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ON THE LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN

RICCI FLAT MANIFOLDS

ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

Abstract. We revisit the extension problem for Killing vector-fields in smooth Ricci flat
manifolds, and its relevance to the black hole rigidity problem. We prove both a stronger
version of the main local extension result established in [1], as well as two types of results
concerning non-extendibility. In particular we show that one can find local, stationary,
vacuum extensions of a Kerr solution K(m, a), 0 < a < m, in a future neighborhood
of a point p of the past horizon, (p not on the bifurcation sphere), which admits no
extension of the Hawking vector-field of K(m, a). This result illustrates one of the major
difficulties one faces in trying to extend Hawking’s rigidity result to the more realistic
setting of smooth stationary solutions of the Einstein vacuum equations; unlike in the
analytic situation, one cannot hope to construct an additional symmetry of stationary
solutions (as in Hawking’s Rigidity Theorem) by relying only on local information.
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1. Introduction

In this paper we revisit the extension problem for Killing vector-fields in smooth Ricci
flat Lorentzian manifolds and its relevance to the black hole rigidity problem. In the most
general situation the problem can be stated as follows:

Assume (M, g) is a given smooth pseudo-riemannian manifold, O ⊆ M is an open
subset, and Z is a smooth Killing vector-field in O. Under what assumptions does Z
extend (uniquely) as a Killing vector-field in M?

A classical result1 of Nomizu establishes such a unique extension provided that the
metric is real analytic, M and O are connected and M is simply connected. The result
has been used, see [5] and [4], to reduce the black hole rigidity problem, for real analytic
stationary solutions of the Einstein field equations, to the simpler case of axial symmetry
treated by the Carter-Robinson theorem. This reduction has been often regarded as
decisive, especially in the physics literature, without a clear understanding of the sweeping
simplification power of the analyticity assumption. Indeed the remarkable thing about
Nomizu’s theorem, to start with, is the fact the metric is not assumed to satisfy any
specific equation. Moreover no assumptions are needed about the boundary of O in M

and the result is global with only minimal assumptions on the topology of M and O.
All these are clearly wrong in the case of smooth manifolds (M, g) which are not real
analytic. To be able to say anything meaningful we need to both restrict the metric g by
realistic equations and make specific assumptions about the boundary of O. Local and
global assumptions also need to be carefully separated.

In this paper we limit our attention to a purely local description of the extension
problem in the smooth case. Throughout the paper we assume that (M, g) is a non-
degenerate Ricci flat, pseudo-riemannian metric i.e.

Ric(g) = 0. (1.1)

We recall the following crucial concept.

Definition 1.1. A domain O ⊂ M is said to be strongly pseudo-convex at a boundary
point p ∈ ∂O if it admits a strongly pseudo-convex defining function f at p, in the sense
that there is an open neighborhood U of p in M and a smooth function f : U → R,
∇f(p) 6= 0, such that O ∩ U = {x ∈ U : f(x) < 0} and

D2f(X,X)(p) < 0 (1.2)

for any X 6= 0 ∈ Tp(M) for which X(f)(p) = 0 and gp(X,X) = 0.

It is easy to see that this definition, in particular (1.2), does not depend on the choice of
the defining function f . The strong pseudo-convexity condition is automatically satisfied
if the metric g is Riemannian. It is also satisfied for Lorentzian metrics g if ∂O is space-
like at p, but it imposes serious restrictions for time-like hypersurfaces. It clearly fails if

1See [9]. We rely here on the version of the theorem given in [4].
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∂O is null in a neighborhood of p. Indeed in that case we can choose the defining function
f to be optical, i.e.,

DαfDαf = 0 (1.3)

at all points of ∂O in a neighborhood of p, and thus, choosing Xα = Dαf , we have,

XαXβDαDβf =
1

2
X(DαfDαf) = 0.

Besides a new extension result, see Theorem 1.2 below, the paper contains two local
counterexamples. In our main such result, see Theorem 1.3, we show that at any point p in
the complement of the bifurcation sphere of the horizon of a Kerr spacetime K(m, a), 0 <
a < m, with T, Z denoting the usual stationary and axially symmetric Killing vector-fields
of K(m, a), one can find local extensions of the Kerr metric, which coincide with K(m, a)
inside the black hole, and such that only T extends as a Killing vector-field to a full
neighborhood of p. The condition a > 0 is important in our proof, since our construction
only works in the region where T is timelike, i.e. the ergo-region. It remains open whether
a similar counterexample can be constructed for the Schwarzschild spacetimes K(m, 0).

We first state the following extension theorem:

Theorem 1.2. Assume that (M, g) is a smooth d-dimensional Ricci flat, pseudo-rie-
mannian manifold and O ⊆ M is a strongly pseudo-convex domain at a point p ∈ ∂O.
We assume that the metric g admits a smooth Killing vector-field Z in O. Then Z extends
as a Killing vector-field for g to a neighborhood of the point p in M.

Under more restrictive assumptions, a similar result was proved in [1] as a key compo-
nent of a theorem on the uniqueness of the Kerr solution in [2]. In this paper we present
a different, more geometric proof, which is valid in all dimensions and for all pseudo-
riemannian metrics. More importantly, the proof we present here does not require that
the vector-field Z be tangent to the boundary ∂O in a neighborhood of p, or the existence
of a geodesic vector-field L, defined in a neighborhood of p, and commuting with Z in O.

In applications, one would like to use Theorem 1.2 repeatedly and extend the Killing
vector-field Z to larger and larger open sets. For this it is important to understand the
”size” of the implied neighborhood in the conclusion of the theorem, where the vector-
field Z extends. The proof shows that this neighborhood depends only on smoothness
parameters of g and f in a neighborhood of p (see (2.24)), and a quantitative form of
strong pseudo-convexity described in Lemma 2.11. The neighborhood does not depend in
any way on the vector-field Z itself.

In view of Theorem 1.2, Killing vector-fields extend locally across strongly pseudo-
convex hypersurfaces in Ricci flat manifolds. A natural question is whether the strong
pseudo-convexity condition is needed. We give a partial answer in Theorem 4.3: in
general one cannot expect to extend a Killing vector-field across a null hypersurface in a
4-dimensional Lorentz manifold.2

2Such a hypersurface is not strongly pseudo-convex, see the discussion before Theorem 1.2.
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Our second main theorem provides a counterexample to extendibility, in the setting of
the black hole rigidity problem. Let (K(m, a), g) denote the (maximally extended) Kerr
space-time of mass m and angular momentum ma, 0 ≤ a < m (see [5] for definitions).
Let M(end) denote an asymptotic region, E = I−(M(end))∩I+(M(end)) the corresponding
domain of outer communications, and H− = δ(I+(M(end)) the boundary (event horizon)
of the corresponding white hole3. Let T = d/dt denote the stationary (timelike in M(end))
Killing vector-field of (K(m, a), g), and let Z = d/dφ denote its rotational (with closed
orbits) Killing vector-field.

Theorem 1.3. Assume that 0 < a < m and U0 ⊆ K(m, a) is an open set such that

U0 ∩ H− ∩ E 6= ∅.
Then there is an open set U ⊆ U0 diffeomorphic to the open unit ball B1 ⊆ R

4, U∩H− 6= ∅,
and a smooth Lorentz metric g̃ in U with the following properties:

(i)
g̃Ric = 0 in U, LTg̃ = 0 in U, g̃ = g in U \ E; (1.4)

(ii) the vector-field Z = d/dφ does not extend to a Killing vector-field for g̃, commuting
with T, in U .

In other words, one can modify the Kerr space-time smoothly, on one side of the horizon
H−, in such a way that the resulting metric still satisfies the Einstein vacuum equations,
has T = d/dt as a Killing vector-field, but does not admit an extension of the Killing
vector-field Z. This result illustrates one of the major difficulties one faces in trying
to extend Hawking’s rigidity result to the more realistic setting of smooth stationary
solutions of the Einstein vacuum equations: unlike in the analytic situation, one cannot
hope to construct an additional symmetry of stationary solutions of the Einstein-vacuum
equations (as in Hawking’s Rigidity Theorem) by relying only on the local information
provided by the equations.4

The rest of the paper is organized as follows: in section 2 we prove Theorem 1.2
and in section 3 we prove Theorem 1.3. In section 4 we consider extensions across null
hypersurfaces in 4-dimensional Lorentz manifolds and prove two more theorems: Theorem
4.1, which provides a criterion for extension of Killing vector-fields, and Theorem 4.3,
which provides a general framework when extension is not possible.

2. Proof of Theorem 1.2

In [1] and [2] the extension of the Killing vector-field Z was done according to the
transport equation,

[L,Z] = c0L, (2.1)

3A similar statement can be made on the future event horizon H+.
4As mentioned earlier a local version of Hawking’s Rigidity Theorem was proved in [1]. The key

additional information used in that paper is the existence of a regular bifurcation sphere, which is the
smooth transversal intersection of two non-expanding horizons.
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where DLL = 0 and c0 constant. Consequently we had to assume, in O, that Z is not only
Killing but that it also satisfies the additional assumption (2.1) with respect to a geodesic
non-vanishing vector-field L. This could be arranged in the particular cases studied in
[1] and [2], but imposes serious restrictions on Z in the general case, particularly if Z
vanishes in a neighborhood of the point p. To avoid this restriction, in this paper we
extend Z according to the weaker condition

DLDLZ = R(L,Z)L, (2.2)

which would follow easily from (2.1), and is automatically satisfied if Z is Killing.

More precisely, we construct first a smooth vector-field L in a neighborhood of p such
that

DLL = 0, L(f)(p) = 1,

and extend Z to a neighborhood of p by solving the second order differential system (2.2).
Therefore, after restricting to a small neighborhood of p, we may assume that Z, L are
smooth vector-fields in M with the properties

DLL = 0 in M, LαLβ(DαDβZµ − ZρRραβµ) = 0 in M, LZg = 0 in O. (2.3)

It remains to prove that the deformation tensor π = LZg vanishes in a neighborhood of
p. We cannot do this however without establishing at the same time that the tensor LZR

also vanishes identically in M. Our strategy is to derive a wave equation for LZR, or
rather a suitable modification of it, coupled with a number of transport equations along
the integral curves of L for various tensorial quantities including π itself. These equations
will be used to prove that π and LZR have to vanish in a full neighborhood of p, provided
that the strong pseudo-convexity assumption, which guarantees the unique continuation
property, is satisfied.

2.1. Tensorial equations. We first consider the properties of LZR. Observe that LZR

verifies all the algebraic symmetries of R except the fact that, for an Einstein vacuum
metric g, R is traceless. We have instead,

gαγLZRαβγδ = παγRαβγδ.

