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Abstract. A fundamental conjecture in General Relativity asserts that the domain
of outer communication of a regular, stationary, four dimensional, vacuum black hole
solution is isometrically diffeomorphic to the domain of outer communication of a Kerr
black hole. So far the conjecture has been resolved, by combining results of Hawking
[18], Carter [5] and Robinson [28], under the additional hypothesis of non-degenerate
horizons and real analyticity of the space-time. We develop a new strategy to bypass
analyticity based on a tensorial characterization of the Kerr solutions, due to Mars [25],
and new geometric Carleman estimates. We prove, under a technical assumption (an
identity relating the Ernst potential and the Killing scalar) on the bifurcate sphere of the
event horizon, that the domain of outer communication of a smooth, regular, stationary
Einstein vacuum spacetime of dimension 4 is locally isometric to the domain of outer
communication of a Kerr spacetime.
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1. Introduction

A fundamental conjecture in General Relativity1 asserts that the domains of outer
communication of regular2, stationary, four dimensional, vacuum black hole solutions are
isometrically diffeomorphic to those of Kerr black holes. One expects, due to gravitational
radiation, that general, asymptotically flat, dynamic, solutions of the Einstein-vacuum
equations settle down, asymptotically, into a stationary regime. A similar scenario is
supposed to hold true in the presence of matter. Thus the conjecture, if true, would
characterize all possible asymptotic states of the general evolution.

So far the conjecture has been resolved, by combining results of Hawking [18], Carter [5],
and Robinson [28], under the additional hypothesis of non-degenerate horizons and real
analyticity of the space-time. The assumption of real analyticity is both hard to justify
and difficult to dispense of. One can show, using standard elliptic theory, that stationary
solutions are real analytic in regions where the corresponding Killing vector-field T is
time-like, but there is no reason to expect the same result to hold true in the ergo-region
(in Kerr, the Killing vector-field T, which is time-like in the asymptotic region, becomes
space-like in the ergo-region). In view of the main application of the conjectured result to
the general problem of evolution, mentioned above, there is also no reason to expect that,
by losing gravitational radiation, general solutions become, somehow, analytic. Thus
the assumption of analyticity is a serious limitation of the present uniqueness results.
Unfortunately one of the main step in the current proof, due to Hawking [18], depends
heavily on analyticity. As we argue below, to extend Hawking’s argument to a smooth
setting requires solving an ill posed problem. Roughly speaking Hawking’s argument
is based on the observation that, though a general stationary space may seem quite
complicated, its behavior along the event horizon is remarkably simple. Thus Hawking has
shown that in addition to the original, stationary, Killing field, which has to be tangent

1See reviews by B. Carter [4] and P. Chusciel [8], [9], for a history and review of the current status of
the conjecture.

2The notion of regularity needed here requires a careful discussions concerning the geometric hypothesis
on the space-time.
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to the event horizon, there must exist, infinitesimally along the horizon, an additional
Killing vector-field. To extend this information, from the event horizon to the domain
of outer communication, requires one to solve a boundary value problem, with data on
the horizon, for a linear differential equation. Such problems are typically ill posed (i.e.
solutions may fail to exist in the smooth category.) In the analytic category, however, the
problem can be solved by a straightforward Cauchy-Kowalewsky type argument. Thus,
by assuming analyticity for the stationary metric, Hawking bypasses this fundamental
difficulty, and thus is able to extend this additional Killing field to the entire domain
of outer communication. As a consequence, the space-time under consideration is not
just stationary but also axi-symmetric, situation for which Carter-Robinson’s uniqueness
theorem [5], [28] applies. It is interesting to remark that this final step does not require
analyticity.

Though ill posed problems do not, in general, admit solutions, one can, when a solution
is known to exist, often prove uniqueness (we refer the reader to the introduction in [20]
for a more thorough discussion of this issue). This fact has led us to develop a different
strategy for proving uniqueness based on a characterization of the Kerr solution, due
to Mars [25], and geometric Carleman estimates applied to covariant wave equations on
a general, stationary, black hole background. We discuss this strategy in more details
in the following subsection, after we recall a few basic definitions and results concerning
stationary black holes. Our main result, stated in subsection 1.2 below, proves uniqueness
of the Kerr family among all, smooth, appropriately regular, stationary solutions, with a
regular, bifurcate, event horizon, under an additional assumption which has to be satisfied
along the bifurcate sphere S0 of the event horizon. More precisely we assume a pointwise
complex scalar identity relating the Ernst potential σ and the Killing scalar F2 on S0.

1.1. Stationary, regular, black holes. In this subsection we review some of the main
definitions and results concerning stationary black holes (see also the discussion in the
introduction to section 3. We will also give a more detailed discussion of our new approach
to the problem of uniqueness. Precise assumptions concerning our result will be made
only in the next subsection.

The main objects in the theory of stationary, vacuum, black holes are 3+1 dimensional
space-times (M,g) which are smooth, strongly causal, time oriented, solutions of the
Einstein vacuum equations, see [18] for precise definitions, and which are also stationary,
asymptotically flat. More precisely one considers, see for example page 2 in [17], space-
times (M,g) endowed with a 1-parameter group of isometries Φt, generated by a Killing
vector-field T, and which possess a smooth space-like slice Σ0 with an asymptotically flat

end Σ
(end)
0 ⊂ Σ0 on which g(T,T) < 0. To ensure strong causality we assume that M is the

maximal globally hyperbolic extension of Σ0. This implies, in particular, that all orbits of
T are complete, see [10], and must intersect Σ0, see [13]. Define M(end) = ∪t∈RΦt(Σ

end
0 ).

Take B to be the complement of I−(M(end)), W the complement of I+(M(end)), where
I±(S) denote the causal future and past sets of a set S ⊂ M. In other words B (called
the black hole region), respectively W (called the white hole region), is the set of points
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in M for which no future directed, respectively past directed, causal curve meets M(end).
Also we take E (called domain of outer communication) the complement of W ∪B, i.e.
E = I−(M(end)) ∩ I+(M(end)). We further define the future event horizon H+ to be the
boundary of I−(M(end)) and the past event horizon H− to be the boundary of I+(M(end)),

H+ = δB, H− = δW.

By definition both H+ and H− are achronal (i.e. no two points on H+, or H− can be
connected by time-like curves) boundaries generated by null geodesic segments. According
to the topological censorship theorem, see [14] or [16], the domain of outer communication
E is simply connected. This implies that all connected components of event horizons must
have the topology of S2×R. In our work we shall assume that the event horizon has only
one component.

It follows immediately from the definitions above that the flow Φt must keep H+ and
H− invariant, therefore the generating vector-field T must be tangent to H. One further
assumes that Φt has no fixed points on H with the possible exception of S0 = H+ ∩H−.
Then either T is space-like or null at all points of H. If T is null on H, in which case H
is said to be a Killing horizon for T, Sudarski-Wald [31] have proved that the space-time
must be static, i.e. T is hypersurface orthogonal. Static solutions, on the other hand, are
known to be isomorphic to Schwarzschild metrics, see [22], [3] and [11]. In this paper we
are interested only in the case when T is space-like at some points on the horizon.

The existence of partial Cauchy hypersurface Σ0 implies, in particular, the existence
of a foliation Σt on E, which induces a foliation St on the horizon H with a well defined
area. A key result of Hawking [18] (see also [15] where the area theorem is proved under
very general differentiability assumptions), shows that the area of St is a monotonous
function of t. Using this fact, together with the tangency of the Killing field T, one can
show that the null second fundamental forms of both H+ and H− must vanish identically,
see [18]. Specializing to the future event horizon H+, Hawking [18] (see also [21]) has
proved the existence of a non-vanishing vector-field K, tangent to the null generators of
H+ which is Killing to any order along H+. Moreover DKK = κK with κ, constant along
H+, called the surface gravity of H+. If κ 6= 0 we say that H+ is non-degenerate. In the
non-degenerate case the work of Racz and Wald [29] supports the hypothesis, which we
make in our work (see next subsection), that H+ and H− are smooth null hypersurfaces
intersecting smoothly on a 2 surface S0 with the topology of the standard sphere. We say,
in this case, that the horizon H is a smooth bifurcate horizon.

Under the restrictive assumption of real analyticity of the metric g one can show, see
[18] and [12], that the Hawking vector-field K can be extended to a neighborhood of the
entire domain of communication3. One can then show that the spacetime (M,g) is not just
stationary but also axi-symmetric. One can then appeal to the results of Carter [5] and
Robinson [28] which show that the family of Kerr solutions with 0 ≤ a < m exhaust the

3In [17] it is shown that K can be extended in the complement of the domain of outer communication
E without the restrictive analyticity assumption. However their argument does not apply to the domain
of outer communication E.
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class of non-degenerate, stationary axi-symmetric, connected, four dimensional, vacuum
black holes. This concludes the present proof of uniqueness, based on analyticity.

Without analyticity any hope of extending K outside H, in E, by a direct argument
encounters a fundamental difficulty. Indeed one needs to extend K such that it satisfies
the Killing equation,

DµKν + DµKν = 0. (1.1)

Differentiating the Killing equation and using the Ricci flat condition Ric(g) = 0 one
derives the covariant wave equation �gK = 0. The obstacle we encounter is that the
boundary value problem �gK = 0 with K prescribed on H is ill posed, which means that
it is impossible to extend K by solving �gK = 0, if the metric is smooth but fails to be
real analytic. To understand the ill posed character of the situation it helps to consider
the following simpler model problem in the domain E = {(t, x) ∈ R1+3/|x| > 1 + |t|} of
Minkowski space R1+3.

�φ = F (φ, ∂φ), φ|δE = φ0. (1.2)

Here � is the usual D’Alembertian of R1+3 and F a smooth function of φ and its partial
derivatives ∂αφ, vanishing for φ = ∂φ = 0. One can regard E as a model of the domain
of outer communication and its boundary H = δE as analogous to the bifurcate event
horizon considered above. The problem is still ill posed; even in the case F ≡ 0 we cannot,
in general, find solutions for arbitrary smooth boundary data φ0. Yet, as typical to many
ill posed problems, even if existence fails we can still prove uniqueness. In other words if
(1.2) has two solutions φ1, φ2 which agree on H = δE then they must coincide everywhere
in E, see [20]. The result is based on Carleman estimates, i.e. on space-time L2 a-priori
estimates with carefully chosen weights. A more realistic model problem is to consider
smooth space-time metrics g in R1+3 which verify the Einstein vacuum equations and
agree, up to curvature, with the standard Minkowski metric on the boundary H = δE.
Can we prove that g must be flat also in E ? It is easy to see, using the Einstein
equations, that the Riemann curvature tensor R of such metrics must verify a covariant
wave equation of the form �gR = R ∗ R, with R ∗ R denoting an appropriate quadratic
product of components of R. We are thus led to a question similar to the one above;
knowing that R vanishes on the boundary of E can we deduce that it also vanishes on E ?
Using methods similar to those of [20] we can prove that R must vanish in a neighborhood
of H. We also expect that, under additional global assumptions on the metric g, one can
show that R vanishes everywhere on E and therefore g is locally Minkowskian.

These considerations lead us to look for a tensor-field S, associated to our stationary
metric g, which satisfies the following properties.

(1) If S vanishes in E then the metric g is locally isometric to a Kerr solution.
(2) S verifies a covariant wave equation of the form,

�gS = A ∗ S + B ∗DS, (1.3)

with A and B two arbitrary smooth tensor-fields.
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(3) S vanishes identically on the bifurcate event horizon H.

An appropriate space-time tensor verifying condition (1) has been proposed by M. Mars
in [25], based on some previous work of W. Simon [30]; we refer to it as the Mars-Simon
tensor. In this paper we shall show that S verifies the desired wave equation in (2) and
give a sufficient, simple condition on the bifurcate sphere S0, which insures that S vanishes
on the event horizon H. We then prove, based on a global unique continuation argument,
that S must vanish everywhere in the domain of outer communication E. In view of
Mars’s result [25] we deduce that E is locally isometric with a Kerr solution.

The unique continuation strategy is based on two Carleman estimates. The first one
establishes the vanishing of solutions to covariant wave equations, with zero boundary
conditions on a neighborhood of S0 on the event horizon, to a full space-time neighborhood
of S0. The proof of this result can be extended to the exterior of a regular, bifurcate null
hypersurface (i.e. with a regular bifurcate sphere), in a general, smooth, Lorentz manifold.
Our second, conditional, Carleman estimate is significantly deeper as it depends heavily
on the specific properties of stationary solutions of the Einstein vacuum equations. We use
it, together with an appropriate bootstrap argument, to extend the region of vanishing
of the Mars -Simon tensor from a neighborhood of S0 to the entire domain of outer
communication E. The proof of both Carleman estimates (see also discussion in the first
subsection of section 3), but especially the second, rely on calculations based on null
frames and complex null tetrads. We develop our own formalism, which is, we hope,
a useful compromise between that of Newmann-Penrose [27] and that used in [7], [23].
Strictly speaking the formalism used in [7] does not apply in the situation studied here
as it presupposes that the horizontal distribution generated by the null pair is integrable.
The horizontal distribution generated by the principal null directions in Kerr do not verify
this property.

1.2. Precise assumptions and the Main Theorem. We state now our precise assump-
tions. We assume that (M,g) is a smooth4, time oriented, vacuum Einstein spacetime of
dimension 3 + 1 and T ∈ T(M) is a smooth Killing vector-field on M. In addition, we
make the following assumptions and definitions.

AF. (Asymptotic flatness) We assume that there is an open subset M(end) of M which is
diffeomorphic to R×({x ∈ R3 : |x| > R}) for someR sufficiently large. In local coordinates

{t, xi} defined by this diffeomorphism, we assume that, with r =
√

(x1)2 + (x2)2 + (x3)2,

g00 = −1 +
2M

r
+O(r−2), gij = δij +O(r−1), g0i = O(r−2), (1.4)

for some M > 0, and
T = ∂t therefore ∂tgµν = 0.

We define the domain of outer communication (exterior region)

E = I−(M(end)) ∩ I+(M(end)).

4M is assumed to be a connected, orientable, paracompact C∞ manifold without boundary.



ON THE UNIQUENESS OF SMOOTH, STATIONARY BLACK HOLES IN VACUUM 7

We assume that there is an imbedded space-like hypersurface Σ0 ⊆M which is diffeomor-
phic to {x ∈ R3 : |x| > 1/2} and, in M(end), Σ0 agrees with the hypersurface corresponding
to t = 0. Let T0 denote the future directed unit vector orthogonal to Σ0. We assume that
every orbit of T in E is complete and intersects the hypersurface Σ0, and

|g(T, T0)| > 0 on Σ0 ∩ E. (1.5)

SBS. (Smooth bifurcate sphere) Let

S0 = δ(I−(M(end))) ∩ δ(I+(M(end))).

We assume that S0 ⊆ Σ0 and S0 is an imbedded 2-sphere which agrees with the sphere
of radius 1 in R3 under the identification of Σ0 with {x ∈ R3 : |x| > 1/2}. Furthermore,
we assume that there is a neighborhood O of S0 in M such that the sets

H+ = O ∩ δ(I−(M(end)) and H− = O ∩ δ(I+(M(end))

are smooth imbedded hypersurfaces diffeomorphic to S0 × (−1, 1), We assume that these
hypersurfaces are null, non-expanding5, and intersect transversally in S0. Finally, we
assume that the vector-field T is tangent to both hypersurfaces H+ = O∩ δ(I−(M(end)))
and H− = O ∩ δ(I+(M(end))), and does not vanish identically on S0

6.

T. (Technical assumptions). Let Fαβ = DαTβ denote the Killing form on M, and
Fαβ = Fαβ + i ∗Fαβ, where ∗Fαβ = 1

2
∈αβγδ F γδ. Let F2 = FαβFαβ. The Ernst 1-form

associated to T is defined as σµ = 2TαFαµ. It is easy to check, see equation (4.18), that
σµ is exact and, therefore, there exists a complex scalar σ defined in an open neighborhood
of Σ0, called the Ernst potential, such that Dµσ = σµ. In view of the asymptotic flatness
assumption AF, we can choose σ such that σ → 1 at infinity along Σ0. Our main technical
assumptions are

−4M2F2 = (1− σ)4 on S0, (1.6)

and

<
(
(1− σ)−1

)
> 1/2 at some point on S0. (1.7)

Remark 1.1. As we have discussed in the previous subsection some of the assumptions
made above have been deduced from more primitive assumptions. For example, the com-
pleteness of orbits of E can be deduced by assuming that M is the maximal global hyperbolic
extension of Σ0, see [10]. Our precise space-time asymptotic flatness conditions can be

5A null hypersurface is said to be non-expanding if the trace of its null second fundamental form
vanishes identically.

6In view of a well known result, see [24], any non-vanishing Killing field on S0 can only vanish at a
finite number of isolated points.
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deduced by making asymptotic flatness assumptions only on Σ0, see [1], [2]. The assump-
tion (1.5) can be replaced, at the expense of some additional work in section 8, by a
suitable regularity assumption on the space of orbits of T. The non-expanding condition
in SBS can be derived using the area theorem, see [18], [15]. The regular bifurcate struc-
ture of the horizon, assumed in SBS, is connected to the more primitive assumption of
non-degeneracy of the horizon, see [29].

Remark 1.2. Assumption (1.7) is consistent with the natural condition 0 ≤ a < M
satisfied by the two parameters of the Kerr family. The key technical assumption in
this paper is the identity (1.6), which is assumed to hold on the bifurcate sphere S0. This
assumption is made in order to insure that the corresponding Mars-Simon tensor vanishes
on H− ∪ H+. We emphasize, however, that we do not make any technical assumptions
in the open set E itself; the identity (1.6) is only assumed to hold on the bifurcate sphere
S0, which is a codimension 2 set, while the inequality (1.7) is only assumed at one point
of S0. We hope to further relax these technical conditions and interpret them as part of
the “regularity” assumptions on the black hole in future work.

Remark 1.3. In Boyer-Lindquist coordinates the Kerr metric takes the form,

ds2 = −ρ
2∆

Σ2
(dt)2 +

Σ2(sin θ)2

ρ2

(
dφ− 2aMr

Σ2
dt
)2

+
ρ2

∆
(dr)2 + ρ2(dθ)2, (1.8)

where,

ρ2 = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr, Σ2 = (r2 + a2)ρ2 + 2Mra2(sin θ)2.

On the horizon we have r = r+ := M +
√
M2 − a2 and ∆ = 0. The domain of outer

communication E is given by r > r+. One can show that the complex Ernst potential σ
and the complex scalar F2 are given by

σ = 1− 2M

r + ia cos θ
, F2 = − 4M2

(r + ia cos θ)4
. (1.9)

Thus,

−4M2F2 = (1− σ)4 (1.10)

everywhere in the exterior region. Writing y + iz := (1− σ)−1 we observe that,

y =
r

2M
≥ r+

2M
>

1

2
.

everywhere in the exterior region.

Main Theorem. Under the assumptions AF, SBS, and T the domain of outer com-
munication E of M is locally isometric to the domain of outer communication of a Kerr
space-time with mass M and 0 < a < M .

As mentioned earlier, the basic idea of the proof is to show that the Mars-Simon tensor
is well-defined and vanishes in the entire domain of outer communication, by relying on
Carleman type estimates. We provide below a more detailed outline of the proof.
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In section 3, we prove a sufficiently general geometric Carleman inequality, Proposition
3.3, with weights that satisfy suitable conditional pseudo-convexity assumptions. This
Carleman inequality is applied in section 6 to prove Proposition 6.1 and section 8 to
prove Proposition 8.5.

