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ON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN

RICCI FLAT MANIFOLDS
ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

ABSTRACT. We revisit the extension problem for Killing vector-fields in smooth Ricci flat
manifolds, and its relevance to the black hole rigidity problem. We prove both a stronger
version of the main local extension result established in [1], as well as two types of results
concerning non-extendibility. In particular we show that one can find local, stationary,
vacuum extensions of a Kerr solution K(m,a), 0 < a < m, in a future neighborhood
of a point p of the past horizon, (p not on the bifurcation sphere), which admits no
extension of the Hawking vector-field of C(m, a). This result illustrates one of the major
difficulties one faces in trying to extend Hawking’s rigidity result to the more realistic
setting of smooth stationary solutions of the Einstein vacuum equations; unlike in the
analytic situation, one cannot hope to construct an additional symmetry of stationary
solutions (as in Hawking’s Rigidity Theorem) by relying only on local information.
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1. INTRODUCTION

In this paper we revisit the extension problem for Killing vector-fields in smooth Ricci
flat Lorentzian manifolds and its relevance to the black hole rigidity problem. In the most
general situation the problem can be stated as follows:

Assume (M, g) is a given smooth pseudo-riemannian manifold, O C M is an open
subset, and Z is a smooth Killing vector-field in O. Under what assumptions does Z
extend (uniquely) as a Killing vector-field in M ?¢

A classical result' of Nomizu establishes such a unique extension provided that the
metric is real analytic, M and O are connected and M is simply connected. The result
has been used, see [5] and [4], to reduce the black hole rigidity problem, for real analytic
stationary solutions of the Einstein field equations, to the simpler case of axial symmetry
treated by the Carter-Robinson theorem. This reduction has been often regarded as
decisive, especially in the physics literature, without a clear understanding of the sweeping
simplification power of the analyticity assumption. Indeed the remarkable thing about
Nomizu’s theorem, to start with, is the fact the metric is not assumed to satisfy any
specific equation. Moreover no assumptions are needed about the boundary of O in M
and the result is global with only minimal assumptions on the topology of M and O.
All these are clearly wrong in the case of smooth manifolds (M, g) which are not real
analytic. To be able to say anything meaningful we need to both restrict the metric g by
realistic equations and make specific assumptions about the boundary of O. Local and
global assumptions also need to be carefully separated.

In this paper we limit our attention to a purely local description of the extension
problem in the smooth case. Throughout the paper we assume that (M, g) is a non-
degenerate Ricci flat, pseudo-riemannian metric i.e.

Ric(g) = 0. (1.1)
We recall the following crucial concept.

Definition 1.1. A domain O C M is said to be strongly pseudo-convezr at a boundary
point p € 00 if it admits a strongly pseudo-convez defining function f at p, in the sense
that there is an open neighborhood U of p in M and a smooth function f : U — R,
Vf(p) #0, such that ONU ={x € U : f(x) <0} and

D*f(X, X)(p) <0 (1.2)
for any X # 0 € T,(M) for which X(f)(p) =0 and g,(X,X) =0.

It is easy to see that this definition, in particular (1.2), does not depend on the choice of
the defining function f. The strong pseudo-convexity condition is automatically satisfied
if the metric g is Riemannian. It is also satisfied for Lorentzian metrics g if 0O is space-
like at p, but it imposes serious restrictions for time-like hypersurfaces. It clearly fails if

1See [9]. We rely here on the version of the theorem given in [4].
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00 is null in a neighborhood of p. Indeed in that case we can choose the defining function
f to be optical, i.e.,
D*fD,f =0 (1.3)

at all points of JO in a neighborhood of p, and thus, choosing X* = D f, we have,
1
X*X D, Dsf = §X(Da fD.f) =0.

Besides a new extension result, see Theorem 1.2 below, the paper contains two local
counterexamples. In our main such result, see Theorem 1.3, we show that at any point p in
the complement of the bifurcation sphere of the horizon of a Kerr spacetime K(m,a),0 <
a < m, with T, Z denoting the usual stationary and axially symmetric Killing vector-fields
of K(m,a), one can find local extensions of the Kerr metric, which coincide with K(m, a)
inside the black hole, and such that only T extends as a Killing vector-field to a full
neighborhood of p. The condition a > 0 is important in our proof, since our construction
only works in the region where T is timelike, i.e. the ergo-region. It remains open whether
a similar counterexample can be constructed for the Schwarzschild spacetimes KC(m, 0).

We first state the following extension theorem:

Theorem 1.2. Assume that (M,g) is a smooth d-dimensional Ricci flat, pseudo-rie-
mannian manifold and O C M is a strongly pseudo-convexr domain at a point p € 00.
We assume that the metric g admits a smooth Killing vector-field Z in O. Then Z extends
as a Killing vector-field for g to a neighborhood of the point p in M.

Under more restrictive assumptions, a similar result was proved in [1] as a key compo-
nent of a theorem on the uniqueness of the Kerr solution in [2]. In this paper we present
a different, more geometric proof, which is valid in all dimensions and for all pseudo-
riemannian metrics. More importantly, the proof we present here does not require that
the vector-field Z be tangent to the boundary 0O in a neighborhood of p, or the existence
of a geodesic vector-field L, defined in a neighborhood of p, and commuting with Z in O.

In applications, one would like to use Theorem 1.2 repeatedly and extend the Killing
vector-field Z to larger and larger open sets. For this it is important to understand the
"size” of the implied neighborhood in the conclusion of the theorem, where the vector-
field Z extends. The proof shows that this neighborhood depends only on smoothness
parameters of g and f in a neighborhood of p (see (2.24)), and a quantitative form of
strong pseudo-convexity described in Lemma 2.11. The neighborhood does not depend in
any way on the vector-field 7 itself.

In view of Theorem 1.2, Killing vector-fields extend locally across strongly pseudo-
convex hypersurfaces in Ricci flat manifolds. A natural question is whether the strong
pseudo-convexity condition is needed. We give a partial answer in Theorem 4.3: in
general one cannot expect to extend a Killing vector-field across a null hypersurface in a
4-dimensional Lorentz manifold.?

2Such a hypersurface is not strongly pseudo-convex, see the discussion before Theorem 1.2.
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Our second main theorem provides a counterexample to extendibility, in the setting of
the black hole rigidity problem. Let (K(m,a),g) denote the (maximally extended) Kerr
space-time of mass m and angular momentum ma, 0 < a < m (see [5] for definitions).
Let M(") denote an asymptotic region, E = Z~ (M) N Z+ (M) the corresponding
domain of outer communications, and H~ = §(Z* (M) the boundary (event horizon)
of the corresponding white hole®. Let T = d/dt denote the stationary (timelike in M("9)
Killing vector-field of (K(m,a),g), and let Z = d/d¢ denote its rotational (with closed
orbits) Killing vector-field.

Theorem 1.3. Assume that 0 < a < m and Uy C K(m,a) is an open set such that
UNH NE#Q.

Then there is an open set U C Uy diffeomorphic to the open unit ball By C R*, UNH~ # 0,
and a smooth Lorentz metric g in U with the following properties:
(i)
ERic =0 in U, Lrg=0 inU, g=g nU\E; (1.4)
(i) the vector-field Z = d/d¢ does not extend to a Killing vector-field for g, commuting
with T, i U.

In other words, one can modify the Kerr space-time smoothly, on one side of the horizon
H ™, in such a way that the resulting metric still satisfies the Einstein vacuum equations,
has T = d/dt as a Killing vector-field, but does not admit an extension of the Killing
vector-field Z. This result illustrates one of the major difficulties one faces in trying
to extend Hawking’s rigidity result to the more realistic setting of smooth stationary
solutions of the Einstein vacuum equations: unlike in the analytic situation, one cannot
hope to construct an additional symmetry of stationary solutions of the Einstein-vacuum
equations (as in Hawking’s Rigidity Theorem) by relying only on the local information
provided by the equations.*

The rest of the paper is organized as follows: in section 2 we prove Theorem 1.2
and in section 3 we prove Theorem 1.3. In section 4 we consider extensions across null
hypersurfaces in 4-dimensional Lorentz manifolds and prove two more theorems: Theorem
4.1, which provides a criterion for extension of Killing vector-fields, and Theorem 4.3,
which provides a general framework when extension is not possible.

2. PROOF OF THEOREM 1.2

In [1] and [2] the extension of the Killing vector-field Z was done according to the
transport equation,

[L,Z] = colL, (2.1)

3A similar statement can be made on the future event horizon H*.

4As mentioned earlier a local version of Hawking’s Rigidity Theorem was proved in [1]. The key
additional information used in that paper is the existence of a regular bifurcation sphere, which is the
smooth transversal intersection of two non-expanding horizons.



