ROUGH SOLUTIONS OF THE EINSTEIN-VACUUM EQUATIONS

SERGIU KLAINERMAN AND IGOR RODNIANSKI

ABSTRACT. This is the first in a series of papers in which we initiate the study
of very rough solutions to the initial value problem for the Einstein vacuum
equations expressed relative to wave coordinates. By very rough we mean
solutions which cannot be constructed by the classical techniques of energy
estimates and Sobolev inequalities. Following [KI-Ro] we develop new analytic
methods based on Strichartz type inequalities which results in a gain of half a
derivative relative to the classical result. Our methods blend paradifferential
techniques with a geometric approach to the derivation of decay estimates.
The latter allows us to take full advantage of the specific structure of the
Einstein equations.

1. INTRODUCTION

We consider the Einstein Vacuum equations,

Ras(g) =0 (1)
where g is a four dimensional Lorentz metric and R,g its Ricci curvature tensor.
In wave coordinates x®,

1
Oga® = 0u(8" [gl0,)2* =0, (2)
the Einstein vacuum equations take the reduced form, see [Br], [H-K-M].
8702058 = Nuv (8, 08) (3)

with IV quadratic in the first derivatives 0g of the metric. We consider the initial
value problem along the spacelike hyperplane ¥ given by ¢t = 2° = 0,

Vgas(0) € H*H(Z), 0i8as(0) € H'(D) (4)

with V denoting the gradient with respect to the space coordinates z?, i = 1,2,3
and H?® the standard Sobolev spaces. We also assume that g,3(0) is a continuous
Lorentz metric and

sup |803(0) —mup| — 0 as r — oo, (5)

|z|=r
where |z| = (7, |#7|?)? and m,s the Minkowski metric.
The following local existence and uniqueness result (well posedness) is well known

(see [H-K-M] and the previous result of Ch. Bruhat [Br] for s > 4.)
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Theorem 1.1. Considered the reduced equation (3) subject to the initial conditions
(4) and (5) for some s > 5/2. Then there exists a time interval [0,T] and unique(
Lorentz metric) solution g € C°([0,T] x R®), dg,, € C°([0,T); H*™') with T de-
pending only on the size of the norm ||08,u(0)||gs-1. In addition condition (5)
remains true on any spacelike hypersurface Xy, i.e. any level hypersurface of the
time function t = x°.

We establish a significant improvement of this result bearing on the issue of minimal
regularity of the initial conditions:

Main Theorem Consider a classical solution of the equations (3) for which (1)
also holds!. We show? that the time T of existence depends in fact only on the size
of the norm ||0g,, (0)||gs-1, for any fixed s > 2.

Remark 1.2. Theorem 1.1 implies the classical local existence result of [H-K-M]
for asymptotically flat initial data sets ¥, g,k with Vg,k € H*~'(X) and 5 > 3,
relative to a fixed system of coordinates. Uniqueness can be proved for additional
regularity s > 1+ 2. We recall that an initial data set (X, g, k) consists of a three
dimensional complete Riemannian manifold (X, g), a 2-covariant symmetric tensor
k on X verifying the constraint equations:
ijij - Vz trk =0
R — |k)? + (trk)* = 0

where V is the covariant derivative, R the scalar curvature of (¥,g). An initial
data set is said to be asymptotically flat (AF) if there exists a system of coordinates
(2,22, 23) defined in a neighborhood of infinity® on ¥ relative to which the metric
g approaches the Euclidean metric and & approaches zero*

Remark 1.3. The Main Theorem ought to imply existence and uniqueness® for ini-
tial conditions with H?®, s > 2, regularity. To achieve this we only need to approx-
imate a given H® initial data set( i.e. Vg € H* (X),k € H*1(X), s > 2) for
the Einstein vacuum equations by classical initial data sets, i.e. H s' data sets with
s’ > g, for which theorem 1.1 holds. The Main Theorem allows us to pass to the
limit and derive existence of solutions for the given, rough, initial data set. We
don’t know however if such an approximation result for the constraint equations
exists in the literature.

'In other words for any solution of the reduced equations (3) whose initial data satisfy the con-
straint equations, see [Br] or [H-K-M]. The fact that our solutions verify (1) plays a fundamental
role in our analysis.

2We assume however that T stays sufficiently small, e.g. T < 1. This a purely technical
assumption which one should be able to remove.

3We assume, for simplicity, that ¥ has only one end. A neighborhood of infinity means the
complement of a sufficiently large compact set on X.

4Because of the constraint equations the asymptotic behavior cannot be arbitrarily prescribed.
A precise definition of asymptotic flatness has to involve the ADM mass of (2,g). Taking the
mass into account we write g;; = (1 + %)6”‘ +o(r~1) as r = /(a1)2 + (22)2 + (23)2 — oo. .
According to the positive mass theorem M > 0 and M = 0 implies that the initial data set is flat.
Because of the mass term we cannot assume that g — e € L2(X), with e the 3D Euclidean metric.

5Properly speaking uniqueness holds, with s > 2, only for the reduced equations. Uniqueness
for the actual Einstein equations requires one more derivative, see [H-K-M].
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For convenience we shall also write the reduced equations (3) in the form
870,030 = N($,09) (6)
where ¢ = (gul/); N = N, and gaB = ga6(¢)_

Expressed relative to the wave coordinates x® the spacetime metric g takes the
form:

g = —n’dt® + g;;(dz’ + vidt)(da’ + vIdt) (7)
where g;; is a Riemannian metric on the slices ¥, given by the level hypersurfaces
of the time function ¢t = 2%, n is the lapse function of the time foliation, and v is
a vector-valued shift function. The components of the inverse metric g*° can be
found as follows:

00 —2 01

g¥’=-n? g"=n7?

VZ, gzg — gz] _ Il72VZVJ.

In view of the Lorentzian character of g and the spacelike character of the hyper-
surfaces X,

clé]? < gi; €€ < HEP, c<n®—|v[ (8)
for some ¢ > 0.
The classical local existence result for systems of wave equations of type (6) is based

on energy estimates and the standard H® C L Sobolev inequality. Indeed using
energy estimates and simple commutation inequalities one can show that,

106(D)l| rs—1 < E||0G(0)|| e 9)

with a constant F,

E = exp (c / t ||a¢<7>||L;odr) (10)

By the classical Sobolev inequality,
E <exp <C’t sup ||8¢(T)||Hs1d7'>
0<r<t

provided that s > % The classical local existence result follows by combining this
last estimate, for a small time interval, with the energy estimates (9).

This scheme is very wasteful. To do better one would like to take advantage of
the mixed L}L$° norm appearing on the right hand side of (10). Unfortunately
there are no good estimates for such norms even when ¢ is simply a solution of the
standard wave equation

O¢ =0 (11)
in Minkowski space. There exist however improved regularity estimates for solutions

of (11) in the mixed L?LS° norm . More precisely, if ¢ is a solution of (11) and
€ > 0 arbitrarily small,

100l L21.2 (10,11xR3) < CT[|0G(0)]| g1+ (12)
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Based on this fact it was reasonable to hope that one can improve the Sobolev
exponent in the classical local existence theorem from s > % to s > 2. This can be
easily done for solutions of semilinear equations, see [Po-Si]. In the quasilinear case,
however, the situation is far more difficult. One can no longer rely on the Strichartz
inequality (12) for the flat D’Alembertian in (11); we need instead its extension to
the operator g’ 0n0p appearing in (6). Moreover, since the metric g®? depends
on the solution ¢, it can have only as much regularity as ¢ itself. This means that
we have to confront the issue of proving Strichartz estimates for wave operators
g*%0,05 with wvery rough coefficients g®®. This issue was recently addressed in
the pioneering works of Smith[Sm], Bahouri-Chemin [Ba-Ch1], [Ba-Ch2] and Tataru
[Tal], [Ta2], we refer to the introduction in [K11] and [KI-Ro] for a more thorough
discussion of their important contributions.

The results of Bahouri-Chemin and Tataru are based on establishing a Strichartz
type inequality, with a loss, for wave operators with very rough coefficients®. The
1

optimal result” in this regard, due to Tataru, see [Ta2], requires a loss of 0 = .

This leads to a proof of local well posedness for systems of type (6) with s > 2+ %.

To do better than that one needs to take into account the nonlinear structure of
the equations. In [KI-Ro] we were able to improve the result of Tataru by taking
into account not only the expected regularity properties of the coefficients g*?
in (6) but also the fact that they are themselves solutions to a similar system of
equations. This allowed us to improve the exponent s, needed in the proof of well
posedness of equations of type® (6), to s > 2 + # Our approach was based
on a combination of the paradifferential calculus ideas, initiated in [Ba-Chl] and
[Ta2], with a geometric treatment of the actual equations introduced in [K11]. The
main improvement was due to a gain of conormal differentiability for solutions to
the Eikonal equations

H*dudzu = 0 (13)

where the background metric H is a properly microlocalized and rescaled version
of the metric g*? in (6). That gain could be traced down to the fact that a certain
component of the Ricci curvature of H has a special form. More precisely denoting
by L' the null geodesic vectorfield associated to u, L' = —H*?05ud,, and rescaling
it in an appropriate fashion®, I = bL', we found that the Ry; =Ric(H)(L, L),
verifies the remarkable identity:

1
Ry, = L(z) — EL”L”(HD‘BE)Q%HW) +e (14)

where z < O(|0H|) and e < O(|0H|?). Thus, apart from L(z) which is to be
integrated along the null geodesic flow generated by L, the only terms which depend

6The derivatives of the coefficients g are required to be bounded in L HE L and L?Lg" norms,
with s compatible with the regularity required on the right hand side of the Strichartz inequality
one wants to prove.

"Recently Smith-Tataru [Sm-Ta] have shown that the result of Tataru is indeed sharp.

8The result in [KI-Ro] applies to general equations of type (6) not necessarily tied to (1). In
[K1-Ro] we have also made the simplifying assumptions n = 1 and v = 0.

9such < L,T >g= 1 with T is the unit normal to the level hypersurfaces T associated to the
time function ¢,
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of the second derivatives of H appear in H*?9,03 H and can therefore be eliminated
with the help of the equations (6).

In this paper we develop the ideas of [KI-Ro] further by taking full advantage
of the Einstein equations (1) in wave coordinates (6). An important aspect of our
analysis here is that the term L(z) appearing on the right hand side of (14) vanishes
identically. We make use of both the vanishing of the Ricci curvature of g and the
wave coordinate condition (2). The other important new features are the use of
energy estimates along the null hypersurfaces generated by the optical function u
and a more efficient use of the conormal properties of the null structure equations.

Our work is divided in three parts. In this paper we give all the details in the proof of
the Main Theorem with the exception of those results which concern the asymptotic
properties of the Ricci coefficients( the Asymptotics Theorem), the isoperimetric
and trace inequalities on 2-surfaces. We give precise statements of these results in
section 4. Our second paper [KI-Ro2] is dedicated to the proof of the Asymptotics
Theorem. The isoperimetric and trace inequalities together with some other results
needed in [KI-Ro2] are proved in our third paper [KI-Ro3].