In section 4 we define, in a simply connected neighborhood M̃ of Σ0 ∩ E, the Killing
form Fαβ and the Ernst potential σ. We then introduce the Mars-Simon tensor, see [25],

Sαβµν = Rαβµν + 6(1− σ)−1
(
FαβFµν − (1/3)F2Iαβµν

)
as a self-dual Weyl tensor, which is well defined and smooth in the open set

N0 = {x ∈ M̃ : 1− σ(x) 6= 0}.

It is important to observe that N0 contains a neighborhood of the bifurcate sphere S0,
since <σ = −TαTα, which is nonpositive on S0. In particular, the Mars-Simon tensor is
well defined in a neighborhood of S0. The main result of the section, stated in Theorem
4.5, is the identity

DσSσαµν = J (S)αµν = −6(1− σ)−1TλSλργδ
(
F ρ
α δ

γ
µδ

δ
ν − (2/3)FγδI ρ

α µν

)
, (1.11)

which shows that S verifies a divergence equation with a source term J (S) proportional
to S. It is then straightforward to deduce, see Theorem 4.7, that S verifies a covariant
wave equation with a source proportional to S and first derivatives of S.

In section 5 we show that S vanishes on the horizon δ(I−(M(end))) ∪ δ(I+(M(end))),
in a neighborhood of the bifurcate sphere S0. The proof depends on special properties
of the horizon, such as the vanishing of the null second fundamental forms and certain
null curvature components, and the divergence equation (1.11). The proof also depends
on the main technical assumption (1.6) to show that the component ρ(S) vanishes on S0

(this is the only place where this technical assumption is used).
In section 6 we show that S vanishes in a full space-time neighborhood Or1 ∩ E of

S0 in E, see Proposition 6.1. For this we derive the Carleman inequality of Lemma 6.2,
as a consequence of the more general Proposition 3.3. The weight function used in this
Carleman inequality is constructed with the help of two optical functions u+ and u−,
defined in a space-time neighborhood of S0. We then apply this Carleman inequality to
the covariant wave equation verified by S, to prove Proposition 6.1.

Once we have regions of space-time in which S vanishes we can rely on some of the
remarkable computations of Mars [25]. In section 7 we work in an open set N ⊆ N0 (thus
1−σ 6= 0 in N), S0 ⊆ N, with the property that S = 0 in N∩E and N∩E is connected.
Such sets exist, in view of the main result of section 6. Following Mars [25], we define the
real functions y and z in N by

y + iz = (1− σ)−1,
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see Remark 1.3 for explicit formulas in the Kerr spaces. The function y satisfies the
important identity (7.19), found by Mars,

DαyD
αy =

y2 − y +B

4M2(y2 + z2)
(1.12)

in N ∩E, where B ∈ [0,∞) is a constant which has the additional property that z2 ≤ B
in N ∩E (in the Kerr space B = a2/(4M2)). We then use this identity and the fact that
<(1− σ) = 1 + g(T,T) to prove the key bound on the coordinate norm of the gradient

|D1y| ≤ C̃ in N ∩ E, (1.13)

with a uniform constant C̃ (see Proposition 7.2). This bound, together with z2 ≤ B,
shows that the function 1−σ = (y+ iz)−1 cannot vanish in a neighborhood of the closure
of N∩E, as long as S = 0 in N∩E and N∩E is connected. This observation is important
in section 8, as part of the bootstrap argument, to show that 1−σ 6= 0 in Σ0∩E. Finally,
in Lemma 7.3 we work in a canonical complex null tetrad and compute the Hessian D2y
in terms of the functions y and z, and the connection coefficient ζ.

In section 8 we use a bootstrap argument to complete the proof of the Main Theorem.
Our main goal is to show that 1− σ 6= 0 and S = 0 in Σ0 ∩E. We start by showing that
y = yS0 is constant on the bifurcate sphere S0, and use (1.12) to show that y2

S0
−yS0+B = 0;

using (1.7) it follows that B ∈ [0, 1/4) and yS0 ∈ (1/2, 1]. We use then the wave equation

DαDαy =
2y − 1

4M2(y2 + z2)
,

which is a consequence of S = 0, and the fact that yS0 > 1/2, to show that y must
increase in a small neighborhood Oε ∩E. We can then start our bootstrap argument: for
R > yS0 let UR denote the unique connected component of the set {x ∈ Σ0 ∩ E : σ(x) 6=
1 and y(x) < R} whose closure in Σ0 contains S0. We need to show, by induction over R,
that S = 0 in UR for any R > yS0 ; assuming this, it would follow from (1.13) that σ 6= 1
in Σ0∩E and ∪R>ys0UR = Σ0∩E, which would complete the proof of the Main Theorem.
The key inductive step in proving that S = 0 in UR is to show that if x0 is a point on
the boundary of UR in Σ0 ∩ E, and if S = 0 in UR, then S = 0 in a neighborhood of x0

(see Proposition 8.5). For this we use a second Carleman inequality, Lemma 8.6, with
a weight that depends on the function y. To prove this second Carleman estimate we
use the general Carleman estimate Proposition 3.3 and the remarkable pseudo-convexity
properties of the Hessian of the function y computed in Lemma 7.3.

We would like to thank P. Chrusciel, M. Dafermos, J. Isenberg, M. Mars and R. Wald
for helpful conversations connected to our work. We would also like to thank the referees
for very helpful comments, particularly on section 3.

2. Geometric preliminaries

2.1. Optical functions. We define two optical functions u−, u+ in a neighborhood of
the bifurcate sphere S0, included in the neighborhood O of hypothesis SBS. Choose a



ON THE UNIQUENESS OF SMOOTH, STATIONARY BLACK HOLES IN VACUUM 11

smooth future-past directed null pair (L+, L−) along S0 (i.e. L+ is future oriented while
L− is past oriented),

g(L−, L−) = g(L+, L+) = 0, g(L+, T0) = −1, g(L+, L−) = 1. (2.1)

We extend L+ (resp. L−) along the null geodesic generators of H+ (resp. H−) by parallel
transport, i.e. DL+L+ = 0 (resp. DL−L− = 0). We define the function u− (resp. u+)
along H+ (resp. H−) by setting u− = u+ = 0 on the bifurcate sphere S0 and solving
L+(u−) = 1 (resp. L−(u+) = 1). Let Su− (resp. Su−) be the level surfaces of u− (resp.
u+) along H+ (resp. H−). We define L− at every point of H+ (resp. L+ at every point
of H−) as the unique, past directed (resp. future directed), null vector-field orthogonal to
the surface Su− (resp. Su+) passing through that point and such that g(L+, L−) = 1. We
now define the null hypersurface Hu− to be the congruence of null geodesics initiating on
Su− ⊂ H+ in the direction of L−. Similarly we define Hu+ to be the congruence of null
geodesics initiating on Su+ ⊂ H− in the direction of L+. Both congruences are well defined
in a sufficiently small neighborhood O of S0 in M. The null hypersurfaces Hu− (resp.
Hu+) are the level sets of a function u− (resp u+) vanishing on H− (resp. H+). Moreover
we can arrange that both u−, u+ are positive in the domain of outer communication E.
By construction they are both null optical functions, i.e.

gµν∂µu+∂νu+ = gµν∂µu−∂νu− = 0. (2.2)

We define

Ω = gµν∂µu+∂νu−. (2.3)

In view of our construction we have,

u+|H+ = u−|H− = 0, Ω|H+∪H− = 1. (2.4)

Let

L+ = gµν∂µu+∂ν , L− = gµν∂µu−∂ν . (2.5)

We have,

g(L+, L+) = g(L−, L−) = 0, g(L+, L−) = Ω.

Define the sets,

Oε = {x ∈ O : |u−| < ε, |u+| < ε}.
For sufficiently small ε0 > 0 we have,

Ω >
1

2
in Oε0 , Oε0 ⊂ O. (2.6)

We also have, for ε ≤ ε0, Oε ∩ E = {0 ≤ u− < ε, 0 ≤ u+ < ε}. If φ is a smooth function
in Oε, vanishing on H+∩Oε, one can show that there exists a smooth function φ′ defined
on Oε such that,

φ = u+ · φ′ on Oε. (2.7)
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Similarly, if φ is a smooth function in Oε, vanishing on H−∩Oε, then there exists another
smooth function φ′ defined on Oε such that,

φ = u− · φ′ on Oε. (2.8)

2.2. Quantitative bounds. Using the hypothesis (1.5) we may assume that for every

0 < ε < ε0 there is a sufficiently large constant Ãε such that,

|g(T, T0)| > Ã−1
ε , ∀x ∈ (Σ0 ∩ E) \Oε. (2.9)

In view of the normalization (2.1) we may assume (after possibly decreasing the value of
ε0) that, for some constant A0,

u+/u− + u−/u+ ≤ A0 on Oε0 ∩ E ∩ Σ0. (2.10)

We construct a system of coordinates which cover a neighborhood of the space-like
hypersurface Σ0. For any R ∈ (0, 1] let BR = {x ∈ R4 : |x| < R} denote the open ball
of radius R in R4. In view of the asymptotic flatness assumption AF, there is a constant
A0 ∈ [ε−1

0 ,∞) such that (2.10) holds and, in addition, for any x0 ∈ Σ0 ∩ E there is an
open set B1(x0) ⊆ M containing x0 and a smooth coordinate chart Φx0 : B1 → B1(x0),
Φx0(0) = x0, with the property that

sup
x0∈Σ0∩E

sup
x∈B1(x0)

6∑
j=0

4∑
α1,...,αj ,β,γ=1

(
|∂α1 . . . ∂αjgβγ(x)|+ |∂α1 . . . ∂αjg

βγ(x)|
)
≤ A0;

sup
x0∈Σ0∩E

sup
x∈B1(x0)

6∑
j=0

4∑
α1,...,αj ,β=1

|∂α1 . . . ∂αjT
β(x)| ≤ A0.

(2.11)

We may assume that B1(x0) ⊆ Oε0 if x0 ∈ S0. We define M̃ to be the union of the balls

B1(x0) over all points x0 ∈ Σ0 ∩ E. We can arrange such that M̃ is simply connected.
Since S0 is compact, we may assume (after possibly increasing the value of A0) that

sup
x0∈S0

sup
x∈B1(x0)

[ 6∑
j=0

4∑
α1,...,αj=1

|∂α1 . . . ∂αju±(x)|+
( 4∑
α=1

|∂αu±(x)|
)−1] ≤ A0. (2.12)

Finally, we may also assume, in view of (1.7), that there is a point x0 ∈ S0 such that,

<
(
(1− σ(x0))−1

)
>

1

2
+ A−1

0 . (2.13)

To summarize, we fixed constants ε0 and A0 ≥ ε−1
0 such that (2.10)-(2.13) hold.

3. Unique continuation and Carleman inequalities

3.1. General considerations. As explained in section 1 our proof of the Main Theorem
is based on a global, unique continuation strategy applied to equation (1.3). We say that
a linear differential operator L, in a domain Ω ⊂ Rd, satisfies the unique continuation
property with respect to a smooth, oriented, hypersurface Σ ⊂ Ω, if any smooth solution of
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Lφ = 0 which vanishes on one side of Σ must in fact vanish in a small neighborhood of Σ.
Such a property depends, of course, on the interplay between the properties of the operator
L and the hypersurface Σ. A classical result of Hörmander, see for example Chapter 28
in [19], provides sufficient conditions for a scalar linear equation which guarantee that the
unique continuation property holds. In the particular case of the scalar wave equation,
�gφ = 0, and a non-characteristic surface Σ, defined by the equation h = 0, ∇h 6= 0,
Hörmander’s pseudo-convexity condition takes the simple form,

D2h(X,X) < 0 if g(X,X) = g(X,Dh) = 0 (3.1)

at all points on the surface Σ, where we assume that φ is known to vanish on the side of
Σ corresponding to h < 0.

In our situation, we plan to apply the general philosophy of unique continuation to the
covariant wave equation (see Theorem 4.7),

�gS = A ∗ S + B ∗DS, (3.2)

verified by the Mars-Simon tensor S, see Definition 4.3. We prove in section 5, using
the main technical assumption (1.6), that S vanishes on the horizon H+ ∪ H− and we
would like to prove, by unique continuation, that S vanishes in the entire domain of outer
communication. In implementing such a strategy one encounters the following difficulties:

(1) Equation (3.2) is tensorial, rather than scalar.
(2) The horizon H+ ∪ H− is characteristic and non smooth in a neighborhood of the

bifurcate sphere.
(3) Though one can show that an appropriate variant of Hörmander’s pseudo-convexity

condition holds true along the horizon, in a neighborhood of the bifurcate sphere,
we have no guarantee that such condition continue to be true slightly away from
the horizon, within the ergosphere region of the stationary space-time where T is
space-like.

Problem (1) is not very serious; we can effectively reduce (3.2) to a system of scalar
equations, diagonal with respect to the principal symbol. Problem (2) can be dealt with by
an adaptation of Hörmander’s pseudo-convexity condition. We note however that such an
adaptation is necessary since, given our simple vanishing condition of S along the horizon,
we cannot directly apply Hörmander’s result in [19]. Problem (3) is by far the most serious.
Indeed, even in the case when g is a Kerr metric (1.8), one can show that there exist null
geodesics trapped within the ergosphere region m+

√
m2 − a2 ≤ r ≤ m+

√
m2 − a2 cos2 θ.

Indeed surfaces of the form r∆ = m(r2 − a2)1/2, which intersect the ergosphere for a
sufficiently close to m, are known to contain such null geodesics, see [6]. One can show
that the presence of trapped null geodesics invalidates Hörmander’s pseudo-convexity
condition. Thus, even in the case of the scalar wave equation �gφ = 0 in such a Kerr
metric, one cannot guarantee, by a classical unique continuation argument (in the absence
of additional conditions) that φ vanishes beyond a small neighborhood of the horizon.

In order to overcome this difficulty we exploit the geometric nature of our problem and
make use of the invariance of S with respect to T, Thus the tensor S satisfies, in addition
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to (3.2), the identity

LTS = 0. (3.3)

Observe that (3.3) can, in principle, transform (3.2) into a much simpler elliptic problem,
in any domain which lies strictly outside the ergosphere (where T is strictly time-like).
Unfortunately this possible strategy is not available to us since, as we have remarked
above, we cannot hope to extend the vanishing of S, by a simple analogue of Hörmander’s
pseudo-convexity condition, beyond the first trapped null geodesics.

Our solution is to extend Hörmander’s classical pseudo-convexity condition (3.1) to one
which takes into account both equations (3.2) and (3.3). These considerations lead to the
following qualitative, T-conditional, pseudo-convexity condition,

T(h) = 0;

D2h(X,X) < 0 if g(X,X) = g(X,Dh) = g(T, X) = 0.
(3.4)

In a first approximation one can show that this condition can be verified in all Kerr spaces
a ∈ [0,m), for the simple function h = r (see [20]), where r is one of the Boyer–Lindquist
coordinates. Thus (3.4) is a good substitute for the more general condition (3.1). The
fact that the two geometric identities (3.2) and (3.3) cooperate exactly in the right way,
via (3.4), thus allowing us to compensate for both the failure of condition (3.1) as well as
the failure of the vector field T to be time-like in the ergoregion, seems to us to be a very
remarkable property of the Kerr spaces. In the next subsection we give a quantitative
version of the condition and derive a Carleman estimate of sufficient generality to cover
all our needs.

3.2. A Carleman estimate of sufficient generality. Unique continuation properties
are often proved using Carleman inequalities. In this subsection we prove a sufficiently
general Carleman inequality, Proposition 3.3, under a quantitative conditional pseudo-
convexity assumption. This general Carleman inequality is used in section 6 to show that
S vanishes in a small neighborhood of the bifurcate sphere S0 in E, and then in section 8
to prove that S vanishes in the entire exterior domain. The two applications are genuinely
different, since, in particular, the horizon is a bifurcate surface which is not smooth and
the weights needed in this case have to be “singular” in an appropriate sense. In order
to be able to cover both applications and prove unique continuation in a quantitative
sense, which is important especially in section 8, we work with a more technical notion of
conditional pseudo-convexity than (3.4), see Definition 3.1 below.

Assume, as in the previous section, that x0 ∈ Σ0 ∩ E and Φx0 : B1 → B1(x0) is the
corresponding coordinate chart. For simplicity of notation, let Br = Br(x0). For any
smooth function φ : B → C, where B ⊆ B1 is an open set, and j = 0, 1, . . . let

|Djφ(x)| =
4∑

α1,...,αj=1

|∂α1 . . . ∂αjφ(x)|.
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Assume that V = V α∂α is a vector-field on B1 with the property that

sup
x∈B1

4∑
j=0

4∑
β=1

|DjV β| ≤ A0. (3.5)

In our applications, V = 0 or V = T.

Definition 3.1. A family of weights hε : Bε10 → R+, ε ∈ (0, ε1), ε1 ≤ A−1
0 , will be called

V -conditional pseudo-convex if for any ε ∈ (0, ε1)

hε(x0) = ε, sup
x∈Bε10

4∑
j=1

εj|Djhε(x)| ≤ ε/ε1, |V (hε)(x0)| ≤ ε10, (3.6)

Dαhε(x0)Dβhε(x0)(DαhεDβhε − εDαDβhε)(x0) ≥ ε21, (3.7)

and there is µ ∈ [−ε−1
1 , ε−1

1 ] such that for all vectors X = Xα∂α ∈ Tx0(M)

ε21[(X1)2 + (X2)2 + (X3)2 + (X4)2]

≤ XαXβ(µgαβ −DαDβhε)(x0) + ε−2(|XαVα(x0)|2 + |XαDαhε(x0)|2).
(3.8)

A function eε : Bε10 → R will be called a negligible perturbation if

sup
x∈Bε10

|Djeε(x)| ≤ ε10 for j = 0, . . . , 4. (3.9)

Remark 3.2. One can see that the technical conditions (3.6), (3.7), and (3.8) are related
to the qualitative condition (3.4), at least when hε = h + ε for some smooth function h.
The assumption |V (hε)(x0)| ≤ ε10 is a quantitative version of V (h) = 0. The assumption
(3.7) is a quantitative version of the non-characteristic condition7 DαhDαh 6= 0. The
assumption (3.8) is a quantitative version of the inequality in the second line of (3.4), in
view of the large factor ε−2 on the terms |XαVα(x0)|2 and |XαDαhε(x0)|2, and the freedom
to choose µ in a large range.

It is important that the Carleman estimates we prove are stable under small perturba-
tions of the weight, in order to be able to use them to prove unique continuation. We
quantify this stability in (3.9).

We observe that if {hε}ε∈(0,ε1) is a V -conditional pseudo-convex family, and eε is a
negligible perturbation for any ε ∈ (0, ε1], then

hε + eε ∈ [ε/2, 2ε] in Bε10 .

The pseudo-convexity conditions of Definition 3.1 are probably not as general as possible,
but are suitable for our applications both in section 6, with “singular” weights hε, and
section 8, with “smooth” weights hε. We also note that it is important to our goal to
prove a global result (see section 8), to be able to track quantitatively the size of the

7It is in fact a quantitative form of the non-vanishing of Dhε. Indeed, if Dαhε is null, (3.7) is, essentially,
the same as (3.8).
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support of the functions for which Carleman estimates can be applied; in our notation,
this size depends only on the parameter ε1 in Definition 3.1.