To re-establish this property we can introduce (see also Chapter 7 in [3]) modifications5

of LZR of the form

L̂ZR := LZR− B ⊙R,

where, for any give 2-tensor B, we write,

(B ⊙R)αβγδ := Bα
λRλβγδ +Bβ

λRαλγδ +Bγ
λRαβλδ +Bδ

λRαβγλ.

5Note however that, unlike [3], our B here is not symmetric.
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It is easy to check that, for any 2-tensor B, B ⊙R verifies all the algebraic symmetries
of the general Riemann curvature tensor, i.e.

(B ⊙R)αβγδ = −(B ⊙R)βαγδ = −(B ⊙R)αβδγ = (B ⊙R)γδαβ ,

(B ⊙R)αβγδ + (B ⊙R)αγδβ + (B ⊙R)αδβγ = 0.

Moreover, using the Einstein vacuum equations,

gαγ(B ⊙R)αβγδ = Bµλ
(
Rλβµδ +Rµβλδ

)
.

In particular for any antisymmetric B, B ⊙ R is traceless, i.e. a Weyl field. We have
proved the following:

Proposition 2.1. Assume ω is an antisymmetric 2-form in M and let

W := LZR− 1

2
(π + ω)⊙R. (2.4)

Then W is a Weyl field in M, i.e.

Wαβγδ = −Wβαγδ = −Wαβδγ =Wγδαβ ,

Wαβγδ +Wαγδβ +Wαδβγ = 0,

gαγWαβγδ = 0.

We shall next establish a divergence equation for W . We do this by commuting the
divergence equation for R with LZ . We rely on the following, see Lemma 7.1.3 in [3]:

Lemma 2.2. For arbitrary k-covariant tensor-field V and vector-field X we have,

Dβ(LXVα1...αk
)−LX(DβVα1...αk

) =
k∑

j=1

(X)ΓαjβρV
ρ

α1... ...αk
, (2.5)

where (X)π = LXg is the deformation tensor of X and,

(X)Γαβµ =
1

2
(Dα

(X)πβµ +Dβ
(X)παµ −Dµ

(X)παβ).

Definition 2.3. We denote π = (Z)π and Γ = (Z)Γ the corresponding tensors associated
to the vector-field Z. We also denote (L)π = H. We also introduce the tensors,

Pαβµ = Dαπβµ −Dβπαµ −Dµωαβ,

Bαβ =
1

2
(παβ + ωαβ),

Ḃαβ = LρDρBαβ ,

Wαβγδ = (LZR)αβγδ − (B ⊙R)αβγδ.

All these tensors depend on the 2-form ω, which will be defined later (see (2.9)) to achieve
a key cancellation in the proof of the transport equation (2.13).

Using Lemma 2.2 we can now prove the following:
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Lemma 2.4. The Weyl field W verifies the divergence equation

DαWαβγδ =
1

2

(
BµνDνRµβγδ + gµνPµρνR

ρ
βγδ

+ PβνµR
µν

γδ + PγνµR
µ
β
ν
δ + PδνµR

µ
βγ

ν
)
.

(2.6)

Proof of Lemma 2.4. Using Lemma 2.2 and the identity DαRαβγδ = 0 (which is a conse-
quence of the Einstein vacuum equations), we easily deduce

DαLZRαβγδ = gαµDµLZRαβγδ

= gαµ
(
LZDµRαβγδ + ΓαµρR

ρ
βγδ + ΓβµρRα

ρ
γδ + ΓγµρRαβ

ρ
δ + ΓδµρRαβγ

ρ
)

= παµDµRαβγδ + Γµ
µρR

ρ
βγδ + ΓβµρR

µρ
γδ + ΓγµρR

µ
β
ρ
δ + ΓδµρR

µ
βγ

ρ.

Using the definition and the Einstein vacuum equations, we derive

Dα(B ⊙R)αβγδ

= BαλDαRλβγδ +DαBαλR
λ
βγδ +DαBβλR

αλ
γδ +DαBγλR

α
β
λ
δ +DαBδλR

α
βγ

λ,

for any 2-tensor B. Thus, if B = (1/2)(π + ω),

DαWαβγδ = (πµν − Bµν)DµRνβγδ + gµν(Γµνρ −DνBµρ)R
ρ
βγδ

+ (Γβµν −DµBβν)R
µν

γδ + (Γγµν −DµBγν)R
µ
β
ν
δ + (Γδµν −DµBδν)R

µ
βγ

ν .

We observe now that

Γbac −DaBbc =
1

2
Pbca,

which completes the proof of the lemma. �

We now look for transport equations for the tensor-fields B,P appearing in (2.6), of
the form,

DL(B,P ) = M(W,B, P ),

with the notation M(W,B, P ) explained below.

Definition 2.5. By convention, we let M((1)B, . . . , (k)B) denote any smooth “multiple”
of the tensors (1)B, . . . , (k)B, i.e. any tensor of the form

M((1)B, . . . , (k)B)α1...αr =
(1)Bβ1...βm1

(1)Cα1...αr

β1...βm1 + . . .+ (k)Bβ1...βmk

(k)Cα1...αr

β1...βmk ,
(2.7)

for some smooth tensors (1)C, . . . , (k)C in M.

It turns out in fact that we need to include also a transport equation for Ḃ = DLB.
Thus we look for equations of the type,

DL(B, Ḃ, P ) = M(W,B, Ḃ, P ).

We start with a lemma.
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Lemma 2.6. Given the vector-field Z, extended to M by (2.3), we have

Lβπαβ = 0 in M. (2.8)

Moreover, if we define ω in M as the solution of the transport equation

DLωαβ = παρDβL
ρ − πβρDαL

ρ, (2.9)

with ω = 0 in O, then

LµPαβµ = 0, Lβωαβ = 0 in M. (2.10)

Proof of Lemma 2.6. We first remark that LαLβDαZβ = 0 in M. Indeed, using (2.3),

LρDρ(L
αLβDαZβ) = LρLαLβDρDαZβ = LβLαLρZνRναρβ = 0.

Since LαLβDαZβ = 0 in O we deduce that

LαLβDαZβ = 0 in M. (2.11)

We prove now (2.8). Using (2.3) and (2.11) we compute

LρDρ(L
βπαβ) = LρLβ(DρDβZα +DρDαZβ)

= LρLβZµRµρβα + LρLβDαDρZβ + LρLβZµRραβµ

= Dα(L
ρLβDρZβ)− LβDρZβDαL

ρ − LρDρZβDαL
β

= −LβπµβDαL
µ.

Since Lβπαβ vanishes in O, it follows that Lβπαβ vanishes in M, as desired.
The first identity in (2.10) follows from the definitions of ω and P and the identity

(2.8):

LµPαβµ = LµDαπβµ − LµDβπαµ − LµDµωαβ = −πβµDαL
µ + παµDβL

µ − LµDµωαβ = 0.

To prove the second identity, we compute, using the definition (2.9) and the identities
Lβπβρ = 0 and DLL = 0,

DL(L
βωαβ) = LρLβDρωαβ = Lβ(παρDβL

ρ − πβρDαL
ρ) = 0.

Since Lβωαβ vanishes in O, it follows that Lβωαβ vanishes in M, as desired. �

We derive now our main transport equations for the tensors Ḃ and P .

Lemma 2.7. In M we have

DLḂαβ = LµLν(LZR)µαβν − 2ḂνβDαL
ν − πβ

ρLµLνRµαρν (2.12)

and

DLPαβµ = 2LνWαβµν + 2LνBµ
ρRαβρν −DµL

ρPαβρ. (2.13)
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Proof of Lemma 2.7. We have

DLḂαβ = LµLνDµDνBαβ = (1/2)[LµLνDµDνπαβ + LµDµ(L
νDνωαβ)]. (2.14)

We calculate

LµLνDµDνDαZβ = LµLνDµ(DαDνZβ +RναβρZ
ρ)

= LµLν(DαDµDνZβ +Rµαν
ρDρZβ +Rµαβ

ρDνZρ)

+ LµLνZρDµRναβρ + LµLνDµZρRναβ
ρ.

Using (2.3) and the general identity

DaDbZc = RcbadZ
d + Γabc, (2.15)

we calculate

LµLνDαDµDνZβ = Dα(L
µLνZρRρµνβ)−Dα(L

µLν)(RβνµρZ
ρ + Γνµβ)

= LµLνZρDαRρµνβ + LµLνDαZρR
ρ
µνβ − ΓνµβDα(L

µLν).

Thus

LµLνDµDνDαZβ = LµLνZρ(DµRναβρ +DαRρµνβ)− ΓνµβDα(L
µLν)

+ LµLν(DαZ
ρRµρβν + 2DνZ

ρRµαβρ +DβZ
ρRµαρν) + LµLνRµαν

ρπρβ .

Since

(DµRναβρ +DαRρµνβ) + (DµRνβαρ +DβRρµνα) = DρRµβαν +DρRµαβν ,

it follows that

LµLνDµDνπαβ = LµLν [(LZR)µαβν + (LZR)µβαν ]

+ LµLν(Rµανρπβ
ρ +Rµβνρπα

ρ)− [ΓνµβDα(L
µLν) + ΓνµαDβ(L

µLν)].

Using the identity (2.8) and the definitions we calculate

ΓνµβDα(L
µLν) = LνDνπµβDαL

µ −DαL
µDµL

νπνβ +DαL
µDβL

νπµν = 2DαL
µḂµβ.

Therefore

LµLνDµDνπαβ = 2LµLν(LZR)µαβν − 2DαL
µḂµβ − 2DβL

µḂµα

+ LµLν(Rµανρπβ
ρ +Rµβνρπα

ρ).
(2.16)

Using again (2.8) and the definitions we calculate

LµDµ(L
νDνωαβ) = LµDµ(πανDβL

ν − πβνDαL
ν)

= (LµDµπναDβL
ν + πα

ρLµDµDβLρ)− (LµDµπνβDαL
ν + πβ

ρLµDµDαLρ)

= (2DβL
νḂνα + πα

ρLµLνRµβρν)− (2DαL
νḂνβ + πβ

ρLµLνRµαρν).

(2.17)

The desired identity (2.12) follows from (2.14), (2.16), and (2.17).
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We prove now (2.13). It follows from Definition 2.3 that

LρDρPαβµ = LρDρDα(DβZµ +DµZβ)− LρDρDβ(DαZµ +DµZα)− LρDρDµωαβ

= LρDρ(RαβµνZ
ν) + (LρDρDαDµZβ − LρDρDβDµZα)− LρDρDµωαβ .

