24), in flat space is automatically bounded
in view of the conseravtion part i) of Proposition 1.4 and estimate iii). In section 3.2 we sketch the
derivation of the corresponding norm for the higher derivatives of ¢. Strictly speaking our proof of
Theorem A, discussed in sections 2 and 3, requires k£ = 2 and therefore o > % in Theorem C. This is
due to the fact that in one of the error terms handled in section 3.1 we need to make an integration
by parts which introduces higher derivatives on one component of the deformation tensor )7 and
therefore on some of the null components y,n,w of the hessian of the optical function. In section
3.3 we indicate, using once more some crucial ideas in [C-K2], how to use the nonlinear structure
of the equation in Theorem C, to gain the needed regularity on those null components in order
to get the result o = % of Tataru. These ideas can be developed further to improve the result to
o> Q’T‘/g mentioned above, see [KI-R]. The proof of Theorem A for k = 1( or the C? result of H.
Smith([S1], [S2]), based on vectorfield methods, remains open. It is important to observe however
that the methods presented here do not use the full force of the C%-assumptions on the coefficients.
Our method relies in fact only on bounds on uniform bounds for the components of the Riemann
curvature tensor of the metric and those of the second fundamental form.

Acknowledgements. I want to thank my friends H. Bahouri, J.Y. Chemin, O.Liess, M. Mache-
don, I. Rodnianski, T. Tao and D. Tataru for helpful conversations in connection to this work.

1 The Dispersive and Strichartz Inequalities in Minkowski
space

1.1 Commuting vectorfields and global Sobolev inequalities

Let ¢ be the solution of the initial value problem for the standard wave equation,

O¢p=0
¢(0) = f, 9:6(0) =g (1.5)
As discussed in the introduction it it is possible to show, using the explicit form of the fundamental

solution as a Fourier integral operator, that for any £ > 0,
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V5 (8] < CJt]7*F (1.6)

as |t| goes to infinity. According to 0.3 the constant C' depends on the L' of appropriate number
of derivatives of the data f,g. In what follows we review the commuting vectorfields method for
deriving the decay rate 1.6. The idea is to use the energy identity 0.1 together with commuting
vectorfields and a global form of the classical Sobolev inequalities.

The Minkowski space-time R™"' is equipped with a family of Killing and conformal Killing
vector fields,

T, = au
Ow = 2,0, — 2,0,
K,=-2x,54+ <z,2> 0,
Here z*, denote the standard variables z° = ¢, z',..., 2", m"” = diag(—1,1,...,1) the Minkowski

metric and z, = my,z”. The operator O is defined by O = m®d,s. The Killing vector fields
T, and O,, commute with O while S preserves the space of solutions in the sense that 0 ¢ =0
implies OS¢ =0as [O,S] =20 . We split the operators O, into the angular rotation operators
@GO = x;0; — x;0; and the boosts O = 2;0,4+10;, for i, j,k =1,...,n. Recall the energy norm 0.1,

E[¢](t) = <f 10:0(t, ) |> + [010(¢, ) [* - - - + |On (%, x)|2dx> *. Based on the commutation properties

described above we define the following “generalized energy norms”

EkH[qﬁ]:( ) EQ[XiIXiQ...Xijqﬁ])% (1.8)

Xil 7'-7Xij

with the sum taken over 0 < j < k and over all Killing vector fields T',€2,, as well as the scaling
vector field S.

The crucial point of this method is that the quantities Ej, k > 1 are conserved by solutions to
1.5. Therefore, if for all 0 < k < s the data f, g verify,

[+l (IV @) + V@) )dr < (19)
for a constant C'; < oo, then for all ¢,

Eonlol(t) < Cs. (1.10)

The desired decay estimates of solutions to 1.5 can now be derived from the following global
version of the Sobolev inequalities( see [K11],[K12],[Ho]):

Proposition 1.1 Let ¢ be an arbitrary function in R"™' such that E[¢] is finite for some integer
s >4+ 1. Then fort>0

09, )| < (1+ ¢+ 2)) 75 (1 + |t — |=|[) 72 Ey[u].
(1.11)



Therefore if the data f, g in 1.5 satisfy 1.9, for 0 < k < s with some s > 2, then for all ¢ > 0,

1
|06(t, .)|pe < C —

; 1 (1.12)
I+t + )= (L + [t —[z]])2

Clearly this estimate implies 1.6. In fact it provides more information outside the wave zone |x| ~ t
which fit very well with the expected propagation properties of the linear equation O ¢ = 0.

Remark: The method presented above can be refined in many directions. To start with we
can derive essentially’ the same information as in 1.12 by using only the scaling vectorfield S and
rotation vectorfields ()O. Moreover we can limit the number of vectorfields S, O used in the
definition of the generalized energy norm E if we give up on the term (1 + (¢ — |x|))’% on the
right hand side of 1.12. Limiting the number of vectorfields S and, more importantly®, O needed
to control the uniform decay of our solutions, is essential in order to derive the optimal results of
Theorems A-C.

Here is in fact a simple result( see [KI2]) which shows how many angular momentum operators
@O we need to control the decay of ¢ in the exterior region |z| > L.

Proposition 1.2 Let u be a smooth function in R", vanishing sufficiently fast at infinity and s an

integer larger than ”T’l The following inequality holds for all x # 0,

_n=1 1 1
u(@)] < Cule|™ 7 [lullds - [10rullds (1.13)

M

where ||ullos = (Eo<k<s 30,01 ||0102...Ok¢||L2(Rn)> , with Oy, ...,Oy angular momentum vec-
torfields.
Also”, for all dimensions n > 3, and any small € > 0,

1 1
u(@)] < Crelal™*[lullg,, - [10rull - (1.14)

For n = 2 we have,
1 1 1
u(z)] < Cla>ullg, - 10rull6,,- (1.15)

Applying 1.13 to solutions ¢ of 1.5 we easily infer, as above, that

06(t, )| < Colz| 7110613, - 107012,

with s > "T_l +1 and C,, a constant which depends only on weighted L? norms of the data f, g.
Thus , for the exterior region |z| > £, we derive the decay estimate 1.6 with the help of s > "T_l

angular momentum operators. Moreover, in all dimensions, we can derive a t~'*¢ decay estimate

using only one angular momentum operator (¥)O. The decay estimates for the interior region

>To be precise we can derive the same estimate for 8?¢ instead of 9¢, see [KI-Si].

6The construction of angular momentum vectorfields in a curved background requires more differentiability of the
space-time metric than the construction of S.

"See Lemma 1.1 below.



lz| < % can be done by using only the scaling operator S; see discussion in Proposition 1.7 and its
corollary at the end of section 1.1.

Even one angular momentum operator, however, is too much for obtaining the optimal results®
of Theorems A, B,C, see section 2. In what follows I will present a way of deriving the ¢t 7€ decay
estimate, in any dimension n > 3, using, instead of scaling and angular momentum operators, the
Morawetz vectorfield Ky = (24 |x[*)0;+2tx'0; and its associated first order operator Koo+ (n—1)t¢.
Let

1
Qaﬁ - aa¢aﬁ¢ - §maﬁ (m‘“’aﬂqﬁa,,qﬁ)

the energy momentum tensor associated to the equation O ¢ = 0 with m,, the Minkowski metric
of R""!. If ¢ is a solution of the equation we have, 8ﬁQa5 = 0. We recall the following classical
fact, see [C-K1],

Proposition 1.3 Let ¢ be a solution of 00 ¢ = 0 and Qup the corresponding energy momentum
tensor. Let X be a conformal Killing vectorfield, i.e. X1 = Lxym = Qm, and trr = m* map.
It is easy to check that T Q = 0; in fact, in the particular case of X = Ky, Q@ = 4(n + 1)t. Let
P, _QaﬁXﬂjL ' 1 tr VTG0 — 220, (tr X)) 2. Then, if O ¢ =0,

4(n— 8(n+1)

0*P, = 0.

Applying the proposition to [0 ¢ = 0 and X = K and integrating the corresponding divergence
free equation on a time slab [ty,¢] x R™ we infer the following”:

Proposition 1.4 Let Q(Ky, Ty) = Q(Ko, Ty) + (n — 1)t — ”T’lgzﬁQ, with Ty = 0; the unit normal
to Xy and ¢ a solution to T ¢ = 0.

i.) The following conformal conservation law holds true,

[, QU T) = | QK. T)) (1.16)

to

ii.) Moreover we have,

/EtQ(Ko,To) = i(/xt u?(L'p)° +/2t 2(t2 + 12)| V|2 +/2t UQ(L'(ﬁ)Q) (1.17)

where L =0, +0,, L=0,— 0, u=t—r, u=1t+7r and ul'(¢) = uL(p) + (n — 1)¢, ul'(¢) =
uL(¢) + (n—1)¢.

iii.) Also, if n > 3, there exists a constant ¢ > 0 such that,

/th(KU’TU) > C(/Et@2([,¢)2+/2t2(t2+r2)|y7¢|2_|_/2t U2(L¢)2> (1.18)

8The method would be enough however to rederive the first improved regularity result for quasilinear equations,
o > 1 due to Chemin-Bahouri [B-C1].
9Part i and ii of the proposition are due to C. Morawetz [M]. For part iii see [K13], pages 310-313.
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To prove the second part of the proposition we first express K, T as linear combinations of the
null vectorfields L, L,

1
K, = §(Q2L—|—U2L) (1.19)
1

with u = t—r, u = t+r. Observe that u is a special solution of the Eikonal equation m*?d,udzu = 0.
This will play an important role in the following sections.
We easyly check the formulas:

Qur =Q(L,L) = L(¢)?
Qrr =Q(L,L) = |Vo|?
Qur = Q(L,L) = L(¢)?

where Yo denotes the induced covariant derivatives on the spheres of intersection between the level
surfaces of ¢ and those of r. Thus,

Q(Ky,Ty) = (Q2QLL + (U2 + 22)QLL + U2QLL>

(42000 + (2 + 22 Vo + w2L()?)

=] =

Therefore,

[atoty = [ (2002 + @+ ) woP + w2(Lo)?)

+ =) [ o0e-" [ 6

We now write, with S = %(quﬁ + uLg),

06 = S(utudo

= %(quﬁ +uLld) — %(u — )¢
= 56— S(u- s

Hence, since (u — u) = 2r

/zt 069 = /Et 56 ¢ - i/zt(ﬂ —u)0,(¢°) (1.21)
1

1
= 5 2t5'¢+1 5, (8,(u—u)+

s

8




Thus, since Z(n — 1) — nT—l — @,

1

[ auat) = [ (e0ef + @+ u)IFof +u(Lo)?)

_1\2
+ -0 [ esor "D [ g

(uL¢ + uL@p), we have

Finally, writing S¢ = %

(n—1)*

1 (207 + w2 (L0)?) + (0 = 5o+ g
= hwewer + 2 huore + Uy
+ iuZ(Lqﬁ)? + 2 o) Lugrg+ < D7
= (2o + =167 + Lo + (0 - 1)0)?)
Therefore,
[ o) = [ (ko + (- 10 + (@Lo+ (= 16)?) + ( + )| VoP)
as desired.

To prove the last part of the proposition we go back to the derivation of 1.21 and proceed
somewhat differently. Denoting S¢ = %(gL — uL) we write,

uUu—u

— e - uld) - ()0

u—u

_ §§¢— (u + )0,

U—u

Integrating by parts we find,

t t
/ztta“bd) N /zt?d)ﬁd)_ 5, Q(Q—u)(uw)a’"gZ$2 (1.22)

- /2t;¢)§(/)+/2t <3,«(2(gt_u)(u+u))+n;12(ﬂt_u)(u+g)>¢2

t n—2 r t
= [ lese+ "2 e
T 2 o T
Consider now both identities 1.21 and 1.22,

/Ettatebas — /Et¢5¢+g/2t¢2

/Ettatebas — /Et;¢§¢+n;2/&:—z¢2

9



Observe that, fg, ! (f(m)? +u( qu)?) _ %((Sqﬁ)Q + (§¢)2>. Now let A, B such that A+ B —

n — 1 and write,

[ 3 (2wer + wo?) + - [ avo-"TH [ 5

= 5 [ (1502 + 24086+ (4n = (n - 1))?)
2
+ 3 [ (or+2Bloss+ Bo-250)

If1<A<n-—1wecan find ¢; > 0 such that
(592 + 24656 + (An = (n = 1))6*) > 1 (59)° + ¢°).

