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†Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via della
Ricerca Scientifica, 00133-Roma, Italy

1



1 Introduction and results

One of the outstanding open questions in the wake of the global stability
result of [Ch-Kl] and [Kl-Ni] is whether there exists initial data which have
a “smooth” skri. Indeed the results in [Ch-Kl] and [Kl-Ni] based on gen-
eral initial data lead to weaker peeling properties than those derived, see
[Pe], from the assumption of asymptotic simplicity. The seminal work of
Penrose, [Pe], and Penrose and Newman, [Ne-Pe2], had opened the way to
many attempts to provide a constructive approach to such solutions, see
[Fr1],[Fr2], [Kr]. Yet the question whether smooth skri is compatible with
initial data, given on a Cauchy spacelike hypersurface, has remained wide
open for a long time. An important recent result in this direction is due
to P.T.Chruściel and E.Delay, [Chr-Del]. They prove, by adapting the pre-
vious result by J.Corvino, [Cor], the existence of sufficiently small initial
conditions which are exactly stationary outside a sufficiently large compact
set, whose Cauchy development is asymptotically simple. They do that by
showing the existence of hyperboloidal hypersurfaces of the kind needed in
Friedrich’s stability theorem, [Fr3]. For a detailed review of this approach
see [Fr4].
In this paper we find sufficient decay and regularity assumptions on the ini-
tial data sets such that the corresponding spacetimes (defined in the comple-
ment of the domain of influence of a compact set) verify peeling properties
consistent with asymptotic simplicity. We do that by revisiting and adapting
the global existence proof in [Kl-Ni]. More precisely we provide a system-
atic picture of the relationship between various asymptotic properties of the
initial data sets and the peeling properties of the corresponding solutions.
We shall consider asymptotically flat initial data sets {Σ0, g, k} for which
there exists a system of coordinates x = {x1, x2, x3} defined outside a suf-
ficiently large compact set, which verify the following asymptotic assump-
tions:1

gij − δij =
2M

r
δij + Oq+1(r−( 3

2
+γ))

kij = Oq(r−( 5
2
+γ)) (1.1)

In [Kl-Ni] we have constructed, under the additional smallness assumption2

JK(Σ0, g, k) ≤ ε2, see [Kl-Ni] Chapter 3, definition (3.6.4), a unique devel-
1Here f = Oq(r

−a) means that f asymptotically behaves as O(r−a) and its partial
derivatives ∂kf , up to order q behave as O(r−a−k).

2JK(Σ0, g, k) is a L2 weighted norm made with the partial derivatives of the Riemann
metric tensor gij up to fourth order.
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opment (M,g) defined outside the domain of influence of the compact set
K, foliated by a canonical double null foliation {C(λ), C(ν)} whose leaves
are the level hypersurfaces of two optical functions u(p) and u(p):

C(λ) = {p ∈M|u(p) = λ} , C(ν) = {p ∈M|u(p) = ν}

and such that the outgoing leaves C(λ) are complete. To state our asymp-
totic results we associate, see [Kl-Ni] Chapter 3, to our double null foliation
an adapted null frame {e1, e2, e3, e4} where

e4 = 2ΩL ; e3 = 2ΩL (1.2)

and L and L are the null geodesic vector fields generating the null hyper-
surfaces C(λ) and C(ν) respectively. Ω2 is the null shift function,

Ω2 = −(2g(L,L))−1 (1.3)

and finally {e1, e2} is an orthonormal moving frame tangent to the two-
dimensional surfaces S(λ, ν) = C(λ)∩C(ν). Using this frame we decompose
the Riemann curvature tensor into its null components, in the following way:

α(R)(X, Y ) = R(X, e4, Y, e4) , β(R)(X) =
1
2
R(X, e4, e3, e4)

ρ(R) =
1
4
R(e3, e4, e3, e4) , σ(R) =

1
4

?R(e3, e4, e3, e4)

β(R)(X) =
1
2
R(X, e3, e3, e4) , α(R)(X, Y ) = R(X, e3, Y, e3)

where ? denotes the dual tensor.

Theorem 1.1 (Strong peeling property) Under the assumptions 1.1 with
γ = 3

2 + ε, ε > 0 and sufficiently large q the maximal development (M,g)
constructed in [Kl-Ni] verifies the following stronger asymptotic properties:
a) Along the outgoing null hypersurfaces C(λ) the following limits hold

lim
C(λ);ν→∞

rα = A(λ, ω) , lim
C(λ);ν→∞

r2β = B(λ, ω)

lim
C(λ);ν→∞

r3ρ = P (λ, ω) , lim
C(λ);ν→∞

r3σ = Q(λ, ω) (1.4)

lim
C(λ);ν→∞

r4β = B(λ, ω)

with A(λ, ω), B(λ, ω), P (λ, ω), Q(λ, ω), B(λ, ω) satisfying:

|A(λ, ω)| ≤ c(1 + |λ|)−(4+ε) ; |B(λ, ω)| ≤ c(1 + |λ|)−(3+ε)

|(P − P )(λ, ω)| ≤ c(1 + |λ|)−(2+ε) ; |(Q−Q)(λ, ω)| ≤ c(1 + |λ|)−(2+ε)

|B(λ, ω)| ≤ c(1 + |λ|)−(1+ε) (1.5)

3



b) The Riemann components α and β satisfy the following estimates,
with ε′ < ε: 3

sup
M̃
|r5|λ|ε′α| ≤ C0 ; sup

M̃
|r4|λ|1+ε′ |β| ≤ C0

Theorem 1.2 (Weak peeling property) Under the assumptions 1.1 with
γ = 3

2−δ, δ ∈ [0, 3
2) and sufficiently large q the spacetime (M,g) constructed

in [Kl-Ni] verifies the following asymptotic properties:4

a) Along the outgoing null hypersurfaces C(λ) the following limits hold

lim
C(λ);ν→∞

rα = A(λ, ω) , lim
C(λ);ν→∞

r2β = B(λ, ω)

lim
C(λ);ν→∞

r3ρ = P (λ, ω) , lim
C(λ);ν→∞

r3σ = Q(λ, ω)

lim
C(λ);ν→∞

r4β = B(λ, ω) for δ ∈ [0, 1)

with A(λ, ω), B(λ, ω), P (λ, ω), Q(λ, ω), B(λ, ω) satisfying:

|A(λ, ω)| ≤ c(1 + |λ|)−(4−δ) ; |B(λ, ω)| ≤ c(1 + |λ|)−(3−δ)

|(P − P )(λ, ω)| ≤ c(1 + |λ|)−(2−δ) ; |(Q−Q)(λ, ω)| ≤ c(1 + |λ|)−(2−δ)

|B(λ, ω)| ≤ c(1 + |λ|)−(1−δ) (1.6)

b) The Riemann components α and β satisfy the following estimates:

δ = 0 ; sup
M̃

∣∣∣∣r5(log |λ|)ε

(log r)1+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4|λ|β
∣∣∣∣ ≤ C0

δ ∈ (0, 1) ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4|λ|1−δβ

∣∣∣∣ ≤ C0 (1.7)

δ = 1 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)2+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0

δ ∈ (1,
3
2
) ; sup

M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)2+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0 (1.8)

Remark: Observe that strong peeling in the sense of Theorem 1.1, is
incompatible with the presence of a nontrivial angular momentum. Indeed
recall that, see [Ch-Kl], Chapter 1,

Ji = lim
r→∞

1
8π

∫
Sr

εiabx
a
(
kbj − gbjtrk

)
njdσ . (1.9)

3Hereafter we always assume ε′ < ε, wherever these two quantities appear.
4The precise version of this and the next theorem will be presented in Section 6.
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Thus it easily follows that J = 0 if k decays faster than r−3. Therefore, in
the presence of a nontrivial angular momentum we do not expect the strong
peeling estimates, but rather the weaker ones consistent with δ = 1,

sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)2+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0 (1.10)

1.1 The main ideas of the proof.

The proof of the stated results is based on two separate ingredients.
Part I.) By a modification of the construction used in the proof of the
Klainerman-Nicolò global existence result, see [Kl-Ni] Chapter 3, we show
that the the spacetime M̃ satisfies better asymptotic properties relative to
λ. In particular we show that the null curvature components verify,

sup
K

r7/2|λ|γ |α| ≤ C0 , sup
K

r|λ|
5
2
+γ |α| ≤ C0

sup
K

r7/2|λ|γ |β| ≤ C0 , sup
K

r2|λ|
3
2
+γ |β| ≤ C0 (1.11)

sup
K

r3|ρ| ≤ C0 , sup
K

r3|λ|
1
2
+γ |(ρ− ρ, σ)| ≤ C0

In addition we can show that the angular derivatives of order q > 0 verify:5

sup
K

r7/2+q|λ|γ |∇/ qα| ≤ C0 , sup
K

r1+q|λ|
5
2
+γ |∇/ qα| ≤ C0

sup
K

r7/2+q|λ|γ |∇/ qβ| ≤ C0 , sup
K

r2+q|λ|
3
2
+γ |∇/ qβ| ≤ C0 (1.12)

sup
K

r3+q|λ|
1
2
+γ |∇/ q(ρ, σ)| ≤ C0

Remark that the only difference between these and the estimates established
in [Kl-Ni] is due to the factor |λ|γ . It is worthwile to point here that, exactly
as in [Kl-Ni], the central part of the proof is based on the introduction of a
family of energy-type norms Q̃, based on the Bel-Robinson tensor associated
to the (conformal part of the) Riemann tensor. These norms are modifica-
tions of the Q norms in [Kl-Ni], obtained by introducing the weight factor
|λ|2γ in their integrand. The precise definition of these norms is given in
section 2.
The fact that we can incorporate the additional weight |λ|2γ in the energy
type norms Q̃ is an essential ingredient of our result. One can motivate this

5q is an integer ≤ 5. ∇/ is the covariant derivative associated to the induced metric on
S(λ, ν) = C(λ) ∩ C(ν).
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fact by considering weighted energy estimates for the linear wave equations
in flat space, outside a light cone. We shall do this in details at the beginning
of section 3.
Part II.) To obtain improved estimates for the null curvature compo-
nents α, β we shall make use of the incoming transport equations which
they satisfy. These will allow us to transfer some of the gain in powers of
|λ|γ established in the first step to the desired powers of r. Before writing
down the transport equations for α, β we recall briefly the definition of the
connection coefficients associated to our double null foliation.

χab = g(Deae4, eb) , χ
ab

= g(Deae3, eb)

ξa =
1
2
g(De4e4, ea) , ξ

a
=

1
2
g(De3e3, ea)

ηa = −1
2
g(De3ea, e4) , η

a
= −1

2
g(De4ea, e3) (1.13)

ω = −1
4
g(De4e3, e4) , ω = −1

4
g(De3e4, e3)

ζa = −1
2
g(Deae3, e4)

Moreover we observe that in the first step presented above one can show
not only that the null curvature components gain decay in powers of λ but
also the connection coefficients. In particular one can prove the following
estimates:

|r2|λ|
1
2
+γχ̂| ≤ C0 , |r3|λ|

1
2
+γ∇/ χ̂| ≤ C0

|r1|λ|
3
2
+γχ̂| ≤ C0 , |r2|λ|

3
2
+γ∇/ χ̂| ≤ C0 (1.14)

|r2|λ|
1
2
+γ
(
Ωtrχ− Ωtrχ

)
| ≤ C0 , |r2|λ|

1
2
+γ
(
Ωtrχ− Ωtrχ

)
| ≤ C0

|r2|λ|
1
2
+γη| ≤ C0 , |r2|λ|

1
2
+γη| ≤ C0

With these preparations we are now ready to demonstrate the improved
behavior of α, β. 6

i) Improved estimate for β. According to the null Bianchi equations,
see [Kl-Ni] Chapter 3, eqs. (3.1.46), (3.1.47), (3.1.48) we have,

∂β

∂λ
+ Ωtrχβ = 2Ωωβ + Ω∇/ ρ + Ω∗∇/ σ +

[
2χ̂ · β + 3(ηρ + ∗ησ)

]
(1.15)

6A similar argument, based on the idea of using the incoming null Bianchi equations
for α and β, has been used by D. Christodoulou in a related context, see [Ch].
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where ∂
∂λ = ΩD/ 3 and D/ 3 denotes the projection to S(λ, ν) of the derivative

along the null direction e3. In view of the above estimates 1.11, 1.12 and 1.14
we observe that the terms in square brackets are of order O(r−4|λ|−( 3

2
+γ))

and can be neglected. Recalling,7 see [Kl-Ni], Chapter 4, that ∂r
∂λ = r

2Ωtrχ,
we obtain

∂(r2βa)
∂λ

=
[
(Ωtrχ− Ωtrχ) + 2Ωω

]
(r2βa) + Ωr2∇/ aρ (1.16)

In view of the estimates for the connection coefficients 1.14 8 it follows
immediately that the quantity

[
(Ωtrχ− Ωtrχ) + 2Ωω

]
is integrable in λ.

An application of Gronwall’s Lemma gives, with λ1(ν) = λ|C(ν)∩Σ0
,

|r2β|(λ, ν, ωa) ≤ c

(
|r2β|C(ν)∩Σ0

+
∫ λ

λ1(ν)
|r2∇/ ρ|dλ′

)
(1.17)

and, multiplying both sides by r2|λ|1+ε, which is allowed in view of the fact
that r and |λ| are both decreasing as we move toward the future along the
incoming null hypersurface C(λ), we obtain

|r4|λ|1+εβ|(λ, ν, ωa) ≤ c

(
|r5+εβ|C(ν)∩Σ0

+
∫ λ

λ1(ν)
|r4|λ′|1+ε∇/ ρ|dλ′

)
(1.18)

To obtain the “strong peeling” property for β it remains to show that the
right hans side of 1.18 is bounded. The finiteness of |r5+εβ|C(ν)∩Σ0

follows
immediately from our initial data assumptions. To check the finiteness of
the integral term we only need to make use of the asymptotic result for ρ
obtained in the part I. Indeed we have ∇/ ρ = 0(r−4|λ|−( 1

2
+γ)) and, therefore,

for γ > 3
2 + ε, the integral

∫ λ
λ1(ν) r4|λ′|1+ε∇/ ρ|dλ′ is bounded.

ii) Improved estimate for α. Making use of the improved estimate for
β, which we have just established, we make use of the null Bianchi equation,
relative to α,

∂α

∂λ
+

1
2
Ωtrχα = 4Ωωα + Ω∇/ ⊗̂β + Ω

[
−3(χ̂ρ + ∗χ̂σ) + (ζ + 4η)⊗̂β

]
(1.19)

Clearly the terms in in square brackets are O(r−5|λ|−( 1
2
+γ)) and can be

neglected. Proceeding in the same fashion as above we write,

d

dλ
|rα| ≤ |4Ωω − 2−1(Ωtrχ− Ωtrχ)||rα|+ |Ω||r∇/ β| (1.20)

7Here f refers to the average of the scalar quantity f over the 2-surfaces S(λ, ν).
8In fact it suffices to take the weaker estimates of [Kl-Ni] corresponding to γ arbitrarily

small. The estimate of ω cannot be improved from the one in [Kl-Ni], but that one is
sufficient.
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and applying Gronwall’s lemma we obtain

|rα|(λ, ν, ωa) ≤ c

(
|rα|C(ν)∩Σ0

+
∫ λ

λ1(ν)
|r∇/ β|dλ′

)
. (1.21)

Finally, multiplying both sides by r4 we conclude that

|r5α|(λ, ν, ωa)≤c

(
|r5α|C(ν)∩Σ0

+
∫ λ

λ1(ν)
|r5∇/ β|dλ′

)
(1.22)

To derive the strong peeling property for α we only have to check that the
right hand side is finite. In view of our initial conditions it is immediate
to check the boundedness of |r5α|C(ν)∩Σ0

. The boundedness of the integral
term follows immediately from our improved estimate for β discussed above
and the fact that any tangential derivative produces an extra r−1 factor.
In Section 2 we give a precise statement of the result mentioned in Part I
and a sketch of its proof. We define the main norms and outline the main
differences between the result presented here and that of [Kl-Ni]. Section 6
is devote to the detailed proof of our peeling result along the lines sketched
above. Sections 3, 4 and 5 provide the technical details of the proof of the
result presented in section 2.
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2 The spacetime M̃
As discussed in the introduction the proof of our results depend on a modi-
fication of the main result proved in [Kl-Ni]. In this section we give a precise
formulation of it. We recall that the main theorem in [Kl-Ni] was based on
the following norms:

1) The initial data norms JK which we replace here by the norms J̃
(q)
K ,

whose precise definitions are given in the next subsection. The new norms
differ from the old ones by the presence of the additional weight factor rγ

and additional covariant derivatives up to a prescribed order.
2) The connection coefficient norms Õ. These norms differ from the old

ones, O, by the presence of an additional weight factor |λ|γ , except those
which are non trivial in Schwarzschild spacetime,9 and additional covariant
derivatives. Their explicit expressions are given in the appendix.