Proposition 3.3. Assume x0, V are as above, ε1 ≤ A−1
0 , {hε}ε∈(0,ε1) is a V -conditional

pseudo-convex family, and eε is a negligible perturbation for any ε ∈ (0, ε1]. Then there

is ε ∈ (0, ε1) sufficiently small and C̃ε sufficiently large such that for any λ ≥ C̃ε and any
φ ∈ C∞0 (Bε10)

λ‖e−λfεφ‖L2 + ‖e−λfε|D1φ| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �gφ‖L2 + ε−6‖e−λfεV (φ)‖L2 , (3.10)

where fε = ln(hε + eε).

Proof of Proposition 3.3. As mentioned earlier, many Carleman estimates such as (3.10)
are known, for the particular case when V = 0, in more general settings. The optimal
proof, see chapter 28 of [19], is based on the Fefferman–Phong inequality. Here we provide
a self-contained, elementary, proof which, though not optimal, it is perfectly adequate to
our needs.

We will use the notation C̃ to denote various constants in [1,∞) that may depend only

on the constant ε1. We will use the notation C̃ε to denote various constants in [1,∞) that
may depend only on ε. We emphasize that these constants do not depend on the (very
large) parameter λ or the function φ in (6.8). The value of ε will be fixed at the end of
the proof and depends only on ε1. We divide the proof into several steps.

Step 1. Clearly, we may assume that φ is real-valued. Let ψ = e−λfεφ ∈ C∞0 (Bε10). In
terms of ψ, inequality (3.10) takes the form,

λ‖ψ‖L2 + ‖e−λfε|D1(eλfεψ)| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + ε−6‖e−λfεV (eλfεψ)‖L2 .

(3.11)
We reduce the proof of (3.11) by a sequence of steps. We claim first that for (3.11) to

hold true, it suffices to prove that there exist ε� 1 and C̃ε � 1 such that

λ‖ψ‖L2 + ‖ |D1ψ| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + 8ε−4‖V (ψ)‖L2 , (3.12)

for any λ ≥ C̃ε and any ψ ∈ C∞0 (Bε10). Indeed, using (3.6) and (3.9) (thus |V (hε +

eε)(x)| ≤ C̃ε8 for x ∈ Bε10), the observation hε + eε ∈ [ε/2, 2ε] in Bε10 , and the definition
fε = ln(hε + eε), we have

e−λfε|D1(eλfεψ)| ≤ |D1ψ|+ C̃ε−1λ|ψ|;

|e−λfεV (eλfεψ)− V (ψ)| ≤ C̃ε7λ|ψ|.
Thus, assuming (3.12), we deduce,

λ‖ψ‖L2 + ‖e−λfε |D1(eλfεψ)| ‖L2 ≤ λ‖ψ‖L2 + ‖|D1ψ| ‖L2 + C̃ε−1λ‖ψ‖L2

≤ (1 + C̃ε−1)(C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + 8ε−4‖V (ψ)‖L2)

≤ (1 + C̃ε−1)[C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + 8ε−4‖e−λfεV (eλfεψ)‖L2 + 8C̃ε3λ‖ψ‖L2 ]

≤ C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + C̃ε−5‖e−λfεV (eλfεψ)‖L2 + C̃ε2λ‖ψ‖L2 ,
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and the inequality (3.11) follows for ε� C̃−1.
Step 2. We write

e−λfε �g(eλfεψ) = �gψ + 2λDα(fε)Dαψ + λ2Dα(fε)D
α(fε) · ψ + λ�g(fε) · ψ,

= Lεψ + λ�g(fε) · ψ,
(3.13)

with Lε := �g + 2λDα(fε)Dα + λ2Dα(fε)D
α(fε), and show that (3.12) follows from,

λ‖ψ‖L2 + ‖ |D1ψ| ‖L2 ≤ C̃ελ
−1/2‖Lεψ‖L2 + 4ε−4‖V (ψ)‖L2 (3.14)

for any λ ≥ C̃ε and any ψ ∈ C∞0 (Bε10). Indeed,

‖e−λfε �g(eλfεψ)‖L2 ≥ ‖Lεψ‖L2 − λ‖�g(fε)ψ‖L2

Observe that, according to (3.6), we have |�g(fε)| ≤ C̃ε on Bε10 . Thus, if (3.14) holds,

λ‖ψ‖L2 + ‖ |D1ψ| ‖L2 ≤ C̃ελ
−1/2

(
‖e−λfε �g(eλfεψ)‖L2 + λ‖�g(fε)ψ‖L2

)
+ 4ε−4‖V (ψ)‖L2

≤ C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + C̃2

ε λ
1/2‖ψ‖L2 + 4ε−4‖V (ψ)‖L2

or,

(λ− C̃2
ε λ

1/2)‖ψ‖L2 + ‖ |D1ψ| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �g(eλfεψ)‖L2 + 4ε−4‖V (ψ)‖L2

from which we easily derive (3.12), by redefining the constant C̃ε and taking λ sufficiently

large relative to C̃ε.
Step 3. We write Lε in the form,

Lε = �g + 2λW + λ2G

W = Dα(fε)Dα, G = Dα(fε)D
α(fε). (3.15)

We observe that inequality (3.14) follows as a consequence of the following statement:

there exist ε� 1, µ1 ∈ [−ε−3/2, ε−3/2], and C̃ε � 1 such that

2λε−8‖V (ψ)‖2
L2 +

∫
Bε10

Lεψ · (2λW (ψ)− 2λwψ) dµ

≥ C̃−1
ε ‖λW (ψ)− λwψ‖2

L2 + λ3‖ψ‖2
L2 + λ‖ |D1ψ| ‖2

L2 ,

(3.16)

for any λ ≥ C̃ε and any ψ ∈ C∞0 (Bε10), where

w = µ1 − (1/2)�gfε. (3.17)

The reason for choosing w of this form will become clear in Step 6. Assuming that (3.16)
holds true and denoting by RHS the right-hand side of that inequality, we have

RHS ≤
∫
Bε10

C̃1/2
ε Lεψ · C̃−1/2

ε (2λW (ψ)− 2λwψ) dµ+ 2λε−8‖V (ψ)‖2
L2

≤ C̃−1
ε ‖λW (ψ)− λwψ‖2

L2 + C̃ε‖Lεψ‖2
L2 + 2λε−8‖V (ψ)‖2

L2 .

Hence
λ3‖ψ‖2

L2 + λ‖ |D1ψ| ‖2
L2 ≤ C̃ε‖Lεψ‖2

L2 + 2λε−8‖V (ψ)‖2
L2
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from which (3.14) follows easily.
Step 4. We claim now that inequality (3.16) is a consequence of the inequality

2λε−8‖V (ψ)‖2
L2 +

∫
Bε10

(
�gψ + λ2Gψ

)
· (2λW (ψ)− 2λwψ) dµ+ 2λ2‖W (ψ)‖2

L2

≥ 2λ3‖ψ‖2
L2 + 2λ‖ |D1ψ| ‖2

L2 .

(3.18)

To prove that (3.18) implies (3.16) we write

Lεψ = �gψ + λ2G · ψ + (λW (ψ)− λwψ) + (λW (ψ) + λwψ),

Thus, assuming (3.18),

2λε−8‖V (ψ)‖2
L2 +

∫
Bε10

Lεψ · (2λW (ψ)− 2λwψ) dµ

= 2λε−8‖V (ψ)‖2
L2 +

∫
Bε10

(
�gψ + λ2Gψ

)
· (2λW (ψ)− 2λwψ) dµ

+ 2‖λW (ψ)− λwψ‖2
L2 + 2λ2(‖W (ψ)‖2

L2 − ‖wψ‖2
L2)

≥ 2λ3‖ψ‖2
L2 + 2λ‖ |D1ψ| ‖2

L2 + 2‖λW (ψ)− λwψ‖2
L2 − 2λ2‖wψ‖2

L2

≥ 2‖λW (ψ)− λwψ‖2
L2 + λ3‖ψ‖2

L2 + 2λ‖ |D1ψ| ‖2
L2 ,

if C̃ε is sufficiently large and λ ≥ C̃ε, which gives (3.16). In the last inequality we use the

bound |w| ≤ C̃ε−2 (see (3.17)) thus 2λ3‖ψ‖2
L2 − 2λ2‖wψ‖2

L2 ≥ λ3‖ψ‖2
L2 for λ sufficiently

large.
Step 5. Let Qαβ denote the enery-momentum tensor of �g, i.e.

Qαβ = DαψDβψ −
1

2
gαβ(DµψDµψ).

Direct computations show that

�gψ · (2W (ψ)− 2wψ) = Dα(2W βQαβ − 2wψ ·Dαψ + Dαw · ψ2)

− 2DαW β ·Qαβ + 2wDαψ ·Dαψ −�gw · ψ2,
(3.19)

and

Gψ · (2W (ψ)− 2wψ) = Dα(ψ2G ·Wα)− ψ2(2wG+W (G) +G ·DαWα). (3.20)

Since ψ ∈ C∞0 (Bε10) we integrate by parts to conclude that∫
Bε10

(
�gψ + λ2G · ψ

)
· (2W (ψ)− 2wψ) dµ =

∫
Bε10

2wDαψ ·Dαψ − 2DαW β ·Qαβ dµ

+ λ2

∫
Bε10

ψ2(−2wG−W (G)−G ·DαWα − λ−2�gw)dµ.

Thus, after dividing by λ, for (3.18) it suffices to prove that the pointwise bounds

|D1ψ|2 ≤ ε−8|V (ψ)|2 + λ|W (ψ)|2 + (wDαψ ·Dαψ −DαW β ·Qαβ), (3.21)
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and
2 ≤ −2wG−W (G)−G ·DαWα − λ−2�gw, (3.22)

hold on Bε10 .
Step 6. Recall that w = µ1 − (1/2)�gfε, W

α = Dα(fε) and G = Dα(fε)D
α(fε).

Observe that

wDαψ ·Dαψ −DαW β ·Qαβ = (Dαψ ·Dβψ)[(w + (1/2)�gfε)gαβ −DαDβfε]

and
−2wG−W (G)−G ·DαWα = −G(2w + �gfε)− 2DαfεD

βfε ·DαDβfε.

Thus (3.21) and (3.22) are equivalent to the pointwise inequalities

|D1ψ|2 ≤ ε−8|V (ψ)|2 + λ|Dαfε ·Dαψ|2 + (Dαψ ·Dβψ)(µ1gαβ −DαDβfε), (3.23)

and
1 ≤ −µ1G−DαfεD

βfε ·DαDβfε + (1/4)λ−2�2
g(fε) (3.24)

on Bε10 , for some ε� 1 and λ sufficiently large.

Let h̃ε = hε + eε and H̃ε = Dαh̃εDαh̃ε. We use now the definition fε = ln h̃ε. Since

h̃ε ∈ [ε/2, 2ε], for (3.23) and (3.24) it suffices to prove that there are constants ε� 1 and
µ1 ∈ [−ε−3/2, ε−3/2] such that the pointwise bounds

|D1ψ|2 ≤ ε−8|V (ψ)|2 + ε−8|Dαh̃ε ·Dαψ|2 + (Dαψ ·Dβψ)(µ1gαβ − h̃−1
ε DαDβh̃ε), (3.25)

and
2 ≤ h̃−4

ε H̃2
ε − h̃−3

ε Dαh̃εD
βh̃εDαDβh̃ε − h̃−2

ε µ1H̃ε (3.26)

hold on Bε10 for any ψ ∈ C∞0 (Bε10). Indeed, the bound (3.23) follows from (3.25) if
λ ≥ 2ε−7. The bound (3.24) follows from (3.26) if |λ−2�2

g(fε)| ≤ 1, which holds true if

λ ≥ C̃ε−2.

Step 7. We prove now that the bound (3.26) holds for any µ1 ∈ [−ε−3/2, ε−3/2]. We
start from the assumption (3.7)

Dαhε(x0)Dβhε(x0)(DαhεDβhε − εDαDβhε)(x0) ≥ ε21.

For x ∈ Bε10 let

K(x) = Dαhε(x)Dβhε(x)(DαhεDβhε − hε ·DαDβhε)(x).

It follows from the second bound in (3.6) that |D1K(x)| ≤ C̃ε−1, thus, since ε = hε(x0),
K(x) ≥ ε21/2 for any x ∈ Bε10 if ε is sufficiently small.

Let
K̃(x) = Dαh̃ε(x)Dβh̃ε(x)(Dαh̃εDβh̃ε − h̃ε ·DαDβh̃ε)(x).

It follows from the assumption (3.9) on eε and the assumption (3.6) that |K̃(x)−K(x)| ≤
C̃ε, thus K̃(x) ≥ ε21/4 on Bε10 , provided that ε is sufficiently small. By multiplying with

h̃−4
ε we have

h̃−4
ε ε21/4 ≤ h̃−4

ε K̃(x) = h̃−4
ε H̃2

ε − h̃−3
ε Dαh̃εD

βh̃ε ·DαDβh̃ε
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on Bε10 . The bound (3.26) follows for ε small enough since h̃ε(x) ∈ [ε/2, 2ε] on Bε10 and

|h̃−2
ε µ1H̃ε| ≤ C̃|µ1|ε−2 ≤ C̃ε−7/2.
Step 8. We prove now the bound (3.25). We start from the assumption (3.8)

ε21[(X1)2 + (X2)2 + (X3)2 + (X4)2]

≤ XαXβ(µgαβ −DαDβhε)(x0) + ε−2(|XαVα(x0)|2 + |XαDαhε(x0)|2),
(3.27)

for some µ ∈ [−ε−1
1 , ε−1

1 ] and all vectors X = Xα∂α ∈ Tx0(M). Let

Kαβ = µε−1hεgαβ −DαDβhε + ε−2VαVβ + ε−2DαhεDβhε.

We work in the local frame ∂1, ∂2, ∂3, ∂4. In view of (3.6),

|D1Kαβ(x)| ≤ C̃ε−3

for any α, β = 1, 2, 3, 4 and x ∈ Bε10 . It follows from (3.27) and ε−1hε(x0) = 1 that

4∑
α,β=1

XαXβKαβ(x) ≥ (ε21/2)[(X1)2 + (X2)2 + (X3)2 + (X4)2] (3.28)

for any x ∈ Bε10 and (X1, X2, X3, X4) ∈ R4, provided that ε is sufficiently small. Let

K̃αβ = µε−1h̃εgαβ −DαDβh̃ε + ε−2VαVβ + ε−2Dαh̃εDβh̃ε,

and observe that, in view of (3.9) and (3.6), |K̃αβ(x) − Kαβ(x)| ≤ C̃ε5 for any α, β =
1, 2, 3, 4 and x ∈ Bε10 . Thus, using (3.28), if ε is sufficiently small then

4∑
α,β=1

XαXβK̃αβ(x) ≥ (ε21/4)[(X1)2 + (X2)2 + (X3)2 + (X4)2]

for any x ∈ Bε10 and (X1, X2, X3, X4) ∈ R4. We multiply this by h̃−1
ε ∈ [ε−1/2, 2ε−1] and

use the definition of K̃αβ to conclude that

4∑
α,β=1

XαXβ(µε−1gαβ − h̃−1
ε DαDβh̃ε) + 2ε−3

∣∣ 4∑
α=1

XαVα
∣∣2 + 2ε−3

∣∣ 4∑
α=1

XαDαhε
∣∣2

≥ h̃−1
ε (ε21/4)[(X1)2 + (X2)2 + (X3)2 + (X4)2].

The bound (3.25) follows for ε sufficiently small, with µ1 = µε−1 ∈ [−(εε1)−1, (εε1)−1].
This completes the proof of the proposition. �

4. The Mars-Simon tensor S

4.1. Preliminaries. Assume (N,g) is a smooth vacuum Einstein spacetime of dimension
4. Given an antisymmetric 2-form, real or complex valued, Gαβ = −Gβα we define its
Hodge dual,

∗Gαβ =
1

2
∈ µν
αβ Gµν .
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Observe that ∗( ∗G) = −G. This follows easily from the identity,

∈αβρσ∈µνρσ= −2δµα ∧ δνβ = −2(δµα δ
ν
β − δνα δ

µ
β),

Given 2 such forms F,G we have the identity

FµσGν
σ − ( ∗F )νσ( ∗G)µ

σ =
1

2
gµνFαβG

αβ (4.1)

which follows easily from the identity

∈α2α3α4α1 ∈β2β3β4α1= −δα2
β2
∧ δα3

β3
∧ δα4

β4

= δα2
β4
δα3
β3
δα4
β2

+ δα2
β2
δα3
β4
δα4
β3

+ δα2
β3
δα3
β2
δα4
β4
− δα2

β2
δα3
β3
δα4
β4
− δα2

β3
δα3
β4
δα4
β2
− δα2

β4
δα3
β2
δα4
β3
.

An antisymmetric 2-form F is called self-dual if,

∗F = −iF .

It follows easily form (4.1) that if F ,G are two self-dual 2-forms then

FµσGνσ + FνσGµσ =
1

2
gµνFαβGαβ. (4.2)

We also have, for any self-dual F ,

Fµσ(<F) σ
ν = Fνσ(<F) σ

µ (4.3)

where <F denotes the real part of F .
A tensor W ∈ T0

4(N) will be called partially antisymmetric if

Wαβµν = −Wβαµν = −Wαβνµ. (4.4)

Given such a tensor-field we define its Hodge dual

∗Wαβγδ =
1

2
∈γδρσWαβρσ.

As before, ∗( ∗W ) = −W for any partially antisymmetric tensor W . A complex par-
tially antisymmetric tensor U of rank 4 is called self-dual if ∗U = (−i)U . The following
extension of identity (4.2) holds for such tensors,

F σ
µ Uαβνσ + F σ

ν Uαβµσ =
1

2
gµνFγδUαβγδ. (4.5)

A partially antisymmetric tensor of rank 4 is called a Weyl field if
Wαβµν = −Wβαµν = −Wαβνµ = Wµναβ;

Wα[βµν] = Wαβµν +Wαµνβ +Wανβµ = 0;

gβνWαβµν = 0.

(4.6)

It is well-known that if W is a Weyl field then ∗W is also a Weyl field. In particular

∗Wαβµν = ∗W µναβ =
1

2
∈ ρσ
αβ Wµνρσ. (4.7)
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The Riemann curvature tensor R of an Einstein vacuum spacetime provides an example
of a Weyl field. Moreover R verifies the Bianchi identities,

D[σRγδ]αβ = 0

In this paper we will have to consider Weyl fields W which verify equations of the form

DαWαβγδ = Jβγδ (4.8)

for some Weyl current J ∈ T0
3(N). It follows from (4.8) that

Dα ∗Wαβγδ = ∗Jβγδ =
1

2
∈γδρσJβρσ. (4.9)

The following proposition follows immediately from definitions and (4.7).

Proposition 4.1. If W is a Weyl field and (4.8) is satisfied then

D[σWγδ]αβ =∈µσγδ ∗Jµαβ. (4.10)

4.2. Killing vector-fields and the Ernst potential. We assume now that T is a
Killing vector-field on N, i.e.

DαTβ + DβTα = 0 (4.11)

We define the 2-form,

Fαβ = DαTβ

and recall that F verifies the Ricci identity

DµFαβ = TνRνµαβ, (4.12)

with R the curvature tensor of the spacetime. In view of the first Bianchi identity for R
we infer that,

D[µFαβ] = DµFαβ + DαFβµ + DβFµα = 0. (4.13)

Also, since we are in an Einstein vacuum spacetime,

DβFαβ = 0. (4.14)

We now define the complex valued 2-form,

Fαβ = Fαβ + i ∗Fαβ. (4.15)

Clearly, F is self-dual solution of the Maxwell equations, i.e. F ∗ = (−i)F and

D[µFαβ] = 0, DβFαβ = 0. (4.16)

We define also the Ernst 1-form associated to the Killing vector-field T,

σµ = 2TαFαµ = Dµ(−TαTα)− i ∈µβγδ TβDγTδ. (4.17)
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It is easy to check (see, for example, [26, section 3]) that
Dµσν −Dνσµ = 0;

Dµσµ = −F2;

σµσ
µ = g(T,T)F2.