We strongly believe that the result of our main theorem is not sharp. The critical
Sobolev exponent for the Einstein equations is s. = % A proof of well posedness
for s = s. will provide a much stronger version of the global stability of Minkowski
space than that of [Ch-Kl]. This is completely out of reach at the present time. A
more reasonable goal, at the present time, is to prove the L?- curvature conjecture,
see [K12], corresponding to the exponent s = 2.

2. REDUCTION TO DECAY ESTIMATES

The proof of the main theorem can be reduced to a microlocal decay estimate.
The reduction is standard'®; we quickly review here the main steps. The precise
statements and their proofs are given in section 8.

e FEnergy estimates
Assuming that ¢ is a solution!! of (6) on [0,7] x R® we have the apriori
energy estimate:

106115 remr < ClOGO)yems (15)

with a constant C' depending only on ||¢||ree 1 and [|06||11  peo.

[0,7] "= [o,71"=
e Strichartz estimate To prove our Main Theorem we need, in addition to (15)
an estimate of the form:

100llL1, e < ClI0G(0)]| a1

[0,7]"=

0gee [KI-Ro] and the references therein
i e. a classical solution according to theorem 1.1.
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for any s > 2. We accomplish it by establishing a Strichartz type inequality
of the form,

109112

[0,7]

e < Cll06(0)] 4+ (16)

with any fixed v > 0. We achieve this with the help of a bootstrap argument.
More precisely we make the assumption,

Bootstrap Assumption

100l1255, e+ + 19613, , 1= < Bo, ()

and use it to prove the better estimate;
10613, , 1 < C(Bo) T, (18)
for some § > 0. Thus, for sufficiently small T > 0, we find that (16) holds

true.
e Proof of the Main Theorem
This can be done easily by combining the energy estimates with the Strichartz
estimate stated above.
e Dyadic Strichartz Estimate
The proof of the Strichartz estimate can be reduced to a dyadic version
for each ¢* = P\¢, A sufficiently large'?, where Py is the Littlewood-Paley
projection on the space frequencies of size A € 2%.

106122 12 < C(Bo) exT° (|06l it

0,7]
with Z)‘ C)\ S 1.
e Dyadic linearization and time restriction

Consider the new metric g<x = P<x8 = }_,<s-mpy P8, for some suffi-
ciently large constant My > 0, restricted to a subinterval I of [0,T7] of size
|I| = TA=8¢ with €y > 0 fixed such that v > 5¢5. Without loss of generality'?
we can assume that I = [0,7]. Using an appropriate( now standard, see
[Ba-Chl], [Ta2], [Kl1], [KI-Ro]) paradifferential linearization together with
the Duhamel principle we can reduce the proof of the dyadic Strichartz esti-
mate mentioned above to a homogeneous Strichartz estimate for the equation

82102051 =0,
with initial conditions at ¢t = 0 verifying,
271N™ <[V (0)lLz < (2°X)™ (|09 (0)]]z-
There exists a sufficiently small § > 0, 5¢9 + § < 7, such that
1Py ¢l 1225 < C(Bo) T°10(0) || 145 (19)
e Rescaling
Introduce the rescaled metric'*
Hiy(tz) =gaa(A ', A1)

12The low frequencies are much easier to treat.

131n view of the translation invariance of our estimates.
Y41y is a Lorentz metric for A > A with A sufficiently large. See the discussion following

(135) in section 8.
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and consider the rescaled equation
H( 04031 = 0
in the region [0, ] x R® with ¢, < A!=8¢ Then, with P = P,
1P 8|20 < C(Bo) t21|00(0)]l 2

would imply the estimate (19).
e Reduction to an L' — L™ decay estimate
The standard way to prove a Strichartz inequality of the type discussed
above is to reduce it, by a TT* type argument, to an L' — L® dispersive type
inequality. The inequality we need, concerning the initial value problem

1 o
Oy = ——=0a (H) /|1 Hix) | 959) =0,

VIH (| )

with data at ¢t = to has the form,

: )= +d(t)> Z IV 04 (to) || 2

1P O(t)||e < Cﬁ@(w
k=0

for some integer m > 0.
e Final reduction to a localized L? — L™ decay estimate
We state this as the following theorem:

Theorem 2.1. Let ¢ be a solution of the equation,
DH(A)dJ =0 (20)

on the time interval [0,t.] with t. < \178¢ Agssume that the initial data is given

at t = to € [0,t.], supported in the ball B, (0) of radius % centered at the origin.

We fix a large constant A > 0 and consider only the frequencies X\ > A. There
1

eists a function d(t), with t?||d||peo,e.)) < 1 for some q > 2 sufficiently close to
2, an arbitrarily small § > 0 and a sufficiently large integer m > 0 such that for all
t €1[0,t.],

1P aw(t) e < O(Bo>(

1 m
O+t © d(f)) I; IV 8¢ (to)ll 12

(21)

Remark 2.2. In view of the proof of the Main Theorem presented above, which relies
on the final estimate (18), we can in what follows treat the bootstrap constant By as
a universal constant and bury the dependence on it in the notation < we introduce
below.

Definition 2.3. We use the notation A < B to express the inequality A < CB
with a universal constant, which may depend on By and various other parameters
depending only on By introduced in the proof.

The proof of theorem 2.1 relies on a generalized Morawetz type energy estimate
which will be presented in the next section. We shall in fact construct a vector-
field, analogous to the Morawetz vectorfield in the Minkowski space, which depends
heavily on the “background metric” H = H(y). In the next proposition we display
most of the main properties of the metric H which will be used in the following
section.



8 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Proposition 2.4 (Background estimates). We fix the region [0,t.] x R®, with t, <
AL =8¢ where the original Einstein metric'® g = g(¢) verifies the bootstrap assump-
tion (17). The metric

H(t,l‘) = H(A) (t,l‘) = P<>\g(/\_1t7 /\_11‘) (22)
can be decomposed relative to our spacetime coordinates.
H = —n?dt* + h;j(dz' + v'dt) ® (da? + v’ dt) (23)

where n and v are related to n, v according to the rule (22). The metric components
n,v, and h satisfy the conditions

clé]? < hy€'e? < e, P =i > e>0, |nf o] < (24)

In addition, the derivatives of the metric H verify the following:
10 H Ly, e S AT, (25)
10" ™ H gz, pe SATET, (26)
||al+mH||Lf’5"i*]L§° 5 )\*%*460, (27)

1 1
||V%+m(aH)||L[05>t ]Li S >\7m fOT‘ — 5 S m S 5 + 460 (28)

1

IV @ H)llng, 12 SA 240 for — o +dep<m 29

V™ (H 0005 H) |1y, 1 S AT,

tx] @

30
IV™ (V3 Rie(H))|lpes, r2 SA

[0,t5] 7=

IV Rie(H) oy, ne S AT

31

)
)
)
32)

(
(
(
(

3. GENERALIZED ENERGY ESTIMATES AND THE BOUNDEDNESS THEOREM

Consider the Lorentz metric H = H(y) as in (22) verifying, in particular, the
properties of proposition 2.4 in the region [0,#,] x R, t, < A!78%, We denote by D
the compatible covariant derivative and by V the induced covariant differentiation
on ¥;. We denote by T the future oriented unit normal to X; and by k the second
fundamental form.

Associated to H we have the energy momentum tensor of O,

Qu = QU = 00 — 5 o (H0a0050). (33)

The energy density associated to an arbitrary timelike vectorfield K is given by
Q(K,T). We consider also the modified energy density,

Q(K,T) = QW|(K,T) = QW|(K,T) + 29T (¢p) — *T (). (34)
and the total conformal energy,
Qy](t) = . QU)(E,T). (35)

15recall that in fact g is ¢~ 1. Thus, in view of the non degenerate Lorentzian character of g

the bootstrap assumption for ¢ reads as an assumption for g.
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We recall below the statement of the main generalized energy estimate upon which
we rely.

Proposition 3.1. Let K be an arbitrary vectorfield with deformation tensor
"z, =LkH, =D,K, +D,K,

and ¢ a solution of Ogy = 0. Then

1 1

Qi) = Qi) —5 [ @ Wr+g [ yOgo

2 Jito,4]xR3 4 Jio,xr3 (36)

where
Kz = Kz _QH (37)

and Q an arbitrary function.
Remark 3.2. In the particular case of the Minkowski spacetime we can choose K
to be the conformal timelike Killing vectorfield

K = % <(t +7)2(0 + 0y) + (t —1)* (0 — ar)> .

In his case we can choose {2 = 4t and obtain the total conservation law,

Q[y](t) = Ql](to).

This conservation law can be used to get the desired decay estimate for the free
wave equation, see [KI1].

As in [KI-Ro] we construct a special vectorfield K whose modified deformation
tensor (F)7 is such that we can control the error terms

/ Q¥ Wz 5 + 1/ Y200,
[to,t] XxR? 4 Jito,6]xR3

As in [KI-Ro] we set!®
1
K = 5n(ui + u?L) (38)

with u,u, L, L defined as follows:

e  Optical function u
This is an outgoing solution of the Eikonal equation

H*P9udzu = 0 (39)

with initial conditions u(I';) = ¢ on the time axis. The time axis is defined
as the integral curve of the forward unit normal 7' to the hypersurfaces ¥;.
The point I'; is the intersection between I' and ¥;. The level surfaces of u,
denoted C, are outgoing null cones with vertices on the time axis. Clearly,

T(u) = [Vuln (40)

where h is metric induced by H on %, [Vul2 = 327 |e;i(u)[? relative to an
orthonormal frame e; on X;.

16Observe that this definition of K differs from the one in [KI-Ro] by an important factor of
n.
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e Canonical null pair L,L
L=bL"=T+ N, L=2T-L=T-N (41)

with L' = —H*%93ud, the geodesic null generator of C,, b the lapse of the
null foliation(or shortly null lapse) defined by
b l=—-<L',T >=T(u), (42)
and N exterior unit normal, along ¥, to the surfaces S; ,, i.e. the surfaces
of intersection between ¥; and C,. We shall also use the notation
€3 = La €4 = L

e The function u = —u + 2t.
e The St ,, foliation
The intersection between the level hypersurfaces'” and u form compact

2- Riemannian surfaces denoted by S;,. We define r(¢,u) by the formula
Area(S:,)= 47r?. We denote by ¥ the induced covariant derivative on Sy .
A vectorfield X is called S-tangent if it is tangent to S;, at every point.
Given an S-tangent vectorfield X we denote by Y X the projection on S;
of VNX.