ON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDS 5

where Dy L = 0 and ¢y constant. Consequently we had to assume, in O, that Z is not only
Killing but that it also satisfies the additional assumption (2.1) with respect to a geodesic
non-vanishing vector-field L. This could be arranged in the particular cases studied in
[1] and [2], but imposes serious restrictions on Z in the general case, particularly if Z
vanishes in a neighborhood of the point p. To avoid this restriction, in this paper we
extend Z according to the weaker condition

D.;D,Z =R(L,Z)L, (2.2)
which would follow easily from (2.1), and is automatically satisfied if Z is Killing.

More precisely, we construct first a smooth vector-field L in a neighborhood of p such
that

D.L =0, L(f)(p) =1,

and extend Z to a neighborhood of p by solving the second order differential system (2.2).
Therefore, after restricting to a small neighborhood of p, we may assume that Z, L are
smooth vector-fields in M with the properties

D,L=0 inM, L*L°(D,DsZ, — Z’Rpup,) =0 in M,  Lzg=0 in 0. (2.3)

It remains to prove that the deformation tensor m = L£zg vanishes in a neighborhood of
p. We cannot do this however without establishing at the same time that the tensor LzR
also vanishes identically in M. Our strategy is to derive a wave equation for LzR, or
rather a suitable modification of it, coupled with a number of transport equations along
the integral curves of L for various tensorial quantities including 7 itself. These equations
will be used to prove that 7 and LzR have to vanish in a full neighborhood of p, provided
that the strong pseudo-convexity assumption, which guarantees the unique continuation
property, is satisfied.

2.1. Tensorial equations. We first consider the properties of LzR. Observe that LzR
verifies all the algebraic symmetries of R except the fact that, for an Einstein vacuum
metric g, R is traceless. We have instead,

ga’y'CZRaB'yé = ﬂ-aﬂyRaB'y(S-

To re-establish this property we can introduce (see also Chapter 7 in [3]) modifications®
of LzR of the form

L/R:=L;R—-BOR,
where, for any give 2-tensor B, we write,

(B ® R)QQM; = B, )\R)\ﬁf\/é + Bg ARa)\fy(s + 37 )\RaﬁM + Bs ARQB,Y)\.

*Note however that, unlike [3], our B here is not symmetric.
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It is easy to check that, for any 2-tensor B, B ® R verifies all the algebraic symmetries
of the general Riemann curvature tensor, i.e.

(BOR)apys = =(B O R)gars = —=(B O R)agsy = (B O R)ssas,
(BOR)agys + (BOR)ayes + (B O R)aggy = 0.
Moreover, using the Einstein vacuum equations,
g8 (BOR)ags = B (Ragu + Rupr)-

In particular for any antisymmetric B, B ©® R is traceless, i.e. a Weyl field. We have
proved the following:

Proposition 2.1. Assume w is an antisymmetric 2-form in M and let
1
W= EZR—§(7T+w)®R. (2.4)

Then W is a Weyl field in M, i.e.
Waﬁ’y& - _Wﬁa'yé = _Waﬁ&y = W’y&xﬁ>
Waﬁ’y& + Wa'yéﬁ + Wa&ﬁ’y = Oa
ga’yWaB'y(S = 0.

We shall next establish a divergence equation for W. We do this by commuting the
divergence equation for R with £;. We rely on the following, see Lemma 7.1.3 in [3]:

Lemma 2.2. For arbitrary k-covariant tensor-field V' and vector-field X we have,
k
DB(‘CXVal---ak) - ‘CX(DBVOCL--O%) = Z (X)Fajﬁpvm...p...ak’ (25)
j=1

where X = Lyg is the deformation tensor of X and,
1
M) lagu = §(Da g+ D O — D, M),

Definition 2.3. We denote 7 = Y and T’ = DT the corresponding tensors associated
to the vector-field Z. We also denote W' = H. We also introduce the tensors,

Popp = Damgy — Doy — D pwag,

1
Bog = 5(%5 + Wagp),
Bap = LPD,Bag,
Wapys = (L2R)apys — (B © R)apys-

All these tensors depend on the 2-form w, which will be defined later (see (2.9)) to achieve
a key cancellation in the proof of the transport equation (2.13).

Using Lemma 2.2 we can now prove the following:
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Lemma 2.4. The Weyl field W wverifies the divergence equation

[0 1 v v
D*Wagpys = 2 (B“ D.R,sy5 + 8" PR’ g5
+ P R™ 5 + Py RY 57 5+ Pry R 5, 7).
Proof of Lemma 2.4. Using Lemma 2.2 and the identity D*R,s,5 = 0 (which is a conse-

quence of the Einstein vacuum equations), we easily deduce
DaﬁZRaB’y6 = gauDu'CZRaB’yé
=g (ﬁZ D, Ragys + LappRP sy + DppRa’5 + TappRap”s + FMPRaB'yp)
= 1"D,Ragys + IR sys + DpupRos 4+ T RY 675 + T p R 5"

(2.6)

Using the definition and the Einstein vacuum equations, we derive
D%(B © R)apss
= B*D,Ryp,5 + D*BayRY 55 + DaBan R 5 + Do BhRsY + D, B R, %,
for any 2-tensor B. Thus, if B = (1/2)(7m + w),
D*Wagpys = (7" — B")D,Ryprs + 8" (Lvp — DuBuup)RP gy
+ (P — D Bg, )R 5+ (U — DBy )R % + (U — DuBsy )R 5,7
We observe now that .

Fbac - DaBbc - ipbcaa

which completes the proof of the lemma. O

We now look for transport equations for the tensor-fields B, P appearing in (2.6), of
the form,

DL(B>P) = M(VV’BaP)a
with the notation M(W, B, P) explained below.

Definition 2.5. By convention, we let M(WB, ..., ®)B) denote any smooth “multiple”
of the tensors VB, ..., "B, i.e. any tensor of the form

M((l)Ba SR (k)B)al...ar = (1)351...ﬁm1 (1)Ca1...arﬁluﬂm1 + ...+ (k)Bﬁ1ﬁmk (k)CaL..arﬁlnﬂmk;
(2.7)
for some smooth tensors WC, ..., ®C in M.

It turns out in fact that we need to include also a transport equation for B = D/ B.
Thus we look for equations of the type,

D.(B,B,P)= M(W,B,B,P).

We start with a lemma.
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Lemma 2.6. Given the vector-field Z, extended to M by (2.3), we have

LPras =0 in M. (2.8)
Moreover, if we define w in M as the solution of the transport equation
Diwap = mapDgL? — mg,Do L7, (2.9)
with w =0 in O, then
L'Pap, =0,  L’w,s=0 in M. (2.10)

Proof of Lemma 2.6. We first remark that L*L°D,Zz = 0 in M. Indeed, using (2.3),
L’D,(L*LPD,Z5) = L’ L*L°’D, Dy Zs = L’ L*L” Z"Ryy0p5 = 0.
Since L*L’D,Zs = 0 in O we deduce that
L*L°’D,Zs =0  in M. (2.11)
We prove now (2.8). Using (2.3) and (2.11) we compute
LD, (LPrap) = LPLP(D,DsZ, + D,D,Z5)
= LPLPZ'Ryppa + LPLPD D, Zs + L’ L Z'R papy
=D, (L’L°D,Z3) — L°D,ZsD,L* — L’D,ZsD,L"
= —LPm,D, "

Since LP7,s vanishes in O, it follows that L°r,s vanishes in M, as desired.
The first identity in (2.10) follows from the definitions of w and P and the identity
(2.8):

LMPQBM = LuDaﬂ-Bu - LMDB’]TOW - LMDMWQB = —WBMDQLM + WQMDBLM - LMDMWQB =0.

To prove the second identity, we compute, using the definition (2.9) and the identities
Lﬁﬂ'ﬁp =0 and DLL = 0,

Dy (LPwap) = LPLPD jwap = LP (74,DsL" — 75,Da L") = 0.
Since LPw,p vanishes in O, it follows that LPw,s vanishes in M, as desired. O
We derive now our main transport equations for the tensors B and P.
Lemma 2.7. In M we have
D Bag = L'LY (L2R) uapy — 2BgDal’ — 15" L' L' R o, (2.12)