(4.18)

Since d(σµdx
µ) = 0 and the set M̃ is simply connected we infer that there exists a function

σ : M̃→ C, called the Ernst potential, such that σµ = Dµσ, σ → 1 at infinity along Σ0,
and <σ = −TαTα.

4.3. The Mars-Simon tensor. In the rest of this section we assume that N ⊆ M̃ is an
open set with the property that

1− σ 6= 0 in N. (4.19)

We define the complex-valued self-dual Weyl tensor

Rαβµν = Rαβµν +
i

2
∈µνρσRαβρσ = Rαβµν + i ∗Rαβµν . (4.20)

We define the tensor I ∈ T0
4(N),

Iαβµν = (gαµgβν − gανgβµ + i ∈αβµν)/4. (4.21)

Clearly,

Iαβµν = −Iβαµν = −Iαβνµ = Iµναβ. (4.22)

On the other hand,

Iα[βγδ] = Iαβγδ + Iαγδβ + Iαδβγ =
3i

4
∈αβγδ . (4.23)

Using the definition (4.21) we derive

∗Iαβµν =
1

2
∈µνρσIαβρσ = (−i)Iαβµν . (4.24)

Thus I is a self-dual partially antisymmetric tensor. We can therefore apply (4.5) and
(4.22) to derive

F σ
µ Iνσαβ + F σ

ν Iµσαβ =
1

2
gµνFγδIγδαβ. (4.25)

We observe also that

FµνIαβµν = Fαβ. (4.26)

Following [25], we define the tensor-field Q ∈ T0
4(N),

Qαβµν = (1− σ)−1
(
FαβFµν −

1

3
F2Iαβµν

)
. (4.27)

We show now that Q is a self-dual Weyl field on N.
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Proposition 4.2. The tensor-field Q is a self-dual Weyl field, i.e.
Qαβµν = −Qβαµν = −Qαβνµ = Qµναβ;

Qαβµν +Qαµνβ +Qανβµ = 0;

gβνQαβµν = 0,

and
1

2
∈µνρσ Qαβρσ = (−i)Qαβµν .

Proof of Proposition 4.2. The identities

Qαβµν = −Qβαµν = −Qαβνµ = Qµναβ

follow immediately from the definition. To prove

Qα[βµν] = Qαβµν +Qαµνβ +Qανβµ = 0

it suffices to check, in view of the identity (4.23),

FαβFµν + FαµFνβ + FανFβµ =
i

4
∈αβµν ·F2. (4.28)

Since F is a 2-form, the left-hand side of (4.28) is a 4-form on N (which has dimension
4). Thus, for (4.28) it suffices to check

∈αβµν
(
FαβFµν + FαµFνβ + FανFβµ

)
= −6iF2.

This follows since the left-hand side of the above equation is equal to 6Fαβ ∗Fαβ = −6iF2.
We compute

gβνQαβµν = (1− σ)−1
(
FαβFµβ −

1

3
F2 · gβνIαβµν

)
= 0.

Also
1

2
∈µνρσ Qαβρσ = (1− σ)−1

(
Fαβ ∗Fµν −

1

3
F2 ∗Iαβµν

)
= (−i)Qαβµν .

This completes the proof of the proposition. �

We define now the Mars-Simon tensor.

Definition 4.3. We define the self-dual Weyl field S,

S = R+ 6Q. (4.29)

Remark 4.4. Since <σ = −TαTα ≤ 0 on S0, it follows from the definition of the constant

A0 in section 2 that <(1− σ) ≥ 1/2 in a neighborhood Oε2 ⊆ M̃ of S0, for some ε2 ≤ ε0
that depends only on A0. In particular, the tensor S is well defined in Oε2.
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4.4. A covariant wave equation for S. Our main goal now is to show that S verifies
a covariant wave equation. We first calculate its spacetime divergence DαSαβµν . Clearly,
it suffices to calculate DαQαβµν . Recalling the definition of the 1-form σα = 2TνFνα and
using the definition (4.27) we compute

DρQαβµν = (1− σ)−1DρFαβ · Fµν + (1− σ)−1Fαβ ·DρFµν

− 1

3
(1− σ)−1DρF2 · Iαβµν + (1− σ)−2σρ

(
FαβFµν −

1

3
F2Iαβµν

)
.

(4.30)

Using (4.12), (4.26), and R = S − 6Q, we have

DρFγδ = TνRνργδ = TνSνργδ − 6 ·TνQνργδ
= −3(1− σ)−1σρFγδ + 2(1− σ)−1F2 ·TνIνργδ + TνSνργδ.

(4.31)

Thus,

(1− σ)−1Fαβ ·DρFµν = −3(1− σ)−2 · σρFαβFµν
+ 2(1− σ)−2F2FαβTλIλρµν + J1(S)ραβµν ,

(4.32)

where

J1(S)ραβµν = (1− σ)−1 · FαβTλSλρµν .

Observe that, in view of (4.31) and (4.26)

DρF2 = 2DρFγδ · Fγδ = −4(1− σ)−1F2σρ + 2TνSνργδFγδ. (4.33)

Thus

−1

3
(1− σ)−1DρF2 · Iαβµν =

4

3
(1− σ)−2F2 · σρIαβµν + J2(S)ραβµν , (4.34)

where,

J2(S)ραβµν = −2

3
(1− σ)−1 ·TλSλργδFγδIαβµν .

We combine (4.30), (4.32), and (4.34) to write

DρQαβµν = (1− σ)−1DρFαβ · Fµν − 2(1− σ)−2σρFαβFµν
+ 2(1− σ)−2F2FαβTλ · Iλρµν + (1− σ)−2F2σρIαβµν (4.35)

+ J1(S)ραβµν + J2(S)ραβµν .

We are now ready to compute the divergence DσQβσµν . Using (4.35) and the Maxwell
equations (4.16) we derive

DβQαβµν = J ′′(S)αµν − 2(1− σ)−2σρFαρFµν
+ 2(1− σ)−2F2FαρTλIλρµν + (1− σ)−2F2σβIαβµν ;

J ′′(S)αµν = gρβ(J1(S)ραβµν + J2(S)ραβµν).
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Using (4.2) and the definition of σρ we derive,

−2(1− σ)−2 · σρFαρFµν = −2(1− σ)−2 · 2TλFλρFαρFµν

= −2(1− σ)−2 · 2Tλ · 1

4
gλαF2 · Fµν

= −(1− σ)−2F2TαFµν .

(4.36)

Using (4.25), (4.26), and the definitions,

2(1− σ)−2F2·FαρTλIλρµν + (1− σ)−2F2 · σβIαβµν
= 2(1− σ)−2F2(FαρTλIλρµν + TλFλρIαρµν)
= 2(1− σ)−2F2Tλ(FαρIλρµν + FλρIαρµν)

= 2(1− σ)−2F2Tλ · 1

2
gλαFρσIρσµν

= (1− σ)−2F2TαFµν .

(4.37)

Thus, using (4.36), and (4.37), we derive,

DσQασµν = J ′′(S)αµν ,

with

J ′′(S)αµν = (1− σ)−1TλSλργδ
(
F ρ
α δ

γ
µδ

δ
ν − (2/3)FγδI ρ

α µν

)
.

Since, according to the Bianchi identities, and the Einstein equations, we have DσRβσµν =
0 we deduce the following.

Theorem 4.5. The Mars-Simon tensor S verifies,

DσSσαµν = J (S)αµν . (4.38)

where,

J (S)αµν = −6(1− σ)−1TλSλργδ
(
F ρ
α δ

γ
µδ

δ
ν − (2/3)FγδI ρ

α µν

)
.

As a consequence of the theorem we deduce from Proposition 4.1 and the self-duality
of S and J ,

D[σSµν]αβ = −i ∈ρσµν J ρ
αβ(S). (4.39)

In the following calculations the precise form of J (S) is not important, we only need to
keep track of the fact that it is a multiple of S.

Definition 4.6. We denote byM(S) any k-tensor with the property that there is a smooth
tensor-field A such that

M(S)α1...αk = Sβ1...β4Aβ1...β4
α1...αk . (4.40)

Similarly we denote by M(S,DS) any k-tensor with the property that there exist smooth
tensor-fields A and B such that

M(S,DS)α1...αk = Sβ1...β4Aβ1...β4
α1...αk + Dβ5Sβ1...β4Bβ1...β5

α1...αk . (4.41)
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We state the main result of this section.

Theorem 4.7. We have
�gS =M(S,DS). (4.42)

Proof of Theorem 4.7. The result follows easily from the equations (4.38) and (4.39)

DαSαβγδ = J (S)βγδ

D[σSαβ]γδ = −i ∈ρσαβ J ρ
γδ(S).

Indeed, differentiating once more the second equation we derive,

Dσ(DσSαβγδ + DαSβσγδ + DβSσαγδ) = −i ∈ρσαβ DσJ ρ
γδ(S).

Thus, after commuting covariant derivatives and using the first equation we derive,

�gSαβγδ = M(S,DS)αβγδ

as desired. �

5. Vanishing of S on the horizon

In this section we prove that the Mars–Simon tensor S vanishes on H+ ∪H−.

Proposition 5.1. The Mars–Simon tensor S vanishes along the horizon H+ ∪H−.

The rest of the section is concerned with the proof of Proposition 5.1. Recall, see
Remark 4.4, that the tensor S is well defined on S0. We will use the notation in the
appendix. Assume N is a null hypersurface (in our case N = H+ or N = H−) and let
l ∈ T(N ) denote a null vector-field orthogonal to N . The Lie bracket [X, Y ] of any two
vector-fields X, Y tangent to N is again tangent to N and therefore

g(DX l, Y )− g(DY l, X) = −g(l, [X, Y ]) = 0 and g(Dll, X) = −g(l,DlX) = 0.

In particular we infer that along N (h)ξ vanishes identically and (h)χ is symmetric.

Definition 5.2. Given a null hypersurface N and l a fixed non-vanishing null vector-field
on it we define χ(X, Y ) = g(DX l, Y ), X, Y ∈ T(N ), the null second fundamental form
of N . We denote by tr χ the trace8 of χ with respect to the induced metric and by χ̂ the
traceless part of χ, i.e. χ̂ = χ− 1

2
γtr χ, with γ the degenerate metric on N induced by g.

In view of the definitions (A.13), writing m = (e1 + ie2)/
√

2, with e1, e2 an arbitrary
horizontal orthonormal frame, we deduce that,

θ = (χ11 + χ22)/2 = tr χ/2

ϑ = (χ11 − χ22)/2 + iχ12

We now restrict our considerations to that of a non-expanding null hypersurface. In
other words we assume that θ = tr χ/2 vanishes identically along N . In view of the null
structure equation (A.21) and the vanishing of ξ = (h)ξ(m), we deduce that |ϑ|2 = 0

8The trace is well defined since χ(X, l) = γ(X, l) = 0 for all X ∈ T(N ).
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along N therefore ϑ ≡ 0. Therefore the full null second fundamental form of N vanishes
identically. We now consider the null structure equation (A.19). Since ξ, θ, ϑ vanish
we deduce that Ψ(2)(R) must vanish along N . Similarly we deduce that Ψ(1)(R) vanishes
alongN from equation (A.29). Finally, we consider the Bianchi equations with zero source
J . From (A.41) we deduce that DΨ(0) vanishes identically along N . Observe also that
Ψ(0)(R) is invariant under general changes of the null pair (l, l) which keep l orthogonal
to N . Indeed Ψ(0)(R) is always invariant under the scale transformations l′ = fl, l′ =
f−1 l. On the other hand if we keep l fixed and perform the general transformations
l′ = l + Al + Bm + Bm we easily find that Ψ′(0)(R) differs from Ψ(0)(R) by a linear

combination of Ψ(2)(R) and Ψ(1)(R).
We have thus proved the following.

Proposition 5.3. Let (l, l) be a null pair in an open set N with l orthogonal to a non-
expanding null hypersurface in N ⊂ N. Then (h)ξ and (h)χ vanish identically on N .
Moreover the curvature components Ψ(2)(R) and Ψ(1)(R) (or equivalently, α(R), β(R))
vanish along N and the invariant Ψ(0)(R) (or equivalently ρ(R+ i ∗R)) is constant along
the null generators.

We apply this proposition to the surfaces H+ and H− to establish the following facts.
Recall that R = R + i ∗R.

(1) The null second fundamental form χ, respectively χ, vanishes identically along
H+, respectively H−.

(2) The null curvature components α = α(R) and β = β(R) (respectively α(R),
β(R)), vanish identically along H+ (respectively H−).

(3) The null curvature component ρ(R) is invariant and constant along the null gen-
erators of both H+ and H−.

(4) All null curvature components, except ρ(R), vanish along the bifurcate sphere S0.
We also have χ = χ = 0 on S0.

Consider an adapted null frame e1, e2, e3 = l, e4 = l in O with l tangent to the null
generators of H+ and l tangent to the null generators of H−. Thus,

g(l, l) = g( l, l) = 0, g(l, l) = −1, g(l, ea) = g( l, ea) = 0,

g(ea, eb) = δab, a, b = 1, 2, ∈12=∈ (e1, e2, e3, e4) = 1.

We introduce the notation,

αa(F) = F(ea, l), αa(F) = F(ea, l), ρ(F) = F( l, l). (5.1)

Observe that the null components αa(F), αa(F), ρ(F) completely determine the antisym-
metric, self-dual tensor F . Indeed, −iF34 = ( ∗F)34 = 1

2
∈34ab Fab = 1

2
∈ab Fab. Hence,

Fab = −i ∈ab ρ(F). (5.2)

We claim that α(F) vanishes on H+ while α(F) vanishes on H−,

α(F) = 0 on H+, α(F) = 0 on H−. (5.3)
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Indeed since g(T, l) = 0 on H+ (see the assumption SBF) and the null second funda-
mental form χ vanishes identically on H+,

F (ea, l) = −g(T,Deal) = −χ(T, ea) = 0 on H+.

On the other hand,

∗Fa4 =
1

2
∈a4µν F

µν =∈a4b3 F
b3 = − ∈a4b3 Fb4 = 0.

Hence αa(F) = Fa4 = Fa4 + i ∗Fa4 = 0 on H+. The proof of vanishing of α(F) on H− is
similar. We infer that both α(F) and α(F) have to vanish along the bifurcate sphere S0.
We also observe,

F2 = FµνFµν = 2F34F34 + FabFab = −4F2
34 = −4ρ(F)2 on S0.

Since F2 does not vanish on S0 we infer that ρ(F) cannot vanish on S0.
Consider now the Mars-Simon tensor (4.29). To show that the Weyl tensor S van-

ishes along the H+ ∪ H− it suffices to show that all its null components (see Appendix)
α(S), β(S), ρ(S), α(S), β(S), relative to an arbitrary, adapted, null frame (e1, e2, l, l), van-
ish along H+ ∪H−. We first show that

α(S) = β(S) = 0 on H+, α(S) = β(S) = 0 on H−. (5.4)

Indeed,

I(l, ea, l, eb) = 0, I(ea, l, l, l) = 0, I(l, l, l, l) = −1/4.

Therefore along H+, where α(F), α(R), β(R) vanish,

α(S)ab = β(S)a = 0,

using the formula S = R+ 6Q. Similarly we infer that α(S) = β(S) = 0 along H−.
We show now that ρ(S) vanishes on S0. This is where we need the main technical

assumption (1.6) along S0,

(1− σ)4 = −4M2F2.

Differentiating it along S0 we find,

0 = Da(F2(1− σ)−4) = (1− σ)−4(DaF2 + 4(1− σ)−1σa).

On the other hand, recalling formula (4.33)

DαF2 + 4(1− σ)−1F2σα = 2TλSλαγδFγδ,
We deduce that

TλSλaγδFγδ = 0 on S0. (5.5)

Recall T is tangent on S0 and can only vanish at a discrete set of points (see assumption
SBF in subsection 1.2). Therefore, at a point where g(T,T)1/2, does not vanish we can
introduce an orthonormal frame e1, e2 with T = g(T,T)1/2e1.
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We now expand the left hand side of (5.5) using (5.2) while setting the index a = 2,

0 = TλSλ2γδFγδ = 2TλSλ234F34 + TλSλ2cdF cd = −2TλSλ234F34 − iTλSλ2cd ∈cd ρ(F)

= −g(T,T)1/2ρ(F)
(
2S1234 + iS12cd ∈cd) = 4ig(T,T)1/2ρ(F)ρ(S).

The last equality follows from ( see (A.12))

S1234 = −iρ(S), S12cd = − ∈cd ρ(S).

Therefore, at all points of S0 where T does not vanish we infer that ρ(S) = 0 (since ρ(F)
cannot vanish on S0, due to (1.6) and (1.7)). Since the set of such points is dense in S0 we
conclude that ρ(S) vanishes identically on the bifurcate sphere S0. We have thus proved
the following.

Proposition 5.4. The components α(S), β(S) vanish along H+ while α(S), β(S) vanish
along H−. In addition, if (1.6) holds then ρ(S) also vanishes on S0.

To show that ρ(S), β(S), α(S) vanish on H+ we need to use the Bianchi equations (see
Theorem 4.5),

DσSσαµν = J (S)αµν = −6(1− σ)−1TλSλργδ
(
F ρ
α δ

γ
µδ

δ
ν −

2

3
FγδI ρ

α µν

)
. (5.6)

Assume, without loss of generality, that the null generating vector-field l is geodesic along
H+, i.e. Dll = 0. Since both β(S) = α(S) = 0 along H we deduce9 directly that ρ(S)
must verify the equation,

∇lρ(S) = −J (S)434. (5.7)

To deduce that ρ(S) vanishes identically onH+ it only remains to verify that that J (S)434

vanishes on H+. Clearly

J (S)434 = −6(1− σ)−1TλSλργδ
(
F ρ

4 δγ3δ
δ
4 −

2

3
FγδI ρ

4 34

)
.

Observe that the only choice of the index ρ for which the expression inside brackets does
not vanish is ρ = 4. Thus

J (S)434 = −6(1− σ)−1TλSλ4γδ

(
F34δ

γ
3δ

δ
4 +

1

6
Fγδ

)
= −6(1− σ)−1TλSλ434F34 − (1− σ)−1TλSλ4γδFγδ.

Since α(S), β(S) vanish the only pair of indices γδ for which TλSλ4γδ does not vanish is
when either of the two indices is a 3 and the other is a ∈ {1, 2}. Since α(F) = 0, it follows
that J (S)434 vanishes identically as stated. Thus ρ(S) is constant along generators and
vanishes on S0. We conclude that ρ(S) vanishes identically on H+.

9Alternatively we can use the null Bianchi identities of the Appendix.
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To show that β(S) also vanishes we derive a transport equation for it along the gener-

ators of H+. In view of the vanishing of α(S), β(S), ρ(S) we can directly deduce10 (see
also Appendix) it from (5.6),

∇Lβ(S)a = J (S)4a3

Thus, since β(S) vanishes on S0, to deduce that it vanishes everywhere on H+ we only
need to verify that J (S)4a3 vanishes identically on H+. Now,

J (S)4a3 = −6(1− σ)−1TλSλργδ
(
F ρ

4 δγaδ
δ
3 −

2

3
FγδI ρ

4 a3

)
= −6(1− σ)−1TλSλ4a3F43 + 8(1− σ)−1TλSλb34F43I b

4 a3

+ 4(1− σ)−1TλSλbcdF cdI b
4 a3 + 8(1− σ)−1TλSλb4cF4cI b

4 a3.