With the help of these constructions the proof of the L? — L™ decay estimate stated
in theorem 2.1 can be reduced to the following:

Theorem 3.3 (Boundedness Theorem). Consider the Lorentz metric H = Hy
as in (22) wverifying, in particular, the properties of proposition 2.4 in the region
[0,t.] x R®, t, < X178, Let ¢) be a solution of the wave equation
1

Ory = ﬁ% (H*?\/|H|9s%) =0 (43)
with initial data Y[t], at t = tg > 2, supported in the geodesic ball B%(O). Let Dy
be the region determined by u > u' in the slab [0,t.] x R®. For all to <t < t.,
Y(t) is supported in Dy,—1 C Dy and

Q1) < Qlyl(to)-

We consider also the auxiliary energy type quantity,

EWI(H) = EVWID) + EC WD) (44)

where,

EO[I(t) = / (1= Q)10 + )

EOWE) = C (W (L)? + u?(Lp)? + u?|V|* + ¢?).

3y
with ( is a smooth cut-off function equal to 1 in the wave zone region u < %

In the proof of theorem 3.3 we need the following comparison between the quantity
Q(t) and the auxiliary norm £(t) = E[Y](t).

L7The level hypersurfaces of u are outgoing null cones C, with vertices on the time axis I'¢.
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Theorem 3.4 (Comparison Theorem). Under the same assumptions as in theo-
rem 3.3 we have, for any 1 <t < t,,

EWIE) S QIYI()-

4. AsymMPTOTICS THEOREM AND OTHER GEOMETRIC TOOLS

In this section we record the crucial properties of all the important geometric objects
associated to our spacetime foliations ¥;, C, and S, introduced above. Most of
the results of this section will be proved only in the second part of this work.

We start with some simple facts concerning the parameters of the foliation X
relative to the spacetime geometry associated to the metric H = H).

The Xy foliation Recall, see (23), that the parameters of the ¥, foliation are given
by n,v, the induced metric h and the second fundamental form k;;, according to
the decomposition,

H = —n?dt* + h;j(dz’ 4+ v'dt) @ (da? + vidt), (45)

with h;; the induced Riemannian metric on ¥, n the lapse and v = v*0; the shift
of H. Denoting by T the unit, future oriented, normal to ¥; and k the second
fundamental form k;; = — < D;T,0; > we find,

Oy =nT + v, < Ov>=0
1
kij = =5 LrHi; = =1207" (Ohij — Lohj) (46)

with L£x denoting the Lie derivative with respect to the vectorfield X. We also
have the following, see (8), (24), and (137) in section 8:

clef? < hy€'e <P, e<n®— v} (47)

for some ¢ > 0. Also
n S 1 (48)
|On| + |Ov| + |0k + k| < |0H| (49)

St u- foliation We define the Ricci coefficients associated to the S ,, foliation and
null pair L, L.

Definition 4.1. Using an arbitrary orthonormal frame (e4) 4=1,2 on S; ,, we define
the following tensors on the surfaces St ,,

xap =< Duaes,ep >, x,p, =<Duaes,ep >,

1 1
na =g < Dgzeq,eq >, Ma=73 < Dgyes,es >, (50)

1
§A:§<D363,€A>.
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Using the parameters n,v, k of the ¥; foliation we find(see [KI-Ro2] and [KI-Ro]),

Xy = —XxaB—2kap
n, = —kan +n7'Y ,n
£, = kan—na+n"'Vyn
nag = b71Y7Ab+kAN

Thus all the Ricci coeflicients can be expressed in terms of k;;, n, the scalar function
b and, most important, the Ricci coefficients x and 7.

We shall also denote by 045 =< ¥V 4V, ep > the second fundamental form of S,
relative to ¥;. It is easy to check that

XAB = —kaB +0aB.

We consider the parameters b, try, x and n associated to the S; ,, foliation according
to (42) and (50). For convenience we shall introduce the quantity:

2 2
O = |try — =| + Jtry — ———
erx = 21+ fx =~
Remark 4.2. Strictly speaking we need only one of the two quantities |trx—% l, [trx—
wTi=wy | in the expression above. Indeed we show in [KI-Ro2] that these two are com-

parable.

|+ x|+ Inl (51)

Remark 4.3. Simple calculations based on the definition 4.1, see also Ricci equa-
tions in section 2 of [KI-Ro2], allow us to derive the following:

|DLI,|DL|, |[VN| S 77" + © + [0H] (52)

Remark 4.4. We shall make use of the following simple commutation estimates, see
lemma 3.5 in [KI-Ro2],

(YNY = YV S (' + 0+ |0H])| V] (53)

We state below the crucial theorem which establishes the desired asymptotic be-
havior of these quantities relative to .

Theorem 4.5 (Asymptotics Theorem). In the spacetime region Dy ( see theorem
3.3) the quantities b, © satisfy the following estimates:

b-n] S AT (54)
1Ollpze S A2, (55)
1OllLags,.) S AT (56)
In addition, in the exterior region u < t/2,
101l zo(50,0) S TTIATC + XNOH ()| oo (57)

for an arbitrarily small € > 0.
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We also have the following estimates for the derivatives of try:

360
Y

2 2 _
I sup I|L(trx — ;)||L2(Si,u)||Lt1 +1I 21112 I|L(trx — m)”m(st,u)HL} <A

uly <3 (58)

2 —J€
I sup VtrxllLe(s, llz: + |l sup ¥ (trx — m)”ﬂ(st,u)HL} < N30 (59)

u<ly u<ly

In addition we also have weak estimates of the form,

sup [[(Y, L) (trx - ﬁ)||mst,u> <A¢ (60)

u<t i

for some large value of C.

We also have the following comparison between the functions r and t — u,

r
<
—t—u

<c (61)

The proof of the Asymptotics Theorem is truly at the heart of this work and it is
quite involved. Our second paper [KI-Ro2] is almost entirely dedicated to it.

Remark 4.6. Observe that the estimate (55) holds true also for 9H. We shall show,
see [K1-Ro2] proposition 7.4, that the OH also verifies the estimate (56). Thus we
can incorporate the term |0H| in the definition (51) of ©.

2 .
®=Itrx—;|+|trx—n | +[X| + |n| + |0H] (62)

2
(t —u)

We shall do this freely throughout this paper.

The proof of the next proposition will be delayed to [KI-Ro3], see also [K1-Ro].
Proposition 4.7. Let S;,, be a fized surface in i N Dy.

i.) Isoperimetric inequality For any smooth function f : S;, — R we have
the following isoperimetric inequality:

() ) < IGR! (63

ii.) Sobolev Inequality For any é € (0,1) and p from the interval p € (2, 0]

< IS 2 4 2| f[2)) 5T TG
sup [f| Sr@vee=a ([ (V7 +r7°|f1)
t,u t,u

(64)

26
} 2p+3(p—2)
)

[ avsearip)

t,u

iii.) Trace Inequality For an arbitrary function f : 3y — R such that f €
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Hz<(R?) we have,

1., 1,
1 FllL2(se) < N02F fllzesy + 102 FllL2es,)- (65)
More generally, for any q € [2,00)
3_2., 3_2_,
fllzacs,.) <1102 at 2y + 110277 fllre(s,)- (66)

Also, considering the region Ext; =X N {0 < u < %}, we have the following:

1
||f||%2(si,u) < ||N(f)||L2(E:L'tt)HfHL?(E:Utt) + sz”LZ(E:Utt)' (67)

We shall make use of the following, see lemma 6.3 in [KI-Ro].

Proposition 4.8. The following inequality holds for all t € [1,t.] and 2 < p < co:

2 _
/ V20 < ¢ sup||V||izp,(Stu)/ (1Vwl + r=wl?). (68)
5, u sy
where p' is the exponent dual to p.

We shall also make use of the form,
2 2 2 _
/ V2w? < tp||V||£;x, sup ||V||z2(st u)/ (IYw]? +r~2|w]?). (69)
%, u s,

In particular, if ||V || is bounded by some positive power of A, and we restrict
ourselves to the exterior region Ext;, we deduce that for every € > 0 and some
constant C'

V20 < 1220 up IVI2zs, . ETwl(d). (70)

Exty 0<u<t

Proof The proof is straightforward and relies only on the isoperimetric inequality
(63), see also 6.1. in [KI-Ro]. [ |

5. PROOF OF THE BOUNDEDNESS THEOREM

We first calculate the components of the modified'® deformation tensor 7 = )7 =
(E)g — 4tH of our vectorfield K = in(u?L + u’L). Recall that u = 2¢t — u and
L =—-L+2T, thus

L(u?) = dub™,
L(v®) = dun™!,
L(u®) = 4du(n'-b7")

18corresponding to the choice Q = 4t.
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Proceeding as in section 6.1 of [KI-Ro] we calculate the null components of 7 = (K)7

relative!® to e, = L,es = L and (e4)a=1,2 an arbitrary orthonormal frame on S,
find,

Taa = 20 n(kny — "7164(n)),

Tga = dun(n=' — b~ ) +un(kny —n"ea(n)) + un(knny —n”'es(n)),

gz = —8un(n" 1) —2u? n(l?:NN +n"lte 3(n)),

U n(nA—l-kAN—n WAn +u n§ (71)

)
Tad = U n(nA—kAN—n 1Y7An),
)

T3A

TAB :2tn(t—u)(trx— S4B + 4tn(t —u)Xap — 2u’nkap

The following proposition concerning the behavior of the null components of 7 is
an immediate consequence of the above formulae and the Asymptotics Theorem
stated above.

Proposition 5.1.

lu™Taall e S AT, l(uw) ™ sall L S AT,
lw *mssllpipe SATC, @) malline SAT,
1) Taallpiee SAT0, @) *Fablliie SAT

The proof of the Boundedness theorem relies on the generalized energy identity
(36) with K = in(u?L + u’L) and Q = 4¢. Thus,

1
QI = QW) =5 [ Q¥ Wra+ [ yop
[to,t]XR3 [to,t]XR3
1
= Qo) = 5T +Y (72)
Observe that we can decompose:
J = Q[Y]Tas = / 17‘r33(Lw)2 + 17?44(@)2 + 17‘r34IY7z/J|2
[to,f] xR® lto,]xr3 \ 4 4 2

— TaaLp YV g1p — T3aLpV 40 + TaB Y 4V g¢ + tfﬁ(%@/llﬂ/l - |Y7'/1|2)> :

Consider, for example, I = f[to fxR? T4a L)Y 41p. We can estimate it as follows :

1 1o
reg [t ) (P 0
[to,t] x R
t
< [ M) " raalle ER(T) dr

to
Making use of the comparison theorem and the estimate || (wu) ™' Taallpipo S A7
we infer that,

t

I< [ Nluw) ™ Faallz Ql(r) dr S A2 sup Q[¥](r)

to [t07t]

19We say that (ei)1=1,2,3,4 forms a null frame.
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We can proceed in the same manner with all the terms of 7 with the exception of
f[tmt] «re 7 Lty Lap. Observe that®?

trr = 048745 = 2tn(t — u) (trx — ) — 2u’ntrk

2
n(t —u)

1 t
[ iz < [ et @?) 5 [ 0m e dr
[to,t]XRS [to,t]XR3 to

Since ||0H|| 1 S A~%¢  this term can be treated in the same manner as I. We
are thus left with the integral

B = 2tn(t —u) (trx — - LpLyp

)
[to,t]xR3 (t —u)
All other terms J — B can be estimated in precisely the same manner, using the
comparison theorem and the estimates of theorem 5.1, by

J =B S AT sup Qy](r) (73)

[tO rt]

To estimate the remaining term B requires a more involved argument. In fact we
shall need more information concerning the geometry of the null cones C, and
surfaces St .