Also, if 0 < B < n — 2, we can find ¢; > 0 s.t.
2 t £ 2
((59)2+ 282686 + Bn —2)56%) > ea(S6 + 6.
If n > 3, there exist A, B verifying A+ B=n—-1,1<A<n—1,0< B <n— 2, and therefore,
taking ¢ = min(cy, ¢3),

[ 3 (22 o) + =) | e0ro - - L.#
e [ (316 + IS +150P)
N % /z (W + 0’| Lof" +u2|L¢|2>

v

and therefore

[ Q0T = e [ (16 + Lo + (¢ + )| Vo + w?|Lof?
as desired.

Lemma 1.1 Let u(x) be a smooth, compactly supported function on R", n >3 . For anyp > n—1,

021+%—%, we have

()| < O (I Pl + (1.2

] 7

where Y denotes the induced covariant derivative along the spheres r = const.

To prove the Lemma we write, in polar coordinates = = r¢ with £ € R" 1,

u(re) = =p [~ 00w (AN

Hence,

p 1 -
/gzlu(rﬁ) do(€) < e~ /R" V)| |uly) Py,

10



Hence, for o > 7 — 2 + 1,

n
p

o .

1
u(ré)’do(§) < e (IVulll, g + lull, gr) <

K\

|=1

Finally, using the Sobolev inequality on the unit sphere S"~! we infer that, for x = r¢ and r # 0,

u(@)] < en (1l Masgsesy + 10T asgsos)

which combined with the inequality above proves the desired result.

Now let
10 = [ (18 + 1ol + (2 + )IV6 + LoP) (1.21)
Epnlol(t) = Z E2[V'g] (1.25)

In view of the Lemma 1.1 we immediately derive the result of the Proposition below in the exterior
region |z| > £. For the interior region |z| < £ the result follows from the fact that,

el > et [ 19

|2]<5
combined with the standard H*(R") C L*°,s > % Sobolev embedding. Thus,

Proposition 1.5 Let ¢(t,x) be a smooth function in R™"' compactly supported in = for each fired
t > 0. The following inequality holds true for anyn >3, p>n—1andk >3+ 5 — %

106() |1 < e(1+ )77 Ex(D).

In view of the conservation of the integrals f5, Q(Ko, Tp) as well as'® [y, Q(Ty, Ty) applied to the
standard derivatives 0y, 0y, ...0, of solutions to O ¢ = 0, as well as part iii of 1.3 we obtain the
following:

Proposition 1.6 Let O ¢ = 0 subject to the initial conditions ¢(0) = f, 8t¢)( ) = g with f,g

smooth and compactly supported in the ball |xv| < 2. Then, for allt >0, k >3+ § — 1=

060l < CC1+ 0741l + gl ). (1.2

10This is needed to control small ¢ > 0.
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1.2 The proof of the Dispersive Inequality using the Commuting Vec-
torfields Method

In the previous section we have reviewed the commuting vectorfields method of deriving the asymp-
totic behavior of solutions to 1.5 as ¢ — oo. The method seems quite wasteful in terms of how many
derivatives are needed for the data f, g, and therefore it does not seem well suited for improved
regularity results. In what follows we show that in fact the commuting vectorfields method implies
the dispersive inequality 0.3. The key ingredient in the proof is a simple phase-space localization
argument which I borrow from [L].

Theorem 1.1 The commuting vectorfields method implies the dispersive inequality (.3.

Without loss of generality we may assume that 9,¢ = ¢ = 0 and that the Fourier transform of
f = ¢(0) is supported in the shell % < €] < 2 for some A € 2N, By a simple scaling argument
we may in fact assume A = 1. Since (;5, the Fourier transform of ¢ relative to the space variables
z, is also supported in the same shell it suffices to prove the estimates for V¢ or VF¢. Next we
cover R" by an union of discs D; centered at points I € Z" with integer coordinates such that each
Dy intersects at most a finite number ¢, of discs D; with ¢, depending only on the dimension n.
Consider a smooth partition of unity (x7)rez» with supp x; C Dr and each x; positive. Clearly we
can arrange to have, for all k,

> Vi (@)] < Cr (1.27)

Iezn

uniformly in z € R". For k = 0 we have in fact C},, = 1.
Now set, f; = x;- f, and ¢; the corresponding solution to 1.5 with data ¢;(0) = f;,9,6;(0) = 0.
Clearly f =37 f1, & = X1 ¢r. 1t suffices to prove that for all I,

n+k+1

V%61 (1)1 < Crpe(L+6) T 3 1D fr]|1n (1.28)

§=0
with a constant C,, j depending only on n and k. Indeed if 1.28 holds true we easily infer that,

n+k+1

IV¥oB)lle < Cos @+ 3 1 Vixallue I £lle
I

§=0
and therefore, in view of 1.27
_n-1
IV*(#) || < Crp(1+8)77 || flls

It therefore remains to check 1.28. Without loss of generality, by performing a space translation,
we may assume that I = 0. Applying the Prop. 1.11 to ©» = V¢, we derive, for s, the first integer
strictly larger than 3 + 1,

n—1
c(1+1)77 Ey [do](t)

n—1

c(1+1)" 7 E. [¢o](0).

[ @)z

VARVAN
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Since the support of ¢ is included in in the ball of radius 1 centered at the origin we have,

Sx+1

B, [60](0) < G D7 1D fo |22
=0

Finally, according to the standard Sobolev inequality in R", ||f||z2 < ¢||V2 f]|11, we conclude with,

n+2+1

@)= < c@+1)7F 3 D7 foll

J=0

as desired.
Next we show a direct proof, without using the Fourier representation of solutions!!, of the
Strichartz inequality 0.4 from 0.3.

Theorem 1.2 The dispersive inequality 0.3 implies the Strichartz inequality 0.4.

It suffices to prove the Strichartz inequalities for initial data 0;¢(0) = iy, 0;¢(0) = iy whose Fourier
transform are supported in the unit dyadic shell % < |€] < 2. Let H be the real Hilbert space
of vectors I = (ig,7;)", with the Fourier transform supported in |£| < 2 and scalar product <

I;J>=|Rj» <221 Oalo(2)0ujo () + 11 (2) - Ju (x)) Define X to be the closed subspace of functions

in L{L"([0,t*] x R™) whose Fourier transform are supported also in |£] < 2. The dual space consists

of functions in LY L7 ([0,#*] x R™) which have the same property. As it is well known to prove 0.4
it suffices to show that 77 is a bounded linear operator from X* to X.
Denote by ¢(t, s;1(s)), I = (i, i1)", the solution at time ¢ of O ¢ = 0 with initial conditions, at

t =s, given by ¢(s) = ip(s), 0d(s) = i1(s). Let ®(¢, s; I(s)) be the column vector <¢(t, -), O (2, ))t
We will make use in an essential way of the group property:
D(t,5;P(s,t0 : I(tg)) = ®(t,to : I(to))
By interpolating between the L? — L? and L® — L' we infer that, as long as I(s) € H,
10u9(t, 53 1(s))]

where y(r) = (n —=1)(3 = 2) , ; + 5 = 1, 7 > 2. Here |||y = [|[Violly + [[is|ly. Let T:H —

X = L{L"[0,t*] be defined by T'(I)(t,x) = 0,;¢(t, x). To calculate the dual T* : X* — H we write,
for an arbitrary f € X*,

1y S e(L+ |t — s O1(s)

!
T
LJ)

tx
<T*(f), 1 >:/ /R" 0,6(t, ) (¢, ) dwdt
0
Now let 1 the solution to ¢ = f with zero initial data at ¢t = t*. Therefore,
— < (N> = [ (600.0)04(0,2) = 9u(0,2)0(0,2) ) o

- /Rn <¢t(0,x)1/)t(0,x) + 304900, x)@Aw(O,x)>dx
= <V9(0),I>

1See also [K-T]. The proof we give below however is the one we will be able to extend to time dependent variable
coefficients, see Theorem 2.3 and its proof.
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where ¥(0) = (¢(0),9,¢(0)). By Duhamel’s principle we have, 1)(t) = [ ¢(t,s; F(s)) where F(s) =
(0, f(s))t. Hence ¥(0) = — [I* ®(0, s; F(s))ds and therefore,
T(f) = [ 20,55 F(s).
We infer that N N
TT(f) = [ 06 (8.0:0(0,5 F() ) = [ 01(t, 55 F(5))d.
Consequently, .
ITT*(F)llez < [ @[t =s) Ol ) s

and the proof ends with the usual application of the Hausdorff-Young or Hardy -Littlewood -Sobolev
inequalities.
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2 Strichartz type Estimates on a Curved Background

In what follows we state the main results of this paper, Theorems A-C. As explained in the intro-
duction they are not new they are due to H. Smith [S1], [S2], Bahouri-Chemin [B-C1],[B-C2] and
D.Tataru'?2. The method of proof, however, is very different. Instead of constructing parametrices
we rely on a variation of the vectorfield approach presented in the previous section. We refer to
the introduction for a detailed preview of the main results and ideas discussed in this section. We
recall that the final goal of the section is to show how the Theorems A, B, C can be reduced to
the L? — L™ decay estimate of Theorem 2.4. With the exception of the derivation of Theorem 2.3.
from the dispersive inequality of Theorem 2.2, and the reduction of the latter to Theorem 2.4.(
discussed in details in section 1.2.) most of the ideas presented in this section appear in the above
mentioned references, especially [T2]. Therefore our presentation is sketchy; we give however full
details whenever some arguments need modifications, such as the proof of Proposition 2.1 which is
a minor extension of an argument in [T2].

2.1 Main Theorems and their reduction to Dispersive Inequalities

Theorem A Consider the wave operator O} = —0? + h9;0; defined in a space-time slab Dy =
[0,T] x R", n > 3. Assume that the coefficients h = (hij)gszl verify the following assumptions:

Al Foradll (t,x) € Dr, £ € R,

CHEP < W (t 2)&6i€; < Clef?

A2 Forall0 <i <k, and some fixed constant u > 1,
Ti“aHihHLngo(DT) < cp®
Then,
ke ke
108521000y < CT (P10 ooy + 17 D50l (2.29)
for any s = ”T’1+e.

Theorem B Assume that Theorem A holds for a fired k > 1. Consider a metric h which verifies
only the assumptions A1 and A2 for k=0, p=1;

||ah||Lngo(DT) <c

Then,
108131500y < C(T7N 1D 00llrision) + TN DI Dhbllimeon)  (230)
foramys:"T_1 anda>m.

12The precise statements of Theorem A and B and the optimal result of Theorem C is due to Tataru, see [T2].
His results connected to Theorems A, B are however more general.
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: : 1
Here and throughout the paper whenever we write ||¢)[| 15, or simply ||¢)[| a5, we mean ([ [|9)(2)[|5dt) e

with B a Banach norm with respect to the space variables x = (z!,...,2"). Theorem B has an
immediate application to quasilinear equations of the form,
O b = N(¢,09) (2.31)
subject to the initial conditions at t = 0,
¢(0) =0 0,0(0) = ¢ (2.32)
Here O, 5¢ = —07¢ + h($)9;0;¢. Assume that h(¢) = (h”(¢))};—, is a smooth matrix valued

function of ¢. Assume also that N is a smooth function of ¢, 0¢ and depending quadratically on
0.
Theorem C Assume that Theorem A is valid for some fired 1 < k and p = 1. Consider the
initial value problem 2.32 for the quasilinear wave equation 2.31 in R"™, n > 3 Assume that the
coefficients h;j(¢) verify;
cHeEP < hY(9)6ig; < cléf? (2.33)

uniformly for |p| < M and £ € R".