(2.18)

We calculate as before, using (2.15)

LρDρDαDµZβ = LρDρ(RαµβνZ
ν) + LρDρDµDαZβ

= LρDρ(RαµβνZ
ν) + LρRρµα

νDνZβ + LρRρµβ
νDαZν + LρDµDρDαZβ

= LρDρ(RαµβνZ
ν) + LρRρµα

νDνZβ + LρRρµβ
νDαZν + LρDµ(RβαρνZ

ν + Γραβ).

Using (2.8) we calculate

2LρDµΓραβ = LρDµ(Dρπαβ +Dαπρβ −Dβπαρ)

= LρDµDρπαβ +DµL
ρ(Dβπρα −Dαπρβ) +Dµ(DβL

ρπρα −DαL
ρπρβ).

The last two identities and the definitions show that

LρDρ(RαβµνZ
ν) + (LρDρDαDµZβ − LρDρDβDµZα)

= 2LρDρ(RαβµνZ
ν) + 2LρDµ(RβαρνZ

ν)

+ LρRρµα
ν(DνZβ −DβZν)− LρRρµβ

ν(DνZα −DαZν)

+DµL
ρ(Dβπρα −Dαπρβ) +Dµ(DβL

ρπρα −DαL
ρπρβ)

= 2Lρ(ZνDνRαβµρ +DρZ
νRαβµν +DµZ

νRαβνρ +DαZ
νRνβµρ +DβZ

νRανµρ)

+ LρRρµα
νπβν − LρRρµβ

νπαν −DµL
ρ(Pαβρ +Dρωαβ) +Dµ(L

ρDρωαβ)

= 2Lρ(LZR)αβµρ − Lρπα
νRνβµρ − Lρπβ

νRανµρ −DµL
ρPαβρ + LρDµDρωαβ .

Using (2.17) it follows that

LρDρPαβµ +DµL
ρPαβρ = 2Lρ(LZR)αβµρ − 2LρBα

νRνβµρ − 2LρBβ
νRανµρ,

which is equivalent to (2.13) (since LρBρν = 0, see Lemma 2.6). �

Finally, we derive a wave equation for the tensor W .

Lemma 2.8. With the notation in (2.7),

DρDρWαβµν = M(B,DB,P,DP,W )αβµν.

Proof of Lemma 2.8. We use the identity

DσDσRα1α2α3α4 = Rσρα3α4R
σ
α1α2

ρ +Rσα2ρα4R
σ
α1α3

ρ +Rσα2α3ρR
σ
α1α4

ρ

−Rσρα3α4R
σ
α2α1

ρ −Rσα1ρα4R
σ
α2α3

ρ −Rσα1α3ρR
σ
α2α4

ρ,
(2.19)

which is a well-known consequence of the Einstein vacuum equations. Using Lemma 2.2,

Dσ(LZR)α1α2α3α4 = LZ(DσRα1α2α3α4) +

4∑

j=1

ΓαjσρR
ρ

α1... ...α4
,
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and then

�g(LZR)α1α2α3α4 = DσLZ(DσRα1α2α3α4)+
4∑

j=1

[(DσΓαjσρ)R
ρ

α1... ...α4
+ΓαjσρD

σR ρ
α1... ...α4

].

Therefore, after using Lemma 2.2 to commute derivatives again and (2.19), the equation
for �g(LZR) above can be written, in schematic notation,

�g(LZR)α1...α4 =

4∑

j=1

[(DσΓαjσρ)R
ρ

α1... ...α4
] +M(π,Dπ, (LZR))α1...α4 .

In view of the definition,

�g(B ⊙R)α1,...,α4 =

4∑

j=1

DσDσBαjρR
ρ

α1... ...α4
+M(B,DB)α1...α4 .

Using also π = M(B), Dπ = M(DB), and LZR = M(B,W ), it follows that

�gWα1...α4 =
4∑

j=1

[Dσ(Γαjσρ −DσBαjρ)R
ρ

α1... ...α4
] +M(B,DB,W )α1...α4 .

The lemma follows using the identity Γαβµ −DβBαµ = (1/2)Pαµβ. �

We summarize some of the main results in this subsection in the following proposition:

Proposition 2.9. We assume that O ⊆ M, L, Z are as defined at the beginning of this
section, and satisfy (2.3). In M we define

παβ = DαZβ +DβZα.

We define the smooth antisymmetric tensor ωαβ in M as the solution of the equation

DLωαβ = παρDβL
ρ − πβρDαL

ρ, ω = 0 in O.

We also define the smooth tensors

Pαβµ = Dαπβµ −Dβπαµ −Dµωαβ,

Bαβ =
1

2
(παβ + ωαβ),

Ḃαβ = LρDρBαβ ,

Wαβγδ = (LZR)αβγδ − (B ⊙R)αβγδ.

Then the following equations hold in M:

DαWαβγδ = M(B, Ḃ, P,W )βγδ,

DLB = M(B, Ḃ, P,W ), DLḂ = M(B, Ḃ, P,W ), DLP = M(B, Ḃ, P,W ),

�W = M(B,DB, Ḃ,DḂ, P,DP,W,DW ).

(2.20)

where M((1)B, . . . , (k)B) is defined as in (2.7).
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2.2. Carleman inequalities and the local extension theorem. Motivated by the
identities summarized in Proposition 2.9, we consider solutions of systems of equations of
the form {

�gS = M((1)B, . . . , (k)B, S,DS)

DL
(i)B = M((1)B, . . . , (k)B, S,DS), i = 1, . . . , k.

We would like to prove that a solution S, (1)B, . . . , (k)B of such a system which vanishes on
one side of a suitable hypersurface has to vanish in a neighborhood of the hypersurface.
Such a result depends, of course, on convexity and non-degeneracy properties of the
hypersurface. We recall, see definition 1.1, that a domain O is strongly pseudo-convex at
a boundary point p if there exists a defining function f at p, df(p) 6= 0 which verifies,

D2f(X,X)(p) < 0 if X 6= 0 ∈ Tp(M) satisfies gp(X,X) = X(f)(p) = 0. (2.21)

We are now ready to prove Theorem 1.2. We use the covariant equations derived in
Proposition 2.9 (see (2.20)) and Carleman inequalities. We introduce a smooth system of
coordinates Φp = (x1, . . . , xd) : B1 → B1(p), Φ

p(0) = p, where Br = {x ∈ Rd : |x| < r},
r > 0, and B1(p) is an open neighborhood of p in M. Let ∂1, . . . , ∂d denote the induced
coordinate vector-fields in B1(p) and let Br(p) = Φp(Br), r ∈ (0, 1]. For any smooth
function φ : B → C, where B ⊆ B1(p) is an open set, and j = 0, 1, . . ., we define

|∂jφ(x)| =
d∑

α1,...,αj=1

|∂α1 . . . ∂αj
φ(x)|, x ∈ B. (2.22)

We assume that
gαβ(p) = diag(−1, . . . ,−1, 1, . . . , 1). (2.23)

We assume also that, for some constant A ≥ 1,

sup
x∈B1(p)

6∑

j=1

d∑

α,β=1

|∂jgαβ(x)| + sup
x∈B1(p)

4∑

j=1

|∂jf(x)| ≤ A. (2.24)

We use the system of coordinates Φp in the neighborhood of the point p, and evaluate all
the tensor-fields in the frame of coordinate vector-fields ∂1, . . . ∂d. In view of the equations
(2.20), for Theorem 1.2 it suffices to prove the following:

Lemma 2.10. Assume that δ0 > 0 and Gi, Hj : Bδ0(p) → C are smooth functions,
i = 1, . . . , I, j = 1, . . . , J , that satisfies the differential inequalities{

|�gGi| ≤M
∑I

l=1(|Gl|+ |∂1Gl|) +M
∑J

m=1 |Hm|;
|L(Hj)| ≤M

∑I
l=1(|Gl|+ |∂1Gl|) +M

∑J
m=1 |Hm|,

(2.25)

for any i = 1, . . . , I, j = 1, . . . , J , where M ≥ 1 is a constant. Assume that Gi = 0
and Hj = 0 in Bδ0(p) ∩ O−, i = 1, . . . , I, j = 1, . . . , J . Assume also that f is strongly
pseudo-convex at p, in the sense of Definition 1.1, and L(f)(p) 6= 0. Then Gi = 0 and
Hj = 0 in Bδ1(p), i = 1, . . . , I, j = 1, . . . , J , for some constant δ1 ∈ (0, δ0) sufficiently
small.
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Lemma 2.10 is proved in [1, Lemma 3.4], using two Carleman inequalities: Proposition
3.3 in [7] and Lemma A.3 in [1]. The implicit constant δ1 > 0 depends only on constants
A in (2.24), δ0, and the constant A1 in the following quantitative form of strong pseudo-
convexity:

Lemma 2.11. (a) Assume that f is strongly pseudo-convex at p. Then there are constants
A1 ≥ A and µ ∈ [−A1, A1] such that, for any vector X = Xα∂α at p,

|∂1f(p)| ≥ A−1
1 ,

XαXβ(µgαβ(p)−DαDβf(p)) + A1|X(f)(p)|2 ≥ A−1
1 |X|2,

(2.26)

where |X|2 = (X1)2 + . . .+ (Xd)2.
(b) Moreover, the inequalities (2.26) persist in a small neighborhood of p, in the sense

that there is ǫ1 = ǫ(A1) > 0 such that for any vector-field X = Xα∂α in Bǫ1(p), the
inequalities

|∂1f | ≥ (2A1)
−1,

XαXβ(µgαβ −DαDβf) + A1|X(f)|2 ≥ (2A1)
−1|X|2,

(2.27)

hold in Bǫ1(p), where |X|2 = (X1)2 + . . .+ (Xd)2 and µ is as in (2.26).

Proof of Lemma 2.26. (a) The first inequality in (2.26) is just a quantitative form of
the assumption that p is not a critical point of f . To derive the second inequality, let
hαβ = −DαDβf(p) and

δ0 = inf
|X|=1,XαXα=XαDαf=0

XαXβhαβ .

By compactness, this infimum is attained, and it follows from (2.21) that δ > 0. By
homogeneity, it follows that

XαXβhαβ ≥ δ0|X|2 if XαXα = XαDαf = 0. (2.28)

We would like to prove now that there is n0 ∈ {1, 2, . . .} such that

XαXβhαβ + n0(X
αDαf(p))

2 ≥ (δ0/2)|X|2 if XαXα = 0. (2.29)

Indeed, otherwise for any n = 1, 2, . . . there would exist a vector Xn = Xα
n∂α such that

|Xn| = 1, gp(Xn, Xn) = 0, and

Xα
nX

β
nhαβ + n(Xα

nDαf(p))
2 ≤ δ0/2.

After passing to a subsequence, we may assume that Xn converges to a vector X , with
|X|2 = 1, XαXα = 0, XαDαf(p) = 0, and XαXβhαβ ≤ δ0/2, which contradicts (2.28).
Therefore (2.29) holds for some constant n0.