and
D P, = 2L"Wapu + 2L B,"Ragp — DL Pog,. (2.13)
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Proof of Lemma 2.7. We have
Dy Bas = L'L'D,D,Bas = (1/2)[L*L'D,D,mas + L'D, (L' Dywas)]- (2.14)
We calculate
L*L"D,D,D,Zs = L*L'D,(D.D,Zs + R,ap,2")
=L"L"(D,D,D,Zs+ R,0,D,Zs + R,0p"D, Z,)
+ LML ZPDRyap, + L LD, Z,Ry0s".
Using (2.3) and the general identity
D.DyZ, = RepaaZ® + Tape, (2.15)
we calculate
LFL"D,D,D,Zs = Do(L' LY Z°R ) — Do L' LY )(RppppZ” + 1)
= LMY Z°Do Ry + L' L'DoZ,R? 5 — T,sDo (LML),
Thus
L'L"D,D,D,Zs = L"'L"ZP (D, Ryagp + DoRpwp) — TopsDa(LFLY)
+ LML (Do Z°Rypsy + 2D0 Z Ryiasy + D Z Ryapy) + L LY Ryuan ' mps.
Since
(DuRvaﬁp + DaRp/WB) + (DMRVBQP + DBRWW) = DPRMBW + DPRMOCBV’
it follows that
LAL" D Dymag = L' LY [(L2R) pasy + (L2R)upar]
+ LPLY (R uawpm3” + Rupupma) — [LopusDa(LFLY) + T Da(LFLY)].
Using the identity (2.8) and the definitions we calculate
T,,sDo(IF L) = L'D,7,sD " — Do LFD, L' 7,5 + Do ' Dy L w,, = 2D, L' B,
Therefore
LMLYD, D, Tap = 2LF L (LR papy — 2DoL" B,s — 2D L B, (2.16)
+ LFLY (Ryawpms” + Ryupupma?).
Using again (2.8) and the definitions we calculate
L"D,(L'Dywas) = L'D, (10, DsL? — 75, DoLY)
= ('DumaDgLl” + 7. LFD,DslL,) — (LD, m,sDoL” + 75" L' D, Do L,) (2.17)
= (2DgL"Byo + 1" LM L"Rgp) — (2D L Byg + mg” L" LY R0 ).-
The desired identity (2.12) follows from (2.14), (2.16), and (2.17).
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We prove now (2.13). It follows from Definition 2.3 that
L’D,P,s, = L’D,D,(DsZ,+ D, Z3) — L’D,Dg(DZ, + D, Z,) — L’D,D,wazs
— I’D,(Rapw?”) + (I/D,D.D,Zs — 1’D,DyD, Z,) — L’D,D,was.
(2.18)
We calculate as before, using (2.15)
L’D,D,D,Zs = L’D,(Raus.2") + L’D,D,D,Z3
= L’D,(RoupZ”) + L’R,u0"D0Zs + LPR,,6" Do Z, + L’D,D D, Z 3
= LPDP(RauBVZV) + LPRpua "Dy Zs + LPRyus"DaZy, + LPDM(RBapVZV + Fpocﬁ)-
Using (2.8) we calculate
2L°D, I pop = LD, (D,map + Doy — Dama,)
= L’D,Dymas + DL (Dpmpe — Damps) + Dp(DpLfmpe — Do LPm,p).
The last two identities and the definitions show that
L’D,(Rupuw2”) + (L’D,D,D,Zs — LD, DD, Z,)
= 2L"D,(Rapuw Z") + 217Dy (Rgapy Z")
+ LR, (D, Zs — DgZ,) — L’R,,5" (D, Z, — Do Z,)
+ Dy LP(Dpmpe — Damps) + D (DLl mpe — Do LFm,g)
=2L°(Z"D,Ropup + D, Z"Ropuy + D Z"Raprp + DaZ"Roupup, + DsZ"Rawyp)
+ LPRpua”mgy — LPRpug" Tow — D LP (Popp + Dypwag) + Dp(LPDywag)
=2L°(LsR)apup — L' "Rupupy — LP15"Rowpp — Dy LP Pog, + LPD D jwags.
Using (2.17) it follows that
LPD,P,s, + D, L P,g, = 2L°(LzR)apup — 2L B"Rupup — 2L Bg"Rawp,
which is equivalent to (2.13) (since L?B,, = 0, see Lemma 2.6). O

Finally, we derive a wave equation for the tensor W.

Lemma 2.8. With the notation in (2.7),
DD, Wopu = M(B,DB, P,DP, W),z

Proof of Lemma 2.8. We use the identity
ag ag ag g
D DoRa1a2a3a4 = Ropa3a4R alagp + Rcragpa4R alagp + Roazang a1a4p
g ag g
- Ropa3a4R agalp - Rcralpa4R azagp - Roalang a2a4p7

which is a well-known consequence of the Einstein vacuum equations. Using Lemma 2.2,
4

DU(EZR>0410£20£30£4 = EZ(DgRa1a2a3a4) + Z FajUPRal...p...a47

j=1

(2.19)



ON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDS 11

and then
4

7=1
Therefore, after using Lemma 2.2 to commute derivatives again and (2.19), the equation
for Og(LzR) above can be written, in schematic notation,

The lemma follows using the identity I'n5, — DB, = (1/2)Poyp- O
We summarize some of the main results in this subsection in the following proposition:

Proposition 2.9. We assume that O C M, L, Z are as defined at the beginning of this
section, and satisfy (2.3). In M we define

Tap = DoZs + DgZ,.
We define the smooth antisymmetric tensor wap in M as the solution of the equation
Diwas = TapDgL? — m3,Do L7, w=201n 0.
We also define the smooth tensors

Popp = Damgy — Doy — Dypwag,

-
Bap = LPD,Bag,
Wagys = (LzR)agys — (B © R)apys-
Then the following equations hold in M:
D*Wop,s = M(B, B, P,W)s,s,
D.B = M(B,B,P,W), D.B=M(B,B,P,W), D,P=M(B,B,PW), (2.20)
OW = M(B,DB, B,DB, P,DP,W,DW).

where M(WB, ..., B) is defined as in (2.7).

(Waﬁ + waﬁ) )
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2.2. Carleman inequalities and the local extension theorem. Motivated by the
identities summarized in Proposition 2.9, we consider solutions of systems of equations of
the form

OgS = MB,...,WB 5 DS)

DB =M®B,..., "B S DS), i=1,...,k

We would like to prove that a solution S, VB, ..., ®*) B of such a system which vanishes on
one side of a suitable hypersurface has to vanish in a neighborhood of the hypersurface.
Such a result depends, of course, on convexity and non-degeneracy properties of the
hypersurface. We recall, see definition 1.1, that a domain O is strongly pseudo-convex at
a boundary point p if there exists a defining function f at p, df (p) # 0 which verifies,

D?f(X,X)(p) < 0if X #0 € T,(M) satisfies g,(X,X) = X(f)(p) =0. (2.21)

We are now ready to prove Theorem 1.2. We use the covariant equations derived in
Proposition 2.9 (see (2.20)) and Carleman inequalities. We introduce a smooth system of
coordinates ® = (z!,...,2%) : By — Bi(p), ®?(0) = p, where B, = {x € R¢ : |z| < r},
r > 0, and Bj(p) is an open neighborhood of p in M. Let 0, ...,0; denote the induced
coordinate vector-fields in Bi(p) and let B,(p) = ®*(B,), r € (0,1]. For any smooth
function ¢ : B — C, where B C Bj(p) is an open set, and j =0, 1,. .., we define

Po(@) = Y |0 .- 0a,0(z)], zEB (2.22)

We assume that
go5(p) = diag(—1,...,—1,1,...,1). (2.23)
We assume also that, for some constant A > 1,

sup Z Z | gop ()| + sup ZW 7)| < A. (2.24)
(EGBl jlocﬁl IEGBlpjl
We use the system of coordinates ®” in the neighborhood of the point p, and evaluate all
the tensor-fields in the frame of coordinate vector-fields 0y, . ..dy. In view of the equations
(2.20), for Theorem 1.2 it suffices to prove the following:

Lemma 2.10. Assume that 69 > 0 and G;,H; : Bs,(p) — C are smooth functions,
1=1,....1,7=1,...,J, that satisfies the differential inequalities
OeGil < MZ%1(|GI| +10'Gil) + MZ%:l |Hunl;
|L(Hj)| < M3 (1G] +[0°Gl) + M 32,y [ Hol,
forany i =1,...;1, j = 1,...,J, where M > 1 is a constant. Assume that G; = 0
and H;y = 0 in Bs,(p) NO_, i =1,...,1, j =1,...,J. Assume also that f is strongly
pseudo-conver at p, in the sense of Definition 1.1, and L(f)(p) # 0. Then G; = 0 and

H; =0in Bs(p), i =1,...,1, j =1,...,J, for some constant 6; € (0,dy) sufficiently
small.

(2.25)
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Lemma 2.10 is proved in [1, Lemma 3.4}, using two Carleman inequalities: Proposition
3.3 1in [7] and Lemma A.3 in [1]. The implicit constant §; > 0 depends only on constants
Ain (2.24), do, and the constant A; in the following quantitative form of strong pseudo-
convexity:

Lemma 2.11. (a) Assume that f is strongly pseudo-convex at p. Then there are constants
Ay > A and p € [— Ay, Ay such that, for any vector X = X*0, at p,
0 f(p)] = AT,
XX (18ap(p) — DaDpf(p)) + A X (F)(p)]* > AT X%,
where | X|* = (X1)? +... + (X9)2
(b) Moreover, the inequalities (2.26) persist in a small neighborhood of p, in the sense

that there is € = €(Ay) > 0 such that for any vector-field X = X®0, in B (p), the
mequalities

(2.26)

0 f] > (241) 7,

XaXB(MgaB - DaDBf) + A1|X(f)|2 > (2A1)_1|X|2, (227)

hold in B.,(p), where | X|? = (X124 ...+ (X2 and u is as in (2.26).