Assume also that the initial data in 2.32 verify the assumptions (pg, 1) € H* x H* ' with
s=2%+1+0 foro> m Moreover assume that |@ol|(py) < 4. Then there exists a time
T > 0 and a unique solution of 2.31, 2.32 verifying,

¢ € L®([0,T]; H*) N Lip([0, T]; H*™)
o € L([0,T); L™)

and ||| (pr) < M.

Remark 1 A more general sharper form of Theorem A, for all wave admissible Strichartz expo-
nents, has been proved by Tataru in [T2] for k = 1. In particular, the optimal known result in
1

conection to Theorem Cis 0 = ¢. The first improved regularity result is due to Chemin-Bahouri

[B-C1]. They later improved the result in [B-C2].
I.) Sketch of the Proof of Theorem B from Theorem A:

Step 1. It clearly suffices to prove Theorem B for 7' = 1. Moreover we can reduce the proof to
the following dyadic case'?,
Set hy ~ S%h and ¢, = A, ¢ with A, the standard frequency cut-off operator corresponding

to the space-time Fourier region $A < [7] + || < 2A. Set O = O}, . Then, for all A suficiently
large, say A\ > 28, it suffices to prove that

10032150 < OX (X083 e 20y + 3| T 5hrlasrzco) (2:34)

with D = D;.
Step 2. Split O)\¢y = O%¢r + Ry, for some 0 < a < 1 to be chosen later. Here O).¢y =
—0? + h%.0;0; with h§ = S 1yah. Observe that
IR Lir2 oy < A H10R 11 poo 0y | 0D Lo L2(D)
13The reduction is standard, see [B-C1], [B-C2] and [T1], [T2].
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Therefore the estimate 2.34 follows from the following,
10053152y < ON (X100 lon20) + A D ulnizzim)) (2.3)

provided that o = 45%. On the other hand it is easy to see that the metric hy. = S L xah verifies
the conditions, A1, A2 of Theorem A. More precisely,

10 e300y < A 191300 < 1

with g = A%,
Finally 2.35 follows from Theorem A applied to the metric h$ for 4 = A% and a chosen such
that %kiﬂ = %, ie. a= fk—i Therefore o = I_T“ = 2(2/;1) as desired.

I1.) Reduction of Theorem A to the case p = 1.
Proposition 2.1 For every fized k it suffices to prove Theorem A for the special case = 1.

We shall follow the method of proof of Tataru, see [T2]. We assume that Theorem A has already
been proved, for a fixed £ > 1, with 4 = 1. Fix a value of ; > 1. By a simple scaling argument it
suffices to prove Theorem A for T' = p? and,

||81+ih||Lngo(Du2) <1
for all 0 < i < k. Now divide [0, 7] into subintervals,
O=ty<t1 <...<ty=T=p?
such that for all domains D,, = I, x R", with I,,, = [t;,, t;ny1], and all 0 < m < N,
124l < e 1) O 4l (2.36)

as well as, . .
Ll 10" Bl Lt Lo,y <1 (2.37)

for all 0 <@ < k. We claim the total, smallest, number of intervals needed in 2.36, and 2.37 verifies,
2k
N < Cpu*+. (2.38)

with a constant C} depending only on k. Indeed let N, be the total number of intervals with
equality in 2.36 and V; the total number of intervals with equality in 2.37. Clearly N, < /Lkz_fl.
For an interval I, on which equality holds for 2.37 we have, A’ B,, = 1 where A,, = |I,,| and
By = 100 1 120(p,,,)- Thus Yo Am < p?and )20 By, = ||al+ih||L§Lg°(Du2) <1

Lemma 2.1 Let A, B > 0 with A'B = 1. Then, for all A > 0, A iA+ \B > ¢, with 0 < ¢; <2
depending only on i. In fact we can take ¢; = miny>o(y + i)
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Using the Lemma, whose proof is trivial, for each A,,, B, A B,, = 1 and then summing over
m we infer that )\’%/ﬂ + A > ¢;N;. Choosing A = uziﬁ we infer that, ¢; N; < uzi_l Therefore the
total number of intervals N < Ny + N; + --- 4+ N, for which we can have equality in one of the
estimates 2.36, 2.37 1 < i < k, verifies N < C’k,uk2_+kI. Thus the minimum number of intervals needed
to satisfy 2.36, 2.37 is given by 2.38.

In view of 2.36,2.37, on each of the intervals I, we can apply the statement of Theorem A for
the particular case when = 1. Therefore,

108121500y < Clunl (106011 s15tpy + 10 40l v, ) (239
_ 2k
< Cltal (100011 + 57N O bl ) ) (2.40)
Thus squaring and summing over all 0 < m < N — 1,
€ 2k _ 2k
||a¢||%ng°(Du2) < CCT? (/L’“+1 ||a¢||iIHS(Du2) +p =IO ;ﬂs“%lﬁs(puz))
and therefore, with another constant C' depending on £,
of -k ke
108]12050,09 < CeT* (100l oo,y + 1PN O bl i,

as desired.

ITII.) Sketch of the reduction of Theorem A( p = 1) to a microlocalized version(see
Theorem 2.1.)

Step 1. Proceeding precisely as the proof of Theorem B it suffices to prove the dyadic version of
the Strichartz estimate of Theorem A( = 1) for T'=1 and A sufficiently large.

100l L2150 (D) < CAS<||5¢A||LOOL2(D) + O 'A@HL,}L,%(D)) (2.41)
with s = "T_l + ¢ and D = Dy. We have, roughly , h) = S%h, or=Axpand O = 0O, .
Step 2. Proceeding as in step 2 of the proof of Theorem B it suffices to prove the estimate

10032050y < OX° (106l 20y + | D a2 o)) (242

for a metric h = h¥ verifying the assumptions Al, A2 in the region D = [0,1] x R" and whose
space-time Fourier transform is supported in the region

1
0 < |+ 18] < 75 VA (2.43)

Step 3. Let h = h/ verify A1, A2 as well as 2.43. Define hy(t,z) = h(%,%). Clearly,

cTHEP < RY&E < ¢l (2.44)
10" hall iy rse(pyy < CA™* forall 0<i<k (2.45)
10" [l 1 popyy < CATFF forall 0 < j (2.46)
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Moreover the space-time Fourier transform of hy is supported in the region 0 < |7| + |¢] < —L~.

16v/x
Under these conditions it suffices to prove the Strichartz inequality,

1065315001 < X (100 |r200) + 1| D, 2200, (2.47

for all ¢ whose space-time Fourier transform is supported in the region 0 < |7| + [¢]| < 2.

Step 4. Define the positive definite metric g = g\ to be the inverse of the matrix hy. Whenever
there is no danger of confusion we shall also denote by g = g, the Lorentzian metric with g;;,
i,j =1...n as above and gog = —1,gp; = 0 for i = 1...n. Denote |g| = det(g;;). Let O, be the
associated wave operator,

2 =l 15°0) = 0o + o als,).

9|
Observe that

Og¢ = 0O + R
3:(\/g 0:(/19x| g%
Ru — _MWMW
|9 N

Clearly, || Rat|| pioo(y) < Cll0ha]| 11 poo(y) |09 oo 2. Therefore 2.47 follows easily from,
109 Laree(pry < C<||3¢||L°°L2(DA) +l o gﬂ/)||L1L2(DA)> (2.48)

Qbserve also that the assumptions 2.44-2.46 for FL)\ remain satisfied for for the inverse metric g\, =
(hy)~', with different constants. This is obvious for 2.44. The others follow multiple applications
of the chain rule and the following Gagliardo-Nirenberg type inequality:

Lemma 2.2 For any integer k > 1 and compactly supported smooth functions g we have,

1 11
109l ro < CllD* g}y pollgll ot (2.49)

The proof of Theorem A(y = 1) can be thus reduced to the following:

Theorem 2.1 Let gy be a familly of smooth metrics, A > \g > 1, defined in the region Dy = I, xR"
with Iy a time interval of length A, in which the following assumptions are satisfied,

g < g < gl (2.50)
uniformly for all (z,t) € Dy, £ € R" and A > Ag.
Also,
10" g llsizzopyy) < CA' forall 0<i<k (2.51)
||81+k+jg)\||L§Lg°(DA) < Ck,j)\_k_% forall 0 <y (2.52)
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Under these assumptions we have,

1002150 < C 100120 + 1 O bl (25

for all v whose Fourier transform supported in the region % <|Ir|+ €| <2.

IV.) Reduction of Theorem 2.1 to a microlocal dispersive inequality(see Theorem 2.2)
In what follows we show that Theorem 2.1 can be reduced to the following dispersive inequality:

Theorem 2.2 Under the same assumptions on the metric gy as those of Theorem 2.1, if ¢ is a
solution of the homogeneous equation O ,, ¢ = 0, in the domain Dy = [y xR", I\ = [0,1.], |I,| < A
with the Fourier transform of the data ¢(to), 0pd(to) supported in 0 < |€| < 4, then;

106(t) [z < C(1+ [t = to]) =10 (o) 2 (2.54)

Theorem 2.2 implies the following

Theorem 2.3 Consider the initial value problem

O4h¢0 = 0
9(0) =¢o 09(0) = ¢

in the region Dy = [0,\] x R", in which the assumptions of Theorem 2.1 hold true. Let ¢ = 2

1—€’
q' the dual exponent. Let P be the operator defined by Po(t,x) = [Rr e (E)P(t,€) with ¢ the
space Fourier transform of ¢ and x a compactly supported smooth function, x(&) = 1 for |£| < 2,

X(€) =0 for [§] > 4.
There exists a sufficiently large M , independent on X, such that,

[0P@||g150p2) < M||0¢(0)]] 2 (2.55)

Theorem 2.1 follows easily from the following Corrolary of Theorem 2.3. This is due to the fact
that for the ¢ of theorem 2.1 we have Py = 1.

Corollary 2.1.1 Under the same assumptions as above consider the inhomogeneous equation,
D g,\z/) = f

Then,
10P6lszon < M (100 =1200) + | lsr20s (2.56)
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The proof of the Corollary is an immediate consequence of Theorem 2.3 and the standard form of
the Duhamel principle.

Proof of Theorem 2.3:

Remark 1: Without loss of generality we may assume that the metric gy is flat at t = 0, i.e
gx(0) = 0, 0,gx(0) = 0. Indeed if this is not the case we can extend it to the interval [—1, \] by
setting g (t) = x(t)(gx — &) +J, with x a smooth, compactly supported function of ¢, y = 1 on [0, A]

and x(t) = 0 for ¢ < —3. Though g\ does not verify the same assumptions as g, in the interval
[—1, 0] is easy to see that the conclusion of Theorem 2.2 still holds true for the equation O ;¢ =0
in the time interval I, = [—1,t.], see the remark following Theorem 2.4. Since the solutions to

0,46 =0and Oj ¢ =0, with same data at ¢ = 0, coincide in [0, A], it suffices to prove 2.55 for
0O 5,¢ = 0. Performing a time translation this is equivalent with proving the original estimate for A
replaced by A + 1 and ¢,(0) = d, 9,9,(0) = 0 as desired.

Remark 2: [t suffices to prove the Theorem under the additional smallness assumption:
There exists a sufficiently large constant C' independent of X such that

(2.57)

N

CllOgal|L1 oo (py) <

We can indeed divide the interval [0, \] into smaller intervals where the auxiliary assumption is
verified. The total minimum number of such subintervals is proportional to the product of the
constants C1, in 2.51, and C, in the auxilliary assumption. The estimate 2.55 follows then easily
by adding the corresponding estimates on each subinterval and the standard energy estimates, see
Lemma 2.3 below. In what follows we may therefore assume that the metric g, verifies the additional
assumption 2.57.

Remark 3: We first prove the estimate 2.55 for P0;¢.

Clearly 2.55 holds true for sufficiently small ¢ > 0. Let M be a sufficiently large constant and
let J C [0, A] such that for any ¢ € J the estimate 2.55, for d;¢, holds true in the domain D;, with
a fixed constant M. Let t, = max;c;t. We may assume that t, < \.