Let C+ = {X ∈ TpM : |X| = 1 and XαXα > 0}, C− = {X ∈ TpM : |X| =
1 and XαXα < 0}, and, for δ ∈ [0, 1], Cδ = {X ∈ TpM : |X| = 1 and |XαXα| ≤ δ}.
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Since the metric g is non-degenerate, we may assume that C+ 6= ∅ (if C+ = ∅ then C− 6= ∅
and the proof proceeds in a similar way). For ρ ∈ R, we consider the function

Kρ : TpM → R, Kρ(X) = XαXβhαβ + n0(X
αDαf(p))

2 + ρXαXα,

where n0 is as in (2.29). Using a simple compactness argument as before, it follows from
(2.29), that

there is δ′ > 0 such that K0(X) ≥ δ0/4 for any X ∈ Cδ′ . (2.30)

Then it follows that there is ρ1 ≥ 0 sufficiently large such that

Kρ1 ≥ 0 if X ∈ C+ and there is X ∈ C+ such that K−ρ1(X) < 0.

Let

ρ0 = inf{ρ ∈ [−ρ1, ρ1] : Kρ(X) ≥ 0 for any X ∈ C+}.
We analyze the function Kρ0(X) = XαXβkαβ, where

kαβ := hαβ + n0Dαf(p)Dβf(p) + ρ0gαβ.

In view of the definition of ρ0, Kρ0(X) ≥ 0 in C+. Moreover, using also (2.30), there is
X0 ∈ C+ such that Kρ0(X0) = 0. Since Kρ0 is homogeneous of degree 2, it follows that
the point X0 is a local minimum for Kρ0 in TpM. Therefore

V αXβ
0 kαβ = 0 and V αV βkαβ ≥ 0 for any V ∈ TpO. (2.31)

We show now that

Kρ0(X) 6= 0 for any X ∈ C−. (2.32)

Indeed, assuming Kρ0(X1) = 0 for some X1 ∈ C−, it follows from (2.31) that Kρ0(tX0 +
(1− t)X1) = 0 for any t ∈ [0, 1]. However, this contradicts (2.30) since there is t0 ∈ [0, 1]
such that gp(t0X0 + (1− t0)X1, t0X0 + (1− t0)X1) = 0 and t0X0 + (1− t0)X1 6= 0.

Using (2.30), (2.31), and (2.32) it follows that Kρ0(X) > 0 for any x ∈ C− ∪ Cδ′′ , for
some δ′′ > 0. A simple compactness argument then shows that there is n1 large enough
such that Kρ0+1/n1 > 0 in {X ∈ TpM : |X| = 1}. The second inequality in (2.26) follows
by setting µ = ρ0 + 1/n1 and A1 sufficiently large.

Part (b) of the lemma follows from part (a) and the assumption (2.24). �

3. Proof of Theorem 1.3

The plan of the proof is the following: we fix a point p ∈ U0 ∩ H− ∩ E, outside both
the bifurcation sphere S0 = H− ∩H+ and the axis of symmetry A = {p ∈ E : Z(p) = 0}.
Then we consider the Kerr metric g and the induced metric

hαβ = Xgαβ −TαTβ, where X = g(T,T),

on a hypersurface Π passing through the point p and transversal to T. The metric h
is nondegenerate (Lorentzian) as long as X > 0 in Π, which explains our assumption
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0 < a < m. It is well-known, see for example [11, Section 3], that the Einstein vacuum
equations together with stationarity LTg = 0 are equivalent to the system of equations

hRicab =
1

2X2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ),

(3.1)

in Π, where Y is the Ernst potential associated to T. We rederive these equations in
Proposition 3.1 below, together with other explicit equations and identities that are needed
for the proof of the theorem.

We then modify the metric h and the functions X and Y in a neighborhood of the point
p in such a way that the identities (3.1) are still satisfied. The existence of a large family

of smooth triplets (h̃, X̃, Ỹ ) satisfying (3.1) and agreeing with the Kerr triplet in Π \ E

follows by solving a characteristic initial-value problem, using the main theorem in [10].
Finally, in Proposition 3.6 we construct the space-time metric g̃,

g̃ab = X̃−1h̃ab + X̃ÃaÃb, g̃a4 = X̃Ãa, g̃44 = X̃, a, b = 1, 2, 3,

associated to the triplet (h̃, X̃, Ỹ ), the vector-field T = ∂4, and a suitable 1-form Ã which
is defined in Π. By construction and [11, Theorem 1], this metric verifies the identities
g̃Ric = 0 and LTg̃ = 0, in a suitable open set U . Then we show that we have enough

flexibility to choose initial conditions for X̃, Ỹ such that the vector-field Z cannot be
extended as a Killing vector-field for g̃ commuting with T, in the open set U .

3.1. Explicit calculations. We consider the Kerr space-timeK(m, a) in standard Boyer–
Lindquist coordinates,

g = −q
2∆

Σ2
(dt)2 +

Σ2(sin θ)2

q2

(
dφ− 2amr

Σ2
dt
)2

+
q2

∆
(dr)2 + q2(dθ)2, (3.2)

where 



∆ = r2 + a2 − 2mr;

q2 = r2 + a2(cos θ)2;

Σ2 = (r2 + a2)q2 + 2mra2(sin θ)2 = (r2 + a2)2 − a2(sin θ)2∆.

(3.3)

We make the change of variables

du− = dt− (r2 + a2)∆−1dr, dφ− = dφ− a∆−1dr.

In the new coordinates (θ, r, φ−, u−) the space-time metric becomes

g = q2dθ2 − (du− ⊗ dr + dr ⊗ du−) + a(sin θ)2(dφ− ⊗ dr + dr ⊗ dφ−)

− 2amr(sin θ)2

q2
(dφ− ⊗ du− + du− ⊗ dφ−) +

Σ2(sin θ)2

q2
dφ2

− +
2mr − q2

q2
du2−,

(3.4)
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and the vector-field T = d/dt becomes T = d/du−. The metric g and the vector-field T

are smooth in the region

R = {(θ, r, φ−, u−) ∈ (0, π)× (0,∞)× (−π, π)× R : 2mr − q2 > 0}.
Let

X = g(T,T) =
2mr − q2

q2
, hαβ = Xgαβ −TαTβ,

and

Π = {(θ, r, φ−, u−) ∈ R : u− = 0}.
Let

∂1 =
d

dθ
, ∂2 =

d

dr
, ∂3 =

d

dφ−
, (3.5)

denote the vector-fields in Π induced by coordinates (θ, r, φ−). We calculate the compo-
nents of the metric h along the surface Π,

h11 = 2mr − q2, h12 = 0, h13 = 0, h22 = −1,

h23 = −a(sin θ)2, h33 = −∆(sin θ)2.
(3.6)

Therefore

h11 =
1

2mr − q2
, h12 = 0, h13 = 0, h22 =

∆

2mr − q2
,

h23 =
−a

2mr − q2
, h33 =

1

(sin θ)2(2mr − q2)
.

(3.7)

Let

Γcab = h(∇∂b∂a, ∂c) = (1/2)(∂ahbc + ∂bhac − ∂chab), Γd
ab = hcdΓcab. (3.8)

Using (3.6) and (3.7) we calculate

Γ1
11 =

a2 sin θ cos θ

2mr − q2
, Γ2

11 =
∆(r −m)

2mr − q2
, Γ3

11 =
a(m− r)

2mr − q2
,

Γ1
12 =

m− r

2mr − q2
, Γ2

12 =
a2 sin θ cos θ

2mr − q2
, Γ3

12 =
−a cot θ
2mr − q2

,

Γ1
13 = 0, Γ2

13 = 0, Γ3
13 = cot θ,

Γ1
22 = 0, Γ2

22 = 0, Γ3
22 = 0,

Γ1
23 =

a sin θ cos θ

2mr − q2
, Γ2

23 =
a(r −m)(sin θ)2

2mr − q2
, Γ3

23 =
m− r

2mr − q2
,

Γ1
33 =

∆sin θ cos θ

2mr − q2
, Γ2

33 =
∆(r −m)(sin θ)2

2mr − q2
, Γ3

33 =
a(m− r)(sin θ)2

2mr − q2
.

(3.9)
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We have

hR(∂a, ∂c)∂b = ∇∂a(∇∂c∂b)−∇∂c(∇∂a∂b)

= ∇∂a(Γ
d
bc∂d)−∇∂c(Γ

d
ba∂d)

= ∂a(Γ
d
bc)∂d + Γd

bcΓ
e
da∂e − ∂c(Γ

d
ba)∂d + Γd

baΓ
e
dc∂e

= [∂a(Γ
d
bc)− ∂c(Γ

d
ba) + Γe

bcΓ
d
ea − Γe

baΓ
d
ec]∂d,

therefore

hRicba = ∂c(Γ
c
ba)− ∂a(Γ

c
bc) + Γd

baΓ
c
dc − Γd

cbΓ
c
da. (3.10)

Using (3.8) we calculate

Γc
bc = (1/2)hca(∂bhca) = (1/2)∂b(log |h|) = ∂b(log(sin θ(2mr − q2))). (3.11)

Thus

hRic11 =
2m2a2(sin θ)2

(2mr − q2)2
, hRic12 = 0, hRic13 = 0,

hRic22 =
2m2

(2mr − q2)2
, hRic23 = 0, hRic33 = 0.

(3.12)

Let

X =
2mr − q2

q2
, Y = −2ma cos θ

q2
,

Tab =
1

2X2
(∇aX∇bX +∇aY∇bY ).

(3.13)

We calculate

∂1X =
4a2mr sin θ cos θ

q4
, ∂2X =

2mq2 − 4mr2

q4
, ∂3X = 0,

∂1Y =
2ma sin θq2 − 4ma3 sin θ(cos θ)2

q4
, ∂2Y =

4mra cos θ

q4
, ∂3Y = 0.

(3.14)

Therefore

T11 =
2m2a2(sin θ)2

(2mr − q2)2
, T12 = 0, T13 = 0, T22 =

2m2

(2mr − q2)2
, T23 = 0, T33 = 0.

Using also (3.12) it follows that

hRic = T.
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Using (3.7), (3.14), and |h| = (sin θ)2(2mr − q2)2 we calculate

|h|1/2h1j∂j(X + iY ) = i
2am(sin θ)2

q4
(r − ia cos θ)2,

|h|1/2h2j∂j(X + iY ) =
−2m∆sin θ

q4
(r − ia cos θ)2,

|h|1/2h3j∂j(X + iY ) =
2ma sin θ

q4
(r − ia cos θ)2.