Proof of Lemma 2.26. (a) The first inequality in (2.26) is just a quantitative form of
the assumption that p is not a critical point of f. To derive the second inequality, let
hag = —DaDp f(p) and

8o = inf X*XPhygs.
| X|=1,X*Xqo=X>D, f=0

By compactness, this infimum is attained, and it follows from (2.21) that § > 0. By
homogeneity, it follows that

XXPhog > 00| X[*if XX, = XD, f =0. (2.28)

We would like to prove now that there is ny € {1,2,...} such that
XX hos +no(XDaf(p))? > (60/2)| X if XX, =0. (2.29)
Indeed, otherwise for any n = 1,2, ... there would exist a vector X,, = X3, such that

|XTL| = 17 gp(Xan> = O, and
XX Phas +n(XDaf(p)? < 6o/2.

After passing to a subsequence, we may assume that X,, converges to a vector X, with
X|? =1, XX, =0, X°D,f(p) = 0, and X*XPh,s < &/2, which contradicts (2.28).
Therefore (2.29) holds for some constant ny.

Let C = {X € T,M : |X| = land X°X, > 0}, C. = {X € T,M : |[X]| =
1 and X“X, < 0}, and, for § € [0,1], Cs = {X € T,M : |X| = 1 and | X°X,| < 0}.
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Since the metric g is non-degenerate, we may assume that C;, # () (if C; = () then C_ # ()
and the proof proceeds in a similar way). For p € R, we consider the function

K, TM—R,  K,(X)=X*X?has +no(X*Duf(p))? + pX* X,
where ng is as in (2.29). Using a simple compactness argument as before, it follows from

(2.29), that
there is &' > 0 such that Ky(X) > 6y/4 for any X € Cs. (2.30)

Then it follows that there is p; > 0 sufficiently large such that
K, >0if X € C; and there is X € C, such that K_, (X) < 0.

Let
po = inf{p € [—p1,p1] : K,(X) > 0 for any X € C,}.
We analyze the function K, (X) = X*X’kas, where

kap == hag + Do f(p)Dsf(p) + po8as-
In view of the definition of py, K

po(X) > 0in C;. Moreover, using also (2.30), there is
Xo € Cy such that K, (Xo) = 0. Since K, is homogeneous of degree 2, it follows that
the point Xj is a local minimum for K, in 7,M. Therefore

VOXP ko = 0 and V°VPk,3 > 0 for any V € T,0. (2.31)

We show now that
K, (X) #0 for any X € C_. (2.32)

Indeed, assuming K, (X;) = 0 for some X; € C_, it follows from (2.31) that K, (tX, +
(1 —1)X;) =0 for any t € [0, 1]. However, this contradicts (2.30) since there is t, € [0, 1]
such that gp(toX() + (1 — tQ)Xl,toX() + (1 - tO)Xl) =0 and t()XO + (1 — to)Xl 7& 0.

Using (2.30), (2.31), and (2.32) it follows that K, (X) > 0 for any z € C_ U Cy, for
some 0" > 0. A simple compactness argument then shows that there is n; large enough
such that K,o11/n, > 0in {X € T,M : |X| = 1}. The second inequality in (2.26) follows
by setting u = po + 1/n; and A; sufficiently large.

Part (b) of the lemma follows from part (a) and the assumption (2.24). O

3. PROOF OF THEOREM 1.3

The plan of the proof is the following: we fix a point p € Uy NH™ N E,_outside both
the bifurcation sphere Sp = H~ NH* and the axis of symmetry A ={p € E: Z(p) = 0}.
Then we consider the Kerr metric g and the induced metric

hop = X8ap — T Tp, where X = g(T, T),

on a hypersurface Il passing through the point p and transversal to T. The metric h
is nondegenerate (Lorentzian) as long as X > 0 in II, which explains our assumption
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0 < a < m. It is well-known, see for example [11, Section 3], that the Einstein vacuum

equations together with stationarity Lrg = 0 are equivalent to the system of equations
"Ricy = = (Vo XV, X + V, YV, Y),

2X o (3.1)

"OX +iY) = yhabaa(X +iY)0y(X +1iY),

in I, where Y is the Ernst potential associated to T. We rederive these equations in
Proposition 3.1 below, together with other explicit equations and identities that are needed
for the proof of the theorem.

We then modify the metric h and the functions X and Y in a neighborhood of the point
p in such a way that the identities (3.1) are still satisfied. The existence of a large family
of smooth triplets (h, X,Y) satisfying (3.1) and agreeing with the Kerr triplet in 11\ E
follows by solving a characteristic initial-value problem, using the main theorem in [10].

Finally, in Proposition 3.6 we construct the space-time metric g,

8 =X hay+ XA Ay, Bu=XA,,  Bu=X, ab=123,

associated to the triplet (E, X, 17), the vector-field T = 8y, and a suitable 1-form A which
is defined in II. By construction and [11, Theorem 1], this metric verifies the identities
g8Ric = 0 and Lpg = 0, in a suitable open set U. Then we show that we have enough
flexibility to choose initial conditions for X,Y such that the vector-field Z cannot be
extended as a Killing vector-field for g commuting with T, in the open set U.

3.1. Explicit calculations. We consider the Kerr space-time IC(m, a) in standard Boyer—
Lindquist coordinates,

A »2 (sm 6)? ( 2amr

g= —ﬁ(dt) do —

dt) L L

A (dr)* + ¢*(d6)?, (3.2)

where
A =712+ a® - 2mr;
¢® =12+ a*(cos 0)% (3.3)
Y2 = (r? + a?)¢® + 2mra®(sin6)? = (r? + a?)? — a*(sin 0)2A.
We make the change of variables
du_ =dt — (r* + a*)A™dr, dp_ = d¢p — aA™ dr.

In the new coordinates (0,7, ¢_,u_) the space-time metric becomes

g = ¢*d0? — (du_ @ dr + dr @ du_) + a(sin 0)*(dé_ & dr + dr @ d¢_)

2 . 2 22 2
_2amr GO 1 @ du +du_ gy + OO g 2T 4
q q



16 ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

and the vector-field T = d/dt becomes T = d/du_. The metric g and the vector-field T
are smooth in the region

R={(0,r,¢_,u_) € (0,7) x (0,00) X (—m,7) x R:2mr —¢*> > 0}.

Let
X =g(T,T) = 2771272—512’ hag = X8ap — TaTs,
and
I={0,r,¢_,u_) € R:u_ =0}.
Let
b= = agzd%_, (3.5)

denote the vector-fields in II induced by coordinates (0,7, ¢_). We calculate the compo-
nents of the metric h along the surface II,

hip = 2mr — ¢°, hi =0, hiz = 0, hoy = —1,

3.6
h23 = —CL(SiIl 9)2, h33 = —A(sin 9)2 ( )
Therefore
hll — 1 h12 =0 h13 =0 h22 — A
2mr — q%’ ’ ’ 2mr — q%’ (3.7)
p2s — ¢ 33 _ ! .
2mr — ¢?’ (sin0)2(2mr — ¢%)’
Let
1—‘cab = h(vabaa, ac) = (1/2)(aahbc + abh'ac - achab)a 1—‘dab = thPcab- (38)
Using (3.6) and (3.7) we calculate
L a®sin 0 cos 0 N A(r —m) 5 a(m —1)
'n=———/- Py=—-0, Py=7—,
2mr — ¢? 2mr — g2 2mr — g2
I, m-r_ 2, — a? siné’cosé” s, — —acot |
2mr — ¢? 2mr — ¢? 2mr — ¢?
'y =0, %5 =0, %15 = cot,
113 213 313 (3.9)
[Ty =0, [Py =0, [Py =0,
1 asin @ cos 6 5 a(r —m)(sin 0)? 3 m—r
oy = ———5, [P = ; Moy = o——,
2mr — ¢? 2mr — ¢? 2mr — ¢?
L Asin 6 cos 0 ) A(r —m)(sin )? 5 a(m — r)(sin 0)?
e = ———, [Ps3 = ; Vg3 =
2mr — ¢ 2mr — ¢ 2mr — ¢?
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We have
hR(8a7 8c)ﬁb = Vaa (Vacﬁb) - v(‘}c(v(‘)aﬁb)

= Vo, ([%:04) — Va,(T%.04)
= aa(rdbc)ad + decredaae - ac(rdba)ﬁd + dearedcge
- [aa(rdbc) - aC(dea) + 1—‘ebcrdea - Febardec]ada

therefore

hRicba - ac(l—‘cba) - aa(Fcbc) + dearcdc - chbrcda-
Using (3.8) we calculate

e = (1/2)h*(Obhea) = (1/2)0p(log | h]) = Op(log(sin O(2mr — ¢*))).