Since α(S), β(S) and ρ(S) vanish, it follows that Sb4a3 = Sab34 = Sabcd = S4bcd = S4b4c = 0,
which gives J (S)4a3 = 0.

To show that α(S) also vanishes on H+ we derive another transport equation for it.
Since all other components of S have already been shown to vanish we easily derive, from
(5.6),

∇Lα(S)ab = −J (S)a3b. (5.8)

Since α(S) vanishes on S0 it only remains to check that J (S)a3b vanishes identically.
This can be checked as before taking advantage of the cancellations of all the other null
components of S. Therefore S vanishes along the entire event horizon.

6. Vanishing of S in a neighborhood of the bifurcate sphere

Let Oε = {x ∈ O : |u−| < ε, |u+| < ε} as in section 2. In this section we show that the
tensor S vanishes in a neighborhood of the bifurcate sphere S0 in E.

Proposition 6.1. There is r1 = r1(A0) > 0 such that

S ≡ 0 in Or1 ∩ E.

The rest of this section is concerned with the proof of Proposition 6.1. Recall, see
Remark 4.4, that the tensor S is well defined and smooth on Oε2 for some ε2 = ε2(A0) ∈
(0, ε0). Recall that we have

g(L±, L±) = 0, g(L+, L−) = Ω >
1

2
in Oε0 .

Moreover both L+, L− are orthogonal to the 2-surfaces Su−,u+ = Hu− ∩Hu+ . We choose,
locally at any point p ∈ Su−,u+ , an orthonormal frame (La)a=1,2 tangent to Su−,u+ . Thus,
relative to the null frame L1, L2, L3 = L−, L4 = L+ the metric g takes the form,{

gab = δab, ga3 = ga4 = 0, a, b = 1, 2

g33 = g44 = 0, g34 = Ω.
(6.1)

10We also refer the reader to the Appendix for the definition of the horizontal covariant derivative ∇l.
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Also, for the inverse metric,{
gab = δab, ga3 = ga4 = 0, a, b = 1, 2

g33 = g44 = 0, g34 = Ω−1.
(6.2)

We denote by O(1) any quantity with absolute value uniformly bounded by a positive
constant which depends only on A0 (in particular Lα(Ω) = O(1), α = 1, 2, 3, 4). In view
of the definitions of u± and L± we have,

L1(u±) = L2(u±) = L−(u−) = L+(u+) = 0, L−(u+) = L+(u−) = Ω. (6.3)

For ε ∈ (0, ε0] we define the weight function in Oε2 ,

hε = ε−1(u+ + ε)(u− + ε). (6.4)

Observe that,

L4(hε) = ε−1(u+ + ε)Ω, L3(hε) = ε−1(u− + ε)Ω, La(hε) = 0, a = 1, 2. (6.5)

Also, using (6.3) and (6.5)
(D2hε)33 = O(1), (D2hε)44 = O(1),

(D2hε)34 = ε−1Ω2 +O(1), (D2hε)ab = O(1), a, b = 1, 2,

(D2hε)3a = O(1), (D2hε)4a = O(1), a = 1, 2.

(6.6)

Assume x0 ∈ S0 is a fixed point and define, using the coordinate chart Φx0 : B1 →
B1(x0), Nx0 : B1(x0)→ [0,∞),

Nx0(x) = |(Φx0)−1(x)|2. (6.7)

We state now the main Carleman estimate needed in the proof of Proposition 6.1.

Lemma 6.2. There is ε ∈ (0, ε2) sufficiently small and C̃ε sufficiently large such that for

any x0 ∈ S0, any λ ≥ C̃ε, and any φ ∈ C∞0 (Bε10(x0))

λ‖e−λfεφ‖L2 + ‖e−λfε|D1φ| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �gφ‖L2 , (6.8)

where fε = ln(hε + ε12Nx0), see definitions (6.4) and (6.7).

Proof of Lemma 6.2. It is clear thatBε10
(x0) ⊆ Oε2 for ε sufficiently small (depending only

on the constant A0), thus the weight fε is well defined in Bε10(x0). We apply Proposition
3.3 with V = 0. It is clear that ε12Nx0 is a negligible perturbation, in the sense of (3.9),
for ε sufficiently small. It remains to prove that there is ε1 = ε1(A0) > 0 such that the
family of weights {hε}ε∈(0,ε1) satisfies conditions (3.6), (3.7) and (3.8).

Let C̃ denote constants that may depend only on A0. The definition (6.4) easily gives

hε(x0) = ε, |D1hε| ≤ C̃ on Bε10(x0), and |Djhε| ≤ C̃ε−1 on Bε10(x0) for j = 2, 3, 4. Thus

condition (3.6) is satisfied provided ε1 ≤ C̃−1.
Using (6.2), (6.5), (6.6), and Ω(x0) = 1 we compute in the frame L1, L2, L3, L4

Dαhε(x0)Dβhε(x0)(DαhεDβhε − εDαDβhε)(x0) = 2 + εO(1) ≥ 1
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if ε1 is sufficiently small. Thus condition (3.7) is satisfied provided ε1 ≤ C̃−1.

Assume now Y = Y αLα is a vector in Tx0(M). We fix µ = ε
−1/2
1 and compute, using

(6.5), (6.6), and Ω(x0) = 1,

Y αY β(µgαβ −DαDβhε)(x0) + ε−2|Y αDαhε|2

= µ((Y 1)2 + (Y 2)2 + 2Y 3Y 4)− 2ε−1Y 3Y 4 + ε−2(Y 3 + Y 4)2 +O(1)
4∑

α=1

(Y α)2

≥ (µ/2)[(Y 1)2 + (Y 2)2] + (ε−1/2)[(Y 3)2 + (Y 4)2]

≥ (Y 1)2 + (Y 2)2 + (Y 3)2 + (Y 4)2

if ε1 is sufficiently small. We notice now that we can write Y = Xα∂α in the coordinate

frame ∂1, ∂2, ∂3, ∂4, and |Xα| ≤ C̃(|Y 1|+|Y 2|+|Y 3|+|Y 4|) for α = 1, 2, 3, 4. Thus condition

(3.8) is satisfied provided ε1 ≤ C̃−1, which completes the proof of the lemma. �

We prove now Proposition 6.1.

Proof of Proposition 6.1. In view of Lemma 6.2, there are constants ε = ε(A0) ∈ (0, ε0)

and C̃ε ≥ 1 such that, for any x0 ∈ S0, λ ≥ C̃ε and any φ ∈ C∞0 (Bε10(x0))

λ‖e−λfεφ‖L2 + ‖e−λfε|D1φ| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �gφ‖L2 , (6.9)

where

fε = ln(ε−1(u+ + ε)(u− + ε) + ε12Nx0). (6.10)

The constant ε will remain fixed in this proof. For simplicity of notation, we replace the

constants C̃ε in (6.9) with C̃; since ε is fixed, these constants may depend only on the
constant A0. We will show that S ≡ 0 in Bε40(x0) ∩ E for any x0 ∈ S0. This suffices to
prove the proposition.

We fix x0 ∈ S0 and, for (j1, . . . , j4) ∈ {1, 2, 3, 4}4, we define using the vector-fields ∂α
induced by the coordinate chart Φx0

φ(j1...j4) = S(∂j1 , . . . , ∂j4). (6.11)

The functions φ(j1...j4) : Bε10(x0) → C are smooth. Let η : R → [0, 1] denote a smooth
function supported in [1/2,∞) and equal to 1 in [3/4,∞). For δ ∈ (0, 1] we define,

φδ,ε(j1...j4) = φ(j1...j4) · 1E · η(u+u−/δ) ·
(
1− η(Nx0/ε20)

)
= φ(j1...j4) · η̃δ,ε.

(6.12)

Clearly, φδ,ε(j1...j4) ∈ C∞0 (Bε10(x0) ∩ E). We would like to apply the inequality (6.9) to the

functions φδ,ε(j1...j4), and then let δ → 0 and λ→∞ (in this order).

Using the definition (6.12), we have

�gφ
δ,ε
(j1...j4) = η̃δ,ε ·�gφ(j1...j4) + 2Dαφ(j1...j4) ·Dαη̃δ,ε + φ(j1...j4) ·�gη̃δ,ε.
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Using the Carleman inequality (6.9), for any (j1, . . . j4) ∈ {1, 2, 3, 4}4 we have

λ · ‖e−λfε · η̃δ,εφ(j1...j4)‖L2 + ‖e−λfε · η̃δ,ε|D1φ(j1...j4)| ‖L2

≤ C̃λ−1/2 · ‖e−λfε · η̃δ,ε�gφ(j1...j4)‖L2

+ C̃
[
‖e−λfε ·Dαφ(j1...j4)D

αη̃δ,ε‖L2 + ‖e−λfε · φ(j1...j4)(|�gη̃δ,ε|+ |D1η̃δ,ε|)‖L2

]
,

(6.13)

for any λ ≥ C̃. We estimate now |�gφ(j1...j4)|. Using Theorem 4.7 and the definition
(4.41), in Bε10(x0) we estimate pointwise

|�gφ(j1...j4)| ≤M
∑
l1,...,l4

(
|D1φ(l1...l4)|+ |φ(l1...l4)|

)
, (6.14)

for some large constant M . We add inequalities (6.13) over (j1, . . . , j4) ∈ {1, 2, 3, 4}4. The
key observation is that, in view of (6.14), the first term in the right-hand side of (6.13)
can be absorbed into the left-hand side for λ sufficiently large. Thus, for any λ sufficiently
large and δ ∈ (0, 1],

λ
∑
j1,...,j4

‖e−λfε · η̃δ,εφ(j1...j4)‖L2

≤ C̃
∑
j1,...,j4

[
‖e−λfε ·Dαφ(j1...j4)D

αη̃δ,ε‖L2 + ‖e−λfε · φ(j1...j4)(|�gη̃δ,ε|+ |D1η̃δ,ε|)‖L2

]
.

(6.15)

We would like to let δ → 0 in (6.15). For this, we observe first that the functions

Dαφ(j1...j4)D
αη̃δ,ε and (|�gη̃δ,ε|+ |D1η̃δ,ε|) vanish outside the set Aδ ∪ B̃ε, where

Aδ = {x ∈ Bε10(x0) ∩ E : u+(x)u−(x) ∈ (δ/2, δ)};
Bε = {x ∈ Bε10(x0) ∩ E : Nx0 ∈ (ε20/2, ε20)}.

In addition, since φ(j1...j4) = 0 on Oε2 ∩ [δ(I−(M(end)))∪ δ(I+(M(end)))] (see section 5), it
follows from (2.7) and (2.8) that there are smooth functions φ′(j1...j4) : Oε2 → C such that

φ(j1...j4) = u+u− · φ′(j1...j4) in Oε2 . (6.16)

We show now that

|�gη̃δ,ε|+ |D1η̃δ,ε| ≤ C̃(1Bε + (1/δ)1Aδ
). (6.17)

The inequality for |D1η̃δ,ε| follows directly from the definition (6.12). Also, using again
the definition,

|DαDαη̃δ,ε| ≤ |DαDα(1E · η(u+u−/δ))| ·
(
1− η(Nx0/ε20)

)
+ C̃(1Bε + (1/δ)1Aδ

).

Thus, for (6.17), it suffices to prove that

1E∩Bε10 (x0) · |DαDα(η(u+u−/δ))| ≤ C̃/δ · 1Aδ
. (6.18)
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Since u+, u−, η are smooth functions, for (6.18) it suffices to prove that

δ−2|Dα(u+u−)Dα(u+u−)| ≤ C̃/δ in Aδ, (6.19)

which follows from (6.3).
We show now that

|Dαφ(j1...j4)D
αη̃δ,ε| ≤ C̃φ′(1Bε + 1Aδ

), (6.20)

where the constant C̃φ′ depends on the smooth functions φ′(j1...j4) defined in (6.16). Using
the formula (6.16), this follows easily from (6.19).

It follows from (6.16), (6.17), and (6.20) that

|Dαφ(j1...j4)D
αη̃δ,ε|+ |φj1...j4 |(|�gη̃δ,ε|+ |D1η̃δ,ε|) ≤ C̃φ′(1Bε + 1Aδ

).

Since limδ→0 ‖1Aδ
‖L2 = 0, we can let δ → 0 in (6.15) to conclude that

λ
∑
j1,...,j4

‖e−λfε · 1Bε10/2(x0)∩E · φ(j1...j4)‖L2 ≤ C̃φ′‖e−λfε · 1Bε‖L2 (6.21)

for any λ sufficiently large. Finally, using the definition (6.10), we observe that

inf
Bε40 (x0)∩E

e−λfε ≥ e−λ ln[ε+ε32/2] ≥ sup
Bε

e−λfε .

It follows from (6.21) that

λ
∑
j1,...,j4

‖1Bε40 (x0)∩E · φ(j1...j4)‖L2 ≤ C̃φ′‖1Bε‖L2

for any λ sufficiently large. We let λ→∞ to conclude that φ(j1...j4) = 0 in Bε40(x0) ∩ E,
which completes the proof of the proposition. �

7. Consequences of the vanishing of S

We assume in this section that N ⊆ M̃ is a open set, S0 ⊆ N, N∩E is connected, and{
1− σ 6= 0 in N;

Sαβµν = Rαβµν + 6(1− σ)−1
(
FαβFµν − 1

3
F2Iαβµν

)
= 0 in N ∩ E.

(7.1)

It follows from the assumption (1.6), and the identities (4.33) and (7.1) (which give
Dρ(F2(1− σ)−4) = 0) in N ∩ E) that

−4M2F2 = (1− σ)4 in N ∩ E. (7.2)

We define the smooth function P = y + iz : N→ C,

P = y + iz = (1− σ)−1. (7.3)

Since −F2/4 = (4MP 2)−2 6= 0 (see (7.2)), there are null vector-fields l, l, locally around
every point in N, such that

Fαβlβ = (4MP 2)−1lα, Fαβlβ = −(−4MP 2)−1lα, and lαlα = −1 in N ∩ E. (7.4)
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We fix a complex-valued null vector-field m on N such that (m,m, l, l) = (e1, e2, e3, e4)
is a complex null tetrad, see the definitions in subsection A.2. We may also assume that
(m,m, l, l) has positive orientation, i.e.

∈αβµν mαmβlµlν = i.

We prove now some identities. Most of these identities, with the exception of Propo-
sition 7.2 and the computation of the Hessian of y in Lemma 7.3, were derived by Mars
[25]; for the sake of completeness we rederive them in our notation. It follows from (7.4)
and (7.2) that, in N ∩ E,

Fαβ =
1

4MP 2

(
− lαlβ + lβlα − i ∈αβµν lµlν

)
. (7.5)

Using (7.5), we compute easily

F41 = F42 = F31 = F32 = 0 and F43 = F21 = 1/(4MP 2). (7.6)

Using (7.1) and (7.6) we compute

R4141 = R4242 = 0 thus Ψ(2)(R) = 0;

R3131 = R3232 = 0 thus Ψ(2)(R) = 0;

R1434 = R2434 = 0 thus Ψ(1)(R) = 0;

R1343 = R2343 = 0 thus Ψ(1)(R) = 0;

R2314 =
1

4M2P 3
, R1324 = 0 thus Ψ(0)(R) =

1

8M2P 3
.

(7.7)

We use now the first 4 Bianchi identities (A.37)–(A.40) to conclude that

ξ = ξ = ϑ = ϑ = 0 in N ∩ E. (7.8)

The remaining 4 Bianchi identities, (A.41)–(A.44) give

DP = θP, DP = θP, δP = ηP, δP = ηP. (7.9)

We analyze now the functions y and z. By contracting (7.5) with 2Tα and using
2TαFαβ = σβ = Dβσ we derive

Dβy =
1

2M

[
− (Tαlα)lβ + (Tαlα)lβ

]
and Dβz =

−1

2M
∈αβµν Tαlµlν . (7.10)

In particular,

δy = δy = Dz = Dz = 0. (7.11)

Using (7.9) it follows that

Dy = θP, Dy = θP, δz = −iηP, δz = −iηP. (7.12)

In particular θP = θP , θP = θP , −ηP = ηP , and, using again (7.10),

Tαlα = 2MθP, Tαlα = −2MθP. (7.13)
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Using (7.11) and (7.12) we rewrite (7.10) in the form

Dβy = −θP lβ − θP lβ, Dβz = −iηPmβ − iηPmβ. (7.14)

A direct computation using the definition of P shows that

DαPDαP =
DασDασ

(1− σ)4
= −TαTα

4M2
.

The real part of this identity and −TαTα = <σ give

DαyD
αy −DαzD

αz =
−TαTα

4M2
=

1

4M2

(
1− y

y2 + z2

)
. (7.15)

Using (7.14) this gives

8M2(ηη − θθ)P 3P = y2 − y + z2. (7.16)

Lemma 7.1. There is a constant B ∈ [0,∞) such that

DαzD
αz =

B − z2

4M2(y2 + z2)
in N ∩ E. (7.17)

In addition z2 ≤ B in N ∩ E.

Proof of Lemma 7.1. For (7.17) it sufficces to prove that

4M2PP ·DαzD
αz + z2 = B. (7.18)

Let Z = 4M2PP ·DαzD
αz. To show D(Z+z2) = 0 we use the formula Z = 8M2P 2P

2
η η

(which follows from (7.14) and −ηP = ηP ), the identities (7.9), θP = θP , and the Ricci
equation (see (A.24), (7.7), and (7.8))

Dη = θ(η − η)− Γ123η.

Indeed,

D(Z + z2) = 8M2P 2P
2
η η
(2DP

P
+

2DP

P
+
Dη

η
+
Dη

η

)
= 8M2P 2P

2
η η[2θ + 2θ − θ(P/P + 1)− Γ123 − θ(P/P + 1)− Γ213]

= 0.

To show D(Z+z2) = 0 we use the formula Z = 8M2P 2P
2
ηη (which follows from (7.14)

and −ηP = ηP ), the identities (7.9), θP = θP , and the Ricci equation (see (A.23), (7.7),
and (7.8))

Dη = θ(η − η)− Γ124η.
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Indeed,

D(Z + z2) = 8M2P 2P
2
η η
(2DP

P
+

2DP

P
+
Dη

η
+
Dη

η

)
= 8M2P 2P

2
η η[2θ + 2θ − θ(P/P + 1)− Γ124 − θ(P/P + 1)− Γ214]

= 0.

Finally, to show that δ(Z + z2) = 0 we use the formula

Z + z2 = −8M2P 2P
2
θθ − y2 + y,

which follows from (7.16) and θP = θP , the identities (7.9), θP = θP , and the Ricci
equations (see (A.29), (A.30), (7.7), and (7.8)){

δθ = −ζθ − η(θ − θ);
δθ = ζθ − η(θ − θ).

Indeed,

δ(Z + z2) = −8M2P 2P
2
θθ
(δθ
θ

+
δθ

θ
+

2δP

P
+

2δP

P

)
= −8M2P 2P

2
θθ[−ζ − η(1− P/P ) + ζ − η(1− P/P ) + 2η + 2η]

= 0.