Let ig,i; € L*(R"), I = (ip,%1) and ®(¢, s; I) be the vector (¢, d,¢) where ¢(t,s; ) denotes the
solution at time ¢ of the homogeneous equation 0O, ¢ = 0 subject to the initial data at time s,
b(s, ;1) = iy, Opd(s,s;1) = i;. By a standard uniqueness argument, which depends only on the
assumptions 2.50 and [|0g|| 1 ze<(p,) < C1, We can easily prove the following:

@@g¢@¢mm>:¢@mﬂm (2.58)

Denote by H be the set of vector functions I = (ig, ;) with ig,4; € L?(R™). The scalar product
in H is defined by

<LJ>:/

)

(il : jl + 5“b8ai0 : ab]())dl'

with ¥, the initial hypersurface ¢ = 0. Let X = LIL®(D,,) and its dual X' = LY L (D,.). Let T
be the operator from H to X defined by:

T(I) = —Poyo(t,0;1) (2.59)
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The adjoint 7* is defined from X’ to H. To prove Proposition 2.3 it suffices to prove that 7 - T*
is a bounded operator from X’ to X. In view of the definition of ¢, we have ||T||x_x = M where
|7 ]|%—x denotes the operator norm of 7. Thus,

1T T [l = M.

To calculate T* we write,

<TfI> = < fT()>= —//D 8,6 P fdtd

= /[, 200w

where 1) is the unique solution to the equation

Og.,% = Pf (2.60)
W(t,) = Opp(ty) =0
with g
Oy, = _61:2 + ai(gf\]aj)
Observe that,
_ 1

0= 0= = (o2 - a2
A

Consequently, integrating by parts,
<TfI> = —//D 0,00 - Ydtdz
+ [ (000)0:00) — 026(0)(0) ) e
=~ [ 0,006 vdds
Dt.
+ [ (0000)026(0) + 690,6(0)050(0) ) da

= <1,Y(0)+ R(f) >«

with ¥(0) = (¢(0),0:4(0)), ¢ = ¢(t,0;I) and R(f) the linear operator defined from X’ to H by
the formula,

< IR(f) >= —//D 01,0 - dtds.
Therefore,
TT*f = T(0) + TR(S) (2.61)

Observe that O ;1 = Pf+e with e = \/ﬁ (@(\/ lgx]) 0 — 0;(y/ |g,\|)8i1/)>. Thus we can write
Y = th1 + 1hy with,
U gqu/)l = Pf
. 9A¢2 = ¢

22



with both 1y, 1, verifying the zero initial conditions in 2.60. Now T'W(0) = T¥(0) + T'¥(0) and
TV,(0) = —P8,¢(t,0; ¥1(0)). According to the Duhamel Principle we have, Uy (t) = [ ®(t, s; F(s))ds
with F'(s) = (0, Pf(s)) and therefore,

and,
Tv,(0) = P8t¢)<t, 0; /Ot* (0, s;F(s))ds)
= P/t* 0 (t, s; F(s))ds.
0

We are now in a position to apply the dispersive inequality of Theorem 2.2. Indeed, since the
space Fourier transform of F'(s) = (0, Pf(s)) is supported in the region |£| < 2,

10 (t, 53 F () |e < C(L+ [t = s TP (5)]] 11
Therefore, by the Hardy-Littlewood-Sobolev inequality,

[T (0) | 222 (p,) < CllS I (2.62)

LY LL(Ds,)

with C' a constant, independent of ¢, and A. It depends in fact only on the H-L-S constant, ¢ > 0
and the constant C in the dispersive inequality of Theorem 2.2.
To estimate 7 W5 (0) we apply the Strichartz inequality with bound M,

[T W2(0) || azoe (o) < M[[W2(0)][5

where,
[W2(0)[le = sup | < 1,%5(0) >3 | < [|0¢2(0)] 2.

1Tl <1

To estimate this we shall make use of the following standard energy estimate to which we have
alluded before:

Lemma 2.3 Any solution of the inhomogeneous problem O 4,1 = H, subject to the initial condi-
tions (ty) = iy, Opp(ty) = 1y verifies the following estimate, for all t,ty € [0, ],

100Oll> < (1 + 1 Hlls1210) ) €50 Clouglzrnoecoy (2.63)
with C' a constant independent of X\. Here Hy, x is defined by the scalar product < I,J >Hy 2=
i, (il(x) 1) + g (to)™Buio () Do @))dx.

Applying the Lemma to O 4, ¢y = e, 15(t.) = O41h2(t.) = 0 and taking into account the auxiliary
assumption C||0igx|| L1 (py) < % we deduce,

102(0)| 2

Cllellzizzoy)

<
< C0gllLiree ) 10Y ]| Lo 2Dy )
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Therefore,
| TW2(0)|aroo D) < CM|Ogl| 1 ooy 10Y || o2y (2.64)

We shall now estimate the other error term 7 Rf. Since the operator norm of 7 is bounded by
M,
ITR(f M Loz < MRS 5

On the other hand,
IR(H)llw = sup <I,R(f) >u
I7ll7 <1

=i o, Bty
Clearly,
006 = 00,0~ 3(5tg“8)¢
3, (at<M>at¢—ai< 9)0:6) |~ 0.0:979;)0

[ ( )01 = 0:(/l9a)910 )| = Du(01979))0
Therefore, integrating by parts, recalling that ¢ is flat at ¢ = 0, and estimating in a straightforward

manner we derive,
81/)||L°°L2('Dt*)'

0 ||Lr2(Ds.)

IRl < CllogallLrz=(o..)

To estimate ||0||r2(p,,) We rely on Lemma 2.3.
Applying it and using ||T]j3 < 1, as well as the auxiliary assumption C||0,gx||11150(py) < 5 We
infer that,
108|| Lo 2D,y < 2.
Therefore,
ITR(Nzazee ..y < MON|0gal| L, |09 oo L2 (2.65)

To estimate ||0¢||fr2(p,,) We rely on the following

Lemma 2.4 Under the assumption C||0gy||11r(py) < 3. for sufficiently large C' independent of A,
O (t.) = 0 verifies the estimate,

the solution v of the equation O 4 = Pf, ¢(t,) =
(2.66)

||817/)||L°°L2(Dt*) < 2M||f||Lq'L1(Dt*)

Posponing the proof for a moment we gather together 2.62,2.64,2.65 and 2.66 to infer that

ITT flix = T(W1(0) + ¥2(0) + R(f)|areo(p..)
< C(l + M2||ag)\||L1L°°(Dt*))||f||L‘1'L1(Dt*)
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Therefore, in view of 2.61,
M? =TT xsx < C(L+ M?||0ga]|11100(p,.))-

Thus, since C||0igx|| 111 (p,.) < %, we infer that M is bounded independently of both A and t,,

as desired. This proves the desired Strichartz inequality for P0,¢ in the entire region D).

It only remains to prove the Lemmas 2.3 and 2.4. The first Lemma is the standard energy
inequality. To prove the second we proceed as follows,

Let t be fixed in the interval [0,¢,]. We rewrite the equation O 4, ¢ = 0 in the form,

Og¢=h= L (&(M)atqﬁ - 82-(\/@)8@ (2.67)

|9A|

with initial data ¢(t) = io, 0;@(t) = i1, and (ig,i1) = I € Hyp, |[I]|3,, < 1. We also recall that, see
2.60,
0,0 =Pf (2.68)

with initial data v (t.) = 0y (t.) = 0. Multiplying 2.67 by d;¢) and 2.68 by 0;¢ and integrating in
the region [t, ] x R™ we derive the identity,

. .
t.
+ / Oy - hdsdx (2.70)
t PR
t. -
+ /t /2 9,(gy )0;p05¢pdsdx
Therefore,

10vO)l: < |POBlaro )| fllLe (o,
+  Cl|0gxl|Lrroo (D) |00 Lo L2y )| OV || Lo L2 (D)

We recall that according to our assumption ||P0;¢||par~(p,.) < M||I[|3,, < M. Also according to
Lemma 2.3, [|0,0||rr2(p,.) < 2|12, , < 2. Therefore,

[0¢ |z r2mi) < M| fllo 2 (p,.) + CllOGA L1 Lo (o) [|0Y || L0 22D )

and therefore, since C||0gx|11150(p,) < 3, we conclude that,
10¢ | Lo r2(py) < 2M || fll o 11,
as desired.

To prove the Strichartz estimate for the spatial derivatives we rely on the proof, given above,
for PO;¢. We thus assume that the estimate 2.4 holds true for P0,¢ with an M independent of A.
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To estimate ||P0,¢[|rar=(p,.) it suffices to estimate the integral, T = [ [, P0.¢ - fdtdx for
functions f with || f]| ;4 j0(p,.) < 1. Let ¢ verify the equation O ¢ = Pf with ¢(t.) = 9, (t.) = 0.
Therefore,

T :/ 0,6 O , Wdtda
De.

_ / /D ) 01 4, 0a - Vdtda + /R" (aaqﬁ(o)atw(o)+8t¢(0)3a1/)(0)>

Proceeding as before we show that,

|//D O 4,006 - Ydtda] < O[99l 1o p,.) 106 ]| 12D, ) 109 | o0 r2o )
Also,
Jeor (2:00000(0) + 20(0)0(0) ) < 06(0) 1200|1200,
According to the Lemma 2.3 ||0¢||per2(p,.) < C||04(0)||12. According to the Lemma 2.4 we have,

10V || Loo 2Dy y < 2M || fl|Laro(D,.)-

Observe that the M in Lemma 2.4 depends only on the Strichartz estimate 2.4 for P0;¢ which we
have assumed to be independent of A\. Therefore,

2| < CM[|0¢(0)[[ 12 (1 + 10g]| 1 oo (pp. )| fll pazoe (i) < CM|OG(0) ][22

which implies,
||Paa¢||LqL°°(Dt*) < CM||6¢(O)||L2
as desired.

V.) Final Reduction to Theorem 2.4.

In the previous step we have reduced the proof of Theorem 2.1 to that of Theorem 2.2. We can
perform one more reduction based on the phase space localization described in the proof of Theorem
1.1. Therefore Theorem 2.2, as well as the Theorems A,B,C, is a consequence of the following:

Theorem 2.4 Assume that the metric g\ verifies the same assumptions as those of Theorem 2.1.
Consider solutions of the homogeneous wave equation O 4 ¢ = 0 in the domain Dy, with initial
data ¢(ty), 0pd(to), to € I, supported in a ball of radius 2. Then, for a sufficiently large positive
integer N,

106(t) |22 < C(1+ [t = to]) (06 (ko) v R (2.71)

The proof of Theorem 2.4 will occupy the remaning part of the whole paper.

Remark: The result of Theorem 2.4 remains valid if the assumptions 2.45, 2.52 of Theorem 2.1
are not verified in the finite time interval [0,1]. In that interval it suffices to have the weaker
assumption, .

||al+lgA||L%Lgo([0’WRn) < C; forall 0<i<N.

Indeed, since there is no need to prove a decay estimate in [0, 1], it suffices to rely on energy
estimates, see Lemma 2.3 applied to sufficiently many derivatives of ¢, and the standard H* — L>™
Sobolev inequalities.
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2.2 Decay Estimates on a Curved Background

In this section we provide the main ingredients in the proof of Theorem 2.4. For the convenience

of the reader we restate below the result in a somewhat different form, see Theorem 2.5 below.
We assume given a family of Lorentz metrics'* g%, A > 1, of the form —dt* + gsdz"dz’, defined

in a slab region D; = [ x R" ¢ R"™, I = I, = [0,t,], of length |I| < A%~ for some small fixed
constant € > 0, and verifying the following properties:

Co '] < gfie'e < Colef? (2.72)
109 |1~ < C (2.73)
10" g™ e < CigA? forall 0<i<k. (2.74)
||81+k+ng||L1Loo < C’1+k+j/\_2k_j for all 0 < j. (2.75)

We may also assume without loss of generality'®that g(#) — ¢ vanishes identically for ¢ < 0.