Thus
om2a2(sin 0)2
"Ricy, — % "Ricy, =0, "Ricys = 0,
ho 2m? h1o ho
R1C22 = W, R1C23 = O, R1C33 = 0.
Let
2
X:2mr2 q | Y:_Qmasosﬁ’
q q
1
Ty = —— (V. XV, X + V,YV,Y).
= 53 (VaX Vi X + VY V,Y)
We calculate
X — da’mr Sif 0 cos 9’ 0,X — 2mq? —4 4m7’2’ 93X = 0,
q q
oY — 2ma sin 0¢* — 47;1@3 sin 0(cos 9)2’ D,y — 4mra4cos€j Y —
q q
Therefore
2m?%a?(sin 0)* 2m?
Ty = W, Tio =0, Ti3=0, Typ= W’ Ty =0,

Using also (3.12) it follows that
"Ric="T.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

0.

T33 = 0.
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Using (3.7), (3.14), and |h| = (sin 0)?(2mr — ¢*)* we calculate

2am(sin 6)?

|h[V2RY0,(X 4 iY) = ZT(’F —iacosf)?
: —2mA sin 0
B[20%0,(X +iY) = == (r — jacos6)?, (3.15)
q
: 2 in @
B|Y2h%9,(X +iY) = %(r —iacos0)?.
Therefore
X — 24m*r?a?(cos 0)* — 4m?r* — 4m2a*(cos 0)?
q6(2mr - q2) ’ (3 16)
My — 16m?*ra cos 0(r* — a?(cos 0)?) '
B ¢ (2mr — ¢°)
We calculate also
2,2 2 2 A 20 _ 24 4
XU (B,X0,X — YO,V ) = 24m*r2a (0059)6 dm?r : 4dm*a*(cos 6) |
¢*(2mr — ¢?)
g 16m?ra cos 0(r? — a*(cos 6)?)
2X 'R0, X0Y =
X0, ¢5(2mr — ¢*)
Therefore
] 1
"Ricy, = m(vavax + V., YV,Y),
(3.17)

"O(X +4Y) = %h“b&l(X +3Y)9(X + 1Y),

The components of the spacetime metric g in the coordinates (6,7, ¢_,u_) (see (3.4))
have the form,

Sap = X Thay + XA, A, g = XA, gu = X, a,b=1,23.
or, with = = (0, r, ¢),
g = (Xdu_ + Audz®)? + X ' hyydada®
where,

_ 2amr(sinf)?

A=0, Ap=-—L A= (3.18)

2mr — g2
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We compute

4a’mr sin 6 cos @

—2may(sin 0)%(r? — a*(cos 0)?)
Az — 0345 =
oAz — O3 A, Cmr — ) ;
—4mraAsin 6 cos 6
83141 - 81143 - (2m’r’ — q2)2
Therefore, using also (3.15), with *€53= —|h|"/2,
X2(VaAy — Vi Ay) = "Egpe VY. (3.19)

To summarize, we verified the following:

Proposition 3.1. With the notation above, the metric h, the functions X,Y, and the
1-form A satisfy the identities (in 11)

1
hs _
RlCab = m(vaXVbX + VaYVbY),

1
"O(X +4Y) = }h“b&l(X + 1Y) 0 (X + 1Y),
X2V Ay — VAy) = "€ VY-

Remark 3.2. Under a change of coordinates of the form v’ = u_ — f(x', 2% ) the 1-
form A = A,dx® changes according to the formula A" = A—df. The change of coordinates
amounts to a choice of the hypersurface Il i.e. instead of u_ = 0 we would chose u_ =
f(97 T’ ¢) M

3.2. The metric h. We would like to construct now a large family of triplets (%, X , }7)

and 1-forms sz, such that the identities in Proposition 3.1 are still satisfied in a neighbor-
hood in IT of a fixed point p € (UyNnH™ NE)\ (AU S)). Let

No={z €S :r(x)=ry =m+vm?—a?}.

This is a 2-dimensional hypersurface in II; the vector-fields 0; and d; are tangent to N
and, using (3.6) and (3.9),

h(0s,03) = h(05,0,) =0, Vy,05 = —[(m/a)* — 1]1/283, along Nj.

Therefore N is a null hypersurface in II. Along Ny C II we define the smooth, transversal,
null vector-field,

L = (2a*(sinf)* — A)™' - [2a0, — (sin 0) 20s]. (3.20)
Using (3.6), it follows that
h(L, L) = h(L, 01) = O, [L, 83] = O, h(L, 03) = —1, along N(). (321)
Let
P={zeNy:¢_(x) =0}, p={reP:0(x)=20c (0,7}
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Thus P is a 1-dimensional smooth curve in Ny and p € P is a point. We extend the
vector-field L to a small open neighborhood D of p in II, by solving the geodesic equation

VLL =0 in D.

Then we construct the null hypersurface NV in D as the congruence of geodesic curves
tangent to L and passing through the curve P. We also fix a time-orientation in D such
that d3 and L are future-directed null vector-fields along P N D. and let J*(N;) denote
the causal future of N in D. Let

D_={x e D:A(x) <0}, D, ={x € D:A(x)> 0}.
The following proposition is a consequence of the main theorem in [10].
Proposition 3.3. Assume )?, Y : Ny = R are smooth functions satisfying
X=XandY =Y inNynD_.
Then there is a small neighborhood D" of p in 11, a smooth metric hin JYN)N D', and
smooth extensions X,Y : JT(N1) N D' — R such that, in J*(N7) N D',

~ 1 -~ -~ -~ -~
"Ricy = —= (Vo XV, X + V.Y V,Y),
2X?2

- 1 - L o (3.22)
"O(X 44Y) = Ehabaa(x +iY)0y(X +1iY).
In addition N N _
X=X, Y=Y h=h in JF(N))ND' ND_, (3.23)
and, for any vector-field V tangent to Ny N D',
WL, V)=0and V,L=0  along NyND. (3.24)

To be able to construct the desired space-time metric g we also need to extend the
1-form A (compare with the formula (3.34)). More precisely:

Proposition 3.4. There is a smooth 1-form A, in a neighborhood D of p in JT(N)
satisfying (compare with (3.19))

X3(Vody — VyA,) = € VY,

~ (3.25)
A=A mDND_.

Proof. Without loss of generality® we may assume that L*A, = 0 in a full neighborhood
D of p in II. Indeed in view of remark 3.2 we can choose a function f in D such that
L(f) = L*A, and change II to I" by redefining v = u_ — f. In Il the corresponding
L', A verity (L')*- Al = 0.

6Alternatively the argument below can easily be adapted to the case L - A # 0 by a straightforward
modification of equation (3.26).
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Let L denote the geodesic vector-field (i.e. %EZ = 0) generated in a neighborhood of
the point p in by the vector-field L define on N in (3.20), so

L=Lin[(JTM)ND)UM|ND.

We then define the form A as the solution of the transport equation, in a neighborhood
of the point p in J*(N),

LoV, Ay + AV L = € X 2LOVEY,

- (3.26)
A=A along N,

It follows easily from (3.19) that the form A verifies this transport equation in D_, thus
A is a well-defined smooth form in a neighborhood D of p in J*(N;) and A = A in
D_. It remains to prove the identity in the first line of (3.25). We observe first that
A,L* vanishes in a neighborhood of p in J*(N;). Indeed, using the definition (3.26) we
compute,

LV (L' Ay) = [P LV, A, = 0.

therefore
P4, =0 in a neighborhood of p in J*(N7). (3.27)
Letting
Quy = X2(VoAy — VyA,) — €apc VY, (3.28)
it follows from (3.26) and (3.27) that
L*Qa =0, L*Qq = 0. (3.29)

To show that @ vanish identically we derive a transport equation for it. In fact we show in
the lemma below that £;(X ~2()) vanishes identically in a neighborhood of p in .J* (N})

Since () vanishes in D_ it follows that Q vanishes in a neighborhood of p in J* (M), a
desired. Thus the proof reduces to the lemma below. D

Lemma 3.5. Consider a 3-dimensional Lorentzian manifold (11, h) and scalar functions
(X,Y) which verify the equation,

0,Y = 2X'h?V,XV,Y, (3.30)
Assume also given a 1-form A which verifies,
L'V Ay + AV L = X2 €4 LAV, L-A=0, (3.31)
with L a null geodesic vector-field in I1. Then the 2-form
Quy = X* (VoA — VA — Eape VY (3.32)

verifies the equation,

L1 (X72Q) =0. (3.33)
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Proof of Lemma 3.5. We have,
L1Quw = 2XL1X(Vody — ViAs) + X°L1(Vody — ViA,)
— (LL €ae) VY — Eupe LL(VY)
= 2X 'V XQu+2X L X (€ape VYY) + XAV LAy — VL AL)
— (LL €awe) VY — Eupe LL(VY)
= 2X 'V XQu + X} (VoL Ay — VoL Ad)+ € (2X 'V X — div (L)) VY
— €ape (LIV4VY — VY V4L
Using the equation for A, written in the form £;A, = —X 2 €,q LV,
XAV LAy — VuLrA) = XA VoLpAy — ViLLA,)
= 2X Y (VoX €pea —VpX €gea ) LVY
— €pea VoLV + €4eq Vo LVIY
— Epea LVNVY A+ €geq LOVLVYY.
Hence,
L1Qw—2X'VXQuw = Eu
with
Euw = — €pea LV VY + Eeg LV,VIY — €4 LIV VY
+ 2X 7N (VaX €ped =V X €aed )LV + Eqpe 2X 'V X VY
— €ped VoLV + €4eq Vo LVIY + Egye (— (div L)VY + VIV VLY.