This completes the proof of (7.18). �

It follows from (7.17) and (7.15) that

DαyD
αy =

y2 − y +B

4M2(y2 + z2)
. (7.19)

Using (7.13) and (7.14), it follows that

−θθP 2 =
y2 − y +B

8M2(y2 + z2)
=

(Tαlα) · (Tαlα)

4M2
. (7.20)

We express also the vector T in the complex null tetrad (m,m, l, l). Using (7.5), and
(7.10),

Tα = (F2/4)−1FαµTβFβµ = −(Tβlβ)lα − (Tβlβ)lα − 2M ∈αβµν Dβzlµlν . (7.21)

We prove now a uniform bound on the gradient of the function y.

Proposition 7.2. There is a constant C̃ = C̃(A0) that depends only on A0 such that

|D1y| ≤ C̃ in N. (7.22)
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Proof of Proposition 7.2. For p ∈ Φx0(B1), x0 ∈ Σ0, the gradient |D1y| is defined using
the coordinate chart Φx0 , i.e.

|D1y|(p) =
4∑
j=1

|∂j(y)(p)|.

In view of the definition y = <[(1 − σ)−1] and the smoothness of σ, the bound (7.22) is
clear if |1− σ(p)| ≥ 1/4. Assume that |1− σ(p)| < 1/4. Since

<(1− σ) = 1 + g(T,T),

it follows that g(T,T)(p) < −3/4. In particular, p ∈ N ∩ E. We define the vector-field,

Y = gαβ∂αy∂β. (7.23)

In view of (7.19) and T (y) = 0, we have

|g(Y, Y )| =
∣∣∣ y2 − y +B

4M2(y2 + z2)

∣∣∣ ≤ C̃ and g(T, Y ) = T(y) = 0 at p.

Since g(T,T) < −3/4 it follows that Yp is a space-like vector with norm (as induced by the

coordinate chart Φx0) dominated by C̃. The bound (7.22) follows since ∂jy = g(Y, ∂j). �

7.1. The connection coefficients and the Hessian of y. Assume now that N′ is a
subset of N ∩ E with the property that

y2 − y +B > 0 in N′.

Using (7.20), we can normalize the vector l such that

Tαlα = 2M in N′. (7.24)

Thus, using (7.13) and (7.20), we compute

θ = 1/P and θ = −W/P = − 1

P
· y2 − y +B

8M2(y2 + z2)
in N′. (7.25)

Using the null structure equation (A.21) (see also (7.8))

Dθ = −θ2 − ωθ,
together with (7.9) and (7.25), we compute

ω = 0 in N′. (7.26)

Using the null structure equation (A.22) (see also (7.8))

D θ = −θ2 − ω θ,
together with (7.11), (7.12), and (7.25), we compute

ω =
y2 − z2 − 2y(B − z2)

8M2(y2 + z2)2
in N′. (7.27)
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We can express ω in the form,

ω = HW, H =
y2 − z2 − 2y(B − z2)

(y2 − y +B)(y2 + z2)
. (7.28)

Using the null structure equation (A.29) (see also (7.8) and (7.7))

δθ = −ζθ − η(θ − θ),

together with (7.9) and (7.25), we compute

ζ =
ηP

P
= −η in N′. (7.29)

Using (7.16) and (7.25),

|ζ|2 = η η =
B − z2

8M2(y2 + z2)2
and η = −

ηP

P
in N′. (7.30)

Finally, using (7.14), we rewrite (7.21) in the form

T = −2M(Wl + l − ζPm− ζPm) in N′. (7.31)

We summarize these computations in the first part of the following lemma.

Lemma 7.3. Let N be the set defined by (7.1) and N′ the subset of N ∩ E for which
y2 − y + B > 0, with B the constant of lemma 7.1. In N′ we have, with P = y + iz =
(1− σ)−1,

ξ = ξ = ϑ = ϑ = ω = 0,

ω = HW =
y2 − z2 − 2y(B − z2)

8M2(y2 + z2)2
, H =

y2 − z2 − 2y(B − z2)

(y2 − y +B)(y2 + z2)
,

W =
y2 − y +B

8M2(y2 + z2)
> 0, |z|2 ≤ B,

θ = 1/P, θ = −W/P, |ζ|2 =
B − z2

8M2(y2 + z2)2
, η = ζ

P

P
, η = −ζ,

δy = δy = Dz = Dz = 0, Dy = 1, Dy = −W, DαyD
αy = 2W.

We also have, for the Hessian of y,
(D2y)44 = (D2y)33 = 0, (D2y)43 = (D2y)34 = −WH

(D2y)41 = (D2y)14 = ζ, (D2y)42 = (D2y)24 = ζ

(D2y)31 = (D2y)13 = ηW, (D2y)32 = (D2y)23 = ηW

(D2y)12 = (D2y)21 = W 2y
y2+z2 , (D2y)11 = (D2y)22 = 0.

(7.32)

Proof. It only remains to prove formulas in (7.32). These formulas follow easily using
(D2y)αβ = eα(eβy)− Γµβαeµ(y), the first part of the lemma, and the table (A.16). �
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8. The main bootstrap argument

In this section we show that

1− σ 6= 0 and S = 0 on Σ0 ∩ E. (8.1)

In view of our assumption AF, this suffices to show that S = 0 in E. Our Main Theorem
is then consequence of the main result of Mars in [25].

We show first that the function y is constant on H+ ∪H− and increases in E.

Lemma 8.1. There is a constant yS0 ∈ (1/2, 1] such that

y = yS0 on H+ ∪H−. (8.2)

In addition B ∈ [0, 1/4), where B is the constant in Lemma 7.1. Finally, for sufficiently
small ε = ε(A0) > 0,

y > yS0 + C̃−1u+u− on Oε ∩ E, (8.3)

where Oε are the open sets defined in section 2, and C̃ = C̃(A0) > 0.

Proof of Lemma 8.1. Let N = Or1 denote the set constructed in Proposition 6.1. Since
S = 0 in N, we can apply the computations of the previous section. It follows from (5.3)

that if l̃ is tangent to the null generators of H+ then Fαβ l̃β = Cl̃α for some scalar C.

Thus l̃ is parallel to either l or l on H+. Similarly, the null generator of H− is also parallel
to either l or l on H−. Thus the vector m is tangent to the bifurcate sphere S0. Using
δy = 0, see (7.11), it follows that y is constant on S0. Using (7.12) and Proposition 5.3
it follows that y is constant on H+ ∪H−, which gives (8.2). Also, using (7.20) on S0 and
the fact that T is tangent to S0, it follows that

y2
S0
− yS0 +B = 0.

Since B ∈ [0,∞) and yS0 > 1/2 (using assumption (1.7)), it follows that B ∈ [0, 1/4) and

yS0 =
1 +
√

1− 4B

2
∈ (1/2, 1].

To prove (8.3) we consider the open sets Oε and the functions u± : Oε → R defined in
section 2. It follows from (8.2) combined with (2.7), (2.8) that

y = yS0 + u+u− · y′, (8.4)

for some smooth function y′ : Oε → R, with |D1y′| ≤ C̃. The identities P = (1 − σ)−1,
DµDµσ = −F2, DµσDµσ = TαTα · F2 = −<σ · F2 (see (4.18)), and F2 = −(1 −
σ)4/(4M2) (see (7.2)) show that,

DµDµP = (1− σ)−2DµDµσ + 2(1− σ)−3DµσDµσ

=
1

4M2
(1− σ)(1 + σ̄) =

2P − 1

4M2PP
.
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Therefore,

DµDµy =
2y − 1

4M2(y2 + z2)
. (8.5)

We substitute y = yS0 + u+u− · y′ (see (8.4)) and evaluate on S0

2yS0 − 1

4M2(y2
S0

+ z2)
= DµDµ(yS0 + u+u− · y′) = 2Dµ(u+)Dµ(u−) · y′ = 4y′.

Since yS0 > 1/2 + C̃−1 it follows that y′ > C̃−1 on S0. Thus, for ε ∈ (0, r1) sufficiently
small,

y > yS0 + C̃−1 u+u− in Oε ∩ E,

as desired. �

We define the set
Σ′0 = {x ∈ Σ0 ∩ E : σ(x) 6= 1}.

Clearly, Σ′0 is an open subset of Σ0 ∩ E which contains a neighborhood of S0 in Σ0 ∩ E.
We define the function (which agrees with the function y defined earlier on open sets)

y : Σ′0 → R, y(x) = <[(1− σ)−1].

For any R > yS0 let VR = {x ∈ Σ′0 : y(x) < R} and UR the unique connected component
of VR whose closure in Σ0 contains S0 (this unique connected component exists since
y(x) = yS0 < R on S0). We prove now the first step in our bootstrap argument.

Proposition 8.2. There is a real number R1 ≥ yS0 + C̃−1, for some constant C̃ =

C̃(A0) > 0, such that S = 0 in UR1.

Proof of Proposition 8.2. With ε as in Lemma 8.1, it follows from Proposition 6.1 that
S = 0 in Oε ∩ E. Also, since u+/u− + u−/u+ ≤ A0 in Σ0 ∩ E ∩Oε, it follows from (8.3)
that

y − yS0 ∈ [C̃−1(u2
+ + u2

−), C̃(u2
+ + u2

−)] in Σ0 ∩ E ∩Oε.

Thus, for R1 sufficiently close to yS0 , the set UR1 is included in Oε, and the proposition
follows. �

With R1 as in Proposition 8.2, the main result in this section is the following:

Proposition 8.3. For any R2 ≥ R1 we have S = 0 in UR2.

The proof of Proposition 8.3, which will be completed in subsection 8.2, is done by
induction. In view of Proposition 8.2, we may assume that the claims in Proposition 8.3
hold for some value R2 ≥ R1. We therefore make the following induction hypothesis:

Induction Hypothesis. For a fixed R2 ≥ R1 the tensor S vanishes on the set UR2 ,
which is the unique connected component of the set VR2 = {x ∈ Σ0 ∩ E : y(x) <
R2, σ(x) 6= 1} whose closure in Σ0 contains the bifurcate sphere S0.

To complete the proof of the proposition we have to advance these claims for R′2 =

R2 + r′, where r′ > 0 depends only on the constants A0, Ã eC−1 (here Ã eC−1 = Ãε with
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ε = C̃−1, see (2.9) for the definition of Ãε), and R2 (as before, the constants C̃ may

depend only on A0). In the rest of this section we let C̃R2 denote various constants in

[1,∞) that may depend only on A0, Ã eC−1 , and R2. It is important that such constants
do not depend on other parameters, such as the point x0 ∈ δΣ0∩E(UR2) chosen below.

Assume x0 ∈ δΣ0∩E(UR2) is a point on the boundary of UR2 in Σ0 ∩ E. Clearly,

y(x0) = R2.

Thus |1 − σ(x0)| = (R2
2 + z(x0)2)−1/2. Since 1 − σ is a smooth function on M̃ and

z(x0)2 ≤ B < 1/4 (see Lemma 7.3), there is r′2 = r′2(A0, R2) > 0 such that |1 − σ(x)| ∈
(1/(2R2), 2/R2) in Br′2

(x0). Thus the function

y : Br′2
(x0)→ R, y(x) = <[(1− σ(x))−1],

is well defined; observe that, with ∂j defined according to the coordinate charts defined
in section 2.2,

sup
x∈Br′2(x0)

(
|y(x)|+ |D1y(x)|+ . . .+ |D4y(x)|

)
≤ C̃R2 . (8.6)

By choosing r′2 sufficiently small it follows from y(x0) = R2 and (8.6) that

y(x) ∈ ((yS0 +R1)/2, 2R2) for any x ∈ Br′2
(x0). (8.7)

In view of (2.9) there is δ2 > C̃−1
R2

small11 such that the set (−δ2, δ2) × (Br′2
(x0) ∩ Σ0) is

diffeomorphic to the set ∪|t|<δ2Φt(Br′2
(x0) ∩ Σ0). We let Q : ∪|t|<δ2Φt(Br′2

(x0) ∩ Σ0) →
Br′2

(x0)∩Σ0 denote the induced smooth projection which takes every point Φt(x) into x.

We now define the connected open set of M̃, which we denote by NR2 ,

NR2 = connected component of
[(
∪t∈R Φt(UR2)

)
∪Or1

]
∩ M̃ containing UR2 , (8.8)

where r1 is as in Proposition 6.1. Since T is a Killing vector-field, LTS = 0 in M̃ and
T(1 − σ) = 0. In view of our induction hypothesis S = 0 in UR2 and T does not vanish
in E; it follows that

1− σ 6= 0 in NR2 and S = 0 in NR2 ∩ E.

Thus the computations in section 7 can be applied in the open set NR2 .

Lemma 8.4. With x0 ∈ δΣ0∩E(UR2) as before, there is r2 ∈ (0, r′2] such that

{x ∈ Br2(x0) : y(x) < R2} ⊆ ∪|t|<δ2Φt(UR2). (8.9)

Proof of Lemma 8.4. In view of (7.19),

DαyDαy =
y2 − y +B

4M2(y2 + z2)
in NR2 .

11The constants r′2 and δ2 are fixed in this paragraph such that r′2, δ2 � 1. We later fix the constants
r2 � min(r′2, δ2) (Lemma 8.4), r3 � r2 (Proposition 8.5), and r′ � r3 (proof of Proposition 8.3). All of
these constants are bounded from below by some constant C̃−1

R2
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Thus, if r′′2 ≤ C̃−1
R2

is sufficiently small then DαyDαy ≥ C̃−1
R2

in Br′′2
(x0). It follows that

there exists r2 = r2(A0, Ã eC−1 , R2) > 0 and an open set B′, Br2(x0) ⊆ B′ ⊆ Br′′2
(x0), such

that the set {x ∈ B′ : y(x) < R2} is connected. Let Q : B′ → Br′2
(x0) ∩ Σ0 denote the

projection defined above. The set Q({x ∈ B′ : y(x) < R2}) ⊆ Br′2
(x0) ∩ Σ0 is connected

and contains the set {x ∈ B′ ∩Σ0 : y(x) < R2}. Since y(Q(x)) = y(x), it follows from the
definition of UR2 (as a connected component of the set VR2) that

Q({x ∈ B′ : y(x) < R2}) ⊆ UR2 .

The claim (8.9) follows. �

We define now N′ = NR2 ∩ Br2(x0). Since y2 − y + B > C̃−1
R2

in N′, the calculations
following (7.24) in the previous sections are also applicable in N′. Recall the function H
defined in (7.28),

H =
y2 − z2 − 2y(B − z2)

(y2 − y +B)(y2 + z2)
.

Since B ∈ [0, 1/4) (see Lemma 8.1) and y ≥ yS0 + C̃−1
R2
≥ 1/2 + C̃−1

R2
, it follows that

H ≥ C̃−1
R2

in N′.

8.1. Vanishing of S is a neighborhood of x0. Assume x0 ∈ δΣ0∩E(UR2) is as before,
and r2 > 0 is constructed as in Lemma 8.4. We show now that the tensor S vanishes in
a neighborhood of x0.

Proposition 8.5. There is r3 = r3(A0, Ã eC−1 , R2) ∈ (0, r2) such that S = 0 in Br3(x0).

As in section 6, the main ingredient needed to prove Proposition 8.5 is a Carleman
inequality. We define the smooth function Nx0 : Φx0(B1) = B1(x0)→ [0,∞)

Nx0(x) = |(Φx0)−1(x)|2.

Lemma 8.6. There is ε ∈ (0, r2] sufficiently small and C̃ε sufficiently large such that for

any λ ≥ C̃ε and any φ ∈ C∞0 (Bε10(x0))

λ‖e−λ efεφ‖L2 + ‖e−λ efε|D1φ| ‖L2 ≤ C̃ελ
−1/2‖e−λ efε �gφ‖L2 + ε−6‖e−λ efεT(φ) ‖L2 , (8.10)

where, with R2 = y(x0),

f̃ε = ln[y −R2 + ε+ ε12Nx0 ]. (8.11)

Proof of Lemma 8.6. We will use the notation C̃R2 to denote various constants in [1,∞)

that may depend only on the constants A0, Ã eC−1 , and R2. We would like to apply
Proposition 3.3 with V = T, hε = y−R2 + ε and eε = ε12Nx0 . The condition (3.9) for the
negligible perturbation eε is clearly satisfied if ε is sufficiently small. It remains to show
that there is ε1 sufficiently small such that the family of weights {hε}ε∈(0,ε1) satisfies the
pseudo-convexity conditions (3.6), (3.7), and (3.8).

Clearly, hε(x0) = ε and T(hε)(x0) = 0 since T(σ) = 0. Also |Djy| ≤ C̃R2 for j = 1, 2, 3, 4
in Br2(x0), see (8.6), thus condition (3.6) is satisfied if ε1 is sufficiently small.
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To prove (3.7) and (3.8) we use the complex null tetrad l = e4, l = e3, m = e1,
m = e2, normalized as in (7.24). With D(α) = Deα , using Lemma 7.3 and the definition
hε = y −R2 + ε we have

D(1)hε = D(2)hε = 0, D(3)hε = −W, D(4)hε = 1, (8.12)

and, using also η = ζ P
P

,
D(4)D(4)hε = D(3)D(3)hε = 0, D(4)D(3)hε = D(3)D(4)hε = −WH

D(4)D(1)hε = D(1)D(4)hε = ζ, D(4)D(2)hε = D(2)D(4)hε = ζ

D(3)D(1)hε = D(1)D(3)hε = Wζ P
P
, D(3)D(2)hε = D(2)D(3)hε = Wζ P

P

D(1)D(2)hε = D(2)D(1)hε = W 2R2

R2
2+z2 , D(1)D(1)hε = D(2)D(2)hε = 0.

(8.13)

where all the functions are evaluated at x0. Thus

DαhεD
βhε(DαhεDβhε − εDαDβhε) = 4W 2 − 2εW 2H,

which is bounded from below by ε21 if ε1 is sufficiently small, since W (x0) ≥ C̃−1
R2

and

|H(x0)| ≤ C̃R2 . The condition (3.7) is therefore satisfied.

We prove now condition (3.8) for a vector X = X(1)e1 +X(1)e2 + Y e3 +Ze4, Y, Z ∈ R,
X(1) ∈ C. Recall, see (7.31),

T/(2M) = ζPe1 + ζPe2 − e3 −We4.

Thus, using also (8.12)

ε−2(|XαTα|2 + |XαDαhε|2)

= ε−2(Z −WY )2 + ε−24M2(ζPX(1) + ζPX(1) + YW + Z)2

≥ (ε−2/2)(Z −WY )2 + (ε−1/2)(ζPX(1) + ζPX(1) + 2YW )2

(8.14)

for ε sufficiently small. Using (8.13)

XαXβ(µgαβ −DαDβhε) = 2X(1)X(1)
(
µ− 2R2W

R2
2 + z2

)
+ 2Y Z(−µ+WH)

− 2ζX(1)[Z +WY (P/P )]− 2ζX(1)[Z +WY (P/P )].

Let L = ζPX(1)+ζPX(1). We write Z = WY +Z−WY , and then L = −2WY +L+2WY ,
and use

1 + (P/P ) = P
2R2

R2
2 + z2

, 1 + (P/P ) = P
2R2

R2
2 + z2

,
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to rewrite

XαXβ(µgαβ −DαDβhε) = 2X(1)X(1)
(
µ− 2R2W

R2
2 + z2

)
+ 2Y 2(−Wµ+W 2H)

− 4R2

R2
2 + z2

WY · L+ (Z −WY )[2Y (−µ+WH)− 2ζX(1) − 2ζX(1)]

= 2X(1)X(1)
(
µ− 2R2W

R2
2 + z2

)
+ 2Y 2

(
−Wµ+W 2H +

4R2W
2

R2
2 + z2

)
− 4R2

R2
2 + z2

WY · (L+ 2WY ) + (Z −WY )[2Y (−µ+WH)− 2ζX(1) − 2ζX(1)].