Denote Ext; the exterior region Ext; = {0 < u < t/2}. Let ¢ be a smooth cut-off
function with support in Ext;. Observe that

/E (@) +97)(1- ) < / (1 - QW) (74)

P

We can split the remaining integral
B = B'+B°
. 2
B = / 2tn(t —u) (try — ——— ) Ly Ly (1 — ()
[to,t]xR3 ( n(t — U))
2
B = / 9tn(t — u) (trx — ———) LpLip ¢
[to,t] xR3 ( n(t — U))
With the help of (74) the first integral can be estimated as follows:

. 2
B < % P2 (80)%(1 -
B N e ECOR TR

t

N

lerx — ﬁu@o QIY)(r) dr

to

< A3 given by the Asymptotics

~

In view of the estimate |[try — ﬁHL}L?
Theorem (4.5) we infer that,

BY S AT sup Q[y](r)

[tg,t]

Therefore, it remains to estimate B€.

20We use tr here to denote the trace relative to the surfaces St .. Thus trk = §4Bkap. We
use Trk = h* k;; to denote the usual trace of k with respect to ;.
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According to the Asymptotics Theorem the quantity z = try — ﬁ verifies the
following estimates:

lellnzre S AT25, Il S AT, (75)
_1_ _1_
[l 'sup [W2llrzcs, )l SAT272C [lsup |IL 2llr2(s, ) 2 S AT (76)
u<y u<t
Remark 5.2. The same estimates hold true if we replace try — ﬁ by try — 2.

It would therefore suffice to prove the following result. Using the estimates (75)-
(76) we shall prove that:

B = / 2tn(t — u)2LpLip ¢ < A~ sup Q[4](7) (77)
[to,t]xR3

[tg,t]

To prove (77) we need to rely on the fact that ¢ is a solution of the wave equation
Ogty = 0. We shall also make use of the following standard integration by parts
formulae?',

/Ei FN(G) = - /Et <N(F) + (tr6 +n_1N(n))F> G, (78)

where NNV is the unit normal to St .
If Y is a vectorfield in 7', tangent to S, then

Fdivy = —/ (WF+ (bl%ml%)p) ¥, (79)

P P
It is also not difficult to verify that

/ FT(G) = — / (T(F) + Trk + dive)G + / ra- [ ra
[to,t] xR3 [to,t] xR3 2y St (80)

Writing L = T — N we integrate by parts and express the integral B¢ in the form,
B = —-LI+L+13—14 (81)

L o= / Crt(t — u)z (L)
[to,t] xR?

I

/ (—L(C nt(t —u)z) + (trf + n~'N(n) — Trk — divo) nt(t — u)z) Ly
[to,t] xR

I3 = ¢nt(t —u)z Ly

PP

I, = / ¢nt(t —u)z Ly
b

to

We first handle the boundary terms I3, Iy. With the help of proposition 4.8( which
we can apply in view of the estimates (57) for © as well as the estimate (26) for
O0H.) we have

It — w)ella(mey <A up InzllEoel2. £X010).
u<t ’

21 These are simple adaptations of the formulae in lemma 6.2., [KI-Ro].
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Therefore,

(bt — w)z L] < / In(t — w)z Lyl

Eittt
St LYl 2 lIn(t — u) 2l L2 (Bat,)

S It = w) 29| 2 (e 2 [01(E)
S A% sup [ nzll 26! ERI(E) S ATOER().

5> 5

P

The last inequality followed from the boundness of n and (75). Similar estimate
holds for the second boundary term Iy.

To estimate Is we observe that, as an immediate consequence of theorem 4.5, we
have
L@, Lt —-u)| ST, LI St

Denoting

O(t,z) = |trx — -

S — OH
(t_u)|+lxl+|n|+| |

we easily find,

t
N <T2IL(Z)I+TIZI+T2(9IZI>ILWIdT
to 4 Extr

To treat the term involving L(z) we proceed as in the case of I;; We estimate
/ Bt 72|L(2)|| Ly | dr by Cauchy-Schwartz followed by an application of proposi-
tion 4.8. The space integral of the other two terms can be estimated as follows:

/E t (rlzl + 7?0l Ly ¢l dr < (llllig + Tl1Ollneellzllrge ) ERI(T).-

Consequently, using the inequalities (75)-(76) for z ( as well as the weak estimate
(60)) and the estimates for © from the Asymptotics Theorem 4.5

t
L 5 / (xcf sup ||L<z>||2;;giu)+||z||Lm@,>+T||e||Lw@T>||z||Lm<E,>)5w1(T>dT
< A (u up L) s,y + elogne + A||®||Lngo||z||LgL;o) sup QY](7)
S A sup Q[y](7)
[tht]
as desired.

It remains therefore to consider I;. We shall make use of the fact that ¢ is a
solution of the wave equation. This allows us to express the LL(¢)) in terms of the
angular laplacian?? /A and lower order terms. Expressed relative to a null frame
the wave operator (g takes the form

Ory = H*.05 = —th.as + a4,

22the Laplace-Beltrami operator on Sy .
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where ... = ej(ei(y))) — D¢, e;(¢0). We use the Ricci formulas: Dzes = 2nae4 +
knnes, and Dpes = Ygea + txapes + %XAB@ to derive
1 1 -
Oy = —LLY + £ + 204V 49 + StoxLy + (Gtex + kvn) Ly, (82)

As a result of this calculation

L o= / Cnr(r —u)z LI = Cnr(r — u)z fapp
[to,{] xR3

[to,t] xR?

1
+ 5 /[toyt]XRS CnT(T — ’LL)Z trX(L’l/J)i/J

1 _
+ / (nr(T —u)z (277AWA1/’+ (§trX+kNN)L1/J) )
[tg,t]XR3
= I+ L2+ Lis. (83)

Consider first I13. Taking into account that ¢ — u > %

t
nl s [ [ rei(eves G rorLs )

t
S/t (T”ZHLOO(Z,)H@”LOO(ZT) + IIZIILw(z,>>5[¢](T) dr
S AT sup Q[y](7) (84)

[tO 7t]

as before.

To estimate I;2 we need first to integrate once more by parts.

I, = i / (—L(C nt(T — u)z try)
[tg,t]XR3

+ (tr@ + n~'N(n) — Trk — divv) ( nr(r — u)ztrx) P?

+ i Cnr(T —uw)ztry(y)? — i Cnt(T —u)ztry()?
P PP

All terms can be treated as above. Take, for example, the worst term involving
L(trx). Recall that

2 2 2 2 1
— — < J— —_ Z
L(try) = L(try 7")+L(7“) < L(try r)+7“2 +r®
Thus
2 ! 2 2 1 1 2
[t waLe0@?ls [ [ Pl )+ e)w)
[to,t] xR3 to J Bxt, r ™ T

t
2
s[[ eliLec- D
to J Ext, r

t
+ / (2= + 7l (s 10l s ) EI () dr
0
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The second term has already been treated above, see (83). To estimate the first we
apply first Cauchy-Schwartz and then make use of proposition 4.8,

¢ 2 ¢ 2 1
| T2|Z|IL(trx—;)l¢25 / 7 121 L Corx = 2 bllza(ae,) E2 (1) dr
to xtr
e sup |7z |L(trx - >|||12§§f) [p)(r) dr
to US 5

Taking into account the estimates in (75)—(76) and the Remark 5.2 we deduce,

t 1—¢/2
, 2
1 2
x [ swlirsiin = DI, S A7 (ellizee s 1 - 2z, liz )
t

o uS %G u<t
< e
Therefore,
(T2 S A sup Q[y](7) (85)
tot

Finally we estimate I;; = f[to fxR? ¢nt(t —u)z{p ¢ by integrating once more by
parts as follows:

== [ Cntfe- )z VuP
[t0,] xR3
- / n oY, (bn Cnt(t — u)2) Y 41 4.
[tg,t] xR3
The first integral on the right can be easily estimated

t
/ (nt(t —u)z |[VoI* S /IIZIIL;oEW](T)dT
[to,t] X R?

S lzlloize [surz] Q[Y](7)
S AT [Sup] Qy](r) (86)
to.t

To estimate the second we write schematically

V(on? (t(t—u)z) ~ t(t—u)(Vb)z+t(t—u)Vz+t(t —u)z0 = t(t —u)Vz+t(t —u)20
since Y 4b = b(na — kan). Thus with the help of proposition 4.8( using also the
weak estimate (60)),

t
/ =Y (b C (7 — w)2) Y 9] S / / (7121 + 712107 4¢s| [¥]
[to,t] xR3 to J Ext,

< / (Ace sup 921205, + r||z||mz,>||@||Loo@,))£w1<r> dr
to
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Using (76) once more we have,

t
/ (Ace sup ||zl ) + r||z||Lw<zT)||@||Lm(zf)) dr
to uszF '

! — -
S A7 sup 12 ll2(s,n s % + tlzllr2rge 1Oz S AT
u<ly

Therefore, combining with (86) we infer that,

Ly S [sup] Q[v](r) (87)
tot

Recalling also (85) and (84) we conclude that

LS AT sup Qyl(r) (88)
to,t

Since I, Is, I and B* have already been estimated we finally derive,

B S AT sup Q[y]() (89)

[t07t]

as desired. This combined with (73) yields,

J S A sup Q[Y](7) (90)

[tO rt]

Going back to the identity (72) we still have to estimate ). For this we only need
to observe that gt depends only on the first derivatives of H. Thus also

Y S AT sup Q[y](7) (91)

[t07t]

Therefore,

sup Q[y](7) < Q[¢](to) + A~ sup Q[](7)

[t07t] [t07t]

which implies the boundedness theorem.

6. PROOF OoF THE COMPARISON THEOREM

We proceed precisely as in [KI-Ro], section 6.1. Define S and S,
1 1
S = i(gL—l-uL), S = §(QL —ulL). (92)
Sincew=—-u+2t, L=T—-N,L=T+ N
1 1
tT = Z(u+g)(L+L) :S—Z(u—y)(L—L) =S —(t—u)N,

2
tT:%t(LJrL):LS— !

t—u t—u
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Therefore, with the help of the identities (78), and N(¢t) =0, N(u) = —b~!
1

2 [ i) =2 [ (650 - 5t - 0N @)

P

e
—9 s b(SY) + /Zt (bl + (¢ —u)(tr9+n1N(n))>1/12,

t 1t )
2 [ o) =2 [ @it - SN

¢ t° -1 -1 2
=2 2t¢m(§w)+/&m<_b +(t—u)(trd +n N(n))>1/1.

Recall that 845 = xaB + kap. Recall also that © was defined in (62).