To check that E' = 0 it suffices to show that its Hodge dual *E,, := % € “E,, vanishes.
By a straightforward calculation, involving the usual rules of contracting tensor products
of the volume form €, we find,

*E, = (0 —2X "'V, XV*Y)L,,

from which the lemma easily follows. 0

3.3. The space-time metric. Let )?, )7, 7L, D, and A be as before. In D x I, where
I C R is an open interval, we define the Lorentz metric g by

S =X Yhay + XA Ay, Bu=XA, gu=X, ab=123. (3.34)
The functions X , )7, /L,?Lab, originally defined in D are extended to D x I by
(X)) = 04(Y) = 04(A,) = Ou(hap) =0,  a,b=1,2,3. (3.35)
Using (3.34), it follows that, with A% = h®*4,, a = 1,2, 3,
gl =Xh® = g¥=-XA"  gM=X"'4+XAA, |gl=X"?hn. (3.36)
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Proposition 3.6. (a) The metric g agrees with the Kerr metric g in (DN D_) x I and
satisfies

L5,8=0  BRic=0 in D x R.
(b) If Z = Z*0y + Z°0, 1is a Killing vector-field for g in D x I and if [Z,04] = O then
7' = 70, is a Killing vector-field for hin D satisfying Z’(X) Z’(Y) =0, ie.

Z’(X) = Z’(Y) =0, (EZ/h)ab = 0. (3.37)
Proof of Proposition 3.6. (a) The claims follow easily from definitions, except for
ERic=0  inDxR.

On the other hand, this is a well-known consequence of the identities (3.22) and (3.25)
satisfied by Z,)?,? and A, and the definitions (3.34) and (3.35). See, for example, [11
Section 3] for the proof.

(b) The identities ,Z* = 0, 0,2% = 0, (L28)sa = 0, (L28)as = 0, and (Lzg)ap = 0

give
Z(X)=0, Z(XA)+0,2°X A+ 0,2'X =0,
Z(X Vhap + XAgAy) + 0.2 X T hey + X AA) + 0,2 X A,
+ 0, Z(X Y hae + XA AL) + 0,2 X A, = 0.
Using also (3.35), it follows that
Z(X)=0,  Z'(A,) + 0,2°A, + 8,7" = 0,
Z' (hab) + 8aZ et + 857 hae = 0.
Therefore, along D
Z'(X) =0, (Lzrh)ay =0, (LyA)y = ~0,2"
The last identity in (3.37), Z'(Y) = 0, follows from (3.25), rewritten in the form
VY = —X2E""Y, Ay,

We can now complete the proof of the theorem.
Proof of Theorem 1.5. We fix a point p € (UyNH™ NE)\ (AU Sp); we may assume that
u-(p)=0,  ¢_(p)=0, O(p) e(Om), r(p)=m+vm?—ad.

Then we define the surface N; as in Proposition 3.3. For any smooth functions X , Y
N — R agreeing with X,Y in N; N D_, we construct the corresponding neighborhood
D of p in J*T(N7) (which we may assume to be diffeomorphic to the unit ball in R?
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and sufficiently small relative to Up), the smooth Lorentzian metric I in D, the scalars
X,Y : D — R, and the 1-form A, verifying (see (3.22) and (3.25))

~ 1 . . . -
"Ricy, = — (V. XV X + V,YV,Y),

2X?2
~ —~ —_~ 1 — —~ —_~ ~ ~
AO(X +14Y) = §h“b8a(X +iV)9(X +iY), (3:38)
X2(Vody — VyA,) = €Eue VY,

in D. Then we construct the space-time metric g in D x [ as in (3.34)—(3.35). In view of
Proposition 3.6 (a), it remains to show that we can arrange our construction in such a way
that the vector-field Z cannot be extended as a Killing vector-field for the modified metric
g. Using Proposition 3.6 (b), it suffices to prove that we can arrange the construction in
subsection 3.2 such that the vector-field J5 cannot be extended to a vector-field Z’ in D
such that

Lzh=0 and Z(X)=2Z'(Y)=0 inD. (3.39)

More precisely, we assume that (3.39) holds and show that there is a choice of X, Y along
N such that (3.38) is violated.

Assuming that (3.39) holds, we define the geodesic vector-field L in D as in subsection
3.2 and notice that

Vih(L,Z') = 0.
Recall that, see (3.21),
WL,L)=0, [L,Z]=0, hW(L,Z)=-1, along Nj.
Since %(Z, Z") = —1 along Ny, it follows that
WL,Zz)Y=-1  inD.

We let ey := L, e(3) := Z’, and fix an additional smooth vector-field e(;y in D such that

%(e(l), e)) = %(e(l), e)) = %(e(l), eqy) —1=0,ie.
el = L7,
To summarize, assuming (3.39), we have constructed a frame ey, e(2), €3) in D such that
h(ew, ew) = 1= hle), e@) = ke, ew) = hle, e@) = hle, e@) +1=0. (3.40)
We define the connection coefficients
T = hle@: Vew,ew)-
Using the identities %E =0 and Lyh = 0, it follows that

F(a)(g)(g) =0 for any a € {1, 2, 3}, F(a)(S)(c) + F(c)(?))(a) =0 for any (CL, C) € {1, 2, 3}2.
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Since [L, Z'] = 0 along N and
0= £Z/(f“§azb) = Zaﬁa(ﬁzlzb) + E“cﬁazb(ﬁzlzc),

it follows that EZ/Z = 01in D. Then, using the definition of e, it follows that Lze) =0
in D, therefore
L@@ = Lae for any (a,c) € {1,2,3}%

To summarize, letting F = ?L(Z/, AES %(3)(3), we have

By =1 =haye = haye = hee = hoe +1=0, hge = F,
OO ] 2700 Z 506 Z7008) 25060 4120, K00 - _f

and
Fooow =Teee =Teee =Toone =Toee =Tene =Teew =0,
oo =Teooe =Toes =Teonn =Toeo =Towne) =0,

“Toen =Toow: Teew = Tewe =Twee = —zew), ae{l,2},

—Toone =Toee = Teeon =Teen = Teowe =Toee):

) =
e (F) =exTwepe) =0,  leg.ew] =0,  abce{l,2,3}
(3.42)

We derive now several identities for the connection coefficients I' and the curvature ER.
Clearly

hR(a (e)(d) = ’ﬁ(e(a )s [Ve( )(Ve(d)e(b)) - Ve(d) (Ve(c)ﬁ’(b)) - %[6(6)’6(‘”]6@)])

= he(@)s Ve T™ 0@ em) = Ve, T mreeem) = C™ @@ = T o) Ve ew))
= e (Fwo)@) — ew ( (b))

+ L )@ D@y — T™ wol@m@ + C™ @@ — ™ @@ )D@em)

for any a € {1,2} and b,c,d € {1,2,3}. Using also the identities (3.41) and (3.42), it
follows that

h

Rueee =colwee) —Toeeloee —Toeelwoe tTeeelwee).
h

Rueee) =eoTonee)

h
mmmmwzqﬂﬂmmm+Tmmmﬂmmw

(3.43)

We can now obtain our desired contradiction by constructing a pair of smooth functions

X,Y along N such that not all the identities above (starting with (3.38)) can be simulta-
neously verified along A;. For this we fix a smooth system of coordinates y = (y!, 4% %)
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in a neighborhood of the point p in II such that

M ={q:4’(q) =0},  No={q:4%(q) =0}, LZLZd—yQ

More precisely we fix the L, as in the unperturbed Kerr, in a neighborhood of p and define
first y? such that y? vanishes on Ay and L(y*) = 1. Then we complete the coordinate
system on Nj and extend it by solving L(y') = L(y3) = 0.