3) The Riemann curvature norms R̃. Again they differ from theR norms
used in [Kl-Ni] by the presence of the additional weight factor |λ|γ , except,
of course, for ρ which is tied to the ADM mass, and additional covariant
derivatives. Their explicit expressions are given in the appendix.

4) The “Bel-Robinson” integral norms Q̃. These norms differ from their
analogous ones, Q, used in [Kl-Ni] by the presence of the additional weight
factor |λ|2γ . We also need to add terms containing higher angular derivatives
L̂i

O with i ≤ q + 1. We exhibit them below.
5) The definition of the canonical foliation on the last slice needs to be

modified. More precisely we replace the condition log Ω = 0, used in [Kl-Ni],
with the condition

D3log Ω = (trχ)−1ρ. (2.1)

2.1 Initial hypersurface and final slice

In this section we discuss the initial conditions on both the initial and final
slices.

2.1.1 The initial data condition

We restrict ourselves to initial data sets {Σ0, g, k} with Σ0 diffeomorphic to
R3; moreover we assume they are asymptotically flat in the following sense,
stronger than the one used in [Ch-Kl] and in [Kl-Ni]:

9A more detailed discussion of this fact is in the second part of section 3.
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Definition 2.1 An initial data set {Σ0, g, k} is “strongly asymptotically flat
of order γ”, see [Ch-Kl], eqs. (1.0.9a), (1.0.9b), if there exists a compact set
B, such that its complement Σ0\B is diffeomorphic to the complement of the
closed unit ball in R3. Moreover there exists a coordinate system (x1, x2, x3)

defined in a neighborhood of infinity such that, as r =
√∑3

i=1(xi)2 → ∞,
we have

gij = (1 + 2M/r)δij + Oq+1(r−( 3
2
+γ)) , kij = Oq(r−( 5

2
+γ)) (2.2)

We define the global initial data smallness condition with the help of the
quantity

J̃
(q)
0 (Σ0, g, k) = sup

Σ0

(
(d2

0 + 1)3|Ric|2
)

+
∫
Σ0

q∑
l=0

(d2(1+γ′)
0 + 1)l+1|∇lk|2

+
∫
Σ0

q−2∑
l=0

(d2(1+γ′)
0 + 1)l+3|∇lB|2 (2.3)

with γ′ arbitrary close to γ, γ′ < γ, where γ, see 2.2, has been introduced
in Theorems 1.1 and 1.2.

Definition 2.2 Given an initial data set {Σ0, g, k} and a compact set K ⊂
Σ0 such that Σ0\K is diffeomorphic to the complement of the closed unit ball
in R3, we define J̃

(q)
K (Σ0, g, k) as follows:

• We denote G the set of all the smooth extensions (g̃, k̃) of the data
(g, k) restricted to Σ0\K, to the whole of Σ0, with g̃ Riemannian and
k̃ a symmetric two tensor.

• We denote by d̃0 the geodesic distance from a fixed point O in K rel-
ative to the metric g̃.

• We denote 10

J̃
(q)
K (Σ0, g, k) = inf

G
J̃

(q)
0 (Σ0, g̃, k̃) . (2.4)

Definition 2.3 Consider an initial data set {Σ0, g, k}. Let K be a compact
set such that Σ0\K is diffeomorphic to the complement of the closed unit ball
in R3. We say that the initial data set satisfy the “exterior global smallness
condition” if, given ε > 0 sufficiently small,

J̃
(q)
K (Σ0, g, k) ≤ ε2 .

10J̃
(q)
0 (Σ0, g̃, k̃) has the same expression as J̃

(q)
0 (Σ0, g, k) in 2.3, with d̃0 instead of d0.
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Remark: The “exterior global smallness condition” is basically the same
we used in [Kl-Ni]. The difference from the previous one is the presence of
different weight factors as well as the presence of additional derivatives.

2.1.2 The last slice canonical foliation

Definition 2.4 A foliation on a null incoming hypersurface C∗, given by
the level sets of a function u,11 is said to be canonical if the functions u and
Ω satisfy the following system of equations:

du

dv
= (2Ω2)−1; u|C∗∩Σ0 = λ1

4/ log Ω =
1
2
div/ η +

1
2

(
K−K +

1
4
(trχtrχ− trχtrχ)

)
(2.5)

d

dv
log Ω =

1
2Ω

(trχ)−1ρ ; log 2Ω|C∗∩Σ0 =
1
2

log(1 + r2ρ)|C∗∩Σ0

The proof of the existence of the canonical foliation follows precisely the
same argument as that used in Chapter 7 of [Kl-Ni] and will be omitted, see
also [Ni].

2.2 The Q̃ norms

With the help of the same vector fields S, K̄ and (i)O defined as in [Kl-Ni]
and a slightly modified vector field T0 we define: 12

Q̃1(λ, ν) ≡
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂T0R)(K̄, K̄, K̄, e4)

+
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂OR)(K̄, K̄, T0, e4)

Q̃2(λ, ν) ≡
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂OL̂T0R)(K̄, K̄, K̄, e4)

+
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂2

OR)(K̄, K̄, T0, e4) (2.6)

+
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂SL̂T0R)(K̄, K̄, K̄, e4)

11It is the scalar function u∗ of [Kl-Ni].
12If q − 2 < 2 the Q̃(q)(λ, ν) and Q̃

(q)
(λ, ν) terms are absent.
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Q̃(q)(λ, ν) ≡
q−2∑
i=2

{∫
C(λ)∩V (λ,ν)

|λ|2γQ(L̂T0L̂
i
OR)(K̄, K̄, K̄, e4)

+
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂i+1

O R)(K̄, K̄, T0, e4) (2.7)

+
∫

C(λ)∩V (λ,ν)
|λ|2γQ(L̂SL̂T0L̂

i−1
O R)(K̄, K̄, K̄, e4)

}

Q̃1(λ, ν) ≡ sup
V (λ,ν)∩Σ0

|r3ρ|2 +
∫

C(ν)∩V (λ,ν)
|u|2γQ(L̂T0R)(K̄, K̄, K̄, e3)

+
∫

C(ν)∩V (λ,ν)
|u|2γQ(L̂OR)(K̄, K̄, T0, e3)

Q̃2(λ, ν) ≡
∫

C(ν)∩V (λ,ν)
|u|2γQ(L̂OL̂T0R)(K̄, K̄, K̄, e3)

+
∫

C(ν)∩V (λ,ν)
|u|2γQ(L̂2

OR)(K̄, K̄, T0, e3) (2.8)

+
∫

C(ν)∩V (λ,ν)
|u|2γQ(L̂SL̂T0R)(K̄, K̄, K̄, e3)

Q̃(q)(λ, ν) ≡
q−2∑
i=2

{∫
C(λ)∩V (λ,ν)

|u|2γQ(L̂T0L̂
i
OR)(K̄, K̄, K̄, e3)

+
∫

C(λ)∩V (λ,ν)
|u|2γQ(L̂i+1

O R)(K̄, K̄, T0, e3) (2.9)

+
∫

C(λ)∩V (λ,ν)
|u|2γQ(L̂SL̂T0L̂

i−1
O R)(K̄, K̄, K̄, e3)

}
.

We define also the global norm

Q̃ = sup
V (λ,ν)⊂M̃

Q̃(λ, ν) (2.10)

where13

Q̃(λ, ν) = Q̃1(λ, ν) + Q̃2(λ, ν) + Q̃1(λ, ν) + Q̃2(λ, ν)[
Q̃(q)(λ, ν) + Q̃(q)(λ, ν)

]
. (2.11)

Remarks:
13V (λ, ν) is defined as V (λ, ν) = J−(S(λ, ν)).
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1) Observe that the factor |u|2γ is constant along the C(λ) null hypersur-
faces, while it varies along the C(ν) hypersurfaces.
2) The vector field T appearing in L̂TR, L̂OL̂TR, L̂SL̂TR in the Q norms
introduced in [Ch-Kl] and in [Kl-Ni], is substituted by the vector field

T0 = Ω(e3 + e4) = 2ΩT (2.12)

where Ω is defined in equation 1.3. The reason of the choice 3.8 will be made
clear in the discussion on the error estimates in section 3.14

We are now ready to state the improved version of the main result of [Kl-Ni].

Theorem 2.1 Assume the initial data set {Σ0, g, k} “strongly asymptoti-
cally flat of order γ” and J̃

(q)
0 (Σ0, g, k)<∞.

Choosing ε0 sufficiently small, there exists a compact region K containing
the origin, such that J̃

(q)
K (Σ0, g, k) < ε2 with ε < ε0 and the initial data set

has a unique development (M̃,g), defined outside the domain of influence
of K, with the following properties:

i) M̃ = M̃+ ∪ M̃− where M̃+ consists of the part of M̃ which is in the
future of Σ0\K, M̃− the one to the past.

ii) (M̃+, g) can be foliated by a canonical double null foliation {C(λ), C(ν)}
whose outgoing leaves C(λ) are complete 15 for all |λ| ≥ |λ0|. The boundary
of K can be chosen to be the intersection of C(λ0) ∩ Σ0.

iii) The norms O, D and R are bounded by a constant ≤ cε. 16

iv) The null Riemann components have the following asymptotic behaviour:

sup
K

r
7
2 |λ|γ |α| ≤ cε , sup

K
r|λ|

5
2
+γ |α| ≤ cε

sup
K

r
7
2 |λ|γ |β| ≤ cε , sup

K
r2|λ|

3
2
+γ |β| ≤ cε (2.13)

sup
K

r3|ρ| ≤ cε , sup
K

r3|λ|
1
2
+γ |(ρ− ρ, σ)| ≤ cε

14Observe that, multiplying them by 2Ω, we could have modified also the vector fields
K̄ and T in the entries (K̄, K̄, T, e4) of 2.6 and 1.2, but this is not needed as it will be
clear during the proof of Theorem 2.2.

15By this we mean that the null geodesics generating C(λ) can be indefinitely extended
toward the future.

16D are norms for the various components of the deformation tensor of the rotation
vector fields. They are defined in [Kl-Ni] Chapter 3.
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The definition of double null foliation and of canonical double null foliation
are given in [Kl-Ni], Chapter 3. The possibility of endowing the spacetime
(M̃,g) with a canonical double null foliation is crucial to obtain the result.
The proof of Theorem 2.1 follows precisely the same steps as the proof of the
“Main Theorem” (Theorem 3.7.1) in [Kl-Ni]. The result proved in [Kl-Ni]
corresponds to the γ = 0 case.17 As in that case the main body of the work
can be separated into three different steps:

Theorem 2.2 Assume that in (M̃,g) the following inequalities hold:

R̃ ≤ ε0 , Õ ≤ ε0 . (2.14)

Then choosing ε0 sufficiently small there exists a constant c > 0 such that,
for any arbitrary region K = V (λ, ν) ⊂ M̃, the following inequality holds

Q̃K ≤ cQ̃Σ0∩K. (2.15)

Here Q̃Σ0∩K denotes an integral norm analogous to the one defined in 2.11,
but relative to Σ0 ∩ K.

The proof of this theorem is in Section 3.

Theorem 2.3 Assume that Õ ≤ ε0, then the following inequality holds

R̃ ≤ cQ̃
1
2
K (2.16)

with c a positive constant.

The proof of this theorem is obtained repeating the proof of the correspond-
ing theorem in Chapter 5 of [Kl-Ni] using the R̃, Õ and Q̃K norms introduced
here. A sketch of its proof is in Section 4.

Theorem 2.4 Let the “strongly asymptotically flat of order γ” initial data
be such that J̃

(q)
K (Σ0, g, k)<ε2, assume that

Q̃K ≤ cQ̃Σ0∩K , R̃ ≤ cQ̃
1
2
K ,

then the following inequality holds

Õ≤cε . (2.17)

A sketch of its proof is in Section 5.
The previous three theorems combined with a bootstrap argument, as de-
scribed in full detail in Chapter 3 of [Kl-Ni] allows to prove Theorem 2.1.

17In this case also γ′ = 0, see equation 2.3.
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3 The Q̃ integral norms, proof of Theorem 2.2.

Theorem 2.4 below provides the crucial step in the proof of Theorem 2.1.

Theorem 2.4:
Assume that in (M̃,g) the following inequalities hold:

R̃ ≤ ε0 , Õ ≤ ε0 .

Then choosing ε0 sufficiently small there exists a constant c > 0 such that,
for any arbitrary region K = V (λ, ν) ⊂ M̃, the following inequality holds

Q̃K ≤ cQ̃Σ0∩K. (3.1)

Here Q̃Σ0∩K denotes an integral norm analogous to the one defined in 2.11,
but relative to Σ0 ∩ K.

Proof: The proof of Theorem 2.4 requires the main new technical ingre-
dient of the paper. The idea is to introduce a factor |λ|2γ in the “energy
density” of our main quantity Q̃. We shall illustrate below how this can be
done in the simple case of the wave equation in Minkowski spacetime, M4.
The crucial fact is that the weight factor |λ|2γ leads, in the exterior of the
“light cone” C(λ0) = {p ∈ M4|u(p) ≤ λ0 < 0}, to an energy inequality with
a favorable sign. We then apply the same idea to the integral norms Q̃.

The new problem which confronts us is to control the error terms which
are generated by this procedure. They differ from the ones treated in [Kl-Ni],
Chapter 6, (mainly) by the presence of the weight factor |λ|2γ . Most of these
error terms are easy to treat, but we have to pay special attention to those
involving ρ̄ and those connection coefficients, such as trχ, trχ which are non-
trivial in the particular case of the Schwarszchild metric and, consequently,
cannot decay any better relative to powers of |λ|. We prove that, never-
theless, these terms come up only in combination with other curvature and
connection coefficients terms for which we have improved decay. Compared
to [Kl-Ni] this argument also requires a modification of the vector field T
and of the canonical foliation on the last slice.

3.1 Main energy identities

3.1.1 Wave Equation in flat space

Let us consider first the simpler case of the linear scalar wave equation
Φ = 0. Its L2 energy norm (

∫
Rn

[
|∂0Φ|2(·, t) + |∇Φ|2(·, t)

]
)

1
2 is conserved
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as can be immediately seen with the help of the energy-momentum tensor

Qµν(Φ) = 2∂µΦ∂νΦ− gµν (gρσ∂ρΦ∂σΦ)

and the local conservation laws ∂βQαβ(Φ) = 2∂αΦ Φ = 0 . Thus, in M4,

0 = ∂0Q00 − ∂iQ0i (3.2)

where Q00(Φ) = (∂0Φ)2 + (∇Φ)2 ; Q0i(Φ) = 2∂0Φ∂iΦ . (3.3)

Consider the optical functions u = t− r , u = t + r, using the formulae 18

∂0|u|2γ = −2γ|u|2γ−1 , ∂i|u|2γ = 2γ|u|2γ−1 xi

r
,

it follows

∂0(|u|2γQ00)− ∂i(|u|2γQ0i) = −2γ|u|2γ−1
(

Q00 +
xi

r
Q0i

)
= −2γ|u|2γ−1

(
(∂0Φ)2 + (∇Φ)2 + 2

xi

r
∂0Φ∂iΦ

)
= −2γ|u|2γ−1

(
(∂0Φ)2 + (∂rΦ)2 + 2∂0Φ∂rΦ + (∇/ Φ)2

)
= −2γ|u|2γ−1

(
(∂0Φ + ∂rΦ)2 + (∇/ Φ)2

)
(3.4)

where ∂r is the radial derivative and ∇/ denotes the derivatives tangential to
S(r) = {p ∈ Σt|r(p) = r}. Therefore, in the region where u(p) < 0, we have

∂t(|u|2γQ00)− ∂i(|u|2γQ0i) ≤ 0 . (3.5)

Let us consider the standard null pair {e3, e4}, where

e3 =
∂

∂t
− ∂

∂r
, e4 =

∂

∂t
+

∂

∂r
, (3.6)

and the unit time like vector field

T0 =
1
2
(e3 + e4) =

∂

∂t
. (3.7)

Denoting X an arbitrary timelike Killing vector field and defining the quan-
tity Qβ(X) = QαβXα it follows:

∂βQβ(X) = ∂βQαβXa = (∂βQαβ)Xa + Qαβ∂βXa = 0 . (3.8)

18Valid in the exterior of C(0).
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We define also the spacetime region V (λ, ν) ⊂ {p ∈ M4|u(p) ≤ 0},

V (λ, ν) = {p ∈ M4|u(p) ∈ [ν0, ν], u(p) ∈ [λ1, λ]} (3.9)

where λ1 = u|C(ν)∩Σ0
= −ν , ν0 = u|C(λ)∩Σ0

and ν0 < ν. The boundary of
V (λ, ν) consists of a portion of the incoming null cone C(ν), a portion of
the outgoing null cone C(λ) and a portion of the initial hypersurface:

∂V (λ, ν) = C(ν; [λ1, λ]) ∪ C(λ; [ν0, ν]) ∪ Σ0([ν0, ν1]) , where

C(ν; [λ1, λ]) = {p ∈ C(ν)|u(p) ∈ [λ1, λ])}
C(λ; [ν0, ν]) = {p ∈ C(λ)|u(p) ∈ [ν0, ν])} (3.10)
Σ0([ν0, ν1]) = {p ∈ M4|r(p) ∈ [ν0, ν]} .