Throughout this section, whenever there is no danger of confusion, we denote by ¢ a fixed metric

g". We denote by D the covariant derivative defined by g. The wave operator [J g = 9% D, Dy

takes the usual form relative to the coordinates 2° = ¢,z = (z',...2"), O, = —ﬁ@tﬂgﬁ&gqﬁ) +A,

with A, = ﬁ@i (¢']g|20;). Given a vectorfield X = X9, we define its deformation tensor )7
qg|2
to be the Lie derivative £yg. Recall that w5 = D, X5 + DsX,, af =0,1...n.

Theorem 2.5 Assume that the metric g = g™ verifies the assumptions 2.72-2.75, with k = 2. Let
¢ be a solution of the wave equation

Dgp =0 (2.76)
o(to) = w0, Ad(to) = ¢1, (2.77)

in the domain Dy = I x R", I = [tg,t.| with to = 2. Assume that the initial conditions (o, p1) at
t =ty = 2 are supported in a ball |v| < 2. Then, for a fived positive integer s > 3+ 5 — -

n—1’

1061 < O+ )7 (eoll e Ry + 11l o ) (2.78)

Remark 1 Throughout most of the paper we need k =1 in the above set of assumptions. Only
in a few places( see 3.130, 3.131, 3.133,3.134 and 3.150) in our construction we need to rely on
k = 2 for the assumptions 2.72-2.75. It is important to remark however that our proof does not use
the full power of the above assumptions. In fact the only assumptions we need for the derivatives
of the metric can be reformulated in terms of the second fundamental form, k;; = —%Gtgij, and the
Riemann curvature tensor of the space-time metric g .

Here A corresponds to A2 in 2.1.
15Gee Remark 1 following Theorem 2.3 and the Remark following Theorem 2.4.
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Moreover we shall show, see the discussion in the last section of the paper, that under additional
assumptions on the Ricci curvature of the metric we may fall back on the k = 1 case. This addi-
tional assumptions are automatically satisfied in the case of quasilinear equations of the form 2.31.
Therefore our method recovers the optimal result, o = %, obtained by D. Tataru [T2] in connection

to Theorem C.

Remark 2 Without loss of generality we may assume that the constants Cy, Cy are sufficiently
small. The general case follows by dividing I into a finite number of subintervals for which the
corresponding constants C', Cy are sufficiently small.

Remark 3 For technical reason we need to make a stronger assumption concerning ||0g|| 11z,

||3gA||L1Loo S A€ (279)

The effect of this stronger assumption is to lose an additional € > 0 derivatives in the statement of
Theorem C.

We plan to prove the Theorem 2.5 following the same strategy as in the proof of Proposition
1.6. The main ingredient in the proof is the construction of a vectorfield K which is the analogue
of the Morawetz vectorfield used in the derivation of the generalized energy estimates described in
Proposition 1.4. We start with a sequence of Lemmas and Propositions which we shall need in the
proof of Theorem 2.5.

The first Lemma is simply a reformulation of Lemma 2.3.

Lemma 2.5 Consider the wave equation O ¢ = F and let k;j = —%&tgij the second fundamental
form!® of the time slices ¥,. We have ,

06(0)lle < (100(t0)lu2 + [ 1) r) exp C [ I(¢)

with the constant C' depending only on n and the constant Cy in 2.72.

The proof of the Lemma is standard and will be omitted. The Lemma can in fact be viewed as a
special case of the following more general energy type estimates associated to arbitrary time-like
vectorfields X.

Let X be an arbitrary timelike vectorfield with deformation tensor (7 = Lxg, We write
7 = X7 in the form 7 = 71— Qg with  a given scalar function. Let Q.5 = 00 POs0—39as (9" 0,00,)
be the energy momentum tensor associate to O ,¢ = F'. If ¢ is a solution to the equation we have

(X

DPQup = Fut.
Therefore, setting the X — momentum 1-form P, = QagXﬁ, we have
DaPa = Qaﬁﬂ'aﬁ —|— FX(d))
1 .
= (QFas + OUQ) + FX(9)

1—n

9" 0,00,6) + FX(9)

16The definition is kij = — < D, T,e; > relative to an orthonormal frame e; on ;.

1
- §(Qaﬂﬁaﬂ +Q
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Now,

Qg‘“’@uqﬁ&,qﬁ = D“(Qqﬁ@uqﬁ) - au(Q)d)auﬁb - Q¢ 0O g¢
= D*(Q¢0,¢ — %qﬁ?aﬂﬁ) + %qﬁQ 0,0 — QoF

Therefore,
o L as-~ n—1 1, 1, n—1
D*Py = 5Q" s - (D“(Qqﬁaﬂqﬁ — S0°0,0) + 56 O gQ> +(Xo+ o Q0)F
or, setting
_ —1 1
P =p +" 60,6 - n 90,0 (2.80)
we derive . . )
D*Py = 5Q"Fag - ”; 0,0+ (Xo+ "; Q) F (2.81)

Now, integrating on the time slab [to, t] x R", and observing that J; is the future unit normal to
the hypersurfaces ¥; we derive,

Proposition 2.2 Let ¢ verify O ¢ = F and X an arbitrary vectorfield with deformation tensor

X =xw. Let Q be an arbitrary scalar function and @ = © — Qg. Define, for another vectorfield Y,
_ -1 —1
QX,Y) = QX,Y) + = —Q0Y$ — ——¢*Y ()
We have,
_ - 1
X7 = / X: _/ aﬁ~a 2.82
| QX 20, [, QX 00du, +5 [ o @ Fasdiie, (2.82)
n—1 9 n—1
- 0 ,Qdtd / X O¢)Fdtd
8 JuaxR" ¢° 0Oy Vg + [to,t}xR"( ¢+ 1 ) Ug

Observe that 2.82 implies the energy identity 1.16 in the particular case of the Minkowski space,
X = Ky and F' = 0. In that case (2 = #Itm =4t, trm = go‘ﬂwaﬁ and T = 7 = 0. Observe also that
the Lemma 2.5 is a consequence of the above proposition in the special case when X = 0. In that
case My = K, = 0 and Xy = —2k;;.

In the next Proposition we record a commutation formula between O, and vectorfields X
expressed relative to the deformation tensor (.

Proposition 2.3 Consider an arbitrary vectorfield X with deformation tensor w, trace trm =
9% o and traceless part fing = Tap — n%rltmrgaﬁ. Denote by D the covariant derivative corre-

sponding to the metric g. We have the following commutation formula with O 4, the wave operator
wm 2.77.

o 1
O,(X¢)—XOyp = WﬁDaD5¢—|—n—+1t77rElg¢ (2.83)
1 1
D%t gD — — \DrrD
+ Ta ¢>+(n+1 2) rmDy¢

29



The proposition is an immediate consequence of the following more general formula, see Lemma

7.1.3 in [C-K2].

Lemma 2.6 Let X = X%0, be a vectorfield with deformation tensor w, V. = V,dx® an arbitrary
1-form on a spacetime manifold with metric g and corresponding connection D. We have,

DU('CXVQ) - EX (D(rva) +(X) Fa(r/\v)\

where,

1
(X)Faa)\ - 5 (Da’/r(r/\ + D(rﬂ—a/\ - D)\7T050'>

We plan to construct vectorfields X which are the analogue of the Killing vectorfield Ty = 0,
and conformal Killing vectorfields Ky = (#* + r?)9; + 3°; 2t2*0; in Minkowski space.
We shall do this with the help of a special solution u of the Eikonal equation

(Ou)? — g" (¢, 2)0;ud;u = 0 (2.84)

whose level hypersurfaces are forward light cones, C,, with vertices on the time axis G' given by the
points of coordinates (¢,0). The optical function u can be viewed as the analogue of the function
t — |z| in Minkowski space. It corresponds to the interior optical function introduced in section 9.2
of [C-K2].

Denote by Sy, the (n-1)-surface of intersection between the ¥, hypersurface and the null cone
Cy. Let 0; be the unit normal to ¥; and N the exterior unit normal to S;, tangent to ¥;. Let L to
be the null generator vectorfield of C,

L =—g¢"0,ud, = 0o, — (9" 0u) 0; (2.85)

Clearly, L(u) =0, < L,L >,=0 and D;,L = 0. Also, L =a (0, + N) with a ! = — < L, 9, >,.
L is tangent to the null geodesics generating C,. Denoting by s the affine parameter of L, i.e.

L(s) =1, s=0on G we can write
d

Define also the incoming null vector L = a(9; — N). We have < L,L >,= —2. We record all
these formulas below,

Dy,

L = a'(0,+N)
L = a(@t - N)
<L,L>, = =2
—a™' = < L,0; >,=—0;(u) (2.86)
At every point of the space-time there passes a unique codimension 2 surface S;,. Define 7 such

that the total area of the surface S;,, be equal to w,,_1r""! with w,,_; the total area of the standard
S"=! sphere. We associate to any point a null frame formed by the null pair (L, L) and a frame ey,

A=1,2,...,n—1 which is orthonormal on S;,. We shall also use the notation L = e, and L = e,,44
and e,, p=1,...,n—1,n,n+ 1 for the full null frame. The components of the space-time metric
relative to the null frame are g,, = gn+1)(n+1) = Gna = g4 = 0 and gn(ni1) = —2, gap = daB.

For the inverse metric g=' we have g™ = gDt = gnd — g(nDA = gn(nth) = 1,
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The tensor of projection to the surfaces S, is given by the formula
1
I =467 + §(L”Ly + L'L,).

We denote by Y the induced covariant differentiation on the surfaces S;,. We also denote by
D the space-time covariant derivative associated to the metric ¢ and by V that induced on the
hypersurfaces ;.

Let e4, A=1,...,n — 1 be an orthonormal frame to the unit sphere in the tangent space of a
point on the centerline (G). We extend this frame according to the equation,
d L (2.87)
—e = .
ds s
< 0Opea> = 0 (2.88)

with s the affine parameter of L defined above. Now 0 = d% < O eq >=< D0y, eq >= —0n a '

A
Therefore, n, = a < D0, ea > and since 0; = %(aL +a~'L) and Dy,0; = 0,

1
=5 < DrL,es >= kan.

In view of the fact that L is geodesic we infer that e, remain orthogonal to L. In particular the
ea's remain tangent to the surfaces S;,. Moreover

d
%<6A,63 >=n,<L,ep>+n, <L,es >=0,

and therefore < ey, ep >= 0,45 everywhere on C,.
We introduce the “frame coefficients”

< DaL,ep > =xap <DaL,ep> =x,,

<DpL,es> =0 < DpL,es > :2§A (2.89)
< DipL,es> =2ny < DpL,ey > =2n, '
<DyL,L> =0 <DpL,L> =4w

Observe also that < DyL,L >=< Dy L,eqs >=2n4 and < DL, L >= — < DL, L >= —4w. It
turns out that we can express the bar quantities x,n and £ in terms of the second fundamental
form k and the basic quantities x, 7, w. Indeed, since L = a='(d; + N) and L = a(9;, — N),

we have L = —a?L + 2a0,. Therefore setting kap = — < Du0;,ep >, kna = — < Dy0Oy,eq >,
kxny = — < Dy0;, N > we derive
Xup = —0°Xap—2akap
€, = —a’(kan +na) (2.90)
Ny = kay
L(a) = —knn

In view of the above definitions we can express the covariant derivatives of the null frame L, L, e4
defined above as follows

DaL =x,ze+naL DaLl = xapep —nal
DyL =2 e4— 2L DL =2naeq+ 2wl (2.91)
DLL == 2QA6A DLL =0
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Also,

1 1
Dgey, = WB(ZA + §XABL+ §XABL

Drea = Vyea+nal+¢§,L (2.92)
DLGA = WLGA—FQAL

As we have mentioned above the optical function u is a solution of the Eikonal equation 2.84.
The boundary conditions for u are specified as follows:
Condition 1: On the timelike geodesic (G) we have u = t. Here t is the arclength along (G) as

measured from the initial slice ¢ = 0.
Condition 2: The level sets of C,, are future null geodesic cones with vertices on (G). We choose

an afine parameter s, L(s) = 1 on C, such that s|) = 0. We also set, on (G), a|g) = 1. Finally
assume that try — ”;1 , X, ¢ stay bounded as s — 0, where try is the trace and x is the traceless part
of x relative to the n —1 spheres S;,,. Using this assumption one can in fact prove the better result,
try — 2=L = 0(s), ||, [¢] = 0(s) as s — 0, see section 9.2 in [C-K2]. Now w = a? < Dy,L,0, >=
a’0; < L,0; >, in view of the fact that D,d; = 0. Hence w = a*9;(—a™"') = d;a = 0 on (G).