Assume ¢ : R? — [0, 1] is a smooth function equal to 1 in the unit ball and vanishing
outside the ball of radius 2. We are looking for functions X ) Y of the form

X(q)=X(q), Y(9)=Y(q)+eb((y(a) —y@))/e), q€M, (3.44)

where p' is a fixed point in N7 N D, sufficiently close to p, and (X,Y") are as in (3.13).
We show below that such a choice leads to a contradiction, for e sufficiently small.
Let

along MN.

d d d ;
Vi= d—y17 Va = d—yQ’ Vi = d—yg7 €(a) = K Vi-
In view of the definitions,
_ We use now the last identity in (3.43) and the first identity in (3.38), along ;. Since
"Ry ) = "Ric) @), and recalling (3.41) and (3.42), we derive

1 - -
Coon) - Conw)’ = 7= Va(X)” +1a()); (3.45)
along N;. In addition, since
le@), eq)] = [Vo, Ky Vi + Ky Vo] = Va(K () )Vi + Va(K{y))Va (3.46)
along N7, it follows that
Va(K(y) = Ky - hlle), el ey) = KLy, (3.47)
along N;. Using the ansatz (3.44) together with (3.45), and (3.47), it follows that
G|+ |Va(G)| S 1 for any G € {Taywya), Ky, 1/ Ky} (3.48)

along N7, uniformly for all p’ € N sufficiently close to p and € < ¢(p’) sufficiently small.
Next we use the identity on the second line of (3.43) and the Ricci identity in (3.38),

along N;. Since ER(1)(2)(2)(3) = —ERiC(l)(g), and recalling (3.41), (3.42) we infer that,

—1 ~ ~ ~ ~
Va(Tuee) = —= Va(X) - (Ky)Vi+ K Va)(X) +1a(Y) - (K3 Vi + Ky Va) (V)] (3.49)

2X2

along N7. In addition, using again (3.46), it follows that

Va(K() = =h(le) el e@) + ValKiy)h(Vi, e3) = 20y + Kb Va(B )/ Ky
(3.50)
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along N;. Using once more the ansatz (3.44) together with (3.49), and (3.50) as well the
previously established bounds (3.48), it follows that

|G| + |‘/2(G)| 5 1 for any G e {F(Q)(l)(l), K(ll), 1/K(11), F(l)(g)(g), K(zl)}, (351)
along Vi, uniformly for all p’ € N; sufficiently close to p and e < €(p') sufficiently small.

Using the Ricci identity in (3.38), the identities e)(X) = €3 (Y) = 0, and the bounds
(3.51), it follows that

Z |ERiC(a)(b)| S 1 along Nl.
a,be{1,2,3}
Using the first identity in (3.43) with a = 2, the identity
"Riys)@e) = "Rices) + (1/2)("Rica)q) + F'Ricw) ),

and (3.42), it follows that

Vo(F) = —2T2)3)3),

Va(C@e) = —Toee)’ + "Ricge) + (1/2)("Ricaya) + F - "Rice) ).
Using again (3.51), it follows that

|F| + [Va(F)| + [Va(Va(F))| £ 1 along N, (3.52)

uniformly for all p’ € N; sufficiently close to p and € < ¢(p’) sufficiently small.
We can now derive a contradiction by examining the second equation in (3.38),

ROOT (Vi (V) = 2X RO e (X e (V).
Using (3.48) and (3.52), it follows that
ley(ey(Y)) — Fe(e@(Y))| <1 along My,

uniformly for all p’ € Nj sufficiently close to p and € < €(p') sufficiently small. This
cannot happen, as can easily be seen by letting first ¢ — 0 and then p’ — p, taking into
account that F and K (21) vanish along Ny N N;. O

4. EXTENSION ACROSS NULL HYPERSURFACES

Assume in this section that (M, g) is a 4-dimensional Lorentzian manifold satisfying
the Einstein-vacuum equations Ric(g) = 0, p € M is a fixed point along a smooth null
hypersurface N” C M (given by the level hypersurface of a smooth function u : M — R)
with fixed null vector-field L at p. Assume that u: M — R is a smooth optical function
transversal to \/, more precisely,

D*uD,u=0in M, u(p) =0, (D*uD,u)(p) = —1. (4.1)

Let N be the null hypersurface passing through p generated by the zero level set of u, i.e.
N = {z € M/u(z) = 0} and L = —g*?9,udj its null geodesic generator. Let

O_ :={reM:u(x) <0}
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and assume that Z is a smooth Killing vector-field in O_.

4.1. An extendibility criterion. We extend Z to neighborhood of p as in (2.3), such
that
L*LP(DaDsZ, — Z*Rpap,) = 0.

Theorem 4.1. Assume that we have, along the null hypersurface N,
(LZR)(L,X,L,Y)=0 (4.2)

for any vector-fields X, Y € T(M) tangent to N'. Then there is a neighborhood U of p
such that Lzg =0 in U.

Remark 4.2. The sufficient condition (4.2) may be replaced by a sufficient condition at
the level of the deformation tensor m, namely

(Lz8)(X,Y)=0 along N, (4.3)

for any vector-fields X, Y € T(M) tangent to N'. Both (4.2) and (4.3) lead to the con-
clusion (4.10), using the identities (4.5)—(4.9).

Proof of Theorem 4.1. According to the results proved in the section 2.1 we introduce the
tensors W, m, w, B, B and P as in Definition 2.3. Recall that, see Lemma 2.6,

Tl =0, weul# =0, Pag, L' =0, (4.4)

Since B = (7 + w) we also have B,,L* = 0. We fix a function y : A" — R such that y
vanishes on N NN and L(y) = 1 along N. Then we fix a frame (ey, es, €3, €4) along N
such that

e1, €a, €4 are tangent to N, eq =L, e1(y) = ea(y) =0,
g(e1, e2) = glea,€0) — 1 = gl(es, €3) + 1 = gleq, €3) = gles, e3) =0, a € {1,2}.

Our main goal is to show that the tensors W, B, B, P vanish along N. For any tensor
M = M,, . ., and any s € Z we define M=% any component of the tensor M in the basis
(€1, €9, €3, ¢4) of signature > s, where the signature of the component M, ., is equal to
the difference between the number of 4’s and the number of 3’s in (ay,...ax). Thus, for
example, BZO c {B44, B4a, Ba4, B43, 334, Bab . a, b c {1, 2}}

Recall our main transport equations, see Lemma 2.7,

D1 B.s = Bag, (4.5)
D.B.s = "L (L2R) yapy — 2BusDal” — 15" L*L' Ry, (4.6)

and
D1 Posy = 20" Was + 2L B, R,y — D, L Pog,, (4.7)

and our main divergence equation, see Lemma 2.4,
(0% 1 v v
D*Wagys = B} (B“ D.Rygys + 8" By R’ gy
+ P R™ 5 + Py RY 57 5 + Pr R 5, 7).
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In view of the definitions we also have
D.L;=0, DiL,=0, «ac{l,234}. (4.9)
We use equations 4.5, (4.6), and (4.9), together with the assumption L£zRyupq = 0,
a,b € {1,2} to write, schematically,
(DLB)* = M(B*°),  (DpB)?" = M(B>°) + M(B>").
Therefore
B2 =0 B2 =0.

According to Proposition 2.1, W = LR — %B ©® R, using again the assumption (4.2), it
follows that

W=2 = 0.
Using now (4.7) and the identity P,z4 = 0, see (4.4), it follows that P=* = 0. Therefore
B=Y =, B=Y =, Pzt =0, Ww=2=0 along . (4.10)

Using (4.10) and the general symmetries of Weyl fields, equation (4.8) with (8v0) =
(4ad), a € {1,2}, gives, schematically,

(DW)=h = M(BZ71) + M(P°) + M(W=1).

Using the transport equations (4.5), (4.6), and (4.7), together with the identities (4.9)
and (4.10) we derive, schematically,

(DLB)>™ = M(B>),
(DLB)>™" = M(W=") + M(B="") + M(B=7),
(DLP)2 = M(W) + M(B>) + M(P2).
Therefore, (4.10) can be upgraded to
B="t=0, B=l'=0, P==0, W=l=0 along V. (4.11)

We can now continue this procedure. Using (4.11) and the general symmetries of Weyl
fields, equation (4.8) with (57d) = (434) and (57d) = (412) gives, schematically,

(DW)=" = M(BZ7%) + M(P=71) + M(W=Y).

The transport equations (4.5), (4.6), and (4.7), together with the identities (4.9) and
(4.11) give, schematically,

(DLB)="% = M(B=77),
(DLB)>7% = M(W=°) + M(B>7%) + M(B>7?),
(DLP)" "' = M(W=°) + M(B=7?) + M(P=71).

Therefore, (4.11) can be upgraded to

B=0, B=0, P>'=0, W=2=0 along V. (4.12)
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Using (4.12) and the general symmetries of Weyl fields, equation (4.8) with (8vd0) =
(4a3), a € {1,2} gives, schematically,

(D W)=t = M(PZ72) + M(W=T1).

The transport equation (4.7), and the identities (4.9) and (4.12) gives, schematically,
(DLP)=72 = M(W="1) + M(P=72).

Therefore, (4.12) can be upgraded to

B =0, B=0, P2 =0, w="1=0 along N. (4.13)

Using (4.13), (4.8) and the general symmetries of Weyl fields, it D3Wy343 = 0 and

D3Wys1o = 0. Thus D3Wys, = 0 along N, a,b € {1,2}. Therefore, the divergence

equation (4.8) with (8vd) = (a3b), a,b € {1,2}, and the transport equation (4.7) give,
schematically,

(DW)Z72 = M(P=73) + M(W="%), (DL P)=% = M(P=7?).