(3.15)

Therefore

h�X =
24m2r2a2(cos θ)2 − 4m2r4 − 4m2a4(cos θ)4

q6(2mr − q2)
,

h�Y =
16m2ra cos θ(r2 − a2(cos θ)2)

q6(2mr − q2)
.

(3.16)

We calculate also

X−1hij(∂iX∂jX − ∂iY ∂jY ) =
24m2r2a2(cos θ)2 − 4m2r4 − 4m2a4(cos θ)4

q6(2mr − q2)
,

2X−1hij∂iX∂jY =
16m2ra cos θ(r2 − a2(cos θ)2)

q6(2mr − q2)
.

Therefore

hRicab =
1

2X2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ).

(3.17)

The components of the spacetime metric g in the coordinates (θ, r, φ−, u−) (see (3.4))
have the form,

gab = X−1hab +XAaAb, ga4 = XAa, g44 = X, a, b = 1, 2, 3.

or, with x = (θ, r, φ),

g = (Xdu− + Aadx
a)2 +X−1habdx

adxb

where,

A1 = 0, A2 = − q2

2mr − q2
, A3 = −2amr(sin θ)2

2mr − q2
, (3.18)
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We compute

∂1A2 − ∂2A1 =
4a2mr sin θ cos θ

(2mr − q2)2
,

∂2A3 − ∂3A2 =
−2ma(sin θ)2(r2 − a2(cos θ)2)

(2mr − q2)2
,

∂3A1 − ∂1A3 =
−4mra∆sin θ cos θ

(2mr − q2)2
.

Therefore, using also (3.15), with h∈123= −|h|1/2,
X2(∇aAb −∇bAa) =

h∈abc ∇cY. (3.19)

To summarize, we verified the following:

Proposition 3.1. With the notation above, the metric h, the functions X, Y , and the
1-form A satisfy the identities (in Π)

hRicab =
1

2X2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ),

X2(∇aAb −∇bAa) =
h∈abc ∇cY.

Remark 3.2. Under a change of coordinates of the form u′− = u− − f(x1, x2, x3) the 1-
form A = Aadx

a changes according to the formula A′ = A−df . The change of coordinates
amounts to a choice of the hypersurface Π i.e. instead of u− = 0 we would chose u− =
f(θ, r, φ).

3.2. The metric h̃. We would like to construct now a large family of triplets (h̃, X̃, Ỹ )

and 1-forms Ã, such that the identities in Proposition 3.1 are still satisfied in a neighbor-
hood in Π of a fixed point p ∈ (U0 ∩H− ∩ E) \ (A∪ S0). Let

N0 = {x ∈ S : r(x) = r+ := m+
√
m2 − a2}.

This is a 2-dimensional hypersurface in Π; the vector-fields ∂1 and ∂3 are tangent to N0

and, using (3.6) and (3.9),

h(∂3, ∂3) = h(∂3, ∂1) = 0, ∇∂3∂3 = −[(m/a)2 − 1]1/2∂3, along N0.

Therefore N0 is a null hypersurface in Π. AlongN0 ⊂ Π we define the smooth, transversal,
null vector-field,

L = (2a2(sin θ)2 −∆)−1 · [2a∂2 − (sin θ)−2∂3]. (3.20)

Using (3.6), it follows that

h(L, L) = h(L, ∂1) = 0, [L, ∂3] = 0, h(L, ∂3) = −1, along N0. (3.21)

Let
P = {x ∈ N0 : φ−(x) = 0}, p = {x ∈ P : θ(x) = θ0 ∈ (0, π)}.
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Thus P is a 1-dimensional smooth curve in N0 and p ∈ P is a point. We extend the
vector-field L to a small open neighborhood D of p in Π, by solving the geodesic equation

∇LL = 0 in D.

Then we construct the null hypersurface N1 in D as the congruence of geodesic curves
tangent to L and passing through the curve P . We also fix a time-orientation in D such
that ∂3 and L are future-directed null vector-fields along P ∩D. and let J+(N1) denote
the causal future of N1 in D. Let

D− = {x ∈ D : ∆(x) < 0}, D+ = {x ∈ D : ∆(x) > 0}.
The following proposition is a consequence of the main theorem in [10].

Proposition 3.3. Assume X̃, Ỹ : N1 → R are smooth functions satisfying

X̃ = X and Ỹ = Y in N1 ∩D−.

Then there is a small neighborhood D′ of p in Π, a smooth metric h̃ in J+(N1)∩D′, and

smooth extensions X̃, Ỹ : J+(N1) ∩D′ → R such that, in J+(N1) ∩D′,

h̃Ricab =
1

2X̃2
(∇aX̃∇bX̃ +∇aỸ∇bỸ ),

h̃�(X̃ + iỸ ) =
1

X̃
h̃ab∂a(X̃ + iỸ )∂b(X̃ + iỸ ).

(3.22)

In addition

X̃ = X, Ỹ = Y, h̃ = h in J+(N1) ∩D′ ∩D−, (3.23)

and, for any vector-field V tangent to N1 ∩D′,

h̃(L, V ) = 0 and ∇̃LL = 0 along N1 ∩D′. (3.24)

To be able to construct the desired space-time metric g̃ we also need to extend the
1-form A (compare with the formula (3.34)). More precisely:

Proposition 3.4. There is a smooth 1-form Ãa in a neighborhood D of p in J+(N1)
satisfying (compare with (3.19))

X̃2(∇̃aÃb − ∇̃bÃa) = ∈̃abc∇̃cỸ ,

Ã = A in D ∩D−.
(3.25)

Proof. Without loss of generality6 we may assume that LaAa = 0 in a full neighborhood
D of p in Π. Indeed in view of remark 3.2 we can choose a function f in D such that
L(f) = LaAa and change Π to Π′ by redefining u′− = u− − f . In Π′ the corresponding
L′, A′ verify (L′)a ·A′

a = 0.

6Alternatively the argument below can easily be adapted to the case L · A 6= 0 by a straightforward
modification of equation (3.26).
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Let L̃ denote the geodesic vector-field (i.e. ∇̃L̃L̃ = 0) generated in a neighborhood of
the point p in by the vector-field L define on N0 in (3.20), so

L̃ = L in [(J+(N1) ∩D−) ∪N1] ∩D′.

We then define the form Ã as the solution of the transport equation, in a neighborhood
of the point p in J+(N1),

L̃a∇̃aÃb + Ãa∇̃bL̃
a = ∈̃abcX̃

−2L̃a∇̃cỸ ,

Ã = A along N0,
(3.26)

It follows easily from (3.19) that the form A verifies this transport equation in D−, thus

Ã is a well-defined smooth form in a neighborhood D of p in J+(N1) and Ã = A in
D−. It remains to prove the identity in the first line of (3.25). We observe first that

ÃaL̃
a vanishes in a neighborhood of p in J+(N1). Indeed, using the definition (3.26) we

compute,

L̃a∇̃a(L̃
bÃb) = L̃bL̃a∇̃aÃb = 0.

therefore

L̃bÃb = 0 in a neighborhood of p in J+(N1). (3.27)

Letting

Q̃ab = X̃2(∇̃aÃb − ∇̃bÃa)− ∈̃abc∇̃cỸ , (3.28)

it follows from (3.26) and (3.27) that

L̃aQ̃ab = 0, L̃bQ̃ab = 0. (3.29)

To show that Q̃ vanish identically we derive a transport equation for it. In fact we show in

the lemma below that LL̃(X̃
−2Q̃) vanishes identically in a neighborhood of p in J+(N1).

Since Q̃ vanishes in D− it follows that Q̃ vanishes in a neighborhood of p in J+(N1), as
desired. Thus the proof reduces to the lemma below. �

Lemma 3.5. Consider a 3-dimensional Lorentzian manifold (Π, h) and scalar functions
(X, Y ) which verify the equation,

�hY = 2X−1hab∇aX∇bY, (3.30)

Assume also given a 1-form A which verifies,

La∇aAb + Aa∇bL
a = X−2 ∈abc L

a∇cY, L · A = 0, (3.31)

with L a null geodesic vector-field in Π. Then the 2-form

Qab = X2(∇aAb −∇bAa)− ∈abc ∇cY (3.32)

verifies the equation,

LL(X
−2Q) = 0. (3.33)
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Proof of Lemma 3.5. We have,

LLQab = 2XLLX(∇aAb −∇bAa) +X2LL(∇aAb −∇bAa)

− (LL ∈abc)∇cY− ∈abc LL(∇cY )

= 2X−1∇LXQab + 2X−1LLX(∈abc ∇cY ) +X2(∇aLLAb −∇bLLAa)

− (LL ∈abc)∇cY− ∈abc LL(∇cY )

= 2X−1∇LXQab +X2(∇aLLAb −∇bLLAa)+ ∈abc

(
2X−1∇LX − div (L))∇cY

− ∈abc (L
d∇d∇cY −∇dY∇dL

c)

Using the equation for A, written in the form LLAa = −X−2 ∈acd L
c∇dY ,

X2(∇aLLAb −∇bLLAa) = X2(∇aLLAb −∇bLLAa)

= 2X−1
(
∇aX ∈bcd −∇bX ∈acd

)
Lc∇dY

− ∈bcd ∇aL
c∇dY+ ∈acd ∇bL

c∇dY

− ∈bcd L
c∇a∇dY+ ∈acd L

c∇b∇dY.

Hence,

LLQab − 2X−1∇LXQab = Eab

with

Eab = − ∈bcd L
c∇a∇dY+ ∈acd L

c∇b∇dY− ∈abc L
d∇d∇cY

+ 2X−1
(
∇aX ∈bcd −∇bX ∈acd

)
Lc∇dY+ ∈abc 2X

−1∇LX∇cY

− ∈bcd ∇aL
c∇dY+ ∈acd ∇bL

c∇dY+ ∈abc

(
− (div L)∇cY +∇dY∇dL

c
)
.

To check that E ≡ 0 it suffices to show that its Hodge dual ∗Em := 1
2
∈m

abEab vanishes.
By a straightforward calculation, involving the usual rules of contracting tensor products
of the volume form ∈, we find,

∗Em = (�hY − 2X−1∇aX∇aY )Lm

from which the lemma easily follows. �

3.3. The space-time metric. Let X̃ , Ỹ , h̃, D, and Ã be as before. In D × I, where
I ⊂ R is an open interval, we define the Lorentz metric g̃ by

g̃ab = X̃−1h̃ab + X̃ÃaÃb, g̃a4 = X̃Ãa, g̃44 = X̃, a, b = 1, 2, 3. (3.34)

The functions X̃, Ỹ , Ãa, h̃ab, originally defined in D are extended to D × I by

∂4(X̃) = ∂4(Ỹ ) = ∂4(Ãa) = ∂4(h̃ab) = 0, a, b = 1, 2, 3. (3.35)

Using (3.34), it follows that, with Ãa = h̃abÃb, a = 1, 2, 3,

g̃ab = X̃h̃ab, g̃a4 = −X̃Ãa, g̃44 = X̃−1 + X̃ÃaÃa, |g̃| = X̃−2|h̃|. (3.36)
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Proposition 3.6. (a) The metric g̃ agrees with the Kerr metric g in (D ∩D−)× I and
satisfies

L∂4 g̃ = 0, g̃Ric = 0 in D × R.