Using the above Ricci formulas we calculate the deformation tensors of L and L.

(L)TI'LL = 2<DLL,L>:0
Mry = <DyL,L>+<DgL,L>=0

Drp, = 2< DL, L>= 8w

Bppa = <DyL,es>+<DuL,L>=0
Wnps = <DpL,es>+ < DuL, L>=4n,
(L)ﬂ'AB = 2<D,,L,eg>=2xan

Also,

Lr,, = 2<D,L,L>=0

Wry, = <DL,L>+<DyL, L >=4w

Wry, = 2< DL, L>=0

Wrpa = <DpL,eqs>+<DaL, L>=2(n, —na)
Drps = <DpL,eqs>+<DusL,L>=2¢,
(L)TFAB = 2<D,,L,eg>= 2XAB

With the help of the functions ¢, u and the null pairs L, L defined above, we can now construct
the analogue of the vectorfields Tj, Ky we have used in the flat case.

1

T, = ; (L 4 L) (2.93)
1

Ko = 5 <u2L + Q2L> (2.94)

32



where u = 2t — u.

Clearly the deformation tensor of Ty can be easily calculated from those of L and L, (o)

m =

%( (B 4 (L)1), Therefore, relative to the null frame, €,,, = L,e, = Land ey, A=1,...n—1.
Tz, = 0 (2.95)
My, = 2w
(TO)WM = —dw
S = Ny — N4
Wrpa = 2a+€,
Tlrap = XaB+X,p

Ko

The deformation tensor (50)1 of K can be expressed in the form

20 s = w Wy +u? By, (2.96)
+ eq(u?) < Lyesg > +eg(u®) < L, ey >
+ eq(u?) < Lyesg > +es(u’®) < L, e, >
Expressing (Ko)r relative to the null frame éni1 = L,e, = L and ey, ...e, ; and taking into account

the fact that L(u) = 0, eq(u) = ea(u) =0, < L, L >=< L,L >=< L,eq >=< L,eq >= 0, and
< L,L >= —2 we derive,

20, = W Py +u® Brpy

20y = W W +u? Prpp — 2(L(u) + L(w)
2 Koy w? Py +u? Oy — AL(u)
20y = W Paps +u® By

2 (KO)WLA = 2 (L)ﬂ'LA + u? (L)WLA — 26A(g2)
20y = w? Wrap +u* Prap

Hence, since Y(u) = 0,

(KO)WLL - 0
Sy = 2wt (L) + D))
Koy, = —du’w — 2L(u?)
(Ko)ﬂ-LA — UQ(QA —14)
(KO),]TLA — 2ﬂ277A + uzéA
Kolrap = u’x,, +u*Xab

Also,

tr (Kol = — (Kol o g §AB (Kol p = 20w + 2((L(u?) + L(u?)) + u’try + u’try. (2.97)
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Observe that L(u) = — < L, L >= 2 and L(u) = L(2t —u) = 2L(t) = =2 < L, §; >= 2a" .
Therefore
L(u)+ L(u) =2+ 2a".

We now introduce an approximate traceless tensor (507 defined by the formula,

(K0)7~Taﬁ = (KO)Waﬁ—anﬁ

Q = 4t (2.99)

Recall that 4t is the exact value of %Htr (Ko)7 in the particular case of the Minkowski space. We
have to calculate (K0)7,; and (Kol ,p.

Koz, = g, 490

= 20w — (L(u”) + L(u)) + 29
20w — 4(u + a”tu) + 8t
20w — 4a” (u+u — (1 — a)u) + 8t
20w+ 8t(1—a ) —4(1 —a Yu
= 20w +4(1 —a ") (2t — u)

Thus,

Eo)p = 20w +4(1 — a 1) (2t — ) (2.100)

Also,

F 74 = u’X ,p + XA — 40ap

Taking the trace with respect to the S;, surfaces we find,

§AB Koz o — uZtrX + ultry — 4(n—1)t
Recall that, x , . = —a”xap — 2akap. Setting

p=06"%k,p (2.101)
we find,
try = —a’try — 2apu
= —try + (1 — a®)try — 2ap
Hence,

GAB KOz = (u? — u®)try — 4(n — 1)t + <(1 — a®)try — 2au> u?

= 2t<(g —u)try — 2(n — 1)) + <(1 — a?)try — 2au> u?
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We write,

(w—u)try—2(n—1) = (w—u)(iry— ")+ ") 20— 1)
= nzl(u—u—%)—i-(u—u)(trx—nzl)
= 2(nr_1)(—u+t—r)+(u—u)(trx—nzl)
Consequently,
§AB Koz p = M(_U_Ft —r) 4+ 2t(u — u)(try — n ; 1)

+ <(1 — a®)try — 2au> u?

or setting 648 (Ko)7, p = = we have

E = E1+5 (2.102)
1
= = ((1 — a®)try — 2a,u>u — dtu(try — —) (2.103)
r
-1 4(n— 1)t
Sy = 4t%(try — n )+ (-1 (—u+t—r) (2.104)
r r

We also write, using the fact that xap = XaB + ﬁtrxéAB,

Ko)fap = u’X,,+u'Xap — 40ap

= UQ(_CLQXAB — 2ak p) +ﬂ2XAB — 4td s

= (u® — a®u®)xap — 4téap — 2ak s pu®

= (v - d*u®)Xap + (n

1
ltrx(QZ — a*u?) — 4t> Sap — 20k spu’

Now, since u + u = 2t,

1 1 1
ltrx(u2 —a*u?) — 4t = trx(u —u?) — 4t + (1 — a?) ltrxu2
J— JE— n J—
1
= Ttex(t —u) — 1 1-a? tryu’
( rx(t — u) )—i—( a)n_lrxu
1 t—r— 1
= (t—u rx—n )+ : u>+(1—a2) tryu’
r r 1
Therefore,
Koz, g = (v —ad®u?)Xap — 20k apu’ (2.105)
t(t — -1 4t(t —r — 1
+ <4 (t—u) (trxy — 1 )+ (t=r—u + (1 —a?) trxu2> daB
n—1 r r n—1

We recall our calculations for the deformation tensors of T, K in the the following proposition:
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Proposition 2.4 Consider the vectorfields
1

1
Ky — §<u2L+g2L> (2.107)

i.) The null components of the deformation tensor of Ty are given by the formulas:

(TO)'/TLL - 0 (2.108)
(TO)T‘-LL e 2&

(To)ﬂ'ﬁ = _4@

Tqpy = Uy

(To)

TLA = 277A+§A

Mrap = xap+X,p5 = (1 —d*)xap — 2akap

ii.) The null components of F0)7% verify the following properties:

U7 =0
Eolzrn = 20w +4(1—a V) (2t —u)
Eolz = —4u’w — 2L(u?)
Fozpa = u’(n, —na)
(Ko)ﬁ_LA — 2Q277A + U2§A
Fo)iap = (U — a’u®)Xap — 2akapu’
t(t — —1 4t(t — r — 1
+ (4 ( u)(trx _n )+ (t=r—u) + (1 —a?) trxu2>5AB
-1 r r n—1
Moreover the trace 648 (Ko)7 , p relative to the St surfaces, which we denote 3, verifies the formula

= = El + EQ
= = ((1 — a®)try — 2au> u? — dtu(try —
n—1 4(n—-1)

Sy = 4t*(try — ) +
r T

n—1
T

)

(—u+t—r)

Observe that all the null components of ()7 and (507 are determined by a, X> X1, & w. In
view of the formulas 2.90 it suffices to estimate a, x,7,w, and the components of k. In view of the
assumption 2.79 we have,

||k||L1L°°('D1) S CAie

Since we can write k(t) = —2 [i 02g(s)ds we also have,

k]| oo () < CA™?
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forall t € I.

Similarly, in view of the fact that L(a) = kyy we infer, integrating with respect to the affine
parameter s of L, (L(s) = 1,with s = 0 on the intersection of the vertex of C, , or t = 0,) and
taking a(0) =1

la —1||pe < CA™C

To estimate y,n,w we shall use the eikonal equation 2.84. Observe that y, 7, w are the nonva-
nishing components of the hessian D?u which verifies the Jacobi equation,

Dy (D*u)ap + (D*u) *(D*u) 5 = Rarse (2.109)

Decomposing 2.109 relative to our null pair L, L, and proceeding as in chapter 9 of [C-K2] we derive,
relative to the orthonormal frames e, defined in 2.88,

d
o XAB T XAoXac = —Qap (2.110)
d
i xap(n+mn) = —Pa (2.111)
d
e (n+2n) = p (2.112)

where aap = Rarr, Ba = %RALLL p = iRLLLL- Splitting x into its trace(relative to the (n-1)-

surfaces S;,), try = 618 x4p and trace less part X,
XAB = XAB + trxdanp
n—1
we, rewrite 2.110 in the form,
dt + ! (trx)? X2 —t (2.113)
—tr —(tr = — — trav X
ds X n—1 X X
i +—2 ey (XacX ! 1X[%)0 A (2.114)
— r = — - —a X
s XAB T T IXXAB XacXep — 7 IX|)04B AB

where ayp = diup + ﬁtraéAB.

Theorem 2.6 i. Under the assumptions 2.72-2.75, with k = 1, and the additional assumption
2.79 we have the following estimates:

n—1

| trx — lpoopyy < CAT?
IXllzoepyy < CA™?
Inllzoepy < CA?
|wl|poepy < CAT

Moreover each time we take a covariant derivative, relative to the null frame L, L, V, of the quantities
try — ”T_l, X 1 and w we improve their asymptotic behavior by A1, Under the same assumptions
we also have,

37



lu—t+r
r

ja = 1]

o 1]

—

L al

| al

|V al

IN

IN

IA AN A

CA €
CA™€
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CA™2
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All higher covariant derivatives with respect to the null frame improve by A~".

ii. Assume now 2.72-2.75 for k = 2 and 2.79. Then all first covariant derivatives, with respect
to our null frame, of the quantities try — ”T’l, X, 1 and w we improve their asymptotic behavior by
A=2. All further derivatives with respect to the frame improve by A1,

iii. Assume again 2.72-2.75 for k = 1 and 2.79. Assume in addition that g = ¢* are Einstein
metrics, i.e. the Ricci tensor Ric(g") vanishes identically. Then,

where divn = V4.

|Vtrx ||z (o)
ey < CA™

n j—
1L (trx —

1

CA™*

IN

N

| divn|| Lo,y < CA™?

The proof of the first two parts of the Theorem is a much simpler version of that used in chapters
9 and 13 of [C-K2] to derive the asymptotic properties of various components of the Hessian of the
optical function and their higher derivatives. To avoid making the paper too lengthy I will assume
Theorem 2.6 without proof. Together with I. Rodniansky we plan to present a formal proof of these
asymptotic results in a following paper [KI-R].

Part iii. of the proof relies on the methods presented in section 13.1 of [C-K2]. A short sketch
of the method and its adaptation to quasilinear equations is discussed in the last section of this

paper.