Therefore we proved that

B =0, B =0, P =0, W =0 along \V. (4.14)
To prove now that B, B , P, W vanish in a full neighborhood of the point p we use Propo-
sition 2.9, Lemma 2.10 and the observation that, for ¢y sufficiently small, the functions

fr = (u+€)(£fu + &)

are strongly pseudo-convex in a sufficiently small neighborhood of the point p. See [1,
Appendix A] for more details. 0J

4.2. A non-extendible example. In this subsection we provide examples showing that
Killing vector-fields do not extend, in general, across null hypersurfaces in space-times
satisfying the Einstein-vacuum equations.

Theorem 4.3. With the notation at the beginning of the section, we further assume that
Z(u) = 0 i O_ and that Z does not vanish identically in a neighborhood of p in O_.
Then there is a neighborhood U of p diffeomorphic to the open ball By C R* and a smooth
Lorentz metric h in U such that Ric(h) = 0 in U, h = g in O_, but Z does not admit
an extension as a smooth Killing vector-field for h in U.

In other words, the space-time (M, g) can be modified in a neighborhood U of p, on
one side of the null hypersurface J0O, in such a way that the resulting space-time is still
smooth and satisfies the Einstein-vacuum equations, but the symmetry Z fails to extend
to U.

Proof of Theorem 4.3. We fix a smooth system of coordinates ®? : By — By(p), (0) =
p, where B, = {z € R*: |z| <7}, r > 0, and B;(p) is an open neighborhood of p in O. Let
d1,...,0, denote the induced coordinate vector-fields in B;(p) and let B.(p) = ®P(B,),
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re (0, ] For any smooth function ¢ : B — C, where B C Bj(p) is an open set, and
=0, 1 ., we define

o) = DY |Oa .- 0n,0(z)], zEB

We assume that
g.5(p) = diag(—1,1,1,1).
and, for some constant A > 1,

4

sup Z [|8”u| +1ou+ |8jgag(x)|} < A (4.15)

x€B1(p) j=1 a,f=1

We will construct the neighborhood

Up = {z € B, (p) - u(z) > —€5}

for some constant €, sufficiently small (depending only on the constant A in (4.15)). We
define first the hypersurface

={z € Bgé/z(p) cu(z) = —€ ).

Recall that L = —g*?9,uds and notice that L is tangent to Ny. We introduce smooth
coordinates (y',y%, y*) along the hypersurface Aj in such a way that y* = 0 on N NN,
and L = 0, where 0y, 0y, 9, are the induced coordinate vector-fields along Nj.

We consider smooth symmetric tensors h along Ny, such that it coincides with g on

Ny N O_ and, on both sides of N,
h(04,0y) = 0, in NV, a€{1,2,4}. (4.16)
Thus the only nonvanishing components of h are,
hay = h(0,, Op), in N, a,b e {1,2}.

We would like to apply Rendall’s theorem [10, Theorem 3] to construct the metric h in
the domain of dependence of N'UNj, such that h = g along A and g = h along Ny. The
only restriction is that the symmetric tensor A is arranged such that the resulting metric
satisfies the Einstein equation

h*’R(L, 0, L,03) = 0 along N, (4.17)

with R the Riemann curvature tensor of h. Recalling the definition of R and noting that
for a space-time metric h which coincides with h on Ny we must have h®* = h3% = 0 and
h® = h | (i.e. h%hy = 0y), we deduce,

h*’R(L,0,,L,05) = —1+1I (4.18)
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I = Z h*h(Dy, D, (04), Op)
a,be{1,2}

II = Z h**h(Dy, (Dy,04), Ob)
a,be{1,2}

Thus, imposing the auxiliary condition’,

I=0 along N, (4.19)
equation (4.17) is equivalent to
> h*h(Dy,(Dy,04),0,) = 0. (4.20)
a,be{1,2}

which can be viewed as a constraint equation for the metric A on Ny. Indeed we can
introduce a covariant differentiation® along N compatible with A by the formula,

h(VxY,Z) = % [— Zh(X,Y)+YWX,Z)+ Xh(Y, Z)] (4.21)
for X|Y, Z € {01.02,04}. With this definition we observe that (4.20) is equivalent to,
> hh(V,(Vo,01),0) = 0. (4.22)
a,be{1,2}

In view of the definition (4.21), for a € {1,2}

Va,01 = (1/2)h°Y(04hqaq)0. + multiple(dy),

V5,00 = (1/2)h°4(04hqq)0. + multiple(d,).
Therefore, the identity (4.22) is equivalent to

O4(h™O4haq) + (1/2)h™hO4heqOshye = 0. (4.23)
Letting R A R

Rap = $*has, det(h) = hirhgy — b3y =1,
and making the observation h®d,hq = 0, the identity (4.23) is equivalent to

DKo+ (1/8)¢ - B, hagOshpe = 0. (4.24)

In other words, we may define hab, a,b e {1 2}, as an arbitrary smooth positive definite
symmetric tensor along Ny, with h11h22 — h12 =1 and hab = (811822 — g2,) " ?g(0,, 0p)
in My N O_. We then define ¢ according to the equation (4.24), and the full tensor
h = ¢2ﬁ along Ny. Finally we apply Rendall’s theorem [10, Theorem 3] to construct a

7Writing Dy,04 = wdy and introducing the null second fundamental form x,, = h(Dg, 94, ) of Ny,
the condition reduces to w - try = 0 along Np.

8Since the metric h is degenerate on Ny, this formula only defines the covariant derivatives VxY up
to a multiple of L = e4.
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smooth space-time metric h in U, = {z € B, (p) : u(z) > —e} satisfying the Einstein-
vacuum equations and agreeing with g in U, N O_ and with h along Ny N Be,. Since,
by construction, the term I vanishes identically on N it also follows that the metric h
verifies the auxiliary assumption (4.19). We now interpret condition (4.19) using the null
second fundamental form of Ny with respect to the h metric,

X(X,Y):=h(DxL,Y), VX,Y tangent to N (4.25)
Clearly DL = wL along N for some smooth function w. Thus,
I = Y hh(Dy,Dy,(0),0) = Y wh®h(Da,d,d)=wh®xa =wiry.
a,be{1,2} a,be{1,2}

Thus (4.19) takes the form,
w-try =0. (4.26)

from which we infer that w must vanish in U, NN (i.e. DL = 0) if tr x vanishes at most
on a set with empty interior in (U, NNp) \ O_.
On the other hand,

1 1, o I TPy
Xab = §a4h'ab = 504(¢2hab) = ¢a4¢ hab + §¢2a4hab

from which,

—~ ~ 1 —~
trx = ¢ 2h®(¢0s hay + §¢284hab) = 2¢0710,¢.

Also the traceless part of y,

. 1 1 ~
Xab = Xab — StT Xh'ab = _¢284hab-
2 2
Thus equation (4.24) takes the well known form
1 2 ~ 12
Outr x + 5 (trx)” = —IxXli (4.27)

from which we infer that tr x can only vanish in a set with empty interior in (U, NNy)\ O—
if the same holds true for y. Thus we can easily choose non-trivial data on A such that,
for our original choice of L = 04, we have,

D,L=0 in NynU,. (4.28)

It remains to prove that we can arrange ﬁab on N, such that Z does not admit an
extension to U, as a Killing vector-field for h. We extend first the smooth vector-field L
from U, N O_ to all of U, such that, consistent with (4.28),

DLL:OiIl Up

with D the covariant differentiation associated to the metric h.
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Since Z(u) = 0 in O_ it follows that [Z, L] = 0 in O_. Assume, for contradiction, that
Z admits an extension to U, as a Killing vector-field for h. Then, letting V = LzL we
compute in U,

LDV, = L°L;D,L, = =V*D,L,.
Since V' vanishes in U, N O_, it must vanish in all of U, i.e.
[L,Z] =0 in U,.
In addition, since
Lh(Z, L) =0,

we infer that Z must remain tangent to the hypersurface N_E(z). To summarize, by con-
tradiction, we have constructed a vector-field Z in U, tangent the hypersurface N such
that, on Ny N U,

Lzh =0, [L,Z] = 0. (4.29)

On the other hand, writing Z = Z'9, + Z%0, + Z*0, in the system of coordinates along
N introduced before, the identity £zh = 0 in (4.29) gives

0 = Z(hay) + 0uZ%hpy + 2 hayp,  ab e {1,2).
Therefore
Z(det(h)) = Z(hi1hoy — hiy) = —2(01 Z" + 0,Z%)det(h).
Since h = (deth)Y/2h, the identity £zh = 0 shows that
Lzh= (2" + 8,7%)h. (4.30)

Notice also that Z does not depend on the choice of the tensor ﬁ, indeed Z is defined
simply by the relation [L,Z] = 0 in (4.29)). Therefore we obtain a contradiction, by

choosing h such that (4.30) fails at some point in Ny \ O_. This completes the proof. O
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