(8.15)

We set now µ = 3R2W/(R
2
2 + z2) and combine (8.14) and (8.15). Since H(x0) ≥ 0 it

follows that

XαXβ(µgαβ −DαDβhε) + ε−2(|XαTα|2 + |XαDαhε|2)

≥ (ε−2/2)(Z −WY )2 + (ε−1/2)(L+ 2YW )2 + 2|X(1)|2 R2W

R2
2 + z2

+ 2Y 2 R2W
2

R2
2 + z2

− C̃R2(|Z −WY |+ |L+WY |)(|Y |+ |X(1)|)

≥ (ε−2/4)(Z −WY )2 + (ε−1/4)(L+ 2YW )2 + |X(1)|2 R2W

R2
2 + z2

+ Y 2 R2W
2

R2
2 + z2

if ε is sufficiently small, since W ≥ C̃−1
R2

. It follows that

XαXβ(µgαβ −DαDβhε) + ε−2(|XαTα|2 + |XαDαhε|2) ≥ C̃−1
R2

(Z2 + |X(1)|2 + Y 2),

thus the condition (3.8) is satisfied for ε1 sufficiently small. This completes the proof of
the lemma. �

We prove now Proposition 8.1.

Proof of Proposition 8.1. We use the Carleman estimate in Lemma 8.6 and Lemma 8.4.

In view of Lemma 8.6, there are constants ε ∈ (0, r2] and C̃ε ≥ 1 such that for any λ ≥ C̃ε
and any φ ∈ C∞0 (Bε10(x0)),

λ‖e−λ efεφ‖L2 + ‖e−λ efε|D1φ| ‖L2 ≤ C̃ελ
−1/2‖e−λ efε �gφ‖L2 + ε−6‖e−λ efεT(φ) ‖L2 , (8.16)

where

f̃ε = ln[y −R2 + ε+ ε12Nx0 ]. (8.17)

The constant ε will remain fixed in this proof. For simplicity of notation, we replace the

constants C̃ε with C̃R2 ; since ε is fixed, these constants may depend only on the constants

A0, Ã eC−1 , and R2. We will show that S ≡ 0 in the set Bε100 = Bε100(x0).
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In view of Theorem 4.7 and the fact that T is a Killing vector-field{
�gSα1...α4 = Sβ1...β4Aβ1...β4

α1...α4 + Dβ5Sβ1...β4Bβ1...β5
α1...α4 ;

LTS = 0,
(8.18)

in Bε10(x0), for some smooth tensor-fields A and B. Also, using Lemma 8.4 and the fact
that S vanishes in UR2 (the bootstrap assumption),

S = 0 in {x ∈ Bε10(x0) : y(x) < R2}. (8.19)

As in the proof of Proposition 6.1, for (j1, . . . , j4) ∈ {1, 2, 3, 4}4 we define, using the
coordinate chart Φ,

φ(j1...j4) = S(∂j1 , . . . , ∂jk).

The functions φ(j1...j4) : Bε10(x0) → C are smooth. Let η : R → [0, 1] denote a smooth
function supported in [1/2,∞) and equal to 1 in [3/4,∞). We define

φε(j1...j4) = φ(j1...j4) ·
(
1− η(N(x)/ε40)

)
= φ(j1...j4) · η̃ε.

Clearly, φε(j1...j4) ∈ C∞0 (Bε10(x0)) and{
�gφ

ε
(j1...j4) = η̃ε ·�gφ(j1...j4) + 2Dαφ(j1...j4) ·Dαη̃ε + φ(j1...j4) ·�gη̃ε

T(φε(j1...j4)) = η̃ε ·T(φ(j1...j4)) + φ(j1...j4) ·T(η̃ε).

Using the Carleman inequality (8.16), for any (j1, . . . j4) ∈ {1, 2, 3, 4}4 we have

λ · ‖e−λ efε · η̃εφ(j1...j4)‖L2 + ‖e−λ efε · η̃ε|D1φ(j1...j4)| ‖L2

≤ C̃R2λ
−1/2 · ‖e−λ efε · η̃ε�gφ(j1...j4)‖L2 + C̃R2‖e−λ

efε · η̃εT(φ(j1...j4))‖L2

+ C̃R2

[
‖e−λ efε ·Dαφ(j1...j4)D

αη̃ε‖L2 + ‖e−λ efε · φ(j1...j4)(|�gη̃ε|+ |D1η̃ε|)‖L2

]
,

(8.20)

for any λ ≥ C̃R2 . Using the identities in (8.18), in Bε10(x0) we estimate pointwise{
|�gφ(j1...j4)| ≤ C̃R2

∑
l1,...,l4

(
|D1φ(l1...l4)|+ |φ(l1...l4)|

)
;

|T(φ(j1...j4))| ≤ C̃R2

∑
l1,...,l4

|φ(l1...l4)|.
(8.21)

We add up the inequalities (8.20) over (j1, . . . , j4) ∈ {1, 2, 3, 4}4. The key observation is
that, in view of (8.21), the first two terms in the right-hand side can be absorbed into the

left-hand side for λ sufficiently large. Thus, for any λ ≥ C̃R2

λ
∑
j1,...,j4

‖e−λ efε · η̃εφ(j1...j4)‖L2

≤ C̃R2

∑
j1,...,j4

[
‖e−λ efε ·Dαφ(j1...j4)D

αη̃ε‖L2 + ‖e−λ efε · φ(j1...j4)(|�gη̃ε|+ |D1η̃ε|)‖L2

]
.

(8.22)

Using the hypothesis (8.19) and the definition of the function η̃ε, we have

|Dαφ(j1...j4)D
αη̃ε|+ φ(j1...j4)(|�gη̃ε|+ |D1η̃ε|) ≤ C̃R2 · 1{x∈Bε10 (x0): y(x)≥R2 and N(x)≥ε50}.
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Using the definition (8.17), we observe also that

inf
Bε100

e−λ
efε ≥ e−λ ln(ε+ε70) ≥ sup

{x∈Bε10 (x0): y(x)≥R2 and N(x)≥ε50}
e−λ

efε .
It follows from these last two inequalities and (8.22) that

λ
∑
j1,...,j4

‖1Bε100 · φ(j1...j4)‖L2 ≤ C̃R2

∑
j1,...,j4

‖1{x∈Bε10 (x0): y(x)≥R2 and N(x)≥ε50}‖L2 ,

for any λ ≥ C̃R2 . The proposition follows by letting λ→∞. �

8.2. Proof of Proposition 8.3 and the Main Theorem. In this subsection we com-
plete the proof of the Main Theorem.

Proof of Proposition 8.3. In view of Proposition 8.5, the tensor S vanishes in the con-
nected open set N′ = NR2

⋃(
∪x0∈δΣ0∩E(UR2

) Br3(x0)
)
. It remains to show that for some

r′ � r3 we have

UR2+r′ ⊆ UR2 ∪
(
∪x0∈δΣ0∩E(UR2

) Gr3/C̃
(x0)

)
, (8.23)

Gr(x0) = {x ∈ Br(x0) ∩ Σ0 : y(x) < R2 + r′}
)
,

where C̃ is sufficiently large so that,(
∪x0∈δΣ0∩E(UR2

) Gr3/ eC(x0)
)
⊆
(
∪x0∈δΣ0∩E(UR2

) Gr3/4(x0)
)
, (8.24)

with the bars denoting the closures in Σ0. We observe that such a constant exists in
view of the fact that δΣ0∩E(UR2) is compact and the function y tends to infinity in the
asymptotic region of Σ0 (in view of our assumption AF).

Assume, by contradiction, that (8.23) does not hold, thus there exists p ∈ UR2+r′

which does not belong in the open set (in Σ0) in the right-hand side of (8.23). Let
γ : [0, 1] → UR2+r′ ∪ S0 denote a smooth curve such that γ(0) ∈ S0 and γ(1) = p. Let
p′ = γ(t′) denote the first point on this curve which is not in the open set in the right-hand
side of (8.23). Clearly, p′ does not belong to the closure of UR2 , thus

p′ ∈ ∪x0∈δΣ0∩E(UR2
)Gr3/C̃

(x0).

In view of (8.24) we infer that, for some x0 ∈ δΣ0∩E(UR2),

p′ ∈ {x ∈ Br3/2(x0) ∩ Σ0 : y(x) < R2 + r′}. (8.25)

Recall our smooth vector-field Y = gαβ∂αy∂β, see (7.23) and discussion following

it, with the property that g(Y, Y ) ≥ C̃−1
R2

in Br3(x0). We consider the integral curve

starting from the point p′ and flowing (backwards) a short distance C̃−1
R2

(much smaller
than r3) along Y , and project this integral curve to Σ0 using the smooth projection
Q : ∪|t|<δ2Φt(Br3(x0) ∩ Σ0) → Br3(x0) ∩ Σ0. The resulting curve is a smooth curve
in Br3(x0) ∩ Σ0; if r′ sufficiently small then this curve contains a point p′′ such that
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y(p′′) < R2. In view of Lemma 8.4, p′′ ∈ UR2 , thus there is a point p′′′ ∈ δΣ0∩E(UR2) on
the curve joining p′ and p′′. Then p′ ∈ Br3/ eC(p′′′), which gives a contradiction. �

To complete the proof of the Main Theorem we use Proposition 8.3 and Proposition 7.2.
Using Proposition 8.3, it follows that the tensor S vanishes in the connected component
of the set Σ′0 whose closure in Σ0 contains S0. Assume (Σ0 ∩ E) \ Σ′0 6= ∅ and let
p ∈ (Σ0 ∩E) \Σ′0. Assume γ : [0, 1]→ Σ0 ∩E is a smooth curve such that γ(0) ∈ S0 and
γ(1) = p. Let p′ = γ(t′) denote the first point on this curve which is not in Σ′0 ∪S0. Thus
γ(t′′) belongs to the connected component of the set Σ′0 whose closure in Σ0 contains S0

for any t′′ < t′. Since S vanishes in this connected component, it follows from Lemma 7.2
that the function y is bounded by a constant at all points γ(t′′), t′′ < t′. Thus p′ ∈ Σ′0,
contradiction.

It follows that Σ′0 = Σ ∩ E and S = 0 in Σ ∩ E, which establishes the claim (8.1).

Appendix A. The main formalism

A.1. Horizontal structures. Assume (N,g) is a smooth12 vacuum Einstein space-time
of dimension 4. Assume (l, l) is a null pair on N, i.e.

g(l, l) = g(l, l) = 0 and g(l, l) = −1.

We say that a vector-field X is horizontal if

g(l, X) = g(l, X) = 0.

Let O(N) denote the vector space of horizontal vector-fields on N. We define the induced
metric, and induced volume form,{

γ(X, Y ) = g(X, Y ) ∀X, Y ∈ O(N),

∈ (X, Y ) =∈ (X, Y, l, l) ∀X, Y ∈ O(N).
(A.1)

where ∈ denotes the standard volume form on N. If (ea)a=1,2 is an orthonormal basis of
horizontal vector-fields, i.e. γ(ea, eb) = δab, we write ∈ab=∈ (ea, eb) and without loss of
generality we assume that ∈12= 1.

In general the commutator [X, Y ] of two horizontal vector-fields may fail to be hori-
zontal. We say that the pair (l, l) is integrable if the set of horizontal vector-fields forms
an integrable distribution, i.e. X, Y ∈ O(N) implies that [X, Y ] ∈ O(N). For any
vector-field X ∈ T(N) we define its horizontal projection

(h)X = X + g(X, l)l + g(X, l)l.

Using this projection we define the horizontal covariant derivative ∇XY , X ∈ T(N),
Y ∈ O(N),

∇XY = (h)(DXY ) = DXY − g(DX l, Y )l − g(DX l, Y )l.

12As before, N is assumed to be a connected, orientable, paracompact C∞ manifold without boundary.
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The definition shows easily that,
∇fX+f ′X′Y = f∇XY + f ′∇X′Y ;

∇X(fY + f ′Y ′) = f∇XY +X(f)Y + f ′∇XY
′ +X(f ′)Y ′;

Xγ(Y, Y ′) = γ(∇XY, Y
′) + γ(Y,∇XY

′),

(A.2)

for any X,X ′ ∈ T(N), Y, Y ′ ∈ O(N), f, f ′ ∈ C∞(N). In particular we see that ∇ is
compatible with the horizontal metric γ.

In what follows we identify covariant and contravariant horizontal tensor-fields using
the induced metric (h)γ. For any k ∈ Z+ let Ok(N) denote the vector space of k horizontal
tensor-fields

U : O(N)× . . .×O(N)→ C.
Given a horizontal tensor-field U ∈ Ok(N) and X ∈ T(N) we define the covariant deriv-
ative ∇XU ∈ Ok(N) by the formula

∇XU(Y1, . . . , Yk) = X(U(Y1, . . . , Yk))−U(∇XY1, . . . , Yk)− . . .−U(Y1, . . . ,∇XYk). (A.3)

According to the definition the mapping (X, Y1, . . . , Yk) → ∇XU(Y1, . . . , Yk) is a multi-
linear mapping on T(N)×O(N)× . . .×O(N).

We define the null second fundamental forms (h)χ, (h)χ ∈ O2(N) by{
(h)χ(X, Y ) = g(DX l, Y ),
(h)χ(X, Y ) = g(DX l, Y ).

(A.4)

Observe that (h)χ and (h)χ are symmetric if and only if the horizontal structure is inte-
grable. Indeed this follows easily from the formulas,

(h)χ(X, Y )− (h)χ(Y,X) = g(DX l, Y )− g(DY l, X) = −g(l, [X, Y ])
(h)χ(X, Y )− (h)χ(Y,X) = g(DX l, Y )− g(DY l, X) = −g( l, [X, Y ]).

The trace of an horizontal 2-tensor U is defined according to

tr(U) := δabUab

where (ea)a=1,2 is an arbitrary orthonormal frame of horizontal vector-fields. Observe that
the definition does not depend on the particular frame. We denote by tr χ and tr χ the

traces of (h)χ and (h)χ. If U ∈ Ok(N) with k = 1, 2 we define its dual, expressed relative
to an arbitrary orthonormal frame (ea)a=1,2 ∈ O(N),

∗Ua =∈ab Ub, ∗Uab =∈ac Ucb
Clearly ∗( ∗ω) = −ω. If ω ∈ O(N)2 is symmetric traceless then so is its dual ∗ω.

We define also the horizontal 1-forms (h)ξ, (h)ξ, (h)η, (h)η, (h)ζ ∈ O1(N) by
(h)ξ(X) = g(Dll, X), (h)ξ(X) = g(Dll, X),
(h)η(X) = g(Dll, X), (h)η(X) = g(Dll, X),
(h)ζ(X) = g(DX l, l),

(A.5)
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and the real scalars

ω = g(Dll, l), ω = g(Dll, l). (A.6)

Assume that W ∈ T0
4(N) is a Weyl field, i.e.

Wαβµν = −Wβαµν = −Wαβνµ = Wµναβ;

Wαβµν +Wαµνβ +Wανβµ = 0;

gβνWαβµν = 0.

(A.7)

We define the null components of the Weyl field W , α(W ), α(W ), %(W ) ∈ O2(N) and
β(W ), β(W ) ∈ O1(N) by the formulas

α(W )(X, Y ) = W (l, X, l, Y ),

α(W )(X, Y ) = W (l, X, l, Y ),

β(W )(X) = W (X, l, l, l),

β(W )(X) = W (X, l, l, l),

%(W )(X, Y ) = W (X, l, Y, l).

(A.8)

Recall that if W is a Weyl field its Hodge dual ∗W , defined by ∗Wαβµν = 1
2
∈µνρσWαβρσ,

is also a Weyl field. We easily check the formulas,
α( ∗W ) = ∗α(W ), α( ∗W ) = − ∗α(W )

β( ∗W ) = ∗β(W ), β( ∗W ) = − ∗β(W )

%( ∗W ) = ∗%(W )

(A.9)

It is easy to check that α, α are symmetric traceless horizontal tensor-fields in O2(N). On
the other hand % ∈ O2(N) is however neither symmetric nor traceless. It is convenient to
express it in terms of the following two scalar quantities,

ρ(W ) = W (l, l, l, l), ∗ρ(W ) = ∗W (l, l, l, l). (A.10)

Observe also that,

ρ( ∗W ) = ∗ρ(W ), ∗ρ( ∗W ) = −ρ.
Thus,

%(X, Y ) =
1

2

(
− ρ γ(X, Y ) + ∗ρ ∈ (X, Y )

)
, ∀X, Y ∈ O(N). (A.11)

We have, W (X, Y, l, l) = %(W )(X, Y ) − %(W )(Y,X) = ∗ρ(W ) ∈ (X, Y ). Also, since
∗( ∗W ) = −W , we deduce that W (X, Y,X ′, Y ′) =∈ (X, Y ) ∗W (X ′, Y ′, l, l) =∈ (X, Y ) ∈

(X ′, Y ′) ∗ρ( ∗W ). Therefore,
W (X, Y, l, l) =∈ (X, Y ) ∗ρ(W )

W (X, Y,X ′, Y ′) = − ∈ (X, Y ) ∈ (X ′, Y ′)ρ(W )

W (X, Y, Z, l) =∈ (X, Y ) β(W )(Z).
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We also consider the case of a self-dual Weyl field W = W + i ∗W , i.e. ∗W = −iW .
Defining the null decomposition α(W), β(W), ρ(W), ∗ρ(W), β(W), α(W) as in (A.8),
(A.10) and setting ∗ρ(W) := ρ( ∗W) as in (A.10), we find,

∗ρ(W) = −iρ(W)

Relative to a null frame e1, e2, e3 = l, l = e4 we have,

Wab34 = −i ∈ab ρ(W), Wabcd = − ∈ab∈cd ρ(W), Wabc3 =∈ab βc(W) (A.12)

A.2. Complex null tetrads. We extend by linearity the definition of horizontal vector-
fields to complex ones. We say that a complex vector-field m on N is compatible with the
null pair ( l, l) if, , i.e.

g(l,m) = g(l,m) = g(m,m) = 0, g(m,m) = 1.

In that case we say that (m,m, l, l) forms a complex null tetrad. Clearly m is compatible
if and only if m = 1√

2
(X + iY ) for some real vectors X, Y ∈ O(N) with g(X, Y ) = 0,

g(X,X) = g(Y, Y ) = 1. Given a compatible vector-field m and (h)U ∈ O1(N) we can
define the complex scalar U1 : N→ C,

U1 = (h)U(m).

Similarly, given (h)V ∈ O2(N) we can define the complex scalars V21, V11 : N→ C,

V21 = (h)V (m,m), V11 = (h)V (m,m).

The complex scalars U1, respectively V21 and V11, determine uniquely the real horizontal
tensors fields (h)U and (h)V respectively.

Given a compatible vector-field m we define (compare with (A.4), (A.5), and (A.6))

θ = (h)χ(m,m) = g(Dml,m), θ = (h)χ(m,m) = g(Dml,m),

ϑ = (h)χ(m,m) = g(Dml,m), ϑ = (h)χ(m,m) = g(Dml,m),

ξ = (h)ξ(m) = g(Dll,m), ξ = (h)ξ(m) = g(Dll,m),

η = (h)η(m) = g(Dll,m), η = (h)η(m) = g(Dll,m),

ω = g(Dll, l), ω = g(Dll, l),

ζ = (h)ζ(m) = g(Dml, l).