Combining proposition 2.4 with theorem 2.6 we easily derive the following:

Theorem 2.7 Under the assumptions 2.72-2.75, with k = 1, and the additional assumption 2.79
we have the following estimates for the deformation tensors T and Koz :

VAN VAN VAN VAN VAN

w
co

CA™?
CA?
CA?
CA™?
CA?+ A



All higher derivatives improve by A1,

VAN VAN VAN VAN VANRN VAN VAN
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3 Conformal Energy Estimates

3.1 First Derivative Estimates

Our goal in this section is to sketch the main steps in the proof of the Theorem 2.5 using the
conformal energy method and the vectorfields Ky, Tj defined in the previous section. We first recall
Proposition 2.2 applied to the equation O ¢ = F' and the vectorfield X = K, = (WL + v?L)
which we have defined in the previous section. Setting also Q = 4t, Kog = (Kf’?)fr + Qg and
observing that

1 1.
04t =——=0n/l9] = —§g”6tkij = trk
V191

we derive the formula,

/EtQ(Ko,at) = - Q(Ky, 0;) + /to /TQa,B K0z odr (3115)
/to /ZT trk¢2d7+/to /ET(K()Q;JF (n — 1)tp)Fdr

n—1

where,

Q(KO, 0) = Q(Ko,0)+ (n—1)tpo,

1
Q(Ko,0) = ZQ(QQL +u’L, aL +a”'L)
1
— (0020 + (@t + ) WP + 0 (Lo
Throughout this section we denote by [y, F' the integral [ F/|g|(t,z)dz and by [, F' the space-
time integral [} fs, Fdr = [} [ F\/|g|(t, z)dtdz. We can integrate by parts on ¥; for given tangent
vectorfield X according to the formula,

[ rox(@) = —/2 (X(F) + FdivX) -G (3.116)

with divX = ¢”D;X;. In the particular case of the vectorfield N, the unit normal, in ;, to Sy,
we have, divN = trf where 6,5 =< ¥V ,N,ep >. with the trace defined relative to S;,. Since
N = aL — T we have trf = atry — p, it = 0*Pkp. Therefore we have

[ roN ) = —/E (N(F) + (atry + 0(A2)F) - G (3.117)

We also record the following formulae, see Remark 2 on page 86 of [C-K2],

Lemma 3.1 Let F be a scalar function V' a vectorfield on ¥, tangent to the surfaces Si,. Then
F-¢giwV = — | (YF+ Fa 'Ya)-V
2,5 Et

F-V. = —| FdiwV — | Fa'Va-V
2,5?7 s div . a Ya
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We record below a proposition which is analogous to the part iii) of proposition 1.4.

Proposition 3.1 Ifn > 3, there exists a constant ¢ > 0, independent of A such that for allt € I

/E QK0,0) = £200](1) (3.118)

where

et = [ (16 +(L6)* + 179 +0(Lo)?) (3119)

Sketch of Proof Follows precisely that given in Proposition 1.4. First observe, following the same
steps as before 1.21, that we can write the term t0;¢ in the form,

t0p = %(U+Q)at¢
= 59— S(u-uN
S = %(a@L +a tul) (3.120)

Also,

212

1
ﬁ e 5(@@[/@5 — a_luLd))
This is due to the fact that L = a='(9, + N), L = a(d, — N) with N the unit normal to S,

tangent to ;.
Using 3.120, just as in 1.21, we integrate by parts with the help of the formula 3.116,3.117

1
[ towe = [ So-0-7 [ w-uN)
M b Bt
1 1
= —/ S¢J.¢+_/ (N(g—u)—i—l/N(g—u))(/)z
2 2,5 4 2:‘,
where vy = atry + p. Expressing N in the form N = 1(aL —a'L), u = 2¢ — u and using theorem

2.6 we deduce,
Nu—u)+vy(u—u)=2n+ (A

and we infer that,
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/2t Q(Ko, Ty) = /2t %(af(Ld))Q + (a7 "u? + aud)|Vo|? + a‘1u2(L¢)2> (3.121)

(n—1)°
2

+ =) [ 050+ (P 0 [ 67

Similarly using 3.121 we proceed as in 1.22,

/2t t00p = /2t u_ud)sd) gt UN((Z)2) (3.122)
2 t2
B /2tu_u¢5q§—|—/ < u))+VNu—u>¢2
We claim that
t? 2 2 »
N((u_u))+VNE:2(n—2)W+O(A )

The remaining part of the argument is now precisely as in proposition 1.4.

We now proceed to prove the boundedness of the generalized energy norm E£[@](t), t € I = I,
with ¢ solution to our basic equation O ,¢ =0, g = g*. To do this we have to estimate the error
terms [ trk¢? and [, Q¥ (Ko)frag, see 3.115 with respect to £[¢] and thus derive the desired bound
for the latter by the Gronwall inequality. The first error term is very easy to estimate in view of
the fact that ||k||rp,) < CA 2 To estimate the second we proceed as follows:

The null components of the energy momentum tensor Qus = 0093 — 39as(9" 0,00, ¢) are
given by,

Qrr = |Lo|*, Qrr = VoI
Qe = |Lol", Qra=L($)V 10 (3.123)

Qui = LOVS,  Qus=VagVsd— (= LGLEG) + V9P )b

Recalling( see Proposition 2.4) that §47 (K07 5 = = we write,

QF iy = VRV + iyl Lo (3120

n—1

— Koz s L($)V 4 — Z Vi aL(0)V 40
A=
n—1

b Y Y 08,0 - LEITP
A,B=1
1

+ SEL)L(O)

We now recall the results of theorem 2.7. In view of

17 ()] < C(PAT? + A7)
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we infer that

. bl -
[, “Omlver < | sl R ()€ (r)

to (1+7)
¢

= 2 —e 2
C’(A tOS (r)dr + A \ 1—1—7’5 (T)d7'>

IN

with Dt [to, t] x R".
Since || Bz, ()]l < Ct2A~2 we also easily deduce that

/ (K07, | |Lo|? < CA~2 52( \dr
Dy -

In the same vein,

/Dt (KO)%LAL(¢)WA¢ < ON 2 /t E2(r)dr

To estimate the term [ (K97, ,4L(#)V ,¢ we make use of | K07 4| < w?A2,

t
/ (K07, \L(6)V 6 < CA™2 [ £2(r)dr
Dt to
Also,

/Dt K7 Ap Y 49V o < C( / EX(r)dr + A 1_1_—75 (T)dT).

Recalling the definition of = = =; 4+ =5, see Proposition 2.4 we easily check that,

[ ztene <c(r? [ ewdareac [ —ewar).

The only difficult term to estimate is R = [, Z9L(¢)L(#). This is due to the fact that if we use
the obvious bound |Z5(t,z)] < t*A~ we run into a serious obstacle as L¢ may not absorb ¢ as a
weight. For all other terms we find,

1

t
o8 (K0)z - _ R <C(A2 E2(1Vdr + A~
| 'DtQ ’/Tﬁ |_ to ( ) T+ to 1+7_

— (T)d’/'). (3.125)

We can therefore concentrate our attention to R. Introduce a truncation function 0y = (¢, z)
with the property that 6y = 1 in the region where u < £ and 6y = 0 in the region u > £. Moreover
100o] < Ct~" for t > 2. Clearly there is no difficulty to estimate the term [ Z5(1 — 09)L(¢)L(o)
where u > L. Thus,

[ 2201 - 00)L(6)L(6) < A tth(T)dT. (3.126)

To estimate the remaining term we first write ¢"”¢,¢, = —L(¢)L(¢)+|V$|?, or, since O ,¢ =0,

LIO)L() = V6P — 5 0,().
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There is no problem to estimate [p, Z200|¥¢[*. Therefore the only nontrivial term remaining to be

estimated is .
R1 == —5 > 5290 ] g(¢)2)dvg (3127)

Now, O, = —tb.rp + 6481, 4p. Using the formulas 2.91 and 2.92 we calculate,

Y = LL(Y) —2n- V¢ —2wL(v)
Vap = VpVa¥— %XABLT? - %XABLT/)

Therefore,
O¢ =—LLY+ Ay — %trxLz/) — %trxL@/) +2n - V) + 2wlip.
In view of the fact that
1Z2(t) ]|z < C(EPAT* + A7),
it is easy to see that the only nontrivial term remaining to be estimated has the form,

1

B=—3 /D 5290< — LL(¢%) + A(¢%) — %trxL(qﬁZ)) = By + By + B; (3.128)

To estimate B; we first integrate by parts using the formula 3.116. Recalling that v = %giJL(gz-j)
we have:

Bi= [ SLL?) =~ [ (L(Ezeo) + @5290>L(¢2) + B
t t
where B; is the boundary term,
Bl :/ EQQOGL(d)z) —/ EQGO@L(¢2).
Yt Zto

Clearly, [y, Z26pal(¢®) < Clt|A2E%(t), or, in view of the fact that ¢ < A*~¢,

/E =,00aL(6?) < CA—EX(1).
Thus,
1B| < C(A™E2(t) + £(2)). (3.129)

Clearly, since u < £ on our domain of integration and u = t — 7 +tO(A™°) we have r > £ +tO(A™).
Therefore, for A sufficiently large, |v,| < C(3 + A™?) and thus,

t t
[ mEatoL(¢?) < C<A2 E2(r)dr + A —SZ(T)dT>.
Dy to to L+ 7
We also have,
t
/ =,L(00)L(¢%) < CA~2 [ €2(r)dr
Dy to
The only term of B; which remains to estimate is
| LEsL(6) (3.130)
t
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To estimate By we write with the help of the Lemma 3.1,

By = [ Zubop(6) = - [ (Va(Eat) + 071020 ¥,(69)

Recall that, |[a™'¥ ;a] < A~2. Thus the only term which is not straightforward to estimate is

[, Va(E2)007 4(6"). (3131)

Leaving 3.130, 3.131 aside for a moment it remains to estimate By = [, Zy0ptrxL(¢?). Inte-
grating once more by parts we have

B3 = — /D (L(EngtI'X)¢2 + VLEZGUtrX> ¢2 + Bg
with B3 the boundary term,

Bs :/ Zefotryag? —/ Eobotryag?.
S b

to

As above,
1Bs| < O(AT°E2(t) + £(2)). (3.132)
Using the straightforward estimate ||Z5(t)||p~ < C(t?A~2 + A=) we easily deduce that,
t t
/ v Zalotry? < C’(A2 EX(T)dr + A€ —82(T)d7>.
Dy to to 1 +7

The term corresponding to the integrand =, L(6,)try$? can be estimate in precisely the same way.
Therefore the only terms connected to Bs which remain to be estimated are

| L(E)0trxe? (3.133)
Dy
and
/D Z,0, L(try)¢? (3.134)
To conclude that,
t t 1
B < CANE*(t) + CE* (ty) + CA 2 | EXr)dr + A°° = E2(T)dr (3.135)
to to T

it only remains to estimate the terms 3.130, 3.131, 3.133, 3.134. Recalling that =, = —4t*(try —
"7_1) + M(u —t+r) it is easy to see that the only difficulty with these terms appear when the
derivatives Y, L fall on try. In these cases we need the pointwise estimates, see part ii) of Theorem

2.6,

n—1

[W(trx —

[IL(trx —

ey < A (3.136)

n—1

ey < A (3.137)
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Remark: The estimates 3.136, 3.137 which are needed in connection to the terms 3.130, 3.131,
3.133, 3.13/, see also 3.150 below, are the only ones which require k = 2 in the assumptions 2.72—
2.75 of our proof of Theorem 2.5. Using 3.136, 3.137 we derive,

IL(E)|oopy < CHEAT! (3.138)
IV(Z2)|repy < CPAT (3.139)
Therefore,
t
/ L(Z)0L(6?) < CA2 [ &(r)dr
Dy to
t
[ VaE0Ta(0?) < oat [ eryar
Also,

t
/ 2000 L(try)¢? < A2 [ €2(r)dr
D to

t

and therefore we have established 3.135 and the same estimate for R. Combining this with 3.125
we infer that,

Proposition 3.2 Under the assumptions 2.72-2.75 for k = 2 as well as 2.79 we have for allt € I,

1
to 1+T

t
/ Qaﬂ (Ko)ﬁ—aﬁ S CA—egQ(t) + CgQ(tO) + CA_2 52(7‘)d7‘ =+ A€ 52(7')d7' (3140)
Dt to

Therefore, in view of the identity 3.115, proposition 3.1 and Gronwall inequality we conclude with
the following:

Proposition 3.3 Consider the equation O ,¢ = 0 in the domain Dy with g = g* verifying the
assumptions 2.72-2.75 for k = 2 and 2.79. Then, with the £(t) = E[¢|(t) defined as in 3.119, and
C a constant independent of A,

E(t) < CE(ty)

forallt el.