Integrating over V (λ, ν) the analogous of 3.8, with Qβ(X) substituted by
|u|2γQβ(X), and using 3.4 we obtain immediately∫

C(ν;[λ1,λ])
|u|2γQ(K, e3) +

∫
C(λ;[ν0,ν])

|u|2γQ(K, e4) ≤
∫
Σ0

|u|2γQ(K, T0) (3.11)

which, in view of the positivity of Q(X, Y ) for X, Y timelike or null vector
fields, implies the boundedness of the “flux quantities”

∫
C(ν;[λ1,λ])|u|2γQ(K, e3)

and
∫
C(λ;[ν0,ν])|u|2γQ(K, e4).

3.1.2 Energy inequality for Q̃

The same argument can be adapted to the vacuum Einstein curved space-
time with the help of the Bel-Robinson tensor. Denoting

Pα = (|u|σQ)αβγδX
βY γZδ (3.12)

with σ > 0, it follows 19

DivP = Div(|u|σQ)βγδX
βY γZδ (3.13)

+
1
2
|u|σQαβγδ

(
(X)παβYγZδ + (Y )παβZγXδ + (Z)παβXγYδ

)
.

Moreover

Div(|u|σQ)βγδ = gεαDε|u|σQαβγδ = |u|σ(DivQ)βγδ + (gεαDε|u|σ)Qαβγδ

= |u|σ(DivQ)βγδ − σ|u|σ−1(gεαDεu)Qαβγδ

= |u|σ(DivQ)βγδ + σ|u|σ−1LαQαβγδ (3.14)
= |u|σ(DivQ)βγδ + σ|u|σ−1(2Ω)−1eα

4 Qαβγδ

19The function u(p), whose level hypersurfaces {p ∈ M|u(p) = λ} are the null hyper-
surfaces C(λ), is the analogous of the quantity t− r in Minkowski spacetime.
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where we have used the relation L = (2Ω)−1e4, see 1.2. Applying Stokes
theorem in the V (u, u) region, we obtain:{∫

C(u)∩V (u,u)
|u|σQ(W )(X, Y, Z, e3) +

∫
C(u)∩V (u,u)

|u|σQ(W )(X, Y, Z, e4)

−
∫
Σ0∩V (u,u)

|u|σQ(W )(X, Y, Z, T )

}
(3.15)

= −
∫

V(u,u)

|u|σ
[
DivQ(W )βγδX

βY γZδ +
1
2
Qαβγδ(W )

(
(X)παβYγZδ

+ (Y )παβZγXδ +(Z) παβXγYδ

) ]
−σ

∫
V(u,u)

(2Ω)−1|u|σ−1Q(W )(X, Y, Z, e4) .

Due to the fact that the last integral in the right hand side is positive we
conclude∫

C(u)∩V (u,u)
|u|σQ(W )(X, Y, Z, e3) +

∫
C(u)∩V (u,u)

|u|σQ(W )(X, Y, Z, e4)

≤
∫
Σ0∩V (u,u)

|u|σQ(W )(X, Y, Z, T )−
∫

V(u,u)

|u|σ
[
DivQ(W )βγδX

βY γZδ (3.16)

+
1
2
Qαβγδ(W )

(
(X)παβYγZδ + (Y )παβZγXδ +(Z) παβXγYδ

) ]
.

The flux integrals∫
C(u)∩V (u,u)

|u|σQ(W )(X, Y, Z, e3) and
∫

C(u)∩V (u,u)
|u|σQ(W )(X, Y, Z, e4)

are bounded provided that we can control the following quantity we call
“Error term”,

Ẽ(W )(X, Y, Z) = −
∫

V(u,u)

|u|σ
[
DivQ(W )βγδX

βY γZδ (3.17)

+
1
2
Qαβγδ(W )

(
(X)παβYγZδ +(Y ) παβZγXδ +(Z) παβXγYδ

) ]
where (X)παβ is the deformation tensor relative to the vector field X, see
[Kl-Ni] subsection (3.4.2).
Applying exactly the same argument to Q̃(λ, ν) defined in equations 2.11,
one shows that Q̃1(λ, ν) , Q̃2(λ, ν) , Q̃1(λ, ν) , Q̃2(λ, ν), [Q̃(q)(λ, ν)+Q̃(q)(λ, ν)]
are bounded if we can control the following error term Ẽ1 + Ẽ2 + Ẽ(q) where

Ẽ1 = Ẽ(L̂T0R)(K̄, K̄, K̄) + Ẽ(L̂OR)(K̄, K̄, T )
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Ẽ2 = Ẽ(L̂2
OR)(K̄, K̄, T ) + Ẽ(L̂T0L̂OR)(K̄, K̄, K̄) (3.18)

+Ẽ(L̂SL̂T0R)(K̄, K̄, K̄)

Ẽ(q) =
q−2∑
i=2

{
Ẽ(L̂i+1

O R)(K̄, K̄, T ) + Ẽ(L̂T0L̂
i
OR)(K̄, K̄, K̄)

+Ẽ(L̂SL̂T0L̂
i−1
O R)(K̄, K̄, K̄)

}
3.2 Preliminary steps concerning the estimate of the Error

terms

The strategy to estimate the “Error terms” is essentially the one used in
[Kl-Ni]. Nevertheless there are some differences which we shall describe
below. For simplicity we consider only Ẽ1 + Ẽ2. The remaining error terms
do not present additional difficulties.
We start examining the general structure of Ẽ1 + Ẽ2. Apart from the new
weights, they are exactly the same as in [Kl-Ni], Chapter 6. Symbolically
we can write:

Ẽ1 + Ẽ2 =
∑∫

V (λ,ν)
|λ|2γτa

−τ b
+(DαR) · (DβR) · (DδΠ) (3.19)

where α+β + δ = 2 and the factor τa
−τ b

+ represents, with appropriate a and
b, the same weights which were already present in the analogous terms in
[Kl-Ni]. The factor |λ|2γ is the extra weight factor which we have to cope
with.
At first glance we might expect that each of the terms DαR, DβR, DδΠ
appearing on the right hand side of 3.19, 20 can absorb a factor |λ|γ . This will
more than compensate for the presence of the weight |λ|2γ appearing in our
formula. Unfortunately this is not quite true, indeed the symbolic expression
DαR ·DβR ·DδΠ hides the presence of terms such as ρ(R) or trχ, trχ, ω,
ω which cannot absorb any additional weight factors. Nevertheless, making
a small modification of the vector field T and of the canonical foliation,21

we can arrange that these terms only appear linearly, that is multiplied by
terms which have better behaviour.

20DδΠ denotes the covariant derivative of an arbitrary deformation tensor.
21Together with some inspired modifications of the quantities which are estimated by

integration along null geodesics.
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3.2.1 The approximate Killing vector fields and their deforma-
tion tensors.

One of the important features of the result in [Kl-Ni], see Chapter 8, is that
all connection coefficients which are identically zero in the Schwarzschild
spacetime allow an additional factor τ

1/2
− = (1 + u2)1/4 in the corresponding

O norms. This is due to the fact that the evolution equations used to
estimate them do not depend on the ρ component22 of the curvature tensor.
An analogous argument can be used now to infer, using the assumption
R̃ ≤ ε0, that the corresponding connection coefficients gain an extra decay
factor |λ|γ .23 As a consequence we deduce that the components of the
deformation tensors, corresponding to those vector fields which are precisely
Killing or conformal Killing in Schwarzschild gain also the decay factor |λ|γ .

As explained earlier we need to modify the vector field T = 1
2(e3 + e4)

which was used in [Kl-Ni]. Indeed that choice turns out to be unacceptable,
in view of the remarks above, since it does not coincide with the precise
timelike Killing vector field of the Schwarzschild metric. To see this observe
that in the Schwarzschild spacetime the null pair {e3, e4}, corresponding to
our definition (see [Ni-In]) is given by

e4 = Φ−1(
∂

∂t
+

∂

∂r∗
) = Φ−1 ∂

∂t
+ Φ

∂

∂r

e3 = Φ−1(
∂

∂t
− ∂

∂r∗
) = Φ−1 ∂

∂t
− Φ

∂

∂r
,

where24 Φ =
√

(1− 2M
r ). Thus the choice T = 1

2(e3 + e4) = Φ−1 ∂
∂t

does
not correspond to the correct Killing vector field of Schwarzschild spacetime
which is ∂

∂t
. The correct choice25 which we shall use below is,

T0 = Ω(e3 + e4) (3.20)

With this choice of T0 we calculate the null components of the traceless part
of its deformation tensor (T0)π, see [Kl-Ni] Chapter 3, subsection 3.4.2,

(T0)iab = 2Ω
(
χ̂ab + χ̂

ab
+ δab(ω + ω)

)
22Recall that ρ, the only Riemann component different from zero in Schwarzschild space-

time, carries the information about the ADM mass and therefore, does not allow any
improved decay in |λ|.

23To derive this improvement one needs also to take advantage of new definition of the
canonical foliation.

24Observe that Φ corresponds precisely to 2Ω, see definition 1.3.
25There is no point in trying to change the definitions of S and K0; there are in fact no

analogous conformal Killing vectorfields in Schwarzschild spacetime.
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(T0)j = Ω(trχ + trχ) + 4Ω(ω + ω) (3.21)
(T0)ma = −4Ωζa , (T0)ma = 4Ωζa

(T0)n = 0 , (T0)n = 0 .

Observe that, although each of the components of the pair (ω, ω), respec-
tively (trχ, trχ), are nontrivial in Schwarzschild 26 and, therefore, cannot
have better decay in factors in |λ|, the combination ω + ω, respectively
trχ + trχ, do in fact cancel out their nontrivial Schwarzschild parts and
behave better. These facts are included in the following proposition:

Proposition 3.1 Assume27 that J̃
(q)
K (Σ0, g, k)<ε2 and

R̃ ≤ ε0 , Õ ≤ ε0 .

Then the following inequalities hold

|r2|λ|γ((T0)i, (T0)j)|∞ ≤ cε0

|r2|λ|γ((T0)m, (T0)m)|∞ ≤ cε0 (3.22)

Proof: We prove the first line of 3.22. The second line is an immediate
consequence of the assumption Õ ≤ ε0 and the definition of the Õ norms.
The estimates are proved in a finite region V (λ0, ν∗) as in the proof of the
Main Theorem in [Kl-Ni].28

1) Estimate of trχ + trχ:
From the structure equations, see [Kl-Ni], equations (3.1.46),..., (3.1.48),

we have

D3trχ=−1
2
trχtrχ−(D3 log Ω)trχ + 2ρ +

[
−χ̂ · χ̂ + 2|η|2+2(4/ log Ω + div/ ζ)

]
D3trχ=−1

2
(trχ)2 + (D3 log Ω)trχ +

[
|χ̂|2

]
(3.23)

and from them

D3(trχ + trχ) = −1
2
trχ(trχ + trχ)+(D3 log Ω)(trχ + trχ) + 2 (ρ−(D3 log Ω)trχ)

+
[
−χ̂ · χ̂ + 2|η|2+2(4/ log Ω + div/ ζ) + |χ̂|2

]
(3.24)

26Obviously trχ and trχ are different from zero also in Minkowski spacetime, but in
Schwarzschild they depend on the ADM mass.

27We shall also make use of the canonical nature of our double null foliation.
28Then, proceeding in the construction of M̃ as in [Kl-Ni], one proves that this region

coincides with the whole spacetime.
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From assumptions 2.14 of Theorem 2.2 it follows that the term in square
brackets behaves as O(r−3|λ|−( 1

2
+γ)), therefore it is a good term from the

point of view of the presence of the new decay factor |λ|γ . Hereafter we de-
note with [Good] all the terms which have, at least, the following asymptotic
behaviour: 29

[Good] = O

(
1

r3|λ|γ
)

+ O

(
1

r2|λ|1+γ

)
. (3.25)

In view of this notation equation 3.24 can be rewritten as

∂

∂λ
(trχ + trχ) +

Ωtrχ
2

(trχ + trχ) =
[
2−1

(
Ωtrχ−Ωtrχ

)
+(D3 log Ω)

]
(trχ + trχ)

+2 (ρ−(D3 log Ω)trχ) + [Good] (3.26)

The only term we have to take care of is 2(ρ−trχD3 log Ω). Its estimate is
provided by the following lemma.

Lemma 3.1 Under the assumptions R̃ ≤ ε0 , Õ ≤ ε0, assuming that the
last slice C(ν∗) is endowed by a canonical foliation such that on it

D3log Ω = (trχ)−1ρ , (3.27)

then in the whole region V (λ0, ν∗) the quantity (ρ−trχD3 log Ω) satisfy the
estimate: 30

sup
V (λ0,ν∗)

|r3|λ|γ(ρ−trχD3 log Ω)| ≤ cε0 . (3.28)

Using the result of Lemma 3.1 we obtain immediately with a simple appli-
cation of the Gronwall’s lemma, the following estimate for (trχ + trχ):

|r2− 2
p |λ|γ(trχ + trχ)|p,S(λ, ν) ≤ |r2− 2

p |λ|γ(trχ + trχ)|p,C(ν)∩Σ0
+ cε0 . (3.29)

and using the stronger assumptions on the initial data on Σ0 we obtain the
result, for p ∈ [2, 4],

|r2− 2
p |λ|γ(trχ + trχ)|p,S(λ, ν) ≤ cε0 . (3.30)

29In fact the terms which appear in [Good] behave better due to an extra |λ|
1
2 factor.

Definition 3.24 is nevertheless, sufficient.
30This estimate can be improved by a factor |λ|

1
2 .
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Exactly the same argument can be redone for the first tangential derivatives
obtaining, for p ∈ [2, 4],

|r3− 2
p |λ|γ∇/ (trχ + trχ)|p,S(λ, ν) ≤ cε0 . (3.31)

Using inequalities 3.30 and 3.31 together with the Sobolev inequality for the
sphere, see Lemma 4.1.3 of [Kl-Ni], we obtain

sup
V (λ,ν)

|r2|λ|γ(trχ + trχ)| ≤ cε0 . (3.32)

Proof of Lemma 3.1: It is in order to estimate (ρ−trχD3 log Ω) that we
are obliged to introduce a new canonical foliation on the last slice satisfying

D3log Ω = (trχ)−1ρ , (3.33)

see equation 2.1.31 We estimate (ρ−trχD3 log Ω) by deriving its evolution
equation along C(λ) using the structure equations, see [Kl-Ni] equations
(3.1.46),...,(3.1.48) of [Kl-Ni] and the null Bianchi equations. We obtain

∂

∂ν
(ρ−trχD3 log Ω) = ΩD4ρ−[Ω(D3 log Ω)D4trχ+ΩtrχD4D3 log Ω] . (3.34)

where ∂
∂ν = ΩD4. Recalling the explicit expression of the Bianchi equations,

see [Kl-Ni], equations (3.2.8) we have

ΩD4ρ = −3
2
Ωtrχρ + [div/ β − (− 1

2
χ̂ · α− ζ · β + 2η · β)]

= −3
2
Ωtrχρ + [Good] (3.35)

The second term in the right hand side of 3.34 can be written, using the
transport equation for trχ, as:

− [Ω(D3 log Ω)D4trχ+ΩtrχD4D3 log Ω]

= −Ωtrχ
(
−ρ− (D3 log Ω)(D4 log Ω) +

[
η · η − 2ζ2 − 2ζ · ∇/ log Ω

])
−ΩD3 log Ω

(
−1

2
trχ2 + trχ(D4 log Ω) + |χ̂|2

)
= −1

2
Ωtrχ(−trχD3 log Ω) + Ωtrχρ +

[
η · η − 2ζ2 − 2ζ · ∇/ log Ω + |χ̂|2

]
= −1

2
Ωtrχ(−trχD3 log Ω) + Ωtrχρ + [Good] (3.36)

31In [Kl-Ni] we were able to obtain 3.33 only asymptotically as ν → ∞. In order to
control the quantity (ρ−trχD3 log Ω) in the whole spacetime we are forced to make the
choice 3.33 on the last slice.
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Collecting 3.35 and 3.36, evolution equation 3.34 can be written as

∂

∂ν
(ρ−trχD3 log Ω) = −1

2
Ωtrχ(ρ− trχD3 log Ω) + [Good] (3.37)

where, in this case it is easy to see from the explicit expressions 3.35, 3.36,
that [Good] decays at least as O(r−4|λ|−(γ+ 1

2
)). Applying Gronwall’s lemma

we obtain

|r3− 2
p |λ|γ(ρ−trχD3 log Ω)|p,S(λ, ν)≤c|r3− 2

p |λ|γ(ρ−trχD3 log Ω)|p,S(λ, ν∗)+cε0 . (3.38)

In view of the canonicity of our double null foliation and observing that

(ρ−trχD3 log Ω) = −trχ(D3 log Ω−D3 log Ω)−(trχ−trχ)D3 log Ω
+(ρ−trχ D3 log Ω) (3.39)

= 2(ρ−trχ D3 log Ω) + [Good]

we conclude that, for p ∈ [2, 4],

|r3− 2
p |λ|γ(ρ−trχD3 log Ω)|p,S(λ, ν) ≤ cε0 (3.40)

Repeating exactly the same argument for the first tangential derivative∇/ (ρ−
trχD3 log Ω) one obtains the analogous estimate

|r4− 2
p |λ|γ∇/ (ρ−trχD3 log Ω)|p,S(λ, ν) ≤ cε0 (3.41)

and using both 3.40 and 3.41 together with Lemma 4.1.3 of [Kl-Ni] one
obtains the estimate for the sup norm,

sup
V (λ,ν)

|r3|λ|γ(ρ−trχD3 log Ω)| ≤ cε0 (3.42)

proving the lemma.