2 2
O(t,z) = [trx — =| + [trxy = ——
r n

% OH
(t_u)|+lxl+|n|+| |

Thus,

2 [ vt =2 [ wso+ [ (11 + 2 a-we)s
2 [werw) =2 [(wirtien s [ Gl 2 ea-ue)

Recall, from the Asymptotics Theorem 4.5,
b —mn| S Ao

Also, since n is bounded away from zero so is b. Therefore,

2 [ wrw) =2 [ wisn+ [ (2+u-woraa)e

2 [ wirw) =2 [ wrto(sw+ [ (L(l+(t—u)®+/\4f°>z/12.

2, t—u)’'n

Since
QUE, DY) = 7 (w(Lh)? + (L) + (4 ) |[V6P?) + 20T —n™ "0,

and

L0 + (L)) = 5 ((S9)° + (S4)°)

we can introduce positive constants A, B : A + B = 2 such that

Qi) = 5 [ (n(su +2aus0) + Ga- 20 4 (- we+ A1)s?)

2
B+

+ 1/2 (n(&w +2B¢ﬁ(§w) + (1 ((t —w)o +A-4eo)¢2)

-
2 n(t —u)?

Y Rl
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For any values of A, B such that 1 < A < 2 and 0 < B < 1 it is possible to find
positive constants ¢y, ¢y such that

RS +246(50) + —BA- 2 > ei((S0)? +07),
t? t2

9 t 1 2 2 2
n(Sy) +2B¢m(§¢)+53(t_u)2¢ > ((Sv) +(t— )21/, )
Therefore,
Q) 2 [ (L + (L + (0 + ) TOP + (14 )
3t
_ t2 —u —4eg 2
/Et(1+ (t_u)2)<(t )0 + A >¢
Q) 2 [ (L + (L + (0 + TR + (14 )
3¢
t2 9
- /Et<1+—(t_u)2><t—u>ew
Therefore it suffices to show that
/ (14— ) - wey? < A76‘)/ PIVOP + (14— )2
s (E—u)? - S (t —u)? (93)

Consider the worst term

/Et (tt_zu) CILES </E t2®2¢2>;</& 0 _t2u)2w2> (94)

According to the estimate (68) of proposition 4.8, applied to exponent p such 2p’ =
a,

N

_ 4 _
[ #en s 2 sup 0l us, o [ (VO +r721up).
t u t

Or, since according to (61), ¢t < (tju) < ¢, and with the help of the estimate (57)

for © with ¢ > 2 sufficiently close to 2,

t2
202,,2 < \—5€o 2 2 2
[ et sact [ gl + s,

Thus, back to (94)
t2 2 2 2 2 t2
Oy < A2 / 2|V +
Lot IR

as desired in the proof of (93). The remaining term on the left hand side of (93) is
easier to treat.

5 10I%) (95)
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7. PROOF OF THE L? — L™ DECAY ESTIMATE; THEOREM 2.1

In this section we rely on the Boundedness Theorem 3.3 to prove the crucial theorem
2.1.

Recall that E[¢] = E[yY] + £°[4], where
[ (210w +1wr)a-o,
PP
[ (Il + 2196 + Lo + o) ¢

E' ()

£t

with a cut-off function ¢ equal to 1 in the region u < %

Estimate for (1 — {)Py:

Observe that since the projector P is an averaging operator on the scale of size 1
and (1— () is a cut-off function with the scale of size t > 1, we can essentially write
that (1 — )Py =~ P(¢»(1 —()). Thus the Bernstein inequality, followed by the fact
(1= OV llLo(e,) < tTHEX[W)(E) and |V¢| < 7', implies that

IP@E) (L = Ollez S IV (1 =)z, < 7 E2[BI() (96)

as desired.

Estimate for (Piy: It clearly suffices to establish the estimate for Py (¢, x) at
any point (t,z) with 0 < u < %. According to the Sobolev inequality (64), with
p = 4, of proposition 4.7 we have for any positive § < 1,

25

1_& a+3

sup|PUP < o ([ (YPu + o) T [ [ qwpelt + ripul

t,u t,u t,u

Using the isoperimetric inequality (63) applied to (Pv)? and |V P2,

(/s |P¢|4)% S (/S |WP¢|2)% (/S |P¢|2)% + %/S Py,

t,u

(f e s (f weer) ([ weer) e [ weer

,u

In addition, making use of the trace inequality (65), 22

[ (L, wor) (f, 1) 1 [, 1

Here, Ext; = £, N {0 < u < £} and N is the vectorfield of the unit normals to
St,t—p-

23The tensor version of the estimate requires the covariant Y derivative. Recall that ¥
denotes the projection on St , of the covariant derivative V.
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Thus, setting e =
we obtain

%, using the fact that ¢ > 1, and applying the Holder inequality,

1 1—¢
2 <L 4 2 2 - 2 2 . TE

= VAT PYP + T2 PO + (VTP + VPG + 2 (IN(PY + [PoP).

Note that we can always replace the outside IV derivative with a generic derivative
d. More precisely, |[N(f)|* < >, 10: fI*-

We make the following three observations:

1) The derivatives in the second factor Z can be ignored in view of the presence of
the projection P. Thus we can crudely bound it by Z <[5, [¢]> < E[Y](t).

2) The terms 3 [pye (IN(P)? + |[P)|?) are easily estimated by ¢~>E[¢](t).

3) It remains to handle the terms

2 2
/Em YNV PU + |YPY|

Consider first the integral [p ) |V P1)?. Let ¢ be a cut-off function of the exterior
region Ext; such that (|gy¢, = 1 and [V(] S t~1. We introduce the angular
vectorfields A; = ¢ (8;— < 8;, N > N). Clearly, for any scalar function f, |V f|? ~
2% | |Aif|? in the exterior region Ext,. Now write,

Thus,

3
Py ~ / A; Py)?
/Exti |Y7 | ; Ext. | |

3 3
S S [ pawp+X [ A
; Ext, ; Ext,
3
< Z |PA;p|? + error
=17
< [ V9P +Enor

PP

We estimate the error term [py¢ -, [P, Ai]y|* with the help of the following

Lemma 7.1. Consider a vectorfield X =3, X'0; vanishing on the complement of
the exterior region Ext; of X; and P the standard Littlewood-Paley projection on
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frequencies of size 1. Then, for arbitrary scalar functions f we have the inequality®* :

102, X111ty S SO IO Nyt 1 s

Proof We postpone the proof until the end of section 8, see lemma 8.38. [ ]

We apply the above lemma to the vectorfields Ay, = ¢ (6% — N N7)9;. Observe that
the components Aj, are bounded and [V({| < ¢ !. Thus

Error < (t—2 + [|[VN|? M(Extt)> ||1/1||%2(2t)

Recall the expression, see (62), © = |trx— 2|+ |¢|+|n|+|0H | and the inequality (52)
|[VN| <14 0. Observe also that in the exterior region Ext,, - < 2. Therefore,

_ 2
Error S (£ + 01l Ext ) 112,
We can finally conclude that

2 2 —1 2 2
Joy WP S [ ROR ( Ol,) [
S (24101 ) EID (98)

We now consider fExtt |V yYP9|?. In view of the simple commutation estimates
(53) we can write:

2 < 2 -1 2 2
/Exttmww < /ExttW(NPwn + /Extt(r + )|V Pyl

X

& 2 -1 2 2
> Joy APOR [0 o) TPy
Observe that

A;(NPyp) A; N19;(Py) = N7 A;0;(Py) + [A;, N710;(Py)
= NP(Ag) + N7[A;, 8; Pl + [A;, N7]9;(P)
Therefore, using the lemma 7.1, with P replaced by VP, as well as the estimates
(52)

AiNPz/ng/ AP+ (1 + 0], 2/ b|?
/Exttu e A G I P i L

and finally,

/Extt FNTPOP S (2 + 1012 o e, JEIH) (99)

241n fact the exterior region on the right hand side of the inequality should be somewhat
enlarged( by size one ). Since this enlargement doe not affect our arguments we prefer to ignore
it.
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Substituting (98)-(99) back into (97) we infer that in the exterior region

e (14— l—ep1—¢ 3
sup|[Puf S (¢ 4 1012 L py,))' 7 7100 7

_ 1—¢
<EE 41002 xg,y)ERID)
Finally, together with the interior estimates (96) this implies that
1

IPY(@) o < (# +tfn@il;:(Extt))”W’W)- (100)

Observe that according to (57) of the Asymptotics Theorem © obeys the following
estimate in the exterior region:
1Ol = Ext,) St A= + ANOH ()1
Define
1—¢

d(t) = t° (X°||0H (¢)| L)

Therefore,

1P S (e + o) €4

To prove the desired L? — L decay estimate it remains to check that for some 2
q>2,

5

1
t2 (1l g

[0.t,] ~

Since t. < A!7*0 it clearly suffices to show that ||d||LEz0 oy S A=z, In view of the

estimates, see proposition 2.4,

1OHl Lz SATETI%0, |OH |pre S ATEF,
we infer that
_ 1—2_¢ 2 1
Ml S EXUOHI s, S EXNOH L - IOH Iz, S A,
. a - -
as desired.

8. PROOF OF THE REDUCTION STEPS

In this section we give precise statements and proofs for the reduction steps dis-
cussed in section 2. Recall the equation (3), written in the form (6),

870,030 = N($,09) (101)

where ¢ = (g,,), N = N, and g = g®#(¢). In fact (g*°) = ¢~'. We consider
solutions ¢ of (101) such that the components of both ¢ and ¢! are uniformly
bounded. Moreover g,,, approach the Minkowski metric m,, at infinity according
to (5). To avoid repeating this statement in what follows we introduce the following
notation:

25We can assume that 1375 < g<2+10"e.
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Definition 8.1. We say that f € H® = H*(R?) if Vf € H* !, f is continuous
and tends to zero as |z| — oo. Observe that H®, with s > %, is the closure
of C§° in the norm ||V f||gs-1. Given a solution ¢ of (101) we say that ¢ =
(guv) € C([0,T);m + H?) if, for every t € [0,T], (8uv(t) — my,) € H*(X;) and
O € HH(%y).

Throughout the section we shall use the following notation:

Definition 8.2. For any function f on ¥; = R3, Py f = F! (X()\_lf)f(f)) with
x supported in the unit dyadic region % < €] <2. Also f =), P.f. We shall
denote by f<y = P<)f = ZHSA f*. We shall also use the notation foy = P<yf =
Zu<2_M0>\ f*, for a sufficiently, fixed, large constant Mg, such as 100.

Remark 8.3. Observe that if f is continuous, approaches a constant ¢ at infinity,
i.e sup,—.|f(x) —¢[ = 0asr — 0o, and Vf e H* ', s > 3, then®® P\f € H*.

8.4. Enmergy estimates. We start with the following well known statement:

Proposition 8.5 (Energy estimate). Let ¢ € C([0,T];m + H®) be a solution of

(101) on the time interval [0,T] for some s > 2 such that ||¢,¢*1||LF;T]L;O < Ao.
Then ¢ verifies the following energy estimate.
100l o < OGN 2 A IOBOL o (102)

Remark 8.6. Throughout this section we shall often ignore the dependence on Ag
and the constant My involved in the definition of Pc.