(b) If Z = Z4∂4 + Za∂a is a Killing vector-field for g̃ in D × I and if [Z, ∂4] = 0 then

Z ′ = Za∂a is a Killing vector-field for h̃ in D satisfying Z ′(X̃) = Z ′(Ỹ ) = 0, i.e.

Z ′(X̃) = Z ′(Ỹ ) = 0, (LZ′h̃)ab = 0. (3.37)

Proof of Proposition 3.6. (a) The claims follow easily from definitions, except for

g̃Ric = 0 in D × R.

On the other hand, this is a well-known consequence of the identities (3.22) and (3.25)

satisfied by h̃, X̃, Ỹ and Ã, and the definitions (3.34) and (3.35). See, for example, [11,
Section 3] for the proof.

(b) The identities ∂4Z
4 = 0, ∂4Z

a = 0, (LZg̃)44 = 0, (LZg̃)a4 = 0, and (LZ g̃)ab = 0
give

Z(X̃) = 0, Z(X̃Ãa) + ∂aZ
cX̃Ãc + ∂aZ

4X̃ = 0,

Z(X̃−1h̃ab + X̃ÃaÃb) + ∂aZ
c(X̃−1h̃cb + X̃ÃcÃb) + ∂aZ

4X̃Ãb

+ ∂bZ
c(X̃−1h̃ac + X̃ÃaÃc) + ∂bZ

4X̃Ãa = 0.

Using also (3.35), it follows that

Z ′(X̃) = 0, Z ′(Ãa) + ∂aZ
cÃc + ∂aZ

4 = 0,

Z ′(h̃ab) + ∂aZ
ch̃cb + ∂bZ

ch̃ac = 0.

Therefore, along D
Z ′(X̃) = 0, (LZ′h̃)ab = 0, (LZ′Ã)a = −∂aZ4.

The last identity in (3.37), Z ′(Ỹ ) = 0, follows from (3.25), rewritten in the form

∇̃mỸ = −X̃2∈̃abm∇̃aÃb.

�

We can now complete the proof of the theorem.

Proof of Theorem 1.3. We fix a point p ∈ (U0 ∩H− ∩E) \ (A∪ S0); we may assume that

u−(p) = 0, φ−(p) = 0, θ(p) ∈ (0, π), r(p) = m+
√
m2 − a2.

Then we define the surface N1 as in Proposition 3.3. For any smooth functions X̃, Ỹ :
N1 → R agreeing with X, Y in N1 ∩ D−, we construct the corresponding neighborhood
D of p in J+(N1) (which we may assume to be diffeomorphic to the unit ball in R

3
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and sufficiently small relative to U0), the smooth Lorentzian metric h̃ in D, the scalars

X̃, Ỹ : D → R, and the 1-form Ã, verifying (see (3.22) and (3.25))

h̃Ricab =
1

2X̃2
(∇aX̃∇bX̃ +∇aỸ∇bỸ ),

h̃�(X̃ + iỸ ) =
1

X̃
h̃ab∂a(X̃ + iỸ )∂b(X̃ + iỸ ),

X̃2(∇̃aÃb − ∇̃bÃa) = ∈̃abc∇̃cỸ ,

(3.38)

in D. Then we construct the space-time metric g̃ in D× I as in (3.34)–(3.35). In view of
Proposition 3.6 (a), it remains to show that we can arrange our construction in such a way
that the vector-field Z cannot be extended as a Killing vector-field for the modified metric
g̃. Using Proposition 3.6 (b), it suffices to prove that we can arrange the construction in
subsection 3.2 such that the vector-field ∂3 cannot be extended to a vector-field Z ′ in D
such that

LZ′h̃ = 0 and Z ′(X̃) = Z ′(Ỹ ) = 0 in D. (3.39)

More precisely, we assume that (3.39) holds and show that there is a choice of X̃, Ỹ along
N1 such that (3.38) is violated.

Assuming that (3.39) holds, we define the geodesic vector-field L̃ in D as in subsection
3.2 and notice that

∇̃L̃h̃(L̃, Z
′) = 0.

Recall that, see (3.21),

h̃(L̃, L̃) = 0, [L̃, Z ′] = 0, h̃(L̃, Z ′) = −1, along N0.

Since h̃(L̃, Z ′) = −1 along N0, it follows that

h̃(L̃, Z ′) = −1 in D.
We let e(2) := L̃, e(3) := Z ′, and fix an additional smooth vector-field e(1) in D such that

h̃(e(1), e(2)) = h̃(e(1), e(3)) = h̃(e(1), e(1))− 1 = 0, i.e.

ea(1) = ∈̃abc
L̃bZ

′
c.

To summarize, assuming (3.39), we have constructed a frame e(1), e(2), e(3) in D such that

h̃(e(1), e(1))− 1 = h̃(e(1), e(2)) = h̃(e(1), e(3)) = h̃(e(2), e(2)) = h̃(e(2), e(3)) + 1 = 0. (3.40)

We define the connection coefficients

Γ(a)(b)(c) = h̃(e(a), ∇̃e(c)e(b)).

Using the identities ∇̃L̃L̃ = 0 and LZ′h̃ = 0, it follows that

Γ(a)(2)(2) = 0 for any a ∈ {1, 2, 3}, Γ(a)(3)(c) + Γ(c)(3)(a) = 0 for any (a, c) ∈ {1, 2, 3}2.
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Since [L̃, Z ′] = 0 along N0 and

0 = LZ′(L̃a∇̃aL̃b) = L̃a∇̃a(LZ′L̃b) + h̃ac∇̃aL̃b(LZ′L̃c),

it follows that LZ′L̃ = 0 in D. Then, using the definition of e(1), it follows that LZ′e(1) = 0
in D, therefore

Γ(a)(3)(c) = Γ(a)(c)(3) for any (a, c) ∈ {1, 2, 3}2.
To summarize, letting F = h̃(Z ′, Z ′) = h̃(3)(3), we have

h̃(1)(1) − 1 = h̃(1)(2) = h̃(1)(3) = h̃(2)(2) = h̃(2)(3) + 1 = 0, h̃(3)(3) = F,

h̃(1)(1) − 1 = h̃(1)(2) = h̃(1)(3) = h̃(3)(3) = h̃(2)(3) + 1 = 0, h̃(2)(2) = −F,
(3.41)

and

Γ(1)(1)(1) = Γ(2)(2)(2) = Γ(3)(3)(3) = Γ(1)(1)(2) = Γ(1)(2)(2) = Γ(2)(1)(2) = Γ(2)(2)(1) = 0,

Γ(3)(2)(2) = Γ(2)(3)(2) = Γ(2)(2)(3) = Γ(3)(1)(1) = Γ(1)(3)(1) = Γ(1)(1)(3) = 0,

− Γ(1)(2)(1) = Γ(2)(1)(1), −Γ(3)(3)(a) = −Γ(3)(a)(3) = Γ(a)(3)(3) = −1

2
e(a)(F ), a ∈ {1, 2},

− Γ(3)(1)(2) = Γ(1)(3)(2) = −Γ(2)(3)(1) = Γ(3)(2)(1) = −Γ(2)(1)(3) = Γ(1)(2)(3),

e(3)(F ) = e(3)(Γ(a)(b)(c)) = 0, [e(3), e(a)] = 0, a, b, c ∈ {1, 2, 3}.
(3.42)

We derive now several identities for the connection coefficients Γ and the curvature h̃R.
Clearly

h̃R(a)(b)(c)(d) = h̃(e(a), [∇̃e(c)(∇̃e(d)e(b))− ∇̃e(d)(∇̃e(c)e(b))− ∇̃[e(c),e(d)]e(b)])

= h̃(e(a), [∇̃e(c)(Γ
(m)

(b)(d)e(m))− ∇̃e(d)(Γ
(m)

(b)(c)e(m))− (Γ(m)
(d)(c) − Γ(m)

(c)(d))∇̃e(m)
e(b)])

= e(c)(Γ(a)(b)(d))− e(d)(Γ(a)(b)(c))

+ Γ(m)
(b)(d)Γ(a)(m)(c) − Γ(m)

(b)(c)Γ(a)(m)(d) + (Γ(m)
(c)(d) − Γ(m)

(d)(c))Γ(a)(b)(m)

for any a ∈ {1, 2} and b, c, d ∈ {1, 2, 3}. Using also the identities (3.41) and (3.42), it
follows that

h̃R(a)(3)(2)(3) = e(2)(Γ(a)(3)(3))− Γ(2)(3)(3)Γ(a)(3)(2) − Γ(1)(3)(2)Γ(a)(1)(3) + Γ(3)(3)(2)Γ(a)(2)(3),

h̃R(1)(2)(2)(3) = e(2)(Γ(1)(2)(3)),

h̃R(2)(1)(2)(1) = e(2)(Γ(2)(1)(1)) + Γ(2)(1)(1)Γ(1)(2)(1).
(3.43)

We can now obtain our desired contradiction by constructing a pair of smooth functions
X̃, Ỹ along N1 such that not all the identities above (starting with (3.38)) can be simulta-
neously verified along N1. For this we fix a smooth system of coordinates y = (y1, y2, y3)
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in a neighborhood of the point p in Π such that

N1 = {q : y3(q) = 0}, N0 = {q : y2(q) = 0}, L = L̃ =
d

dy2
along N1.

More precisely we fix the L, as in the unperturbed Kerr, in a neighborhood of p and define
first y2 such that y2 vanishes on N0 and L(y2) = 1. Then we complete the coordinate
system on N0 and extend it by solving L(y1) = L(y3) = 0.

Assume ψ : R3 → [0, 1] is a smooth function equal to 1 in the unit ball and vanishing

outside the ball of radius 2. We are looking for functions X̃, Ỹ of the form

X̃(q) = X(q), Ỹ (q) = Y (q) + ǫψ((y(q)− y(p′))/ǫ), q ∈ N1, (3.44)

where p′ is a fixed point in N1 ∩ D+ sufficiently close to p, and (X, Y ) are as in (3.13).
We show below that such a choice leads to a contradiction, for ǫ sufficiently small.

Let

V1 =
d

dy1
, V2 =

d

dy2
, V3 =

d

dy3
, e(a) = Ki

(a)Vi.