2) Estimate of ω + ω:

The result of Lemma 3.1 implies immediately the following relation:

ω = −(2trχ)−1ρ + O

(
1

r2|λ|γ
)

(3.43)

Using this relation we can estimate ω+ω from the estimate of (ω−(2trχ)−1ρ).
In fact

ω + ω =
(
ω − (2trχ)−1ρ

)
+ O

(
1

r2|λ|γ
)

(3.44)
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To estimate of
(
ω − (2trχ)−1ρ

)
we write the evolution equation for this

quantity along C(ν). We observe that, from equation (4.3.58) in [Kl-Ni],

D3ω = −1
2
D3D4 log Ω = − 1

2Ω
D3ΩD4 log Ω +

1
2
(D3 log Ω)D4 log Ω

= −(D3 log Ω)ω +
1
2
ρ− 1

2Ω
F̂ = −(D3 log Ω)ω − trχω + [Good]

= −(D3 log Ω)ω + trχω − (trχ + trχ)ω + [Good]
= −(D3 log Ω)ω + trχω + [Good] (3.45)

where F̂ ≡ 2Ωζ · ∇/ log Ω + Ω(η · η − 2ζ2).
From the structure equations and Bianchi equations, see [Kl-Ni], Chapter 3,

D3

(
−(2trχ)−1ρ

)
=

1
2

ρ

trχ2
(D3trχ)− 1

2trχ
D3ρ

=
(
−ω + O(

1
r2|λ|γ

)
)

1
trχ

D3trχ−
1

2trχ

(
−3

2
trχρ + [Good]

)
= −ω

1
trχ

D3trχ +
1

2trχ
3
2
trχρ +

[
O(

1
r2|λ|γ

)
1

trχ
D3trχ +

1
2trχ

[Good]
]

= −ω
1

trχ

(
−1

2
trχtrχ− (D3 log Ω)trχ + 2ρ−

[
χ̂ · χ̂− 2div/ ζ − 24/ log Ω− 2|η|2

])
+

1
2trχ

3
2
trχρ +

[
O

(
1

r2|λ|γ
)

1
trχ

D3trχ +
1

2trχ
[Good]

]
=

1
2
trχω + (D3 log Ω)ω − ω

1
trχ

2ρ +
1

2trχ
3
2
trχρ + [Good]

=
1
2
trχω + (D3 log Ω)ω − 1

2
(D3 log Ω)4ω − 3

2
trχω + [Good] (3.46)

Therefore

D3

(
−(2trχ)−1ρ

)
=

1
2
trχω − (D3 log Ω)ω − 3

2
trχω + [Good] (3.47)

= −trχω − (D3 log Ω)
(
−(2trχ)−1ρ

)
+ [Good]

which finally implies, together with 3.45,

D3

(
ω − (2trχ)−1ρ

)
= −(D3 log Ω)

(
ω − (2trχ)−1ρ

)
+ [Good] (3.48)

Repeating the same calculation for the first tangential derivatives, applying
again Gronwall’s lemma and using the initial data assumptions we conclude
that

sup
V (λ,ν)

∣∣∣r2|λ|γ
(
ω − (2trχ)−1ρ

)∣∣∣ ≤ cε0 (3.49)
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so that, together with 3.44, we obtain

sup
V (λ,ν)

∣∣∣r2|λ|γ (ω + ω)
∣∣∣ ≤ cε0 . (3.50)

Estimates 3.32 and 3.50 prove Proposition 3.1.

3.3 Error estimates

As we discussed in the previous section the terms which we have to take care
of in the error terms are those depending on ρ(R). Therefore we look at the
various terms appearing in Chapter 6 of [Kl-Ni], but focusing our attention
to the parts which depend on ρ(R).

3.3.1 Estimate of
∫
V(u,u)

τ2γ
− DivQ(L̂T0R)βγδ(K̄β, K̄γ , K̄δ)

This requires to estimate the following four integrals:32

B1 ≡
∫

V(u,u)

τ2γ
− τ6

+D(T0,R)444 , B2 ≡
∫

V(u,u)

τ2γ
− τ2

−τ4
+D(T0,R)344

B3 ≡
∫

V(u,u)

τ2γ
− τ4

−τ2
+D(T0,R)334 , B4 ≡

∫
V(u,u)

τ2γ
− τ6

−D(T0,R)333

As discussed in [Kl-Ni] the more delicate term is the first one, B1. To
estimate it we have to control the integrals:∫

V(u,u)

τ2γ
− τ6

+α(L̂T0R) ·Θ(T0,R) ,

∫
V(u,u)

τ2γ
− τ6

+β(L̂T0R) · Ξ(T0,R) (3.51)

Estimate of the B1 integrals

From the decomposition J(T0;R) = J1(T0;R) + J2(T0;R) + J3(T0;R), see
[Kl-Ni] Chapter 6, equation (6.1.6), it follows

Θ(T0,R) = Θ(1)(T0,R) + Θ(2)(T0,R) + Θ(3)(T0,R)
Ξ(T0,R) = Ξ(1)(T0,R) + Ξ(2)(T0,R) + Ξ(3)(T0,R)

We write the two integrals in 3.51 as sums of three terms:∫
V(u,u)

τ2γ
− τ6

+α(L̂T0R) ·Θ(T0,R) =
3∑

i=1

∫
V(u,u)

τ2γ
− τ6

+α(L̂T0R) ·Θ(i)(T0,R)

∫
V(u,u)

τ2γ
− τ6

+β(L̂T0R) · Ξ(T0,R) =
3∑

i=1

∫
V(u,u)

τ2γ
− τ6

+β(L̂T0R) · Ξ(i)(T0,R)

32We use here as extra weight factor τ2γ
− which is equivalent to |λ|2γ .
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Let us consider the first integral in the first line. Using the coarea formulas∫
V (u,u)

F =
∫ u

u0

du′
∫

C(u′)∩V (u,u)
F∫

V (u,u)
F =

∫ u

u0

du′
∫

C(u′)∩V (u,u)
F , (3.52)

Cauchy-Schwartz inequality and Theorem 2.3 we have∣∣∣∣ ∫
V(u,u)

τ2γ
− τ6

+α(L̂T0R) ·Θ(T0,R)(1)
∣∣∣∣

≤c

∫ u

u0

du′
(∫

C(u′;[u0,u])
|u|′2γu′6|α(L̂T0R)|2

) 1
2

(∫
C(u′;[u0,u])

|u′|2γu′6|Θ(1)(T0,R)|2
) 1

2

≤ cQ̃
1
2

∫ u

u0

du′
(∫

C(u′;[u0,u])
|u′|2γu′6|Θ(1)(T0,R)|2

) 1
2

(3.53)

We are left to prove that the remaining integral is bounded. The difference
from the corresponding situation in [Kl-Ni] is the presence of the factor
|u′|2γ . Recall that Θ(1)(T0,R) is quadratic, bilinear in the null Riemann
components and in structure coefficients which can be expressed in terms of
connection coefficients:

Θ(1)(T0,R) = Qr
[
(T0)m ; ∇/ α

]
+ Qr

[
(T0)n ; α4

]
+ Qr

[
(T0)j ; α3

]
+ Qr

[
(T0)i ; ∇/ β

]
+ Qr

[
(T0)m ; β4

]
+ Qr

[
(T0)m ; β3

]
+ Qr

[
(T0)m ; ∇/ (ρ, σ)

]
+ Qr

[
(T0)j ; (ρ4, σ4)

]
+ Qr

[
(T0)n ; (ρ3, σ3)

]
+ trχ

(
Qr
[
(T0)n ; α

]
+ Qr

[
(T0)m ; β

]
+ Qr

[
((T0)i, (T0)j) ; (ρ, σ)

]
+ Qr

[
(T0)m ; β

])
+ trχ

(
Qr
[
(T0)j ; α

]
+ Qr

[
(T0)m ; β

]
+ +Qr

[
(T0)n ; (ρ, σ)

])
+ l.o.t. .

From the definition of R̃ and the assumption R̃ ≤ ε0 it follows that all the
bounded norms of the null Riemann coefficients have an extra |u′|γ with the
exception of the norm relative to ρ. Therefore, for the terms in Θ(1)(T,W )
which do not contain ρ, analogous estimates to those of Chapter 6 of [Kl-Ni]
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hold, without even considering that the most of the connection coefficients
satisfy better decay estimates. Looking at the integral

∫ u

u0

du′
(∫

C(u′;[u0,u])
u′2γu′6|Θ(1)(T0,R)|2

) 1
2

and the expression of Θ(1)(T,R) we observe that ρ(R) appears only in

∫ u

u0

du′
(∫

C(u′;[u0,u])
|u′|2γu′6(trχ)2|((T0)i, (T0)j)|2|ρ(R)|2

) 1
2

(3.54)

Both terms (T0)i and (T0)j satisfy, as proved in Proposition 3.1, the estimate
3.22,

|r2|λ|γ((T0)i, (T0)j)|∞ ≤ cε0

from which it follows∫
C(u′;[u0,u])

|u′|2γu′6(trχ)2|((T0)i, (T0)j)|2|ρ(R)|2 (3.55)

≤ c

∫
du|u′|2γu′

8 1
r8

1
r4|u′|2γ

≤ c

∫
du

1
r4
≤ c

1
|u′|3

and, therefore,(∫
C(u′;[u0,u])

|u′|2γu′6(trχ)2|((T0)i, (T0)j)|2|ρ(R)|2
) 1

2

≤ c
1

|u′|
3
2

(3.56)

which is integrable in u′.
Remark: It is important to recognize that the term Qr

[
(T0)n ; (ρ, σ)

]
of

Θ(1)(T0,W ) is absent as (T0)n = 0. Indeed had we used the previous vector
field T , used in [Kl-Ni], we would have to deal with a contribution of the
form

∫ u

u0

du′
(∫

C(u′;[u0,u])
|u′|2γu′6(trχ)2|(T )n|2|ρ(R)|2

) 1
2

which would have been impossible to control.33

33In fact in this case, see again Chapter 3 of [Kl-Ni], (T )n = −4ω, and ω cannot acquire
a factor |λ|γ as its evolution equation depends on ρ as proved in Chapter 4 of [Kl-Ni].

28



Let us now examine the integrals∫
V(u,u)

τ2γ
− τ6

+α(L̂T0R) ·Θ(i)(T0,W )

for i ∈ {2, 3}. To control the integral with i = 2 we recall that

Θ(2)(T0,W ) = Qr
[
(T0)p3 ; α

]
+ Qr

[
(T0)p/ ; β

]
+ Qr

[
(T0)p4 ; (ρ, σ)

]
.

As the only terms to control are those with ρ(R), we are led to estimate the
integral ∫

C(u′;[u0,u])
τ2γ
− τ6

+|(T0)p4|2|ρ(R)|2 ≤ C0

∫
C(u′;[u0,u])

τ2γ
− |(T0)p4|2

where (T0)p4 has the following expression, see [Kl-Ni] Chapter 6, equations
(6.1.24),...,(6.1.26):

(T0)p4 = div/ (T0)m− 1
2
D/ 4

(T0)j+(2η + η + ζ)·(T0)m− χ̂· (T0)i− 1
2
trχ(tr(T0)i +(T0)j)

As already discussed, all the traceless deformation tensor components of
T0 do not depend on ρ(R) and therefore when estimated in terms of the
connection coefficients have the extra decay factor |λ|−γ which compen-
sates the factor τ2γ

− in the integral. Therefore the final estimate is exactly
the same as in [Kl-Ni]. The same holds for the part containing ρ(R) of∫
V(u,u)

τ2γ
− τ6

+α(L̂T0R)·Θ(3)(T0,W ):

∫
C(u′;[u0,u])

τ2γ
− τ6

+|Θ((T0)q)|2|ρ(R)|2 (3.57)

as follows immediately looking at the explicit expression of Θ((T0)q). We
have, therefore, proved that the error term∫

V(u,u)

τ2γ
− DivQ(L̂T0R)βγδ(K̄β, K̄γ , K̄δ)

is under control.

3.3.2 Estimate of
∫
V(u,u)

τ2γ
− Q(L̂T0R)αβγδ((K̄)παβK̄γK̄δ)

The argument is, in this case, very simple. Recall, as mentioned above, that
the null components of (K̄)παβ must contain terms which depend on ρ(R).
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This implies that, in our case not all the components of (K̄0)π̂ have the decay
factor |λ|−γ .
This is not a problem here as Q(L̂T0R)αβγδ is quadratic in the components
of the Riemann tensor L̂T0R. Indeed the Lie derivative L̂T0 cancels the
dependance on the ADM mass M .34 This implies that Q(L̂T0R)αβγδ comes
with a factor |λ|−2γ which compensates the τ2γ

− factor in the integral.
To see it in a more formal way we look at the relation between ρ(L̂T0R) and
DT0ρ(R). From Chapter 5 of [Kl-Ni] we have

ρ(L̂T0R) = DT0ρ(R)− 1
8
tr(T0)πρ(R)− 1

2

(
(T0)P a + (T0)Q

a

)
β(W )a

+
1
2

(
(T0)P a + (T0)Qa

)
β(W )a (3.58)

The term tr(T0)πρ(R) has a factor |λ|−γ due to tr(T0)π. The term DT0ρ(R)
has also the right behaviour as, in view of the null Bianchi equations,

DT0ρ(R) = Ω(D3ρ(R) + D4ρ(R)) = −3
2
(trχ + trχ)ρ(R) + ...... (3.59)

and we have already proved in Proposition 3.1 that (trχ+trχ) has the decay
factor |λ|−γ . The remaining terms have the same decay factor which allows
us to conclude that the error term

∫
V(u,u)

Q(L̂T0R)αβγδ((K̄)παβK̄γK̄δ) can

be bounded by cε0Q̃ as required. The next error terms to examine are∫
V(u,u)

τ2γ
− DivQ(L̂OW )βγδ(K̄βK̄γT δ)∫

V(u,u)

τ2γ
− Q(L̂OW )αβγδ((K̄)παβK̄γT δ)∫

V(u,u)

τ2γ
− Q(L̂OW )αβγδ((T0)παβK̄γK̄δ)

The argument to prove that these error terms behave correctly is similar to
the previous one. For the first integral one has to convince oneself that the
components (O)παβ have the right behaviour. This follows easily recalling
that in the Schwarzschild case the rotation vector fields are Killing. For
the second and the third integral it suffices to observe that ρ(L̂OR) does
not depend on M (the part depending on the ADM mass is spherically

34Indeed M is time independent.
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symmetric in the Schwarzschild case). Finally the remaining error terms∫
V(u,u)

τ2γ
− DivQ(L̂2

OR)βγδ(K̄βK̄γT δ
0 )∫

V(u,u)

τ2γ
− DivQ(L̂OL̂T0R)βγδ(K̄βK̄γK̄δ)∫

V(u,u)

τ2γ
− DivQ(L̂SL̂T0R)βγδ(K̄βK̄γK̄δ)∫

V(u,u)

τ2γ
− Q(L̂2

OR)αβγδ((K̄)παβK̄γT δ
0 )∫

V(u,u)

τ2γ
− Q(L̂2

OR)αβγδ((T0)παβK̄γK̄δ)∫
V(u,u)

τ2γ
− Q(L̂OL̂T0R)αβγδ((K̄)παβK̄γK̄δ)∫

V(u,u)

τ2γ
− Q(L̂SL̂T0R)αβγδ((K̄)παβK̄γK̄δ)

can be estimated in the same manner as there is always or a term L̂T0R or
L̂0R. The final conclusion is that the error term is bounded by cε0Q̃ and,
therefore, the Q̃ integral norms are bounded and Theorem 2.2 is proved.
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4 Proof of Theorem 2.3

We sketch in this section the proof of Theorem 2.3 which we restate here.