Proof: The proof of proposition 8.5 can be easily reduced to the following lemma.

Lemma 8.7. Let ¢ satisfy the conditions of proposition 8.5. Then for each dyadic
X € 22, ¢* = P\¢ verifies the equation

07 ™ + (n?g8%) <1 (9)0:0:¢™ + (n’g") <A (4)0:0;0™ = Ry, (103)

where for any s > 1 and t € [0,T] the right hand-side Ry has Fourier support in
{€: X < |¢] < 4N} and obeys the estimate

(D)l
A

with C' a constant depending only on Ag. Moreover ¢* also satisfies the equation

2n) < C106W) e - 106(8) o1 (104)

g230a056™ = Ry (105)

with a different Ry which verifies the same estimate (104) and the frequency prop-
erty.

26This can be easily proved by a density argument.
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Proof of lemma 8.7

The proof of the lemma, is based on the technique of the paradifferential calculus and
is standard??. For the sake of completeness we provide an outline of the arguments.
For a more detailed treatment see for example [Ba-Chl] or [KI-Ro].

Recall that Py denotes the projection on the frequencies of size A, so that ¢* = Py¢.
We write the equation g*’(4)9,05¢ = N in the form —8}¢ + n?g%(4)0,0;¢ +
n’g"($)9;0;¢ = n?>N. Then
—0;¢™ + Pr(n’g" (¢)0,:0,9) + Pr(n’g"” ($)9;0;¢) = PA(n’N).
For convenience we introduce
G- 8¢ = 0’g"(9)0:0;6 + n’g" ($)9,0;¢ (106)

and note that at least one of the derivatives on the right hand-side is a spatial
derivative. Then

PA(G-0°¢) =P\Y _G'-0°¢" =Py Y G'-0°¢" +
314 u<%u,l/
Py ) GM-9P¢Y + Py > G" - 8%¢" = Ex(\) + Ex(\) + Es()).
v<Lpp 2-Moy<pu<2Moy,v

It is clear that in the case when of one frequencies p or v dominate, the projection
Py on the frequencies of size A\ forces the dominant frequency to be of the same
size. We say that p ~ X if 1A < p <4

Treatment of E;
Ei= )Y G" &9+ [P,G1,]0%0".
p<i 22N

The first term is precisely the term to keep?® on the left hand side of the equation.
To estimate the second term we need to make use of the standard commutator
estimate, which implies that

I[Px, G 1,]0°0" Iz < ATHIVG 1, L1090 (2 < ATHC(A0) (V]| e [1076” |12
Then, since the expression 8%¢” contains at least one spatial derivative, we obtain

IS I G 3 076 s X SR Gy, 10767 12
v v~
SN 1081106 |12
v~

S Y1100l 106" | gro-s-

v

27The equations discussed in the literature are somewhat different from the one treated here
because of the non triviality of the components g% and g% of the metric. This adds only minor
technical complications.

. .. — M
28Observe that 3, (1, G- V2¢* = (n?9%) <x2:0;6™ + (n2") < 0;0j 6 — 221231@0,” GH -
8%2¢* and the second term is of the type F3
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Squaring and summing over A we obtain the bound

(Z 16l 1) % 1001061
A

v

as desired.

Treatment of E,
Ex(\) =P Y G" -0,
JT2S0N
We make use of the presence of a spatial derivative in 9*¢_,, by estimating®,

IBs(Mll o1 < AT DG 1121070 gl e
DN
< Y Nl zl0dc g lliie S Y IVEH e 106] 12
TSP pH~ A

Thus, squaring and summing over A we obtain

(ZuEg(A)uipl) < VG e 106
A

Clearly, in view of our assumptions, G(¢) = ¢! is a smooth function of ¢. By a
standard result on the composition properties of Sobolev spaces,

IVG (D)l ra- < C(A0)[IV | g (107)
Thus,

-

(Z ||E2<A>||z“)2 < IVl 9611
A

Treatment of E3

Ez(\) = Py > G"-9%¢”.
2= Moy <pu<2Moy, p>2-Mo )\
Hence,
1Bl < A > 1G* | 110%6" |2
2= Mo y<pu<2Moy, v >2-Mo )\
< AN TG 186 . < AN 1106 || -
< > I s 100 lm £ Y (D) 196l - 196
2= Mo <py<2Mo gy p>2—Mo )\ v>2—Mo )\

To check that the multiplicative type convolution with (! =%) maps [2 — I2 observe
that ED% v!=% < 00, for s > 1. Thus,

(S 1B ) S 190l - 106
A

290bserve that, in view of the remark 8.3 [|G*|| 2 are finite.
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It remains to treat the term n?N (¢, d¢) which depends quadratically on d¢. This
is standard, it can be done in the same way as above. This ends the proof of
the estimate (104). It remains to prove (105). We multiply the equation (103),

(n?g*%) 10,030 = Ry, by n_3,

—(07 ) 207 M+ (0 2) A (028°) <1 0:0; 8 +(n2) <1 (ng7) 10,0, = (n"2) AR,

It is easy to verify that the new right hand-side has the same properties as R).
Observe also that for arbitrary smooth functions f, g

(fg)r = fargar + P<2)\([P<)\7 f]g) + Pcx Z Frg<n.

2= Mo A< <2-Mo+1)

Applying this to f =n~? and g = n’g®® with a =0,..,3, 3 =1, .., 3, we obtain

82302050 = (n7?) ARy + Pcay ([P<A,n_2]n2ga6> Do 0™

n 3 > Py <(n_2)”(n2ga6)<>\> 00030

a=0,..,3,=1,..,32= Mo A<y <2~ Mo+1})

The commutator term on the right hand-side of the expression above is precisely of
the type E1(\) and can be handled similarly. The metric component n~2 appearing
in the second term contains only frequencies p > 27Mo)\. This allows us to move
one spatial derivative from 0,95¢*. Hence, the new right hand side R, possesses
the same properties as the old R). O

Remark 8.8. In the subsequent paper we shall also need the following more general
result concerning other dyadic projections of our equation.

Lemma 8.9. Under the assumptions of lemma 8.7 we have
g%50.050<x = Fy.
The function F obeys the estimates
I1Fx iz < ClOBl Lo 109llngorz,  [1EAl L1 < ClIOGI LiLe= 108l oo 2
In addition, for any dyadic p > 1
8250005 Pru¢p = Fi .,

where F) , verifies

1B ullpiee < COW) A0 L3 = 106l oo e

1Fuullzzn < CA 07106052 pee 10911 v s

The function g = ¢~ satisfies similar equations.

The proof of lemma 8.9 proceeds in the same manner as the proof of lemma 8.7
after applying the respective projections P<y and Py,,.

To finish the proof of the proposition 8.5 we choose a large parameter A in such a
way that for any A > A the metric (n?g%¥)., is uniformly elliptic. This is always
possible since P.y is an approximation of the identity and the original metric
(n%g®) is uniformly elliptic in [0, 7).
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For the values of the dyadic parameter A < A rewrite the equation for ¢* in the
form

—0; ¢ + (n°g"") <20,0:0™ + (n’g") <10:0;¢" = R\
noting that the change of the metric introduces the error term of the type FEs.

For A > A we keep the form of the equation as in lemma 8.7
-0 + (0%g") <2 8:0:0* + (n°g") 10,0, = Rx
In either case, the standard H' energy estimate for the wave equation yields

106|255 22 < C(A0)(106*(O)lzz + 1RAllLy | 12)-

0,7 [0,71"=

Using lemma 8.7 and the Gronwall inequality we immediately obtain for s > 1
1901155, ire-s S 50 (190llss, 1) [90(0) o

[0,7]
The estimate for s = 1 follows by standard energy estimates without the paradif-
ferential decomposition.

8.10. Reduction to the Strichartz type estimates. As discussed in section
2 we need to prove the Strichartz type inequality (16). This is achieved by the
following

Theorem 8.11 (A1). Let ¢ € C([0,T];m + H') be a solution of (101) on the
time interval [0,T], T < 1. Assume that

10| Les , 4+ + 1001l

[0,7] [O,T]L:o S B07 (108)
There exists a small positive exponent § = 6(By) such that ¢ satisfies the following
local in time Strichartz type estimate,

10¢llz2 1= < C(Bo) T’ (109)

Remark 8.12. In view of the remark 2.2 and definition 2.3 we shall treat By as a

universal constant in what follows and hide the dependence on it in the notation
<

~"

8.13. The dyadic version of the Strichartz type estimate. Fix a large fre-
quency parameter A. It easily follows from the triangle inequality that for p €
[1, 00],
100l12z < 106renlluz + 3 1061z
A>A
Thus, theorem 8.11 follows from the following dyadic version of the Strichartz type
estimates for ¢* = Py ¢.

Theorem 8.14 (A2). Let ¢ be as in theorem 8.11. There exists a small positive
exponent § = 6(By) such that for each X > A, the function ¢* satisfies the Strichartz
type estimate

Ha(b)\”Lﬁ)’T]LOO S ar’ (110)

=
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with constants ¢\ such that EA ey < 1.

Remark 8.15. The corresponding estimate for small frequencies, i.e. for ¢y, fol-
lows trivially from the Sobolev inequality,

1 1.1 1.1
109\ lz3, iz S TG yien S ATTHOONLgs o S AT,
0,T ’

(0.7
Since A is a fixed large parameter, which could depend only upon By, we have the
desired bound for the low frequency part of ¢.
Remark 8.16. We shall need the following version of the estimate (104) for Ry and
any s < 2+1:

IBA@D o1 S ex 100 Lz (10| 1+ (111)
with constants cx: )., ex < 1. The estimate (111) can be easily obtained from
(104) by making use of the fact that the Fourier support of R} is localized on the

set {£: XA < [€] < 4A}. As a consequence, using the bootstrap assumption (108),
we also have the estimate

1
1ROy, e S THO0Ns 1108l s Sex (112)

[0,71"= [0,7]

8.17. Dyadic linearization and time restriction. This step reduces theorem
8.14 to a Strichartz type estimate for the linearized equation giﬁ@aagzp =0 on
smaller subintervals of [0, 7]. We partition [0, T'] by the intervals I, = [tg, tk+1], k =
0, .., A0 with the properties |I;| < TA~8%© and ||8¢||L§kL;x, < A4 By. The exis-

tence of such partition is insured by the bootstrap condition (108).

Theorem 8.18 (A3). Fiz A\ > A and k € ZN [0, 3] and let ¢ be a solution of
the linear wave equation

g230.051 = 0
on the interval Iy, = [ty try1], verifying,
27ON™10%(t)llz < IV™3(te)llL2 < (21N ™ |08 (te) || 2 (113)
for every m > 0. Then there ezists a sufficiently small exponent § > 0 such that:
1Py 0z 1 S 1Tl 19000 s (114)
The size of § depends only on €9, By. In particular, for any ey > 0, we can chose §
such that, § < 1071.