3.2 Estimates for Higher derivatives

In the previous section we have shown how to bound the integral £[¢](¢) on the domain D in terms
of only the initial data. To implement the strategy, which we have discussed in details in the flat
situation of section 1.2.(see in particular proposition 1.5, for deriving decay estimates for d¢, we
need also to estimate the norm £ for higher derivatives of ¢. For this reason we define the quantity

s+1
Ea1010) = 163wy + SNl blomy + X PIVL LGl (314D)
a=1 1<a+b+c<s+1;b-c£0

with Y*LPL°¢ representing the a-th covariant derivative of the scalar L’L¢ along the Sy, surfaces.
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The goal is to prove that £,(¢) is bounded for ¢t € I,. Our strategy is to estimate first the
time derivatives of ¢, using the norms £[0}¢] by commuting with the equation O ,¢ = 0 and then
derive the estimates for all other derivatives of ¢ from the equation 9?¢ = A ¢ + 0y(log \/E)am.

The simple strategy of applying the estimates derived in the previous section to time derivatives
of the equation O ;¢ = 0 will not work however because of the error terms generated whenever we
commute with the wave operator. Indeed, in view of the Lemma 2.3, we have

0,006 = F = 1Dy Dy + D*mop Db

where m = —2k is the deformation tensor of 9;, k the second fundamental form of the ¥, surfaces.
To get a bound for £[0,¢] we need to estimate [5 (Kop + (n — 1)t¢)F. This requires that
behaves like 0(A™*) which is not true in general.

To get around this difficulty we replace 0, by the vectorfield Ty = (L+ L). Recall that M7, =
0. In what follows we will sketch the proof for the boundedness of &;[¢].

According to Lemma 2.3 we have,

0 ,(Typ) = F = W7D, Dsgp 4+ D* T, D ¢ (3.142)

with ("7 the deformation tensor of T,. We now apply 3.115 to the equation O ¢(Tvp) = F and
derive

_ ~ 1
— = ap (Ko) ~
L, Qmel0.0) = [ QTl(Ke,00 + 5 [, @7 1T06] s (3.143)
-1
— [ (KT + (0 = )iTo) F = = [ x| Tyo
Dy Dy
In view of the proposition 3.1 we have
[ QU] T) = (T (1) (3.144)
Proceeding exactly as in the previous section we can show that,

| @ 06) "res < CATENTGI(E) + CETg) (k) (3.145)

t t 1
+ ON2 [ Emel(r)dr + A [ & Tl(r)dr
to to 1 +T7
The only new type of terms which we have to estimate are of the form
J = [ (Ko(Too) + (n = D)HTs0)F.
t
with,
F - F1 + F2

F = 5D Dso
F, = DT\ D*¢
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Let,
J=J +Je

where,

Je= [ BolKa(Tos) + (n — DH(To)) P

and 6y a cut-off function defined as 3.126. In what follows we will concentrate only on .J,, the
interior integral J; is far easier to handle.
For F| we write,

1 1
b = 4 @y, oL + 4 (TO)WLL¢-LL - 5 (TO)WLL¢~L£
_ (To)@A¢;LA_ (To) TL AP LA + (To 7TAB¢AB

Using the formulas 2.91 and 2.91 we calculate,

b = L*¢

¢ = LL(¢) —2n-V(9)

¢ = L*¢+2wLle — 2 ea(d)
dra = ea(Ld) — xappp +nale

$ra = ea(Llo) — XAB¢B + naLeo
ban = VaVub = 5x,,l0 — 5xXanLo

Therefore, since ™7, =0,

(o 7TLL<$¢ - 1tl“XL(d)) - ltrXL(¢)>

2
XaBY b + 77AL(¢)>
VA(L(9)) ~ X1 Va6~ maL ()

b Oy (7,756~ xanl9) - 5x,,1(6))

o= lang L
2
) —

The most dangerous terms in the integral [}, 6, (KO (Toop) + (n — 1)t(T0¢)>F1 are of the form
Oou’ LTy (¢) F.
Dy

Consider for example the integral,

LTy (8) - Wy 1+ (V4(L()) = x4V~ naL(0))

D¢

Since || )7y, 4(t)||L~ < CA72. we infer that,

Oou2Lo @, , - <Y7A(L(¢)) XVt — nAL(qs)) <A [ Emdl(r)Ear)dr  (3.146)

Dt to
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All other terms can be estimated in the same manner. Thus,

[ (KolTud) + (= DT (o)F < €A /tjg[Toqﬁ](T))gZ(T)dT (3.147)

t

1
+ A \ H—TS[TO(/)] (1))E2(T)dT.

On the other hand we have
B, = D> D¢
1 « (T()) 1 « (To) « (To)
= —§D 7TOALL¢ — _D WaLLQs + D WQAWAQs

1,1 1
= _5(_§DL (TO)ﬂ'LL - §DL( )7TL + DA (TO)ﬂ-A )L¢
1.1 1
B 5(_§DL @)y, — §DL Ty, + DA M)y ) Lo
1 1
—+ ( §D£(T0)7TLA—§DL( )7TLA+D 7TAB)WAd)

The most dangerous terms in the integral

/D 0o (KO(T0¢) +(n - 1)tTo(¢)>F2
t
are of the form
1
/ 90’& LTO¢ (—— (To )ﬂ-LL — §DL( )7TLL + D (To )ﬂ-AL) Ld) (3148)

Using 2.91 and 2.92 we calculate,

DL(TO)WLL = L((TO)WLL) —477A (T)ﬂ'AL —4w( )'/TLL 477A (TO)WAL
DL (TO)T‘-LL — L( (TO)ﬂ-LL) - 2QA (To )7TAL
DA, = V(M) — xap ™ — ®raexpe + ™rapn?

We have, L(T)rp;) = 2L(w) and V(D)) = WA(QA —n4). Thus the only term which depends
of the third derivatives of the metric is divn. Returning to 3.148 we have to estimate,

/t/ Ooudivn - LTo - Lo
to /%
To do this we need the estimate, see part ii) of Theorem 2.6,
|divn| < CA™ (3.149)
Then,

/: /Et Oou’divny - LTyep - Lo < CA™2 /t:S[Tod)](s)S[d)](s)ds (3.150)

t
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All other terms are easier to estimate. We find,

/t: /Et(Ko(T()(ﬁ) +(n = DtTy(¢)) F, < CA™? /t:S[T0¢](s))(8[q§](s) + E[p)(s))ds. (3.151)

Thus, combining the estimates, 3.147 with 3.151 and also 3.142, 3.118 we derive,

EToo)(t) < E[Toe)(0) + A~ /ttg[Todﬂ(T))&(T)dT (3.152)
t 1
+ A€ \ H—Tg[TO¢] (1))E(T)dr.
Similarly, proceeding in the same way,
ET5ol(t) < E[T5el(0) + E2[T5)(0) + A~ /ttS[T§¢](T))53(T)dT (3.153)
t 1
+ AT \ H—TS[TOQ(Z)] (1))E3(T)dT.
On the other hand, expressing
1
0 =Ty + (a—a )L~ 1)

in the equation,
02 + Oy log \/|g|0rp = AW/

and using L? elliptic theory, based on simple integration by parts arguments, we deduce

&(t) < CEMT3OI(E) + EITo0l(1) +ED01)).
Therefore,

Proposition 3.4 Consider the equation O ,¢ = 0 in the domain Dy with g = g* verifying the
assumptions 2.72-2.75 for k =2 and 2.79. Then with C' a constant independent of A,

Es(t) < C&;(ty)
forallt e I.

The same estimates can be proved for the norms &;, s positive integer. We can then proceed exactly
as in the proof of propositions 1.5 and 1.6 to deduce the required decay estimates of theorem 2.5.

3.3 Further Improvements

The arguments presented so far in this paper only prove Theorem C ( see section 2.1) with a loss o >
%. To obtain Tataru’s better result o > % we need to deal with the integrals 3.130,3.131,3.133,3.134
and 3.150 with the limited regularity assumptions 2.72-2.75 for kK = 1. In what follows I will sketch
an argument which shows that by using the special structure of the nonlinear equation we can derive
Tataru’s result. The key observation is that for an Einstein metric, i.e. a metric with flat Ricci
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curvature, the quantities'” L(Z,), Y(Zs), divy have the same regularity properties as the curvature
tensor of the metric, rather than the covariant derivative of the curvature(as one expects in general).
This fact played an important role in [C-K2| and is explained in details in the section 13.1 of the
book. Though our metric ¢* = ¢g*(¢) is not an Einstein metric we can show that Ric(L, L) is
better behaved. This fact suffices in order to use the improved regularity estimates of section 13.1
in [C-K2].

Recall that

1
Ry, = §gaﬁ (auaagﬁu + 0,009 — Ou0ugap — aa@ﬁg””) +Qr.

with Qr denoting terms quadratic in g, g

Thus,
| 1
Ric(L, L) = L(gaﬂ (Ongsu " — §L(ga5)> — DMLY (°0,030) + Q.

i.e. schematically,
Ric(L,L) = L(m) +n (3.154)

with m an expression depending only on the first derivatives of the metric and n a term which
depends'® on the second derivatives of the metric through the wave operator g*?9,0s. In view of
the fact that ¢ = ¢*(#) and ¢ verifies the original nonlinear equation O ¢ = N(¢, 0¢), see 2.31, it
is easy to see that n is a lower order term. Now consider the equation 2.113

d 1
gtrx + m(trx)Z = —|x|? - tra (3.155)

with aap = Rarsr, and tra = 6*Payp. Thus tra = ¢"'R,1,;, = Ric(L, L) and we can rewrite the
equation 3.155 in the form,

d 1 .
;(trx —m) + m(trx)Z = —|x]* —n. (3.156)

To estimate'® the angular derivatives of y one differentiates 3.156 as in the formula 13.1.6a of
[C-K2] to obtain,

d 3 A ) )

E(WAHX = Vam) + §)WA”X = Van—XaBYVptrx — 2XscV X80 (3.157)
. 1

= (a+ )X+ 5 (%)), (3.158)

We consider this equation coupled with the Codazzi equation for x, see formula 13.1.21 in [C-K2],

R 1
(v X)a + Xapns = 5 (Watrx +1atrx) — fa (3.159)

"These quantities depend on L(trx), Ytry and divy which depend, in general, on the third derivatives of the
metric, see part iii of the theorem 2.6.

181t also depends quadratically on Og.

9For simplicity we assume in what follows n = 3 which is the case considered in [C-K2].
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which can be viewed as an elliptic system on the 2-surfaces S;,, see proposition 2.2.2 in [C-K2].
One can thus proceed as in proposition 13.1.1 of [C-K2] and estimate the angular derivatives of
both try and x in terms of £, n, ¥Ym and the undifferentiated quantities x,n, n.

To estimate Ltry and divn one has to proceed as in the proof of proposition 13.1.2 in [C-K2].
The clue is the following equation for Ltry, see formula 13.1.2h in [C-K2],

1
Ltry + §trxtrx + 2wtrx = dhvyp — ¥ - X+ 2[n> +2p (3.160)

Also, see formula 13.1.2i,

X A

DN | =
[ <>

cyrln =6 —
Here p,5 are components of the curvature tensor R. Now introduce, as in 13.1.10c of [C-K2],

p = —divn + %f( - X — p+|¢%. From 3.160 we have

1 1
= —§(Ltrx + §trxtrx + 2wtry).

We estimate ¥ and g from the elliptic Hodge system on Sy,

.. .
X (3.161)
cfrlny = 6 — XAX (3.162)

and a propagation equation for p, similar to that in formula 13.1.11 of [C-K2]. The crucial point
of this procedure is that in the propagation equation for p there are no terms which depend on
derivatives of the curvature R.
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