Theorem 2.3: Assume that Õ ≤ ε0, then the following inequality holds

R̃ ≤ cQ̃
1
2
K (4.1)

with c a positive constant.
We write explicitely some inequalities implicit in 4.1, which are used in
Section 6.

sup
K

r7/2|λ|γ |α| ≤ cQ̃
1
2
K , sup

K
r|λ|

5
2
+γ |α| ≤ cQ̃

1
2
K

sup
K

r7/2|λ|γ |β| ≤ cQ̃
1
2
K , sup

K
r2|λ|

3
2
+γ |β| ≤ cQ̃

1
2
K (4.2)

sup
K

r3|ρ| ≤ cQ̃
1
2
K , sup

K
r3|λ|

1
2
+γ |(ρ− ρ, σ)| ≤ cQ̃

1
2
K

|r3− 2
p |λ|2γ∇/ β|p,S ≤ cQ̃

1
2
K , |r4− 2

p |λ|
1
2
+γ∇/ (ρ, σ)|p,S ≤ cQ̃

1
2
K

‖r3|λ|1+γ∇/ 2β‖2,C(ν)∩V (λ,ν) ≤ cQ̃
1
2
K (4.3)

‖r4|λ|γ∇/ 2(ρ, σ)‖2,C(ν)∩V (λ,ν) ≤ cQ̃
1
2
K .

‖r2|λ|γα‖2,C(λ)∩V (λ,ν) ≤ cQ̃
1
2
K , ‖r2|λ|γβ‖2,C(λ)∩V (λ,ν) ≤ cQ̃

1
2
K

‖r2|λ|γβ‖2,C(ν)∩V (λ,ν) ≤ cQ̃
1
2
K

Proof: The proof follows exactly the argument used in the proof of the
corresponding result in [Kl-Ni], see Chapter 5. The only terms where one
has to pay special attention are, again, those involving ρ(R). They appear
for example through the formula, see [Kl-Ni] Chapter 5 page 211,

LOρ(W ) = ρ(L̂OW ) +
1
8
tr(O)πρ(W ) +

1
2

(O)P · β(W ) . (4.4)

The term tr(O)πρ(W ) decays, however, in the proper fashion relative to pow-
ers of |λ|. Indeed, in view of the Õ estimates, the (O)π factor can absorb the
|λ|γ factor as

|r|λ|γtr(O)π| ≤ cε0 , |r2|λ|γ∇/ tr(O)π| ≤ cε0 . (4.5)
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A similar argument can be done for the term (O)Pρ(W ) which appear in the
formula, see [Kl-Ni] Proposition 5.1.1,

L/ Oβ(W )a = β(L̂OW )a + (O)Cabβ(W )b −
3
4

(O)P aρ(W ) +
3
4
∈ab

(O)P bσ(W ) (4.6)

Again, in view of the Õ estimates, the (O)P a factor can absorb the |λ|γ factor
as the following estimates hold

|r|λ|γ(O)P | ≤ cε0 , |r2|λ|γ∇/ (O)P | ≤ cε0 . (4.7)
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5 Proof of Theorem 2.4

We discuss in this section Theorem 2.4 which we recall.
Theorem 2.4: Let the initial data be such that J̃

(q)
K (Σ0, g, k)<ε2, assume

that
Q̃K ≤ cQ̃Σ0∩K ; R̃ ≤ cQ̃

1
2
K

Then the following inequality holds

Õ≤cε (5.1)

We write explicitely some of the inequalities implicit in 5.1, relative to those
connection coefficients norms which will be used in the next section.

||λ|
1
2
+γr2−2/p(trχ− trχ)|p,S(λ, ν) ≤ cε

||λ|
1
2
+γr2−2/pχ̂|p,S(λ, ν) ≤ cε , ||λ|

1
2
+γr3−2/p∇/ χ̂|p,S(λ, ν) ≤ cε

|r2−2/p|λ|
1
2
+γη|p,S(λ, ν) ≤ cε , |r2−2/p|λ|

1
2
+γη|p,S(λ, ν) ≤ cε (5.2)

|r3−2/p|λ|
1
2
+γ∇/ η|p,S(λ, ν) ≤ cε , |r3−2/p|λ|

1
2
+γ∇/ η|p,S(λ, ν) ≤ cε

with p ∈ [2,∞] for the non derived coefficients, and p ∈ [2, 4] for the re-
maining ones. Moreover the following quantities, which can be expressed in
terms of the null connection coefficients, see [Kl-Ni] Chapter 3 and Chapter
6, satisfy the inequalities

|r2|λ|γ∇/ tr(O)π| ≤ cε , |r2|λ|γ∇/ (O)P | ≤ cε . (5.3)

Proof: The proof of this theorem follows precisely the same steps as the
corresponding one proved in Chapter 4 of [Kl-Ni], without any additional
complications.

To illustrate how the connection coefficients (except those different from
zero in Schwarzschild spacetime) get the additional decay factor |λ|−γ we
write schematically the main strategy of deriving the estimates for the first
derivatives of the connection coefficients used in [Kl-Ni] Chapter 4.
1.) We denote by M , M quantities, such as

U/ = Ω−1(∇trχ + trχζ), U/ = Ω−1∇trχ + trχζ

µ̃ = −div/ η +
1
2
(χ · χ− χ · χ)− (ρ− ρ̄)

µ̃ = −div/ η +
1
2
(χ · χ− χ · χ)− (ρ− ρ̄)
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which satisfy transport equations of the type,

∂M

∂ν
+ trχM = H ·M + R + [error] (5.4)

∂M

∂λ
+ trχM = H ·M + R + [error]

2.) We denote by H and H those connection coefficients, such as χ̂, η, χ̂, η
which are estimated through elliptic Hodge systems of the type

DH = R + M + [error] (5.5)
DH = R + M + [error]

and which are shown to be integrable, in the uniform norm.
3.) We denote by R any null curvature component.
4.) We denote by [error] all other terms, quadratic or highr order, which
appear in the precise equations.

To see that both the quantities M,M and connection coefficients acquire
the decay factors |λ|−γ we may assume, based on the previously established
estimates, that both the source terms R and the initial conditions on Σ0

have these decay factors. Then, solving the coupled system 5.4, 5.5, it is
very easy to check, by a standard bootstrap argument, that M and H have
the desired behaviour in the whole spacetime, provided that this holds true
for the last slice.

The only part which remains to check is, therefore, that the data on the
last slice C∗, for M and H have the right decay factor. This argument goes
exactly as the corresponding one in [Kl-Ni] where it was proved that the
“last slice data” have a factor τ

1/2
− if the foliation of C∗ is the canonical one.

The rigorous proof of it is in Chapter 7 of [Kl-Ni], see also [Ni]. The same
happens here with the new last slice canonical foliation.

We illustrate the above discussion by showing how to derive the estimates
for ∇/ trχ and ∇/ χ̂.

5.1 Estimate of ∇/ trχ and ∇/ χ̂

First we define the quantity

U/ = Ω−1∇/ trχ + Ω−1trχζ = U + Ω−1trχζ (5.6)

which, as discussed in [Kl-Ni] Chapter 4, satisfies the evolution equation

d

du
U/ a +

3
2
ΩtrχU/ a = Ωχ̂ · U/ −∇/ |χ̂|2 − trχβ + F̃/ a (5.7)
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where

F̃/ = −η|χ̂|2 + trχ χ̂ · η (5.8)

Integrating along C(ν), more precisely applying to 5.7 the Evolution Lemma
(Lemma 4.1.5) of [Kl-Ni], we obtain

|r3− 2
p U/ |p,S(u, u) ≤ c

(
|r3− 2

p U/ |p,S(u, u∗) (5.9)

+
∫ u∗

u
|r3− 2

p χ̂ · U/ |p,S +
∫ u∗

u
|r3− 2

p∇/ |χ̂|2|p,S +
∫ u∗

u
|r3− 2

p F̃/ |p,S

)
We then apply elliptic Lp estimates to the the Codazzi equation (3.1.47) of
[Kl-Ni], expressed relative to the tensor U/ ,

div/ χ̂ + ζ · χ̂ =
1
2
ΩU/ − β (5.10)

and derive, using the bootstrap assumptions,

|r3−2/p∇/ χ̂|p,S ≤ c
(
|r3− 2

p U/ |p,S + |λ|−( 1
2
+γ)ε

)
(5.11)

Therefore equation 5.9 can be rewritten, using 5.11 as

|r3− 2
p U/ |p,S(u, u) ≤ c

(
|r3− 2

p U/ |p,S(u, u∗)

+
1

|λ|
1
2
+γ

∫ u∗

u

1
r2

(
|r3− 2

p U/ |p,S + cε0
)

+
1

|λ|
1
2
+γ

∫ u∗

u
|r3− 2

p F̃/ |p,S

)
≤ c

(
|r3− 2

p U/ |p,S(u, u∗) +
1

|λ|
1
2
+γ

∫ u∗

u

1
r2

(
|r3− 2

p U/ |p,S + cε
))

(5.12)

neglecting the integral
∫ u∗
u |r3− 2

p F̃/ |p,S which contain the non linear term F̃/ .
Finally we apply the Gronwall inequality to 5.12 and obtain

|r3−2/pU/ |p,S(u, u) ≤ |r3− 2
p U/ |p,S(u, u∗) + cε

1

|λ|
1
2
+γ

From the assumption that the inequalities Õ ≤ cε are satisfied on the last
slice C(ν∗) the inequality

||λ|
1
2
+γr

3− 2
p U/ |p,S(u, u∗) ≤ cε (5.13)
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follows. This estimate, together with the previous elliptic Lp estimate ap-
plied to 5.10, implies, for p ∈ [2, 4],

||λ|
1
2
+γr3−2/p∇/ χ̂|p,S(u, u) ≤ cε

||λ|
1
2
+γr2−2/pχ̂|p,S(u, u) ≤ cε

completing the proof for χ̂. Using again the definition of U/ one obtains also
the estimate

||λ|
1
2
+γr3−2/p∇/ χ̂|p,S(u, u) ≤ cε (5.14)

We are left to proving estimate 5.13. To estimate on C(ν∗)

U/ = Ω−1∇/ trχ + Ω−1trχζ

we have to estimate first the asymptotic behaviour of ζ. The equation ζ
satisfies on C∗ is

D/ 3ζ + 2χ · ζ −D3∇/ log Ω = −β

In [Kl-Ni] we had that, on C∗, ζ satisfies the inequality

|r2−2/pτ
1
2
−ζ|p,S∗ ≤ cε

We have now better estimates for β following from better R̃ norms, in fact

β = O(r−2τ
3
2
+γ

− ). D3∇/ log Ω also has a better behaviour in view of the fact
that on C∗ D3 log Ω satisfies the elliptic equation

4/ (ΩD3 log Ω) = div/ F1 + G1 −G1 (5.15)

where F1 = Ωβ + F̃1 , F̃1 =
(

3
2
Ωη · χ̂ +

1
4
Ωηtrχ

)
G1 = H +

1
4
ΩD3(χ̂ · χ̂)− 1

2
(Ωtrχ)(ρ− ρ) +

1
4
(Ωtrχ)(χ̂ · χ̂− χ̂ · χ̂) .

and it follows immediately that

|r2− 2
p |λ|

3
2
+γ∇/D/ 3 log Ω|p,S ≤ cε (5.16)

(once that we have proved the behaviour for χ̂ and χ̂). Then once we have
proved 5.16 we have also proved the estimate for ζ

|r2−2/pτ
1
2
+γ

− ζ|p,S∗ ≤ cε . (5.17)
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An analogous estimate for ∇/ trχ can be easily obtained from its evolution
equation along C∗, see [Kl-Ni] chapter 7, equation 7.4.19. The estimate
for ζ, together with the analogous estimate for ∇/ trχ, allows to prove the
following inequality for U/ ,

||λ|
3
2
+γr

3− 2
p U/ |p,S(λ, ν∗) ≤ cε . (5.18)

which satisifies our request.
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6 Proof of the peeling properties

Using the results of Theorems 2.4 and 2.3 we give a detailed proof of the
peeling results discussed in the introduction. This result is a consequence
of the initial data assumptions needed to prove Theorems 2.4 and 2.3. We
formulate it in a slightly more general version:

Theorem 6.1 (Strong peeling properties)
Assume initial data sets {Σ0, g, k} satisfying the following conditions

gij − δij =
2M

r
δij + Oq+1(r−( 3

2
+γ))

kij = Oq(r−( 5
2
+γ)) (6.1)

with γ = 3
2 + ε, ε > 0 and

J̃
(q)
K (Σ0, g, k)<ε2 . (6.2)

Under these assumptions we prove that, depending on the choice of q in
J̃

(q)
K (Σ0, g, k), the following holds:

a) Along the outgoing null hypersurfaces C(λ) the following limits hold

q ≥ 3 lim
C(λ);ν→∞

rα = A(λ, ω) , lim
C(λ);ν→∞

r2β = B(λ, ω)

q ≥ 3 lim
C(λ);ν→∞

r3ρ = P (λ, ω) , lim
C(λ);ν→∞

r3σ = Q(λ, ω)

q ≥ 5 lim
C(λ);ν→∞

r4β = B(λ, ω) (6.3)

with A(λ, ω), B(λ, ω), P (λ, ω), Q(λ, ω), B(λ, ω) satisfying:

|A(λ, ω)| ≤ c(1 + |λ|)−( 5
2
+γ) ; |B(λ, ω)| ≤ c(1 + |λ|)−( 3

2
+γ)

|(P − P )(λ, ω)| ≤ c(1 + |λ|)−( 1
2
+γ) ; |(Q−Q)(λ, ω)| ≤ c(1 + |λ|)−( 1

2
+γ)

|B(λ, ω)| ≤ c(1 + |λ|)−(− 1
2
+γ) (6.4)

b) The Riemann components α and β satisfy the following estimates,
with ε′ < ε and C0 a positive constant depending on the initial data: 35

q = 3 sup
M̃
|r5− 2

p |λ|ε′α|p,S ≤ C0, p = 2 ; sup
M̃
|r4− 2

p |λ|1+ε′ |β| ≤ C0, p ∈ [2, 4]

35Hereafter we always assume ε′ < ε, wherever these two quantities appear.
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q = 4 sup
M̃
|r5− 2

p |λ|ε′α|p,S ≤ C0, p ∈ [2, 4] ; sup
M̃
|r4|λ|1+ε′ |β| ≤ C0 (6.5)

q = 5 sup
M̃
|r5|λ|ε′α| ≤ C0 ; sup

M̃
|r4|λ|1+ε′ |β| ≤ C0

Theorem 6.2 (Weak peeling properties) Assume initial data sets {Σ0, g, k}
satisfying the following conditions

gij − δij =
2M

r
δij + Oq+1(r−( 3

2
+γ))

kij = Oq(r−( 5
2
+γ)) (6.6)

with γ = 3
2 − δ, δ ∈ [0, 3

2) and

J̃
(q)
K (Σ0, g, k)<ε2 . (6.7)

Under these assumptions we prove that, depending on the choice of q in
J̃

(q)
K (Σ0, g, k), the following holds:

a) Along the outgoing null hypersurfaces C(λ) the following limits hold

δ ∈ [0,
3
2
) ; q ≥ 3 lim

C(λ);ν→∞
rα = A(λ, ω) , lim

C(λ);ν→∞
r2β = B(λ, ω)

δ ∈ [0,
3
2
) ; q ≥ 3 lim

C(λ);ν→∞
r3ρ = P (λ, ω) , lim

C(λ);ν→∞
r3σ = Q(λ, ω)