Remark 8.19. The condition (113) implies that, modulo a negligible “tail”, the
Fourier support of 9y(t;) belongs to the set {£: 270X\ < |¢] < 219)}. In general,
we shall say that function f obeys the property (115), if

@ MN™ 1 f ez <NV fllzz < @YN™ (1522 (115)
Lemma 8.20.
1. Assume f in R® is a function whose frequency is localized to the region |£] <

2 Mo\ gnd c < f < ¢! for some positive number c. Then v = f~! verifies,
V™ ullp= < 27 MoN)™. (116)
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2. Assume®® that u verifies (116) and ¢ < u < ¢ !. Let v be another function
verifying the condition (115)5. Then®' u - v verifies (115)10.

Proof The proof of 1. is based on the trivial identity f - f~! = 1. Differentiating
it and applying the Leibnitz rule we conclude that, although the Fourier support
of f~! does not belong to the set {¢: || < 27Mo)}, we still have the property,

IV (f Dl S @M.

The proof of 2. is once again an exercise in Leibnitz rule. In particular, for m =1
we have

IV(u-v)llz S IVullzellvllzz + [lulloe Vol 2
S 270N [ollpz + 2°AlJolle S 20 A lu - vl 2
On the other hand,
IV(u-v)llez 2 lullelIVollzz = [[Vulloe vl 2
> 27 Aollzz — 2 M Aollz2 2 27 ONu - ollz2

Proof of the implication Theorem (A3) — Theorem (A2): We shall first

prove an inhomogeneous version of the Strichartz estimate (114) for solutions of the
equation g‘éﬁd} = F, with the right hand side F' verifying (115)5. Recall that giﬁ =
Pcy—nq 1g%%. The Duhamel formula on the interval I; for the inhomogeneous

equation g‘éﬁ@aamb = F takes the form

(1) = W (£, 0)]olta] + / W(t,5)((g2) ' F(s)) ds. (117)

with [t] denoting the vector (¢(t), d;1(t)). Here [W (¢, s)] is the solution operator
of the homogeneous equation acting on the pair of initial data (wo,w) at time s,
and W (t,s) is a solution operator corresponding to the special type of the initial
data (0,w;). We need to check that (g%%)~" F(s) verifies the same conditions (115)
as F.

Recall —g® = n~2. Since F verifies (115);, using 1. and 2. of lemma 8.20, we

conclude that [(n_2)<>\]_1F verifies (115)1.

We now apply theorem 8.18 to (117), assuming also that the initial data 0t (t)
verify the assumption (115);0,

1Py 0llzg, 1 S el (100t riss + 1 Fllzy s ). (118)

Fix a sufficiently small ¢y such that 5¢y + & < 7. Consider the A-dyadic piece ¢*
of ¢, solution of the equation (101), as in Theorem (A2). We know that ¢* verifies
the equation giﬁ@a@;(j))‘ = Ry on [0,T] and the Fourier support of Ry belongs to

30Recall that My is a large positive constant
31This property is analogous to the standard paraproduct rule concerning the multiplication
of functions u,v where the frequency of v dominates.
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the set {€ : %/\ < |€| € 4A}, thus automatically satisfying property (115)5;. We can
therefore apply (118) to ¢* on each I, to obtain:

ASCO—I 1
— A2 2
106 22, e = (D2 106Y1; 1)
k=0
1
)\860 1 ) 5
S 1P (1062 0l s + RNy i)
k=0
S ATPX (100 grves + 1Rl sioss)
S TP (106 055 s + 1Bl H)
S TP e

The last two inequalities follow from the inequality é + 5¢y < v and the estimate
(112).

8.21. Properties of the metric g<x. Recall that g = P.y-u,(g"”) where
g"” is the inverse of the Lorentz metric g,, = ¢. We shall use the notation g«
to denote the inverse of g‘é';\ Observe that, in view of our assumption A > A, gy
defines a Lorentz metric in our spacetime region [0,7] x R®. It clearly depends on
the solution ¢ of the quasilinear problem (101). In the next proposition we state
the properties of the family g which follow from the bootstrap condition (108)
on ¢. We denote by Ryp(g<x) the components of Ricci curvature of the metric

g<A-

Proposition 8.22. Let ¢ € C([0,T];m + H') be a solution of (101) on [0,T],
T < 1. Assume that ¢ verifies the assumption (108) of theorem 8.11. Then the
family of metrics g« obeys the following conditions on each interval I}, such that
[Tx| < TA3, and ||3¢||L§kL;o AT

197 geally 1o S AT, (119)
N e (120)
10" genllnge e S A2 0™, (121)
IV @ggen)lugs, 2 S A" for 0<m< L +deo (122)
IVE " @ganllis, iz S M for — L de<m (12)
197 82500058 rllg 1 S AT, (124)
V" (V5 Raslgan)lig 12 S 4™ (125)
19" Ras(ge)lly 1o S A0 (126)

Remark 8.23. Tt suffices to prove the above estimates for the inverse metric g\ =
P_x(g"¥). This can be easily seen by Leibnitz rule and the non degeneracy of g .
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On the other hand, due to the explicit presence of Py, the estimates for g’é';\ can
be immediately reduced to m = 0.

To be precise, the argument above works only for the spatial derivatives V, since
P_, truncates the frequencies of g*” only with respect to the space variable z.
However, using the fact that g,, = ¢ is a solution of the wave equation, one can
recover the corresponding estimates for the time derivatives. Let us illustrate this
by proving the estimate®? (119) with m = 1. We assume that we have already
proved (119)-(124) for m = 0. Then, clearly the derivatives Vg.) and Vd;g<
can be estimated with an additional factor of A. It remains to address the derivative
0?2 g<x. Observe that

g0} = 823005+ Y. 8250005
«=0,..,3,8=1,..,3

The desired estimate follows from the condition (124) with m = 0 and the fact that
the second term in the previous formula contains at least one spatial derivative.

In view of the above remark we shall make no distinction between g, and gzi in
what follows.

Proof of (119)-(126) for m = 0:  The proof of inequality (120) follows immedi-
ately from the definition of I}, since

10g<allLz po S110¢llL2 Lo S AT
k k
Moreover, we have an even stronger estimate,
10gllzs 1z < 196l £z S AT (127)

The Holder inequality yields (119) from (120).

The estimates (121), (122), and (123) follow by a simple application of the Sobolev
inequality, the composition properties of Sobolev spaces and the condition vy > 4eq.

10Px gDz 15> S NOPx 8O fy3+e

- L (128)
S A6 gz s S NET
k

The most interesting part of the proposition are the estimates (124), (126). Recall
that the original metric g satisfied the Einstein equation, R,z(g) = 0. In addition,
since (g") = ¢! and g*?0,03¢ = N, each component of g satisfies the equation
which can be written schematically as g*?9,05 g"¥ = |04|>. Thus,

180005 gl 1= S A (129)

32This is one of the few estimates with m # 0 which we shall actually use.
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On the other hand we recall the expression for R,s(g) relative to arbitrary coor-
dinates,

1 v
Raﬁ (g) = 5 gu (823 Sav + (32,, 8uB — 8136 Suv — 821/ gaﬁ) + 86 (FZBF(;V - FZVF(;B)‘

Here F:LB are the Christoffel symbols of the metric g. It is then easy to see that
the equation R,z(g) = 0 also implies that

g™ (975 8av + 02, Bus — Oas Buv — Oy 8as) iy, 1o S 11081175 poe S AT

(130)
and
18" (0713 Bav + Oy Bus — Oap Buv — Oy 8as)l o y3 S 1108 -08ll, . 3 S 1.
T T (131)

The last inequality follows from the generalized Leibnitz rule and the fact that
og e H'T.

To derive the desired estimates (124)-(126) we simply? need to apply the following
lemma to the estimates (129) and (130).

Lemma 8.24. Let A = (Af:f”") be a fized constant tensor. Denote g- A -0%g =
g”"SA:?“"E)aag guv. Assume that the linear combination g - A - 8% g of the second
derivatives of the metric g satisfies the estimate ||g - A - 6° g||L}k Lo < ¢(Bo)A 0.
Then the same estimate holds for the linear combination associated with the metric
B<a’

lg<r- A -8 g<>\||L}kLg° S AT, lg<r- A -8 g<>\||LwH% <1
T (132)

Proof Recall that g« = P<)g. Clearly,

lg<x = gllez 1 SATIVElley 1 SATTH (133)
Then

I(g<r — 8) - A0 garlliy 1 <llger — glliz 110" grlliz 1o
SAHA0 Baallzz pe S AT (134)
We can now consider the term g- A - 92 g.y. We have
g-A-0’ Poxg =gP<\0-A-0g = [g,P<A3]-A-6g+P<A(g-A-32g+ ag-A-ag) :
The commutator term can be estimated
1(lg. Poxdl) fllz 1 < 108l 11l S A1 lzce.
It then follows that
1(lg, P<x0]) - A - Ogllpy 1o S A5,

33The estimates (125) and (126) also require the following obvious estimates,

b3} 2 < A8, dg < \- 0 1 < 1.
| g<AHL;kLgo N llog g<AIIL?ZH% N
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The remaining term satisfies the desired estimate by the assumptions of the lemma.
The proof of the H? estimate in (132) is similar. [ |

8.25. Rescaling. According to theorem 8.18 we need to prove a Strichartz estimate
for any solution of the problem ggiaaaw = 0 on the interval I} = [tg, tr1], with
initial data ¢[ty] = (¥(tk), Optp(tr)) obeying condition (113), uniformly in A, k.

It is convenient to replace the above problem by its rescaled version, so that the
initial data satisfies condition (113) with A = 1 and the rescaled time interval I has
length < \1=8¢o,

Introduce the family of the rescaled metrics®*
Hpy (@) = gax(NH(E— ), A ) (135)
We decompose the Lorentz metric H = H () relative to our spacetime coordinates;
—n?dt? + hij(dz' + v'dt) @ (dz’ + v’ dt) (136)

where n and v are related to n, v according to the rule (135). In view of our choice
of A > A and (8) it easily follows that H is indeed a Lorentz metric and

ol <hie'ed <cUEP, n® =l 2e>0, Inl o] <t (137)

Proposition 8.22 implies that H = H(y obeys the following estimates on the time
interval I = [0,t,] with #, < A\l =8¢o:

Background Estimates(see proposition 2.4):

17 iy, ppe S AT (135)
"™ H|p g S ATET, (139)
||81+mH||LFg‘i*]L;o < )\7%7460, (140)
IV @) lugs, 2 SA™ for — % sms % *eo (4
IVE @ H) s,z SAENY for — 5 e <m 142

10™ (H*P 0005 H) ||y nee S AT T, 143

(142)
S (143)
(144)
(145)

IV™ (V2 Rie(H))llz, 12 SAT 144
10" Ras(H)||pr g S ATIT8C0, 145
s [0,ts]72

We now formulate the rescaled version of the desired Strichartz estimate.
Theorem 8.26 (A4). Let ¢ be a solution of the linear wave equation
HP9,05% = 0, (146)

on the time interval [0,t.] with t. < \'78¢. Assume that the parameter X > A
for a sufficiently large constant A and that the metric H verifies (138)-(145) with

34 Just as for g<x we make no distinction between H(y), as Lorentz metric and its inverse.
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a sufficiently small € > 0. Let P be the operator of projection on the set {{: 1<
|€] < 2} in Fourier space. Then there exists a small constant § = §(eg) > 0 such
that

1P oYz, pe S 16711090122 (147)

[0,tx] 7@

Remark: Note that Theorem (A4) does not contain any assumptions on the
Fourier support of the initial data 1|0].