(A.13)

The complex scalars θ, θ, ϑ, ϑ, ξ, ξ, η, η, ζ and the real scalars ω, ω are the main connection
coefficients of the null tetrad.
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Similarly, given a real-valued Weyl field W we define (compare with (A.8))

Ψ(2) = Ψ(2)(W ) = α(W )(m,m) = W (l,m, l,m),

Ψ(2) = Ψ(2)(W ) = α(W )(m,m) = W (l,m, l,m),

Ψ(1) = Ψ(1)(W ) = β(W )(m) = W (m, l, l, l),

Ψ(1) = Ψ(1)(W ) = β(W )(m) = W (m, l, l, l),

Ψ(0) = Ψ(0)(W ) = %(W )(m,m) = W (m, l,m, l).

(A.14)

Notice that, in view of (A.7), α(W )(m,m) = α(W )(m,m) = %(W )(m,m) = 0, so the
scalars Ψ(2),Ψ(2),Ψ(1),Ψ(1),Ψ(0) uniquely determine the real-valued Weyl field W . In
addition, if

∗Wαβµν =
1

2
∈µνρσWαβρσ

is the dual dual of W , and the null tetrad (m,m, l, l) has positive orientation (i.e. ∈αβµν
mαmβlµlν = i) then

Ψ2(∗W ) = (−i)Ψ2(W ), Ψ1(∗W ) = (−i)Ψ1(W ), Ψ0(∗W ) = (−i)Ψ0(W ),

Ψ(2)(
∗W ) = iΨ2(W ), Ψ(1)(

∗W ) = iΨ1(W ).
(A.15)

In what follows we denote,

e1 = m, e2 = m e3 = l, e4 = l.

We define the connection coefficients Γµαβ,Γµαβ by the formulas

Deβeα = Γµαβeµ.

and

Γµαβ = gµνΓ
ν
αβ = g(eµ,Deβeα).

Clearly

Γµαβ + Γαµβ = 0.

We easily check the formulas,

Γ144 = ξ, Γ244 = ξ, Γ133 = ξ, Γ233 = ξ,

Γ143 = η, Γ243 = η, Γ134 = η, Γ234 = η,

Γ142 = θ, Γ241 = θ, Γ132 = θ, Γ231 = θ,

Γ141 = ϑ, Γ242 = ϑ, Γ131 = ϑ, Γ232 = ϑ,

Γ344 = ω, Γ433 = ω, Γ341 = ζ, Γ342 = ζ.

(A.16)

Using the definition (A.3) we see easily that if (h)U ∈ O1(N), (h)V ∈ O2(N), and α ∈
{1, 2, 3, 4} then

∇α
(h)U1 = (eα + Γ12α)((h)U1), (A.17)
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and

∇α
(h)V11 = (eα + 2Γ12α)((h)V11), ∇α

(h)V21 = eα((h)V21). (A.18)

A.3. The null structure equations and the Bianchi identities. We define

D = l = e4, D = l = e3, δ = m = e1, δ = m = e2.

Let R denote the Riemann curvature tensor on M. We compute

Rαβµν = g(eα, [Deµ(Deνeβ)−Deν (Deµeβ)−D[eµ,eν ]eβ])

= g(eα, [Deµ(Γρβνeρ)−Deν (Γ
ρ
βµeρ)− (Γρνµ − Γρµν)Deρeβ])

= eµ(Γαβν)− eν(Γαβµ) + ΓρβνΓαρµ − ΓρβµΓαρν + (Γρµν − Γρνµ)Γαβρ.

Using this formula and the table (A.16) we derive the null structure equations. Using
R1441 = −Ψ(2)(R) we derive

(D + 2Γ124)ϑ− (δ + Γ121)ξ = ξ(2ζ + η + η)− ϑ(ω + θ + θ)−Ψ(2)(R). (A.19)

Using R1331 = −Ψ2(R) we derive

(D + 2Γ123)ϑ− (δ + Γ121)ξ = ξ(−2ζ + η + η)− ϑ(ω + θ + θ)−Ψ(2)(R). (A.20)

Using R1442 = 0 we derive

Dθ − (δ + Γ122)ξ = −θ2 − ωθ − ϑϑ+ ξη + ξ(2ζ + η). (A.21)

Using R1332 = 0 we derive

D θ − (δ + Γ122)ξ = −θ2 − ω θ − ϑϑ+ ξ η + ξ(−2ζ + η). (A.22)

Using R1443 = −Ψ(1)(R) we derive

(D + Γ124)η − (D + Γ123)ξ = −2ωξ + θ(η − η) + ϑ(η − η)−Ψ(1)(R). (A.23)

Using R1334 = −Ψ(1)(R) we derive

(D + Γ123)η − (D + Γ124)ξ = −2ωξ + θ(η − η) + ϑ(η − η)−Ψ(1)(R). (A.24)

Using R1431 = 0 we derive

(D + 2Γ123)ϑ− (δ + Γ121)η = η2 + ξξ − ϑθ + ϑ(ω − θ). (A.25)

Using R1341 = 0 we derive

(D + 2Γ124)ϑ− (δ + Γ121)η = η2 + ξξ − ϑθ + ϑ(ω − θ). (A.26)

Using R1432 = −Ψ(0)(R) we derive

Dθ − (δ + Γ122)η = ξξ + ηη − ϑϑ+ θ(ω − θ)−Ψ(0)(R). (A.27)

Using R1342 = −Ψ(0)(R) we derive

Dθ − (δ + Γ122)η = ξξ + η η − ϑϑ+ θ(ω − θ)− Ψ(0)(R). (A.28)
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Using R1421 = −Ψ(1)(R) we derive

(δ + 2Γ122)ϑ− δθ = ζθ − ζϑ+ η(θ − θ) + ξ(θ − θ)−Ψ(1)(R). (A.29)

Using R1321 = −Ψ(1)(R) we derive

(δ + 2Γ122)ϑ− δθ = −ζθ + ζϑ+ η(θ − θ) + ξ(θ − θ)−Ψ(1)(R). (A.30)

Using R3441 = −Ψ(1)(R) we derive

(D + Γ124)ζ − δω = ω(ζ + η) + θ(η − ζ) + ϑ(η − ζ)− ξ(θ + ω)− ξϑ−Ψ(1)(R). (A.31)

Using R4331 = −Ψ(1)(R) we derive

(D+ Γ123)(−ζ)− δω = ω(−ζ+ η) + θ(η+ ζ) +ϑ(η+ ζ)− ξ(θ+ω)− ξϑ−Ψ(1)(R). (A.32)

Using R3443 = Ψ(0)(R) + Ψ(0)(R) we derive

Dω +Dω = ξξ + ξξ − ηη − ηη + ζ(η − η) + ζ(η − η)− (Ψ(0)(R) + Ψ(0)(R)). (A.33)

Using R3421 = Ψ(0)(R)− Ψ(0)(R) we derive

(δ−Γ121)ζ−(δ+Γ122)ζ = (ϑϑ−ϑϑ)+(θθ−θθ)+ω(θ−θ)−ω(θ−θ)−(Ψ(0)(R)− Ψ(0)(R)).
(A.34)

We derive now the Bianchi identities. Assume W is a real-valued Weyl field, see (A.7),
and

DαWαβµν = Jβµν ,

for some Weyl current J ∈ T0
3(M). Then, using Proposition 4.1,

D[ρWαβ]µν = DρWαβµν + DαWβρµν + DβWραµν =∈σραβ ∗Jσµν , (A.35)

where
∗Jσµν =

1

2
∈µνγδJσγδ.

Using (A.7), we derive the following

W3141 = W3242 = W4241 = W3231 = 0,

W4141 = Ψ(2), W4242 = Ψ(2), W3131 = Ψ(2), W3232 = Ψ(2),

W2314 = Ψ(0), W1324 = Ψ(0), W4343 = W1212 = −Ψ(0) − Ψ(0), W1234 = Ψ(0) −Ψ(0),

W1434 = W2141 = Ψ(1), W2434 = W1242 = Ψ(1),

W1343 = W2131 = Ψ(1), W2343 = W1232 = Ψ(1).
(A.36)

We use the table (A.36) and the formula (A.35) to derive the Bianchi identities. Using
D[2W41]41 = −J414 we derive

(δ + 2Γ122)Ψ(2) − (D+ Γ124)Ψ(1) = −(2ζ + η)Ψ(2) + (4θ+ ω)Ψ(1) + 3ξΨ(0) − J414. (A.37)
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Using D[2W31]31 = −J313 we derive

(δ+ 2Γ122)Ψ(2)− (D+ Γ123)Ψ(1) = −(−2ζ+η)Ψ(2) + (4θ+ω)Ψ(1) + 3ξΨ(0)−J313. (A.38)

Using D[3W41]41 = J114 we derive

(D + 2Γ123)Ψ(2) − (δ + Γ121)Ψ(1) = (2ω − θ)Ψ(2) + (ζ + 4η)Ψ(1) + 3ϑΨ(0) + J114 (A.39)

Using D[4W31]31 = J113 we derive

(D+ 2Γ124)Ψ(2)− (δ+ Γ121)Ψ(1) = (2ω− θ)Ψ(2) + (−ζ + 4η)Ψ(1) + 3ϑΨ(0) + J113. (A.40)

Using D[2W34]41 = −J214 we derive

−DΨ(0) − (δ + Γ122)Ψ(1) = −ϑΨ(2) + (2η + ζ)Ψ(1) + 3θΨ(0) + 2ξΨ(1) − J214. (A.41)

Using D[2W43]31 = −J213 we derive

−DΨ(0) − (δ + Γ122)Ψ(1) = −ϑΨ(2) + (2η − ζ)Ψ(1) + 3θΨ(0) + 2ξΨ(1) − J213. (A.42)

Using D[1W42]31 = J413 we derive

δΨ(0) + (D + Γ124)Ψ(1) = −2ϑΨ(1) − 3ηΨ(0) + (ω − 2θ)Ψ(1) + ξΨ(2) + J413. (A.43)

Using D[1W32]41 = J314 we derive

δΨ(0) + (D + Γ123)Ψ(1) = −2ϑΨ1 − 3ηΨ(0) + (ω − 2θ)Ψ(1) + ξΨ(2) + J314. (A.44)

A.4. Symmetries of the formalism. We discuss now the main symmetries of the for-
malism introduced in this section.

1. Interchange of the vectors l and l. We define the complex tetrad (m′,m′, l′, l′),

e′1 = m′ = m, e′2 = m′ = m, e′3 = l′ = l, e′4 = l′ = l. (A.45)

Using this new complex tetrad we define the scalars θ′, θ′, ϑ′, ϑ′, ξ′, ξ′, η′, η′, ω′, ω′, ζ ′ as in

(A.13). Given a real-valued Weyl field W , we define the scalars Ψ′(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0)

as in (A.14). We define the connection coefficients Γ′µαβ = g(e′µ,De′β
e′α). The definitions

show easily that

θ′ = θ, θ′ = θ, ϑ′ = ϑ, ϑ′ = ϑ, ξ′ = ξ, ξ′ = ξ, η′ = η, η′ = η, ω′ = ω, ω′ = ω, ζ ′ = −ζ,
Ψ′(2) = Ψ(2), Ψ′(2) = Ψ(2), Ψ′(1) = Ψ(1), Ψ′(1) = Ψ(1), Ψ′(0) = Ψ(0),

δ′ = δ, δ′ = δ, D′ = D, D′ = D, Γ′121 = Γ121, Γ′122 = Γ122, Γ′123 = Γ124, Γ′124 = Γ123.
(A.46)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44) are invariant
with respect to the transformation (A.45). For example, the equation corresponding to
(A.19) in the complex tetrad (m′,m′, l′, l′) reads

(D′ + 2Γ′124)ϑ′ − (δ′ + Γ′121)ξ′ = ξ′(2ζ ′ + η′ + η′)− ϑ′(ω′ + θ′ + θ′)−Ψ′(2)(R).

After using the table (A.46), this is equivalent to

(D + 2Γ123)ϑ− (δ + Γ121)ξ = ξ(−2ζ + η + η)− ϑ(ω + θ + θ)−Ψ(2)(R),
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which is (A.20).
2. Interchange of the vectors m and m. We define the complex tetrad (m′,m′, l′, l′),

e′1 = m′ = m, e′2 = m′ = m, e′3 = l′ = l, e′4 = l′ = l. (A.47)

Using this new complex tetrad we define the scalars θ′, θ′, ϑ′, ϑ′, ξ′, ξ′, η′, η′, ω′, ω′, ζ ′ as in

(A.13). Given a real-valued Weyl field W , we define the scalars Ψ′(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0)

as in (A.14). We define the connection coefficients Γ′µαβ = g(e′µ,De′β
e′α). The definitions

show easily that

θ′ = θ, θ′ = θ, ϑ′ = ϑ, ϑ′ = ϑ, ξ′ = ξ, ξ′ = ξ, η′ = η, η′ = η, ω′ = ω, ω′ = ω, ζ ′ = ζ,

Ψ′(2) = Ψ(2), Ψ′(2) = Ψ(2), Ψ′(1) = Ψ(1), Ψ′(1) = Ψ(1), Ψ′(0) = Ψ(0),

δ′ = δ, δ′ = δ, D′ = D, D′ = D, Γ′121 = Γ121, Γ′122 = Γ122, Γ′123 = Γ123, Γ′124 = Γ124.
(A.48)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44) are invariant
with respect to the transformation (A.47). For example, the equation corresponding to
(A.19) in the complex tetrad (m′,m′, l′, l′) reads

(D′ + 2Γ′124)ϑ′ − (δ′ + Γ′121)ξ′ = ξ′(2ζ ′ + η′ + η′)− ϑ′(ω′ + θ′ + θ′)−Ψ′(2)(R).

After using the table (A.48), this is equivalent to

(D + 2Γ124)ϑ− (δ + Γ121)ξ = ξ(2ζ + η + η)− ϑ(ω + θ + θ)− Ψ(2)(R),

which is equivalent to (A.19) after complex conjugation.
3. Rescaling of the null pair l, l. We define the complex tetrad (m′,m′, l′, l′),

e′1 = m′ = m, e′2 = m′ = m, e′3 = l′ = A−1l, e′4 = l′ = A · l, (A.49)

for some smooth function A : N → R \ {0}. Using this new complex tetrad we define
the scalars θ′, θ′, ϑ′, ϑ′, ξ′, ξ′, η′, η′, ω′, ω′, ζ ′ as in (A.13). Given a real-valued Weyl field

W , we define the scalars Ψ′(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0) as in (A.14). We define the connection

coefficients Γ′µαβ = g(e′µ,De′β
e′α). The definitions show easily that

θ′ = Aθ, θ′ = A−1θ, ϑ′ = Aϑ, ϑ′ = A−1ϑ, ξ′ = A2ξ, ξ′ = A−2ξ, η′ = η, η′ = η,

Ψ′(2) = A2Ψ(2), Ψ′(2) = A−2Ψ(2), Ψ′(1) = AΨ(1), Ψ′(1) = A−1Ψ(1), Ψ′(0) = Ψ(0),

δ′ = δ, δ′ = δ, D′ = A−1D, D′ = AD, Γ′121 = Γ121, Γ′122 = Γ122,

ω′ = Aω −D(A), ω′ = A−1ω −D(A−1), ζ ′ = ζ − δ(A)/A, Γ′123 = A−1Γ123, Γ′124 = AΓ124.
(A.50)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44) are invariant
with respect to the transformation (A.49). For example, the equation corresponding to
(A.19) in the complex tetrad (m′,m′, l′, l′) reads

(D′ + 2Γ′124)ϑ′ − (δ′ + Γ′121)ξ′ = ξ′(2ζ ′ + η′ + η′)− ϑ′(ω′ + θ′ + θ′)−Ψ′(2)(R).
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After using the table (A.50), this is equivalent to

(AD + 2AΓ124)(Aϑ)− (δ + Γ121)(A2ξ)

= A2ξ(2ζ − 2δ(A)/A+ η + η)− Aϑ(Aω −D(A) + Aθ + Aθ)− A2Ψ(2)(R).

This is equivalent to (A.19), after simplifying the term AD(A)ϑ−2Aδ(A)ξ and multiplying
by A−2.

4. Rotation of the vector m. We define the complex tetrad (m′,m′, l′, l′),

e′1 = m′ = Bm, e′2 = m′ = B−1m, e′3 = l′ = l, e′4 = l′ = l, (A.51)

for some smooth function B : N→ C, |B| ≡ 1. Using this new complex tetrad we define
the scalars θ′, θ′, ϑ′, ϑ′, ξ′, ξ′, η′, η′, ω′, ω′, ζ ′ as in (A.13). Given a real-valued Weyl field

W , we define the scalars Ψ′(2),Ψ
′
(2),Ψ

′
(1),Ψ

′
(1),Ψ

′
(0) as in (A.14). We define the connection

coefficients Γ′µαβ = g(e′µ,De′β
e′α). The definitions show easily that

θ′ = θ, θ′ = θ, ϑ′ = B2ϑ, ϑ′ = B2ϑ, ξ′ = Bξ, ξ′ = Bξ, η′ = Bη, η′ = Bη, ω′ = ω, ω′ = ω,

ζ ′ = Bζ, Ψ′(2) = B2Ψ(2), Ψ′(2) = B2Ψ(2), Ψ′(1) = BΨ(1), Ψ′(1) = BΨ(1), Ψ′(0) = Ψ(0),

δ′ = Bδ, δ′ = B−1δ, Γ′121 = BΓ121 − δ(B), Γ′122 = B−1Γ122 + δ(B−1),

D′ = D, D′ = D, Γ′123 = Γ123 −D(B)/B, Γ′124 = Γ124 −D(B)/B.
(A.52)

The Ricci equations (A.19)–(A.34) and the Bianchi identities (A.37)–(A.44) are invariant
with respect to the transformation (A.51). For example, the equation corresponding to
(A.19) in the complex tetrad (m′,m′, l′, l′) reads

(D′ + 2Γ′124)ϑ′ − (δ′ + Γ′121)ξ′ = ξ′(2ζ ′ + η′ + η′)− ϑ′(ω′ + θ′ + θ′)−Ψ′(2)(R).

After using the table (A.52), this is equivalent to

(D + 2Γ124 − 2D(B)/B)(B2ϑ)− (Bδ +BΓ121 − δ(B))(Bξ)

= Bξ(2Bζ +Bη +Bη)−B2(ω + θ + θ)−B2Ψ(2)(R).

This is equivalent to (A.19), after simplifying the left-hand side and multiplying by B−2.
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Physics, 25. Birkhäuser Boston, Inc., Boston, MA, (2003).
[24] S. Kobayashi Transformations groups in differential geometry, Springer, 1972.
[25] M. Mars, A spacetime characterization of the Kerr metric, Classical Quantum Gravity 16 (1999),

2507–2523.
[26] M. Mars, Uniqueness properties of the Kerr metric, Classical Quantum Gravity 17 (2000), 3353–

3373.
[27] E.T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients,

J. Math. Phys. 3 (1962), 566-578.
[28] D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975), 905-906.
[29] I. Racz and R. Wald Extensions of space-times with Killing horizons, Class. Quant. Gr., 9 (1992),

2463-2656.
[30] W. Simon, Characterization of the Kerr metric, Gen. Rel. Grav. 16 (1984), 465-476.



60 ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

[31] D. Sudarski and R.M. Wald, Mass formulas for stationary Einstein Yang-Mills black holes and a
simple proof of two staticity theorems, Phys. Rev D47 (1993), 5209-5213, gr-qc /9305023.

University of Wisconsin – Madison
E-mail address: ionescu@math.wisc.edu

Princeton University
E-mail address: seri@math.princeton.edu