In view of the definitions,

K1
(2) = K3

(2) = K3
(1) = K2

(2) − 1 = 0 along N1.

We use now the last identity in (3.43) and the first identity in (3.38), along N1. Since
h̃R(2)(1)(2)(1) =

h̃Ric(2)(2), and recalling (3.41) and (3.42), we derive

V2(Γ(2)(1)(1))− (Γ(2)(1)(1))
2 =

1

2X̃2
[V2(X̃)2 + V2(Ỹ )

2], (3.45)

along N1. In addition, since

[e(2), e(1)] = [V2, K
1
(1)V1 +K2

(1)V2] = V2(K
1
(1))V1 + V2(K

2
(1))V2 (3.46)

along N1, it follows that

V2(K
1
(1)) = K1

(1) · h̃([e(2), e(1)], e(1)) = K1
(1)Γ(2)(1)(1), (3.47)

along N1. Using the ansatz (3.44) together with (3.45), and (3.47), it follows that

|G|+ |V2(G)| . 1 for any G ∈ {Γ(2)(1)(1), K
1
(1), 1/K

1
(1)}, (3.48)

along N1, uniformly for all p′ ∈ N1 sufficiently close to p and ǫ ≤ ǫ(p′) sufficiently small.
Next we use the identity on the second line of (3.43) and the Ricci identity in (3.38),

along N1. Since
h̃R(1)(2)(2)(3) = −h̃Ric(1)(2), and recalling (3.41), (3.42) we infer that,

V2(Γ(1)(2)(3)) =
−1

2X̃2
[V2(X̃) · (K1

(1)V1+K
2
(1)V2)(X̃)+V2(Ỹ ) · (K1

(1)V1+K
2
(1)V2)(Ỹ )], (3.49)

along N1. In addition, using again (3.46), it follows that

V2(K
2
(1)) = −h̃([e(2), e(1)], e(3)) + V2(K

1
(1))h̃(V1, e(3)) = 2Γ(1)(2)(3) +K2

(1)V2(K
1
(1))/K

1
(1)

(3.50)
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along N1. Using once more the ansatz (3.44) together with (3.49), and (3.50) as well the
previously established bounds (3.48), it follows that

|G|+ |V2(G)| . 1 for any G ∈ {Γ(2)(1)(1), K
1
(1), 1/K

1
(1),Γ(1)(2)(3), K

2
(1)}, (3.51)

along N1, uniformly for all p′ ∈ N1 sufficiently close to p and ǫ ≤ ǫ(p′) sufficiently small.

Using the Ricci identity in (3.38), the identities e(3)(X̃) = e(3)(Ỹ ) = 0, and the bounds
(3.51), it follows that ∑

a,b∈{1,2,3}

|h̃Ric(a)(b)| . 1 along N1.

Using the first identity in (3.43) with a = 2, the identity

h̃R(2)(3)(2)(3) =
h̃Ric(2)(3) + (1/2)(h̃Ric(1)(1) + F h̃Ric(2)(2)),

and (3.42), it follows that

V2(F ) = −2Γ(2)(3)(3),

V2(Γ(2)(3)(3)) = −(Γ(1)(2)(3))
2 + h̃Ric(2)(3) + (1/2)(h̃Ric(1)(1) + F · h̃Ric(2)(2)).

Using again (3.51), it follows that

|F |+ |V2(F )|+ |V2(V2(F ))| . 1 along N1, (3.52)

uniformly for all p′ ∈ N1 sufficiently close to p and ǫ ≤ ǫ(p′) sufficiently small.
We can now derive a contradiction by examining the second equation in (3.38),

h̃(a)(b)∇̃(a)∇̃(b)(Ỹ ) = 2X̃−1h̃(a)(b)e(a)(X̃)e(b)(Ỹ ).

Using (3.48) and (3.52), it follows that

|e(1)(e(1)(Ỹ ))− Fe(2)(e(2)(Ỹ ))| . 1 along N1,

uniformly for all p′ ∈ N1 sufficiently close to p and ǫ ≤ ǫ(p′) sufficiently small. This
cannot happen, as can easily be seen by letting first ǫ → 0 and then p′ → p, taking into
account that F and K2

(1) vanish along N0 ∩ N1. �

4. Extension across null hypersurfaces

Assume in this section that (M, g) is a 4-dimensional Lorentzian manifold satisfying
the Einstein-vacuum equations Ric(g) = 0, p ∈ M is a fixed point along a smooth null
hypersurface N ⊆ M (given by the level hypersurface of a smooth function u : M → R)
with fixed null vector-field L at p. Assume that u : M → R is a smooth optical function
transversal to N , more precisely,

DαuDαu = 0 in M, u(p) = 0, (DαuDαu)(p) = −1. (4.1)

Let N be the null hypersurface passing through p generated by the zero level set of u, i.e.
N = {x ∈ M/u(x) = 0} and L = −gαβ∂αu∂β its null geodesic generator. Let

O− := {x ∈ M : u(x) < 0}
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and assume that Z is a smooth Killing vector-field in O−.

4.1. An extendibility criterion. We extend Z to neighborhood of p as in (2.3), such
that

LαLβ(DαDβZµ − ZρRραβµ) = 0.

Theorem 4.1. Assume that we have, along the null hypersurface N ,

(LZR)(L,X, L, Y ) = 0 (4.2)

for any vector-fields X, Y ∈ T (M) tangent to N . Then there is a neighborhood U of p
such that LZg = 0 in U .

Remark 4.2. The sufficient condition (4.2) may be replaced by a sufficient condition at
the level of the deformation tensor π, namely

(LZg)(X, Y ) = 0 along N , (4.3)

for any vector-fields X, Y ∈ T (M) tangent to N . Both (4.2) and (4.3) lead to the con-
clusion (4.10), using the identities (4.5)–(4.9).

Proof of Theorem 4.1. According to the results proved in the section 2.1 we introduce the
tensors W , π, ω, B, Ḃ and P as in Definition 2.3. Recall that, see Lemma 2.6,

παµL
µ = 0, ωαµL

µ = 0, PαβµL
µ = 0. (4.4)

Since B = 1
2
(π + ω) we also have BαµL

µ = 0. We fix a function y : N → R such that y
vanishes on N ∩ N and L(y) = 1 along N . Then we fix a frame (e1, e2, e3, e4) along N
such that

e1, e2, e4 are tangent to N , e4 = L, e1(y) = e2(y) = 0,

g(e1, e2) = g(ea, ea)− 1 = g(e4, e3) + 1 = g(ea, e3) = g(e3, e3) = 0, a ∈ {1, 2}.
Our main goal is to show that the tensors W,B, Ḃ, P vanish along N . For any tensor

M =Mα1....αk
and any s ∈ Z we define M≥s any component of the tensor M in the basis

(e1, e2, e3, e4) of signature ≥ s, where the signature of the component Mα1...αk
is equal to

the difference between the number of 4’s and the number of 3’s in (α1, . . . αk). Thus, for

example, Ḃ≥0 ∈ {Ḃ44, Ḃ4a, Ḃa4, Ḃ43, Ḃ34, Ḃab : a, b ∈ {1, 2}}.
Recall our main transport equations, see Lemma 2.7,

DLBαβ = Ḃαβ, (4.5)

DLḂαβ = LµLν(LZR)µαβν − 2ḂνβDαL
ν − πβ

ρLµLνRµαρν , (4.6)

and
DLPαβµ = 2LνWαβµν + 2LνBµ

ρRαβρν −DµL
ρPαβρ, (4.7)

and our main divergence equation, see Lemma 2.4,

DαWαβγδ =
1

2

(
BµνDνRµβγδ + gµνPµρνR

ρ
βγδ

+ PβνµR
µν

γδ + PγνµR
µ
β
ν
δ + PδνµR

µ
βγ

ν
)
.

(4.8)
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In view of the definitions we also have

DαL4 = 0, D4Lα = 0, α ∈ {1, 2, 3, 4}. (4.9)

We use equations 4.5, (4.6), and (4.9), together with the assumption LZR4ab4 = 0,
a, b ∈ {1, 2} to write, schematically,

(DLB)≥0 = M(Ḃ≥0), (DLḂ)≥0 = M(Ḃ≥0) +M(B≥0).

Therefore
B≥0 = 0, Ḃ≥0 = 0.

According to Proposition 2.1, W = LZR− 1
2
B ⊙R, using again the assumption (4.2), it

follows that
W≥2 = 0.

Using now (4.7) and the identity Pαβ4 = 0, see (4.4), it follows that P≥1 = 0. Therefore

B≥0 = 0, Ḃ≥0 = 0, P≥1 = 0, W≥2 = 0 along N . (4.10)

Using (4.10) and the general symmetries of Weyl fields, equation (4.8) with (βγδ) =
(4a4), a ∈ {1, 2}, gives, schematically,

(DLW )≥1 = M(B≥−1) +M(P≥0) +M(W≥1).

Using the transport equations (4.5), (4.6), and (4.7), together with the identities (4.9)
and (4.10) we derive, schematically,

(DLB)≥−1 = M(Ḃ≥−1),

(DLḂ)≥−1 = M(W≥1) +M(Ḃ≥−1) +M(B≥−1),

(DLP )
≥0 = M(W≥1) +M(B≥−1) +M(P≥0).

Therefore, (4.10) can be upgraded to

B≥−1 = 0, Ḃ≥−1 = 0, P≥0 = 0, W≥1 = 0 along N . (4.11)

We can now continue this procedure. Using (4.11) and the general symmetries of Weyl
fields, equation (4.8) with (βγδ) = (434) and (βγδ) = (412) gives, schematically,

(DLW )≥0 = M(B≥−2) +M(P≥−1) +M(W≥0).

The transport equations (4.5), (4.6), and (4.7), together with the identities (4.9) and
(4.11) give, schematically,

(DLB)≥−2 = M(Ḃ≥−2),

(DLḂ)≥−2 = M(W≥0) +M(Ḃ≥−2) +M(B≥−2),

(DLP )
≥−1 = M(W≥0) +M(B≥−2) +M(P≥−1).

Therefore, (4.11) can be upgraded to

B = 0, Ḃ = 0, P≥−1 = 0, W≥0 = 0 along N . (4.12)
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Using (4.12) and the general symmetries of Weyl fields, equation (4.8) with (βγδ) =
(4a3), a ∈ {1, 2} gives, schematically,

(DLW )≥−1 = M(P≥−2) +M(W≥−1).

The transport equation (4.7), and the identities (4.9) and (4.12) gives, schematically,

(DLP )
≥−2 = M(W≥−1) +M(P≥−2).