δ ∈ [0, 1) ; q ≥ 5 lim
C(λ);ν→∞

r4β = B(λ, ω) (6.8)

with A(λ, ω), B(λ, ω), P (λ, ω), Q(λ, ω), B(λ, ω) satisfying:

|A(λ, ω)| ≤ c(1 + |λ|)−(4−δ) ; |B(λ, ω)| ≤ c(1 + |λ|)−(3−δ)

|(P − P )(λ, ω)| ≤ c(1 + |λ|)−(2−δ) ; |(Q−Q)(λ, ω)| ≤ c(1 + |λ|)−(2−δ)

|B(λ, ω)| ≤ c(1 + |λ|)−(1−δ) (6.9)

b) The Riemann components α and β satisfy the following estimates, with
ε > 0:
Case 1: (q = 3)

δ = 0 ; sup
M̃

∣∣∣∣r5(log |λ|)ε

(log r)1+ε
α

∣∣∣∣
p=2,S

≤ C0 ; sup
M̃

∣∣∣∣r4|λ|β
∣∣∣∣
p,S

≤ C0 , p∈ [2, 4]
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δ ∈ (0, 1) ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
α

∣∣∣∣
p=2,S

≤ C0 ; sup
M̃

∣∣∣∣r4|λ|1−δβ

∣∣∣∣
p,S

≤ C0 , p∈ [2, 4] (6.10)

δ = 1 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
α

∣∣∣∣
p=2,S

≤ C0 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣
p,S

≤ C0 , p∈ [2, 4]

δ ∈ (1,
3
2
) ; sup

M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)2+ε
α

∣∣∣∣
p=2,S

≤ C0 ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
β

∣∣∣∣
p,S

≤ C0 , p∈ [2, 4]

Case 2: (q = 4)

δ = 0 ; sup
M̃

∣∣∣∣r5(log |λ|)ε

(log r)1+ε
α

∣∣∣∣
p,S

≤ C0 p∈ [2, 4] ; sup
M̃

∣∣∣∣r4|λ|β
∣∣∣∣ ≤ C0

δ ∈ (0, 1) ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
α

∣∣∣∣
p,S

≤ C0 p∈ [2, 4] ; sup
M̃

∣∣∣∣r4|λ|1−δβ

∣∣∣∣ ≤ C0 (6.11)

δ = 1 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
α

∣∣∣∣
p,S

≤ C0 p∈ [2, 4] ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0

δ ∈ (1,
3
2
) ; sup

M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)2+ε
α

∣∣∣∣
p,S

≤ C0 p∈ [2, 4] ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0

Case 3: (q = 5)

δ = 0 ; sup
M̃

∣∣∣∣r5(log |λ|)ε

(log r)1+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4|λ|β
∣∣∣∣ ≤ C0

δ ∈ (0, 1) ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4|λ|1−δβ

∣∣∣∣ ≤ C0 (6.12)

δ = 1 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0

δ ∈ (1,
3
2
) ; sup

M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)(2+ε)
α

∣∣∣∣ ≤ C0 ; sup
M̃

∣∣∣∣r(5−δ)(log |λ|)ε

(log r)1+ε
β

∣∣∣∣ ≤ C0

Proof of Theorem 6.1 (Strong peeling properties): We prove the
theorem assuming the lowest regularity for the metric we are able to handle,
that is q = 3. This is, in fact the more complicated case, the cases with
higher values of q follow immediately.
From the Bianchi equations, see (3.2.8) of [Kl-Ni], it follows that β satisfies,
along the incoming null hypersurface C(ν), the evolution equation

D/ 3β + trχβ = ∇/ ρ +
[
2ωβ + ?∇/ σ + 2χ̂ · β + 3(ηρ + ?ησ)

]
(6.13)
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which can be rewritten as
∂βa

∂λ
+ Ωtrχβa = 2Ωωβa + Ω

[
∇/ aρ + ?∇/ aσ + 2(χ̂ · β)a + 3(ηρ + ?ησ)a

]
(6.14)

where36 βa = β(ea) and, on scalar functions, ΩD/ 3 = ∂
∂λ . From this equation,

see Chapter 4 of [Kl-Ni], we obtain the following inequality, whose derivation
is in the appendix,

d

dλ
|r(2− 2

p
)
β|p,S ≤ ||2Ωω − (1− 1/p)(Ωtrχ− Ωtrχ)||∞|r(2− 2

p
)
β|p,S (6.15)

+ ‖Ω‖∞
(
|r(2− 2

p
)∇/ ρ|p,S + 3|r(2− 2

p
)
ηρ|p,S + |r(2− 2

p
)
F̃ |p,S

)
where F̃ (·) = 2χ̂ · β + (?∇/ σ + 3?ησ).37 Integrating along C(ν) we obtain

|r(2− 2
p
)
β|p,S(λ, ν) ≤ |r(2− 2

p
)
β|p,S(λ1)

+
∫ λ

λ1

||2Ωω − (1− 1/p)(Ωtrχ− Ωtrχ)||∞|r(2− 2
p
)
β|p,S(λ′, ν)

+‖Ω‖∞

(∫ λ

λ1

|r(2− 2
p
)∇/ ρ|p,S+3

∫ λ

λ1

|r(2− 2
p
)
ηρ|p,S+

1
2

∫ λ

λ1

|r(2− 2
p
)
F̃ |p,S

)

where λ1 = u|C(ν)∩Σ0
. In M̃ we have at least the following behaviour 38

‖Ωω‖∞ = O(r−1|λ|−1) and ‖Ωtrχ− Ωtrχ‖∞ = O(r−2|λ|−
1
2 ) .

Therefore we can apply the Gronwall’s Lemma obtaining:

|r2− 2
p β|p,S(λ, ν) ≤ c

(
|r2− 2

p β|p,S(λ1) + ‖Ω‖∞
∫ λ

λ1

|r2− 2
p∇/ ρ|p,S

+ 3
∫ λ

λ1

|r2− 2
p ηρ|p,S +

1
2

∫ λ

λ1

|r2− 2
p F̃ |p,S

)
(6.16)

and recalling that, due to Theorem 2.2, see also Chapter 4 of [Kl-Ni],
‖Ω‖∞ ≤ C, we will inglobe, hereafter, this factor in the constant c. Multi-
plying both sides by r2|λ|1+ε′ , with ε′ > 0, we obtain

|r4− 2
p |λ|1+ε′β|p,S(λ, ν) ≤ c

(
|r4− 2

p |λ|1+ε′β|p,S(λ1) (6.17)

36All the notations used in this paper without an explicit definition are those already
introduced in [Kl-Ni].

37The term ?∇/ σ + 3?ησ behaves better than the term ∇/ aρ + 3ηaρ and therefore we do
no write them.

38Consistent with the decay properties proved in [Kl-Ni]. In fact the estimate for the
second term are better concerning |λ|.
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+
∫ λ

λ1

|r4− 2
p |λ′|1+ε′∇/ ρ|p,S+3

∫ λ

λ1

|r4− 2
p |λ′|1+ε′ηρ|p,S+

1
2

∫ λ

λ1

|r4− 2
p |λ′|1+ε′F̃ |p,S

)
.

We examine the integral terms in 6.17 and prove that they are bounded
(uniformily in ν).

a)
∫ λ
λ1
|r4− 2

p |λ′|1+ε′∇/ ρ|p,S :

Inequality R̃ ≤ ε0 proved in Theorem 2.3, 39 implies the inequality

|r4− 2
p |λ|

1
2
+γ∇/ (ρ, σ)|p,S ≤ cε0 .

Substituting this inequality in the previous integral we obtain 40∫ λ

λ1

|r4− 2
p |λ′|1+ε′∇/ ρ|p,S ≤ cε0

∫ λ

λ1

1
|λ′|1+δ

≤ cε0 (6.18)

where δ = ε− ε′ > 0, recalling that γ = 3
2 + ε.

b)
∫ λ
λ1
|r4− 2

p |λ′|1+ε′ηρ|S,p:

In this case the decay of ρ is not improved by R̃ ≤ ε0 due to its connection
with the ADM mass. On the other side, in view of the estimate Õ ≤ cε ≤ cε0
proved in Theorem 2.2, η satisfies the following inequality, see 5.2,

|r2−2/p|λ|
1
2
+γη|p,S(λ, ν) ≤ cε0 , p ∈ [2,∞] . (6.19)

Using 6.19 it follows immediately∫ λ

λ1

|r4− 2
p |λ′|1+ε′ηρ|p,S ≤ cε0

∫ λ

λ1

1
r|λ′|1+δ

≤ cε0 . (6.20)

c)
∫ λ
λ1
|r4− 2

p |λ′|1+ε′F̃ |S,p:

From the expression F̃ (·) = ?∇/ σ + 3?ησ + 2χ̂ · β and the previous remark
concerning ?∇/ σ + 3?ησ, we have only to prove that∫ λ

λ1

|r4− 2
p |λ′|1+ε′χ̂β|S,p ≤ cε0 (6.21)

This is easy, as, from Theorems 2.3 and 2.4, we have

sup
M̃
|r2|λ|

3
2
+γβ| ≤ cε0 , ||λ|

1
2
+γr2−2/pχ̂|p,S ≤ cε0 .

39Hereafter we always assume ε0 small, but larger than cε.
40In this case δ > 0 is needed.
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Therefore ∫ λ

λ1

|r4− 2
p |λ′|1+ε′F̃ |p,S ≤ cε0 . (6.22)

Collecting all these estimates for the integrals in 6.17 we infer that

|r4− 2
p |λ|1+ε′β|p,S(λ, ν) ≤ c

(
|r4− 2

p |λ|1+ε′β|S,p(λ1) + ε0
)

(6.23)

and using the initial data assumptions,

|r4− 2
p |λ|1+ε′β|p,S(λ, ν) ≤ cε0 , p ∈ [2, 4] . (6.24)

To estimate α we need to estimate the | · |S,p=2 norm of ∇/ β. 41 This is the
content of the following lemma:

Lemma 6.1 Assume the initial data are such that J̃
(q)
K (Σ0, g, k)<ε2, q = 3,

and that the R̃, Õ norms satisfy

R̃ ≤ ε0 , Õ ≤ ε0 . (6.25)

Then ∇/ β satisfies the following inequality:

sup
M̃
|r5− 2

p |λ|1+ε′∇/ β|p=2,S ≤ cε0 (6.26)

Proof: See appendix.

The evolution equation for α on the incoming null hypersurface C(ν) is 42

D/ 3α +
1
2
trχα = ∇/ ⊗̂β +

[
4ωα− 3(χ̂ρ + ?χ̂σ) + (ζ + 4η)⊗̂β

]
(6.27)

which can be rewritten as

∂α

∂λ
+

1
2
Ωtrχα = 4Ωωα + Ω

[
∇/ ⊗̂β +

(
−3(χ̂ρ + ?χ̂σ) + (ζ + 4η)⊗̂β

)]
(6.28)

From this evolution equation we obtain, as shown in the appendix, the
inequality:

d

dλ
|α|2,S ≤ 4‖Ω‖∞|ω|∞|α|2,S + ‖Ω‖∞|∇/ ⊗̂β|2,S +

1
2
|F |2,S (6.29)

41It will be clear during the proof that we cannot obtain an estimate for |r4− 2
p α|p,S ,

with p > 2, under the limited regularity assumption q = 3.
42See equation (3.2.8) of [Kl-Ni].
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where |ω|∞ ≡ supS(λ,ν) |ω| , ‖Ω‖∞ = supM̃ |Ω| and

F = −3(χ̂ρ + ?χ̂σ) + (ζ + 4η)⊗̂β . (6.30)

Integrating along C(ν) we obtain

|α|2,S(λ, ν)≤|α|2,S(λ1)+4‖Ω‖∞
∫ λ

λ1

|ω|∞|α|2,S+‖Ω‖∞
∫ λ

λ1

|∇/ ⊗̂β|2,S+
1
2

∫ λ

λ1

|F |2,S

Multiplying by r
5− 2

p |p=2 = r4 we obtain

|r4α|2,S(λ, ν) ≤ |r4α|2,S(λ1) + 4‖Ω‖∞
∫ λ

λ1

|ω|∞|r4α|2,S

+ ‖Ω‖∞
∫ λ

λ1

|r4∇/ ⊗̂β|2,S+
1
2

∫ λ

λ1

|r4F |2,S

≤ |r4α|2,C(ν)∩Σ0
(λ1) + 4‖Ω‖∞

∫ λ

λ1

|ω|∞|r4α|2,S (6.31)

+

[
‖Ω‖∞

∫ λ

λ1

|r4∇/ ⊗̂β|2,S+
3
2
‖Ω‖∞

∫ λ

λ1

|r4χ̂ρ|2,S

]
+

1
2

∫ λ

λ1

|r4F̃ |2,S

where F̃ = ?χ̂σ + (ζ + 4η)⊗̂β .

An application of Gronwall’s lemma gives, recalling that, see Theorem 2.4,
|ω|∞ = O(r−1|λ|−1),

|r4α|2,S(λ, ν) ≤ c

(
|r4α|2,S(λ1) +

∫ λ

λ1

|r4∇/ ⊗̂β|2,S

+
3
2

∫ λ

λ1

|r4χ̂ρ|2,S +
1
2

∫ λ

λ1

|r4F̃ |2,S

)
(6.32)

This inequality requires to control
∫ λ
λ1
|r4∇/ ⊗̂β|S,2,

∫ λ
λ1
|r4χ̂ρ|S,2 and the in-

tegral
∫ λ
λ1
|r4F̃ |S,2. Let us examine them separately. The first integral is

bounded using the estimate 6.26 of lemma 6.1. In fact∫ λ

λ1

|r4∇/ ⊗̂β|S,2 ≤ cε0

∫ λ

λ1

1
|λ′|1+ε′

dλ′ ≤ cε0
1

|λ′|ε′
(6.33)

To control the second integral we use the estimate for χ̂ which follows from
the estimate Õ ≤ ε0, in Theorem 2.4,

||λ|
1
2
+γr2−2/pχ̂|p,S(λ, ν) ≤ ε0 ,
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obtaining ∫ λ

λ1

|r4χ̂ρ|2,S ≤ cε0

∫ λ

λ1

1

|λ′|
1
2
+γ

≤ cε0
1

|λ|1+ε
. (6.34)

The integral 1
2

∫ λ
λ1
|r4F̃ |S,2 is easier to control 43 and we do not report it here.

The conclusion is, therefore that the following inequality holds

sup
M̃
|r5− 2

p |λ|ε′α|p,S ≤ C0, p = 2 . (6.35)

Proof of Theorem 6.2 (Weak peeling properties):
We shall only give the proof in the simplest case q = 5. In this case the
initial data are sufficiently regular to allow us to control the pointwise norms
for the Riemann tensor components up to second order derivatives in the
whole spacetime. The extension to less regular initial data is immediate and
goes on the same lines of the proof of Theorem 6.1.

Recall that if we assume q = 5 the boundedness of the Q̃ norms imply
the following sup norm estimates for the various null components of the
Riemann tensor:

sup
M̃

r
7
2 |λ|γ |α| ≤ C0 , sup

M̃
r|λ|

5
2
+γ |α| ≤ C0

sup
M̃

r
7
2 |λ|γ |β| ≤ C0 , sup

M̃
r2|λ|

3
2
+γ |β| ≤ C0 (6.36)

sup
M̃

r3|ρ| ≤ C0 , sup
M̃

r3|λ|
1
2
+γ |(ρ− ρ, σ)| ≤ C0

Moreover they are supplemented with analogous pointwise estimates for the
first and second derivatives of the Riemann tensor obtained by the previous
ones just adding rk∇/ k in front of each null component with k ∈ [1, 2]. In
particular we obtain the following estimates for ∇/ kρ: 44

sup
M̃
|r3+k|λ|

1
2
+γ∇/ kρ| ≤ C0 (6.37)

43Only its first term 1
2

∫ λ

λ1
|r4χ̂σ|S,2 requires the estimate Õ ≤ ε0, the second one can be

estimated using the results in [Kl-Ni].
44C2

0 is a constant which bounds the Q̃ norms. We can pose C0 = cε.
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Using β and α evolution equations along an incoming null hypersur-
face C(ν), see 6.13, 6.27, we obtain, proceeding as before, with the help of
Gronwall’s lemma, the following inequalities:

|r2β|(λ, ν) ≤ c|r2β|C(ν)∩Σ0
+ c

∫ λ

λ1(ν)
|r2∇/ ρ|(λ′)dλ′ (6.38)

|rα|(λ, ν) ≤ c|rα|C(ν)∩Σ0
+ c

∫ λ

λ1(ν)
|r∇/ β|(λ′)dλ′ (6.39)

where all the norms are pointwise norms and we neglected all the (non
linear) terms with a better decay factor. Moreover, as done before in the
proof of the “Stronger peeling Theorem”, see the appendix, we have also
the following estimate for ∇/ β:

|r3∇/ β|(λ, ν) ≤ c|r3∇/ β|C(ν)∩Σ0
+ c

∫ λ

λ1(ν)
|r3∇/ 2ρ|(λ′)dλ′ (6.40)

The proof of the result is based on a systematic use of equations 6.38, 6.39,
6.40 for the various values of γ = 3

2 − δ, with δ ∈ [0, 3
2).

i) (δ = 0): From 6.37 we have |r4|λ|2∇/ ρ| ≤ C0 which used in 6.38 implies

|r2β|(λ, ν) ≤ c|r2β|C(ν)∩Σ0
+ c

(
sup
M̃
|r4|λ|2∇/ ρ|

)∫ λ

λ1(ν)

1
r2|λ′|2

dλ′

≤ c|r2β|C(ν)∩Σ0
+ cC0

1
r(λ, ν)2

(
1
|λ|

− 1
|λ1(ν)|

)
(6.41)

≤ c|r2β|C(ν)∩Σ0
+ cC0

1
r(λ, ν)2|λ|

(
1− |λ|

|λ1(ν)|

)
and, multiplying by r2|λ|,

|r4|λ|β|(λ, ν) ≤ c|r4|λ|β|C(ν)∩Σ0
+ cC0

(
1− |λ|

|λ1(ν)|

)
. (6.42)

From it we immediately infer, recalling the initial data assumptions that 45

|r4|λ|β|(λ, ν) ≤ cC0 , |r5|λ|∇/ β|(λ, ν) ≤ cC0 . (6.43)
45The second inequality is obtained repeating the same argument starting from 6.40.
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Given these estimates we apply them to the estimate for α, in inequality
6.39 which we multiply on both sides by r4(log r)−(1+ε) obtaining, 46

| r5

(log r)1+ε
α|(λ, ν) ≤ c| r5

(log r)1+ε
α|C(ν)∩Σ0

+ c

∫ λ

λ1(ν)
| r5

(log r)1+ε
∇/ β|dλ′

≤ c| r5

(log r)1+ε
α|C(ν)∩Σ0

+ c

(
sup
M̃
|r5|λ|∇/ β|

)∫ λ

λ1(ν)

1
|λ′|(log r)1+ε

dλ′

≤ c| r5

(log r)1+ε
α|C(ν)∩Σ0

+ cC0

∫ λ

λ1(ν)

1
|λ′|(log |λ′|)1+ε

dλ′ (6.44)

≤ c| r5

(log r)1+ε
α|C(ν)∩Σ0

+ cC0
1

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
Multiplying both sides by (log |λ|)ε and observing that (log |λ1|)ε ≥ (log |λ|)ε

we infer

|r
5(log |λ|)ε

(log r)1+ε
α|(λ, ν) ≤ c| r5

log r
α|C(ν)∩Σ0

+ cC0

(
1− (log |λ|)ε

(log |λ1|)ε

)
≤ cC0 , (6.45)

the last inequality following from the initial data assumptions.
Remark: Observe that from inequality 6.45

|r5α|(λ, ν) ≤ c|r
5(log r)ε

(log |λ|)ε
α|C(ν)∩Σ0

+ cC0
(log r)1+ε

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
, (6.46)

therefore, for any fixed ν,

lim
λ→λ1

|r5α|(λ, ν) ≤ c|r5α|C(ν)∩Σ0
≤ cC0 (6.47)

showing that the values on C(ν) approach continuosly the inital values on
Σ0.

ii) (δ ∈ (0, 1)): In this case the analogous of 6.41 and 6.42 are

|r2β|(λ, ν) ≤ c|r2β|C(ν)∩Σ0
+ c

(
sup
M̃
|r4|λ|2−δ∇/ ρ|

)∫ λ

λ1(ν)

1
r2|λ′|2−δ

dλ′

≤ c|r2β|C(ν)∩Σ0
+ cC0

1
r2|λ|1−δ

(
1− |λ|1−δ

|λ1(ν)|1−δ

)
(6.48)

and

|r4|λ|1−δ|β|(λ, ν) ≤ c|r4|λ|1−δβ|C(ν)∩Σ0
+ cC0

(
1− |λ|1−δ

|λ1(ν)|1−δ

)
(6.49)

46Observe that r4

(log r)1+ε is a decreasing function moving along C(ν) toward the future.
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From it we infer immediately, recalling the initial data assumptions, that

|r4|λ|1−δβ|(λ, ν) ≤ cC0 , |r5|λ|1−δ∇/ β|(λ, ν) ≤ cC0 . (6.50)

We use these inequalities to estimate α multiplying 6.39 by r4−δ(log r)−(1+ε),

| r5−δ

(log r)1+ε
α|(λ, ν) ≤ c| r5−δ

(log r)1+ε
α|C(ν)∩Σ0

+ c

∫ λ

λ1(ν)
| r5−δ

(log r)1+ε
∇/ β|(λ′)dλ′

≤ c| r5−δ

(log r)1+ε
α|C(ν)∩Σ0

+ c

(
sup
M̃
|r5|λ|1−δ∇/ β|(λ, ν)

)∫ λ

λ1(ν)

1
rδ|λ′|1−δ(log r)1+ε

dλ′

≤ c| r5−δ

(log r)1+ε
α|C(ν)∩Σ0

+ cC0
1

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
≤ cC0 , (6.51)

using in the last inequality the initial data assumptions. Observe that, as
before, the estimates on C(ν) are consistent with the inital values on Σ0. In
conclusion,

|r4|λ|1−δβ|(λ, ν) ≤ cC0 , |r
5−δ(log |λ|)ε

(log r)1+ε
α|(λ, ν) ≤ cC0 (6.52)

iii) (δ = 1): In this case an estimate analogous to 6.49 would be divergent.
Therefore we multiply 6.38 by r2(log r)1+ε obtaining∣∣∣∣ r4

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ c

∣∣∣∣ r4

(log r)1+ε
β

∣∣∣∣
C(ν)∩Σ0

+c

(
sup
M̃
|r4|λ|∇/ ρ|

)∫ λ

λ1(ν)

1
(log r)1+ε|λ′|

dλ′

≤ c

∣∣∣∣ r4

(log r)1+ε
β

∣∣∣∣
C(ν)∩Σ0

+ cC0
1

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
(6.53)

which implies∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ cC0 ,

∣∣∣∣r5(log |λ|)ε

(log r)1+ε
∇/ β

∣∣∣∣(λ, ν) ≤ cC0 (6.54)

Proceeding in the same way as before, we infer, multiplying 6.39 by r3(log r)−(2+ε),∣∣∣∣ r4

(log r)2+ε
α

∣∣∣∣(λ, ν) ≤ c

∣∣∣∣ r4

(log r)2+ε
α

∣∣∣∣
C(ν)∩Σ0

+ c

∫ λ

λ1(ν)
| r4

(log r)2+ε
∇/ β|dλ′

≤ c

∣∣∣∣ r4

(log r)2+ε
α

∣∣∣∣
C(ν)∩Σ0

+c

(
sup
M̃

∣∣∣∣r5(log |λ|)ε

(log r)1+ε
∇/ β

∣∣∣∣)∫ λ

λ1(ν)

1
r log r(log |λ′|)ε

dλ′

≤ c

∣∣∣∣ r4

(log r)2+ε
α

∣∣∣∣
C(ν)∩Σ0

+ cC0
1

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
. (6.55)
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Therefore∣∣∣∣r4(log |λ|)ε

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ cC0 ,

∣∣∣∣r4(log |λ|)ε

(log r)2+ε
α

∣∣∣∣(λ, ν) ≤ cC0 (6.56)

iv) (δ ∈ (1, 3
2)): The analogous of 6.42 is obtained multiplying 6.38 by

r2−τ (log r)−(1+ε)

∣∣∣∣ r4−τ

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ c

∣∣∣∣ r4−τ

(log r)1+ε
β

∣∣∣∣
C(ν)∩Σ0

+c

(
sup
M̃
|r4|λ|2−δ∇/ ρ|

)∫ λ

λ1(ν)

1
rτ |λ′|2−δ(log r)1+ε

dλ′ (6.57)

≤ c

∣∣∣∣ r4−τ

(log r)1+ε
β

∣∣∣∣
C(ν)∩Σ0

+ cC0
1

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
,

choosing τ = δ − 1. Therefore this implies∣∣∣∣r5−δ(log |λ|)ε

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ cC0 ,

∣∣∣∣r6−δ(log |λ|)ε

(log r)1+ε
∇/ β

∣∣∣∣(λ, ν) ≤ cC0 (6.58)

Proceeding for α as before, we multiply 6.39 by r4−σ(log r)−τ , obtaining∣∣∣∣ r5−σ

(log r)τ
α

∣∣∣∣(λ, ν) ≤ c

∣∣∣∣ r5−σ

(log r)τ
α

∣∣∣∣
C(ν)∩Σ0

+ c

∫ λ

λ1(ν)
| r5−σ

(log r)τ
∇/ β|dλ′

≤ c

∣∣∣∣ r5−σ

(log r)τ
α

∣∣∣∣
C(ν)∩Σ0

+c

(
sup
M̃

∣∣∣∣r5−(δ−1)(log |λ|)ε

(log r)1+ε
∇/ β

∣∣∣∣(λ, ν)
)
·

·
∫ λ

λ1(ν)

1
rσ−(δ−1)(log r)τ−(1+ε)(log |λ′|)ε

dλ′

≤ c

∣∣∣∣ r5−σ

(log r)τ
α

∣∣∣∣
C(ν)∩Σ0

+ cC0
1

(log |λ|)ε

(
1− (log |λ|)ε

(log |λ1|)ε

)
. (6.59)

choosing σ = δ , τ = 2 + ε. In conclusion we obtain∣∣∣∣r5−δ(log |λ|)ε

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ cC0 ;
∣∣∣∣r5−δ(log |λ|)ε

(log r)2+ε
α

∣∣∣∣(λ, ν) ≤ cC0 (6.60)

and, as before, the estimates on C(ν) are consistent with the inital values
on Σ0.
Remarks:
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a) Observe that the case δ = 3
2 implies, here, an estimate for α and β of

this kind:∣∣∣∣r 7
2 (log |λ|)ε

(log r)1+ε
β

∣∣∣∣(λ, ν) ≤ cC0 ;
∣∣∣∣r 7

2 (log |λ|)ε

(log r)2+ε
α

∣∣∣∣(λ, ν) ≤ cC0 (6.61)

different from the one in [Kl-Ni]. The difference is is due to the fact that
there we assumed, as initial conditions, that g and k behave as o(r−

3
2 ) and

o(r−
5
2 ) respectively, while, in the present case, γ = 3

2−δ = 0 implies that the
metric and second fundamental form on Σ0 behave as O(r−

3
2 ) and O(r−

5
2 ).

With this in mind the case in [Kl-Ni] is easily reobtained.
b) Looking at the evolution equation for β along the outgoing null hy-

persurface C(λ) it is also easy to realize that, proceeding as in [Kl-Ni],
Chapter 8, the sup estimates for α allow to proof the existence of the limit:
limC(λ);ν→∞ r4β, for δ < 1.
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7 Appendix

7.1 The R̃ norms.

The R̃ norms are straightforword modifications of the R norms introduced
in Chapter 3, subsection 3.5.2 of [Kl-Ni].
More precisely all norms defined in subsection 3.5.2 are modified as follows:
If the L2 integral norm consists of an integral along a null outgoing hyper-
surface C(λ) we just multiply the norm integrand by the factor |λ|2γ . If
the L2 integral norm consists of an integral along a null incoming hyper-
surface C(ν), the integrand has to be multiplied by the function |u|2γ . The
tangential derivatives present in these norms are up to order q − 1.
This recipe has to be applied for all the quantities except when the integrand
contains the Riemann component ρ without any tangential derivative.

7.2 The Õ norms.

These are also straightforward modifications of the O norms introduced in
subsection 3.5.3 of [Kl-Ni]. More precisely all the norms which are relative
to connection coefficients or their derivatives which are different from zero
in the Schwarzschild case are left unchanged. The remaining quantities are
modified multiplying them by the factor |λ|γ . The tangential derivatives
present in these norms are up to order q.

7.3 Proof of inequality 6.15

From the equation

∂βa

∂λ
+ Ωtrχβa = 2Ωωβa + Ω

[
∇/ aρ + ?∇/ aσ + 2(χ̂ · β)a + 3(ηρ + ?ησ)a

]
(7.1)

it follows that

∂|β|p

∂λ
= p|β|p−1 ∂|β|

∂λ
= p|β|p−2β · ∂β

∂λ

= p|β|p−2β ·
[
(−Ωtrχ + 2Ωω)β + Ω∇/ ρ + Ω

(
?∇/ σ + 2χ̂ · β + 3(ηρ + ?ησ)

)]
= p(−Ωtrχ + 2Ωω)|β|p + p|β|p−2Ωβ · ∇/ ρ + 3pΩ|β|p−2β · ηρ + pΩ|β|p−2β · F̃ (·)

where

F̃ (·) = ?∇/ σ + 2χ̂ · β + 3?ησ (7.2)
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Therefore

∂|β|p

∂λ
+ pΩtrχ|β|p = 2pΩω|β|p + p|β|p−2Ωβ · ∇/ ρ

+3pΩ|β|p−2β · ηρ + pΩ|β|p−2β · F̃ (·) . (7.3)

From the equation

d

dλ

(∫
S(λ,ν)

rσfdµγ

)
=
∫

S(λ,ν)
rσ
(

df

dλ
+(1 +

σ

2
)Ωtrχf

)
−λ

2

∫
S(λ,ν)

rσf(Ωtrχ− Ωtrχ) ,

choosing σ = p(2− 2
p), we obtain

d

dλ

(∫
S(λ,ν)

|r(2− 2
p
)
β|pdµγ

)
=
∫

S(λ,ν)
r
p(2− 2

p
)
(

∂|β|p

∂λ
+ pΩtrχ|β|p

)

−
p(2− 2

p)

2

∫
S(λ,ν)

|r(2− 2
p
)
β|p(Ωtrχ− Ωtrχ)

=
∫

S(λ,ν)
r
p(2− 2

p
)
(
2pΩω|β|p + p|β|p−2Ωβ · ∇/ ρ + 3pΩ|β|p−2β · ηρ + pΩ|β|p−2β · F̃ (·)

)
− (p− 1)

∫
S(λ,ν)

|r(2− 2
p
)
β|p(Ωtrχ− Ωtrχ) . (7.4)

Equation 7.4 can be rewritten as

d

dλ
|r(2− 2

p
)
β|pp,S = p|r(2− 2

p
)
β|p−1

p,S

d

dλ
|r(2− 2

p
)
β|p,S

=
∫

S(λ,ν)

(
2pΩω + (Ωtrχ− Ωtrχ)

)
|r(2− 2

p
)
β|p

+p

∫
S(λ,ν)

r
p(2− 2

p
)|β|p−2Ω

(
β · ∇/ ρ + 3β · ηρ + β · F̃ (·)

)
and applying Holder inequality, 47

d

dλ
|r(2− 2

p
)
β|p,S ≤ |2Ωω + p−1(Ωtrχ− Ωtrχ)|∞|r(2− 2

p
)
β|p,S (7.5)

+ ‖Ω‖∞
(
|r(2− 2

p
)∇/ ρ|p,S + 3|r(2− 2

p
)
ηρ|p,S + |r(2− 2

p
)
F̃ |p,S

)
47|f |∞ ≡ supS(λ,ν) |f | ; ‖f‖∞ ≡ supM̃ |f |.
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7.4 Proof of Lemma 6.1

Lemma 6.1 Assume the initial data are such that J̃
(q)
K (Σ0, g, k)<ε2, q = 3,

and that the R̃, Õ norms satisfy

R̃ ≤ ε0 , Õ ≤ ε0 . (7.6)

Then ∇/ β satisfies the following inequality:

sup
M̃
|r5− 2

p |λ|1+ε′∇/ β|p=2,S ≤ cε0 (7.7)

Proof: We derive the evolution equation for ∇/ β starting from the one for
β, see 6.13,

D/ 3∇/ β = [D/ 3,∇/ ]β +∇/D/ 3β = [D/ 3,∇/ ]β − trχ∇/ β

− (∇/ trχ)β +∇/
[
∇/ ρ + 2ωβ + ?∇/ σ + 2χ̂ · β + 3(ηρ + ?ησ)