Therefore, (4.12) can be upgraded to

B = 0, Ḃ = 0, P≥−2 = 0, W≥−1 = 0 along N . (4.13)

Using (4.13), (4.8) and the general symmetries of Weyl fields, it D3W4343 = 0 and
D3W4312 = 0. Thus D3W4a3b = 0 along N , a, b ∈ {1, 2}. Therefore, the divergence
equation (4.8) with (βγδ) = (a3b), a, b ∈ {1, 2}, and the transport equation (4.7) give,
schematically,

(DLW )≥−2 = M(P≥−3) +M(W≥−2), (DLP )
≥−3 = M(P≥−3).

Therefore we proved that

B = 0, Ḃ = 0, P = 0, W = 0 along N . (4.14)

To prove now that B, Ḃ, P,W vanish in a full neighborhood of the point p we use Propo-
sition 2.9, Lemma 2.10 and the observation that, for ǫ0 sufficiently small, the functions

f± = (u+ ǫ0)(±u+ ǫ0)

are strongly pseudo-convex in a sufficiently small neighborhood of the point p. See [1,
Appendix A] for more details. �

4.2. A non-extendible example. In this subsection we provide examples showing that
Killing vector-fields do not extend, in general, across null hypersurfaces in space-times
satisfying the Einstein-vacuum equations.

Theorem 4.3. With the notation at the beginning of the section, we further assume that
Z(u) = 0 in O− and that Z does not vanish identically in a neighborhood of p in O−.
Then there is a neighborhood U of p diffeomorphic to the open ball B1 ⊆ R4 and a smooth
Lorentz metric h in U such that Ric(h) = 0 in U , h = g in O−, but Z does not admit
an extension as a smooth Killing vector-field for h in U .

In other words, the space-time (M, g) can be modified in a neighborhood U of p, on
one side of the null hypersurface ∂O, in such a way that the resulting space-time is still
smooth and satisfies the Einstein-vacuum equations, but the symmetry Z fails to extend
to U .

Proof of Theorem 4.3. We fix a smooth system of coordinates Φp : B1 → B1(p), Φ
p(0) =

p, where Br = {x ∈ R4 : |x| < r}, r > 0, and B1(p) is an open neighborhood of p in O. Let
∂1, . . . , ∂4 denote the induced coordinate vector-fields in B1(p) and let Br(p) = Φp(Br),
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r ∈ (0, 1]. For any smooth function φ : B → C, where B ⊆ B1(p) is an open set, and
j = 0, 1, . . ., we define

|∂jφ(x)| =
4∑

α1,...,αj=1

|∂α1 . . . ∂αj
φ(x)|, x ∈ B.

We assume that

gαβ(p) = diag(−1, 1, 1, 1).

and, for some constant A ≥ 1,

sup
x∈B1(p)

6∑

j=1

[
|∂ju|+ |∂ju|+

4∑

α,β=1

|∂jgαβ(x)|
]
≤ A. (4.15)

We will construct the neighborhood

Up = {x ∈ Bǫ0(p) : u(x) > −ǫ20}
for some constant ǫ0 sufficiently small (depending only on the constant A in (4.15)). We
define first the hypersurface

N0 = {x ∈ B
ǫ
1/2
0

(p) : u(x) = −ǫ20}.

Recall that L = −gαβ∂αu∂β and notice that L is tangent to N0. We introduce smooth
coordinates (y1, y2, y4) along the hypersurface N0 in such a way that y4 = 0 on N ∩ N0

and L = ∂4, where ∂1, ∂2, ∂4 are the induced coordinate vector-fields along N0.
We consider smooth symmetric tensors h along N0, such that it coincides with g on

N0 ∩ O− and, on both sides of N0,

h(∂4, ∂α) = 0, in N0, α ∈ {1, 2, 4}. (4.16)

Thus the only nonvanishing components of h are,

hab = h(∂a, ∂b), in N0, a, b ∈ {1, 2}.
We would like to apply Rendall’s theorem [10, Theorem 3] to construct the metric h in
the domain of dependence of N ∪N0, such that h = g along N and g = h along N0. The
only restriction is that the symmetric tensor h is arranged such that the resulting metric
satisfies the Einstein equation

hαβR(L, ∂α, L, ∂β) = 0 along N0, (4.17)

with R the Riemann curvature tensor of h. Recalling the definition of R and noting that
for a space-time metric h which coincides with h on N0 we must have h3a = h33 = 0 and
hab = hab, (i.e. hachcb = δab), we deduce,

hαβR(L, ∂α, L, ∂β) = −I + II (4.18)
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I =
∑

a,b∈{1,2}

habh(D∂aD∂4(∂4), ∂b)

II =
∑

a,b∈{1,2}

habh(D∂4(D∂a∂4), ∂b)

Thus, imposing the auxiliary condition7,

I ≡ 0 along N0, (4.19)

equation (4.17) is equivalent to
∑

a,b∈{1,2}

habh(D∂4(D∂a∂4), ∂b) = 0. (4.20)

which can be viewed as a constraint equation for the metric h on N0. Indeed we can
introduce a covariant differentiation8 along N0 compatible with h by the formula,

h(∇XY, Z) =
1

2

[
− Zh(X, Y ) + Y h(X,Z) +Xh(Y, Z)

]
(4.21)

for X, Y, Z ∈ {∂1.∂2, ∂4}. With this definition we observe that (4.20) is equivalent to,
∑

a,b∈{1,2}

habh(∇∂4(∇∂a∂4), ∂b) = 0. (4.22)

In view of the definition (4.21), for a ∈ {1, 2}
∇∂a∂4 = (1/2)hcd(∂4had)∂c +multiple(∂4),

∇∂4∂a = (1/2)hcd(∂4had)∂c +multiple(∂4).

Therefore, the identity (4.22) is equivalent to

∂4(h
ad∂4had) + (1/2)habhcd∂4had∂4hbc = 0. (4.23)

Letting

hab = φ2ĥab, det(ĥ) = ĥ11ĥ22 − ĥ212 = 1,

and making the observation ĥad∂̃4ĥad = 0, the identity (4.23) is equivalent to

∂24φ+ (1/8)φ · ĥabĥcd∂4ĥad∂4ĥbc = 0. (4.24)

In other words, we may define ĥab, a, b ∈ {1, 2}, as an arbitrary smooth positive definite

symmetric tensor along N0, with ĥ11ĥ22 − ĥ212 = 1 and ĥab = (g11g22 − g2
12)

−1/2g(∂a, ∂b)
in N0 ∩ O−. We then define φ according to the equation (4.24), and the full tensor

h = φ2ĥ along N0. Finally we apply Rendall’s theorem [10, Theorem 3] to construct a

7Writing D∂4
∂4 = ω∂4 and introducing the null second fundamental form χab = h(D∂a

∂4, ∂b) of N0,
the condition reduces to ω · tr χ ≡ 0 along N0.

8Since the metric h is degenerate on N0, this formula only defines the covariant derivatives ∇XY up
to a multiple of L = e4.
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smooth space-time metric h in Ũp = {x ∈ Bǫ0(p) : u(x) ≥ −ǫ20} satisfying the Einstein-
vacuum equations and agreeing with g in Up ∩ O− and with h along N0 ∩ Bǫ0. Since,
by construction, the term II vanishes identically on N0 it also follows that the metric h

verifies the auxiliary assumption (4.19). We now interpret condition (4.19) using the null
second fundamental form of N0 with respect to the h metric,

χ(X, Y ) := h(DXL, Y ), ∀X, Y tangent to N0 (4.25)

Clearly DLL = ωL along N0 for some smooth function ω. Thus,

I =
∑

a,b∈{1,2}

habh(D∂aD∂4(∂4), ∂b) =
∑

a,b∈{1,2}

ωhabh(D∂a∂4, ∂b) = ωhabχab = ωtr χ.

Thus (4.19) takes the form,

ω · tr χ = 0. (4.26)

from which we infer that ω must vanish in Up∩N0 (i.e. DLL = 0) if tr χ vanishes at most
on a set with empty interior in (Up ∩ N0) \O−.

On the other hand,

χab =
1

2
∂4hab =

1

2
∂4(φ

2ĥab) = φ∂4φ ĥab +
1

2
φ2∂4ĥab

from which,

tr χ = φ−2ĥab
(
φ∂4φ ĥab +

1

2
φ2∂4ĥab

)
= 2φ−1∂4φ.

Also the traceless part of χ,

χ̂ab = χab −
1

2
tr χhab =

1

2
φ2∂4ĥab.

Thus equation (4.24) takes the well known form

∂4tr χ+
1

2
(tr χ)2 = −|χ̂|2h (4.27)

from which we infer that tr χ can only vanish in a set with empty interior in (Up∩N0)\O−

if the same holds true for χ̂. Thus we can easily choose non-trivial data on N0 such that,
for our original choice of L = ∂4, we have,

DLL = 0 in N0 ∩ Up. (4.28)

It remains to prove that we can arrange ĥab on N0 such that Z does not admit an
extension to Up as a Killing vector-field for h. We extend first the smooth vector-field L
from Up ∩ O− to all of Up such that, consistent with (4.28),

DLL = 0 in Up

with D the covariant differentiation associated to the metric h.
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Since Z(u) = 0 in O− it follows that [Z, L] = 0 in O−. Assume, for contradiction, that
Z admits an extension to Up as a Killing vector-field for h. Then, letting V = LZL we
compute in Up

LρDρVα = LρLZDρLα = −V ρDρLα.

Since V vanishes in Up ∩O−, it must vanish in all of Up, i.e.

[L,Z] = 0 in Up.

In addition, since
Lh(Z, L) = 0,

we infer that Z must remain tangent to the hypersurface N−ǫ20
. To summarize, by con-

tradiction, we have constructed a vector-field Z in Up tangent the hypersurface N0 such
that, on N0 ∩ Up,

LZh = 0, [L,Z] = 0. (4.29)

On the other hand, writing Z = Z1∂1+Z
2∂2+Z

4∂4 in the system of coordinates along
N0 introduced before, the identity LZh = 0 in (4.29) gives

0 = Z(hab) + ∂aZ
ρhρb + ∂bZ

ρhaρ, a, b ∈ {1, 2}.
Therefore

Z(det(h)) = Z(h11h22 − h212) = −2(∂1Z
1 + ∂2Z

2)det(h).

Since h = (deth)1/2ĥ, the identity LZh = 0 shows that

LZ ĥ = (∂1Z
1 + ∂2Z

2)ĥ. (4.30)

Notice also that Z does not depend on the choice of the tensor ĥ, indeed Z is defined
simply by the relation [L,Z] = 0 in (4.29)). Therefore we obtain a contradiction, by

choosing ĥ such that (4.30) fails at some point in N0 \O−. This completes the proof. �
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