]
which we rewrite as

D/ 3∇/ β + trχ∇/ β = [D/ 3,∇/ ]β + 2ω∇/ β +∇/∇/ ρ− (∇/ trχ)β + 2(∇/ ω)β

+ ∇/
[
?∇/ σ + 2χ̂ · β + 3(ηρ + ?ησ)

]
(7.8)

From the relation, proved in the appendix to Chapter 4 of [Kl-Ni],

[D/ 3,∇/ ]β = −1
2
trχ∇/ β − χ̂∇/ β − η · χ · β + χ(η · β)+(∇/ log Ω)D/ 3β+c ∗β · ∗β

where |c| = 1, we obtain

D/ 3∇/ β +
3
2
trχ∇/ β = 2ω∇/ β − χ̂∇/ β +∇/∇/ ρ +∇/ ?∇/ σ

+
[
−(∇/ trχ)β + 2(∇/ ω)β − η · χ · β + χ(η · β)

]
+∇/

[
2χ̂ · β + 3(ηρ + ?ησ)

]
+ c ∗β · ∗β

+∇/ log Ω ·
[
−trχβ +∇/ ρ +

(
2ωβ + ?∇/ σ + 2χ̂ · β + 3(ηρ + ?ησ)

)]
which we rewrite as

D/ 3∇/ β +
3
2
trχ∇/ β = (2ω − χ̂·)∇/ β + F (7.9)
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where

F = ∇/∇/ ρ +∇/ ?∇/ σ

+
[
2χ̂∇/ β + 3(η∇/ ρ + ?η∇/ σ) + (∇/ log Ω)(∇/ ρ + ?∇/ σ)

]
(7.10)

+
[
3∇/ η + 3(∇/ log Ω)η

]
ρ

+
{[

2(∇/ χ̂)β + 3(∇/ ?η)σ + (∇/ log Ω)
(
−trχβ + 2ωβ + 2χ̂ · β + ?ησ

)]
+

[
−(∇/ trχ)β + 2(∇/ ω)β − η(χ · β) + χ(η · β)

]
+ c ∗β ∗β

}
We apply to 7.9 Lemma 4.1.5 of [Kl-Ni] with p = 2 and obtain:

|r3− 2
p∇/ β|S,p=2(λ, ν) ≤ c

(
|r3− 2

p∇/ β|S,p=2(λ1) +
∫ λ

λ1

|r2F |S,2dλ′
)

(7.11)

where F is defined in 7.10. Multiplying both sides of this inequality by
r2|λ|1+ε′ we obtain

|r5− 2
p |λ|1+ε′∇/ β|S,p=2(λ, ν) ≤ c|r5− 2

p |λ|1+ε′∇/ β|S,p=2(λ1) (7.12)

+ c

∫ λ

λ1

|r4|λ′|1+ε′F |S,2dλ′

To prove that the integral in the right hand side is bounded we have to
examine the various terms in which it can be decomposed. They can be
collected in different groups.

a) The integrals with second partial derivatives of the Riemann tensor∫ λ

λ1

|r4|λ′|(1+ε′)∇/ 2ρ|S,2dλ′ ,

∫ λ

λ1

|r4|λ′|(1+ε′)∇/ 2σ|S,2dλ′ (7.13)

b) The integrals with first partial derivatives of the Riemann tensor∫ λ

λ1

|r4|λ′|(1+ε′)χ̂∇/ β|S,2dλ′ ,

∫ λ

λ1

|r4|λ′|(1+ε′)(η, η)∇/ (ρ, σ)|S,2dλ′ (7.14)

c) The integrals with no partial dervatives on the Riemann components.
Between these ones the integrals which depend on ρ require a specific atten-
tion as ρ is the only term whose decay cannot be improved in any way, due
to its connection to the ADM mass of Σ0.∫ λ

λ1

|r4|λ′|(1+ε′)(∇/ η)ρ|S,2dλ′ ,

∫ λ

λ1

|r4|λ′|(1+ε′)(∇/ log Ω)ηρ|S,2dλ′ (7.15)
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The remaining ones are easier; we collect them here and do not report their
estimates.∫ λ

λ1

|r4|λ′|(1+ε′)(∇/ χ̂ + (∇/ log Ω)χ̂) · β|S,2dλ′ ,∫ λ

λ1

|r4|λ′|(1+ε′)(∇/ η + (∇/ log Ω)η) · σ|S,2dλ′ ,

∫ λ

λ1

|r4|λ′|(1+ε′)(?β · ?β)|S,2dλ′∫ λ

λ1

|r4|λ′|(1+ε′)((∇/ log Ω)2ω +∇/ trχ) · β|S,2dλ′ ,

∫ λ

λ1

|r4|λ′|(1+ε′)(∇/ ω)β|S,2dλ′∫ λ

λ1

|r4|λ′|(1+ε′)η(χ · β)|S,2dλ′ ,

∫ λ

λ1

|r4|λ′|(1+ε′)χ(η · β)|S,2dλ′ (7.16)

The two integrals in 7.14 are the more delicate. To be estimated, they
have to be transformed to L2(C∗) integrals and then bounded using the Q̃
norms.48

∫ λ

λ1

|r4|λ′|(1+ε′)∇/ 2ρ|S,2dλ′ ≤
(∫ λ

λ1

|r4|λ′|2γ∇/ 2ρ|2S,2

) 1
2
(∫ λ

λ1

1
|λ′|1+2δ

) 1
2

≤ c

(∫
C(ν)

|r4|λ′|2γ∇/ 2ρ|2
) 1

2

≤cε0 (7.17)

The last term in the right hand side is controlled from the assumption R̃ ≤ ε0
of Lemma 6.1. Exactly the same estimate holds for the integral involving
the second tangential derivative of σ as at the tangential derivative level ρ
and σ behave in the same way.
Let us now examine the integrals with first derivatives of the null components
of the Riemann tensor. The first one, can be estimated as follows∫ λ

λ1

|r4|λ′|(1+ε)χ̂∇/ β|S,2dλ′ ≤
∫ λ

λ1

|r2|λ|
1
2 χ̂||r2|λ′|

3
2
+γ∇/ β|S,2

1
|λ|2+δ

dλ′

≤ c‖r2|λ|
1
2 χ̂‖∞ sup

M̃
|r2|λ|

3
2
+γ∇/ β|S,2 ≤ cε20 (7.18)

where in the last inequality we used the inequalities Õ ≤ ε0 and R̃ ≤ ε0.

Remark: This term behaves even better than we need. In fact to control
it we used the estimate |r2λ( 3

2
+γ)∇/ β|S,2 ≤ cε0 following from Theorem 2.3,

48It is important to note that this cannot be done for
∫

C(u)∩V (u,u)
|r4|λ′|(1+ε′)β|2. In

fact this would require some extra power of r in the Q̃ norms which is not allowed as these
norms would not be bounded. Viceversa this can be done for the integrals involving ρ and
σ as the power in r are already the correct ones.
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but we did not use the inequality Õ ≤ ε0 to control |r2|λ|
1
2 χ̂|∞ as the

estimates in [Kl-Ni] are sufficient. The same happens for the other integral
where we use the [Kl-Ni] estimates for η and η.∫ λ

λ1

|r4|λ′|(1+ε′)(η, η)∇/ (ρ, σ)|S,2dλ′

≤
∫ λ

λ1

|r2|λ′|
1
2 (η, η)||r3|λ′|

1
2
+γ∇/ (ρ, σ)|S,2

1
r|λ′|1+δ

dλ′

≤ c|r2|λ|
1
2 (η, η)|∞ sup

λ
|r3|λ|

1
2
+γ∇/ (ρ, σ)|S,2 ≤ cε20 (7.19)

In the third group integrals we consider the integral involving ρ:∫ λ

λ1

|r4|λ′|1+ε′ [3∇/ η + 3(∇/ log Ω)η]ρ|S,2

≤ c

(∫ λ

λ1

|r4|λ′|1+ε′(∇/ η)ρ|S,2dλ′ +
∫ λ

λ1

|r4|λ′|1+ε′(∇/ log Ω)ηρ|S,2dλ′
)

To prove that the first integral in the right-hand side is bounded, the [Kl-Ni]
estimates for ∇/ η are not enough and we have to use the estimate Õ ≤ ε0
and, more specifically, the estimate for ∇/ η provided by Theorem 2.4. We
have, for the first integral,∫ λ

λ1

|r4|λ′|1+ε′(∇/ η)ρ|S,2dλ′ ≤
∫ λ

λ1

|r3− 2
p |λ′|

1
2
+γ(∇/ η)|S,p=2|r3ρ|∞

1
r|λ′|1+δ

dλ′

≤ cε0

∫ λ

λ1

1
|λ′|1+δ

dλ′ ≤ cε0

For the second integral, viceversa, the [Kl-Ni] estimates for the connection
coefficients are sufficient. The remaining terms without derivatives for the
null components of the Riemann tensor are easier to estimate and we do not
report them here.

7.5 Proof of inequality 6.29

From the evolution equation 6.28

∂α

∂λ
+

1
2
Ωtrχα = 4Ωωα + Ω

[
∇/ ⊗̂β +

(
−3(χ̂ρ + ?χ̂σ) + (ζ + 4η)⊗̂β

)]
,

it follows that

∂|α|p

∂λ
= p|α|p−1 ∂|α|

∂λ
= p|α|p−2α · ∂α

∂λ
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= p|α|p−2α · (−1
2
Ωtrχ + 4Ωω)α + Ω∇/ ⊗̂β + F (·)) (7.20)

= p(−1
2
Ωtrχ + 4Ωω)|α|p + p|α|p−2Ωα · (∇/ ⊗̂β) + p|α|p−2α · F (·) .

and, immediately,

∂|α|p

∂λ
+

p

2
Ωtrχ|α|p = 4pΩω|α|p + p|α|p−2Ωα · (∇/ ⊗̂β) + p|α|p−2α · F (·) (7.21)

Recalling that

d

dλ

(∫
S(λ,ν)

rσ|α|pdµγ

)
=

∫
S(λ,ν)

rσ
(

∂|α|p

∂λ
+ (1 +

σ

2
)Ωtrχ|α|p

)
− σ

2

∫
S(λ,ν)

rσ|α|p(Ωtrχ− Ωtrχ) (7.22)

and choosing σ = p(1− 2
p) we obtain

d

dλ

(∫
S(λ,ν)

|r(1− 2
p
)
α|pdµγ

)
=
∫

S(λ,ν)
r
p(1− 2

p
)
(

∂|α|p

∂λ
+

p

2
Ωtrχ|α|p

)

−
p(1− 2

p)

2

∫
S(λ,ν)

|r(1− 2
p
)
α|p(Ωtrχ− Ωtrχ)

=
∫

S(λ,ν)
r
p(1− 2

p
)
(
4pΩω|α|p + p|α|p−2Ωα · (∇/ ⊗̂β) + p|α|p−2α · F (·)

)
−
(

p

2
− 1

)∫
S(λ,ν)

|r(1− 2
p
)
α|p(Ωtrχ− Ωtrχ) (7.23)

Choosing p = 2 we obtain

d

dλ
|α|2S,2 =

∫
S(λ,ν)

8Ωω|α|2 +
∫

S(λ,ν)
2Ωα · (∇/ ⊗̂β) +

∫
S(λ,ν)

α · F (·)

and, therefore,

2|α|S,2
d

dλ
|α|S,2 ≤ 8‖Ω‖∞|ω|∞

∫
S(λ,ν)

|α|2 + 2‖Ω‖∞
(∫

S(λ,ν)
|α|2

) 1
2
(∫

S(λ,ν)
|∇/ ⊗̂β|2

) 1
2

+
(∫

S(λ,ν)
|α|2

) 1
2
(∫

S(λ,ν)
|F |2

) 1
2

≤ 8‖Ω‖∞|ω|∞|α|2S,2 + 2‖Ω‖∞|α|S,2|∇/ ⊗̂β|S,2 + |α|S,2|F |S,2 (7.24)

and from it
d

dλ
|α|S,2 ≤ 4‖Ω‖∞|ω|∞|α|S,2 + ‖Ω‖∞|∇/ ⊗̂β|S,2 +

1
2
|F |S,2 .
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8 Open questions and developments.

The problem we would like to discuss is if it is possible to prove that the
spacetime we have produced and which satisfies the peeling properties is in
fact an asimptotically simple spacetime.
Some preliminary remarks have to be done.

First of all we recall that the global spacetime we have built in [Kl-Ni]
is not inextendible. In fact is defined outside the region of influence of a
compact set contained in the initial hypersurface Σ0. Therefore in partic-
ular while the null outgoing geodesics are complete this is not true for the
timelike null geodesics. this implies that in the language of the conformal
compactification we cannot reach the i+ infinity. Therefore to answer to the
question if our class of spacetimes (with initial conditions satisfying the peel-
ing theorem) we should, preliminary ”extend our spacetime to the internal
region” or more precisely extend the spacetime to its maximal development.

This is therefore the first thing to do. Probably this has to be done
mimicking the procedure for the interior region developed in [Ch-Kl] with
the main difference that in this case we have to define, starting from the time
line of the origin two null hypersurfaces foliations, one made by outgoing
null hypersurfaces and the other one made by incoming null hypersurfaces.
Of course we have not only to provide inside a double null foliation, but
we have to prove a global existence for a characteristic problem. Due to
the fact that we have to avoid caustics there is a problem in matching the
null hypersurfaces with initial data on the (extension) of the last slice and
those coming from the time line of the origin. Here we have to mimick the
procedure developed in [Ch-Kl].

Assume for the moment that this can be done, with the strongest initial
data on the characteristic cone CB, that is those data which are provided
from the initial data on Σ0 decaying so fast to guarantee the peeling. There
is still the problem of proving that also in this interior region we have the
peeling decay when we move along the outgoing cones. One would reason-
ably expect that this is what happens, but nevertheless the technique used
in the external region has, at least, be modified. The reason in very sim-
ple, when we cross the C0 cone, the one with vertex at the origin inside
it the function u(p) is no more negative. Therefore the argument which
allowed to add a factor |u|γ to the Bel-Robinson term and prove that the
correction to the error term is negative does not work anymore. Neverthe-
less to cure this problem it seems that the norm relative to the incoming
cone C(ν; [uC(ν)∩C0

, t0]) has to be multiplied by a factor |u− 2t0|γ which is
negative and contribute therefore, as before, to an extra error term which
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can be neglected and to the various Riemann components an extra factor
decay of the type |λ − 2t0|−γ which should be fine for the purpose to con-
trol again the integral on the internal part of C(ν) that is integral of the
type

∫ t0
0 dλ′ · ·· . Of course here t0 can be arbitrarily large. If this can be

achieved the remaining question is which is the asymptotic behaviour along
the timelike geodesics. This is not clear to me. from the initial data one
would expect something as t−5 or t−5−ε , but how this should be provided
is not evident. Once all this has been achieved one could start to try to
answer to the original question of the asymptotic simplicity.

Another approach for the interior could be the following one: Instead of
trying to solve a characteristic problem, just use the fact that we can extend
the solution a little inside CB and then reach an hyperboloidal hypersurface
tending asymptotically to CB. The data on the hyperboloidal are assigned
automatically, moreover this hypersurface in spacelike, therefore the local
existence is easier (see Friedrich). Then one has to repeat the argument of
the double null foliation and of the right factor which multiplies the Bel-
Robinson tensor. Again also in this case the existence proof must be of the
bootstrap type: one start with a small portion of hyperboloidal obtains a
local existence and then prove that it is possible to extend. It is possible
that this result can be based on already known results. First one has to
prove, or see if it has already been proved, that it is possible to prove the
existence of a hyperboloidal hypersurface between, let us say CB and CB′

with B′ ⊂ B, second, if this is possible, to show how to extend on it the
“initial data” and finally if with this setting a global existence proof can be
obtained perhaps using the CMC foliation.

Another thing to do is prove that the same method used by Christodoulou
for the initial data provides initial data with stronger decay. Check if this
is true, if not how can we proceed?

Another approach to study the internal problem should be the follow-
ing one: one starts from the well known fact thatin the “external” part of
M we have also a foliation in terms of space hypersurfaces which are near to
maximal ones. Therefore one should envisage in the interior a foliation which
has the right boundary properties, which are the two dimensional surfaces
which foliate C(λ0). The choice of the foliation implies a choice of the gauge
and, therefore we have the Einstein equations on these spacetimes leaves
plus some “gauge equations” which make the leaves fitting correctly with
the outside spacelike hypersurfaces. then one has to put the Einstein equa-
tions in a hyperbolic form and then, probably the approach of Christodoulou
and Klainerman could be followed.
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