8.27. Decay estimates. A variation of the standard TT* type argument, see
[K11], allows us to reduce the Strichartz estimate (147) to a corresponding disper-
sive inequality, see (148). In the process we replace®® the equation H*?9,05¢ = 0

by the geometric wave equation Ot = ﬁ@a(Ha5\/|H| dp1p) = 0.
Theorem 8.28 (A5). Let ¢ be a solution of the linear wave equation
DH/(/} = 0>
Yl = o,  Oley = Y1

on the time interval [0, t.] with t. < A7 and with initial data Y[te] = (Y(to), Fstb(to))-
We consider only large values of the parameter A > A. Assume that the metric H
verifies (138)-(145). Then there exists a function d(t) obeying the condition

(148)

1
t! ||d||LE10,i*] <1, for some q > 2 sufficiently close to 2, (149)

such that for all tg < t < t., a fized arbitrary small € > 0, and a sufficiently large
integer m,

1PovOlis $ (o +40) LIV lalln. (150
k=0

We make the final reduction by decomposing the initial data [tg] in the physical
space into a sum of functions with essentially disjoint supports contained in balls of
radius % Using the additivity of the L' norm and the standard Sobolev inequality
we can reduce the dispersive inequality (150) to an L? — L* decay estimate.

Theorem 8.29 (L2 — L™ decay). Let 1) be a solution of the linear wave equation
(148) on the time interval [0,t.] with t. < A5 and with initial data [te] supported
in the ball B% (0) of radius % centered at the origin in the physical space. We fix
a big constant A and consider only large values of the parameter X > A. Assume
that the metric H verifies (138)-(145). Then there exists a function d(t) obeying
the condition (149) such that for all to < t < t., an arbitrary small € > 0, and a
sufficiently large integer m > 0,

1PovOlis £ (e +40) LIV lallz: 50
k=0

35The two wave operators differ only by lower order terms in so far as the Strichartz estimates
are concerned.
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8.30. Proof of the implication Theorem (A5) - Theorem (A4); Decay —
Strichartz. On this step of the reduction we assume that the family of metrics
H = H(y satisfies conditions (138)-(145) and that any solution of the geometric
wave equation (g1 = 0 obeys the decay estimate

1

1PovOles 5 (T

+d(t>) S IRt
k=0

We need to show that under these assumptions any solution®® of the wave equation
H*80,03¢ = 0 satisfies the Strichartz estimate |P9¢||2 = < [t]°][0[0]]| 2.

[0,tx] 72

First, observe that it suffices to prove the following estimate:
1P Odllrs  re < II6[0]]] L2 (152)

[0,£x]
with § =1 — % > 0 arbitrarily small. Observe also that the solutions of either

the geometric wave equation gy = F or the equation H i‘ﬁ 0,08% = F obey the
following energy inequality for any t,to € [to, t«]:
106(®) 12z < exp(CI0H oy, re) (100 (t0)llnz + I Flly, 12

[0,tx] 7@

<2(l0v(to)llez +11F Iy, r2).  (153)

[0,tx] "2

where the last inequality follows 37 from the condition (138) on the metric H.

Furthermore, since
1
Oy = H*0,05 + —=—==0,(\/|H|H*?)d;,

VIH]

it is easy to show 3® that it suffices to establish (152) for a solution of the geometric
wave equation. We shall now prove a stronger result.

Proposition 8.31. Let ¢ verifies the wave equation Og¢d = 0. Assume that the
metric H is Lorentzian >° and satisfies the condition

1
CloH|y,, 1z <5 (154)

for some sufficiently large positive constant C. We also assume that the conclusions
of Theorem (A5) hold true. Then, for any q > 2,

1P O¢llLg , 1z S 110¢(0)lz2, (155)

[0,tx] 2

36 Remark that we don’t require any assumptions on the initial data. This is due to the presence
of the projection P in the estimate.

37Recall that we consider A > A for a sufficiently large constant A

38By the Duhamel Principle we would obtain

||P8¢HL‘[10 L < M(||¢[U]||L§ + H8H||L[10 . ]LgO||3¢7||L g)

ngt*]L
and the condition (138) together with the energy inequality for ¢ would imply (152).

39for simplicity we can assume that the ellipticity constant of the restrictions of the metric H
to the time slices 3¢ is 2
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Proof Asin [Kl1], [KI-Ro] we start by observing that our desired estimate
1POGILs,, 1 < MIDSO)2, (156)

is trivially true with a constant M > 0 which may depend on A. Thus we only need
to prove that the constant M is in fact independent of \.

Remark 8.32. We shall first prove the estimate (155) for P 0;¢.

Definition 8.33. Setting (wo,w;) € H'(R?) x L}(R3), w = (wp,w;) we denote
by ®(t,s;w) the vector (¢,0;¢), where ¢(t,s;w) is the solution at time ¢ of the
homogeneous equation O¢ = 0 subject to the initial data at time s, ¢(s, s;w) =
wo, at¢(s> 53 U)) = wi.

t

By a standard uniqueness argument *° we can easily prove the following:
<I><t,s; <I>(s,t0;w)> = O(t,to;w) (157)

Definition 8.34. Denote by H the set of vector functions w = (wg,w;) with
(wo,w1) € HY(R?) x L?(R?). The scalar product in H is defined by

< w,v >:/ <—H00w1'U1+Hij8i’w0'8j1}0>
3o

Remark 8.35. Observe that the above scalar product is positive definite. Indeed
H is strictly negative and H% is positive definite. To see the last assertion let
h;j denote the metric induced by H on X;. In fact the metric H is given by
—n2dt® + hij(dzt +vidt) ® (do? +v7dt). Thus HY = h¥ —n=2v'I. Observe first*!
that Hv;v; > clv|7. This follows easily from n? — |v|; > 0, see (137). On the
other hand, denoting by T, = {w/hijw'v! = 0} the orthogonal complement to v,
we easily check that H¥w;w; > c|lw|?. This follows from the positivity of h, see
(137). Finally HYw;v; = 0.

Let X = LEIO p L2 and its dual X' = LEI(; t*]Lglc. Let 7 be the operator from H to
X defined by:

T(w) = =P 0rp(t, 0;w) (158)
with ¢ defined according to definition 8.33.

The adjoint 7* is defined from X' to H. To prove the estimate (155) it suffices to
check that 7 - 7* is a bounded operator from X’ to X. In view of (156) we have?*?
|7 ||2—x = M where ||T||3—x denotes the operator norm of 7. Thus,

T T*llx—x = M>.

To calculate 7* we write,

<T f,w>=<f,T(w) >= —/

[0,¢.]xR?

Oy pP fdtdr = / Orp O,

[0,¢.]xR?

4Owhich follows from the energy estimate (153), which still holds under assumption (154) on
the metric H

41Here v; = hijvj.

42We may assume that M is the smallest constant for which (156) holds true.
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where 1) is the unique solution to the equation
Outp = 0a(H*P93¢)) = —PF,

¢(ts) = 0ed(ts) = 0. (159)

Consequently, integrating by parts, we obtain
<T*f,w>= —/ (&d)HOB(?mZJ - Hoﬁagatm/;) +/ OgOrh .
2o [0,¢.]xR?
Observe that

Onded = 0,0r¢ — 0a(8:(H")339).
Therefore, integrating by parts once more, we have

<7'*f,w>:—/

o

+0mop — at(HOB)éww)

(amﬂwaw — H%0:0,6¢

[ (Gweaw-ar)oe0.).
[0,t.]xR3

Further note that —H%030,¢ + Op¢ — 0,(H*®)0s¢ = 0;(H¥Pds¢), and therefore,

[ (007036 = 150,000 + D - 0,1 9500

o
_ / <6t¢H0B851/1 - Hiﬁaggba,»@z;)
o
_ / <H°08t¢8tz/1 _H amam) .
3o
Thus, since

_ /| H
DH:DH+Ha66 | |a

VIH]|

and Og¢p =0

<T fiw> = / <— H8,¢0;1) + Hij8i¢8jz/1>
3o
- <DH¢ Orts — DL ()03 fm)
[0,¢,] X R?
— / < — H9,001) + H"jai(bajz/})
o

@ aOé\/ |H| « )
HOPZ2Y 19560, O (H*)ds¢ D
+ /[07,{*])(1?{3 < \/@ B¢ t,¢}+ t( ) B¢ 1/}

Thus, since ¢[0] = w and recalling the definition of <, >
<T*f,w>=<y[0],w >+ < R(f),w >
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with R(f) the linear operator from X’ to H defined by the formula,

<n@pw>=[ (Haﬁa“T“—Eamaﬂp +0L(H")050 0,0 -
Therefore,
T*f =4[0] + R(f) (161)
with ¥[0] = (4(0), 8¢ (0)).
Henceforth,
TT*f =Tv[0] + TR(f) (162)
Observe that Oy = —Pf + e with e = HQBBQT\/E(?BT/)- Thus we can write
Y = =91 + 1py with,
Oy = Pf,
Uuvs =e

with both 1,15 verifying zero initial conditions at ¢t = ¢, as in (159). Now T[0] =
—T1]0] + T2[0] and, recalling the definition 8.33, T4 [0] = —Patd)(t 0; Y [ 0)
According to the Duhamel principle, as in (117) we have, with 1[t] = (4(t), 0 (t)),

] = /t B(t, 5; F(s))ds

5

with F(s) = (0, (H®)"'Pf(s)) = (0,—n~2Pf(s)) and therefore,

0] = —/0 "B (0, 5: F(s))ds

and, in view of (157),
ts

Tu[0] = Patd)(t, 0;/0 ) (0, s; F(s))ds) =P 0 d(t, s; F(s))ds.

0
We are now in a position to apply the dispersive inequality of Theorem (A6).

1P Bl 5: F(5))]] 1~ sc((1+|t— D+ d(r) )ZIIV’“ (n"2Pf ()11

In view of (137) and (140), we have || V¥n=2||L~ < 1. Thus, since P is the projection
on the frequencies of size 1, we infer that

1P 0 p(t, 55 F(s))]| L < C<(1 +t—s) T+ d(t)> 1F(s)lzs-

Therefore, by the Hardy-Littlewood-Sobolev inequality,

1741 (0]l

[0,t+]

t.
v SOy oy 1 [ A0 sl

We can now make use of the assumption (149) of Theorem (A5) and infer that,

s
|| / AONPS ) dsllzy,, < CHENdlag,, Wfllys ) <Cflly o
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Thus
1760y, oz <Oy (163)

with C a constant, independent of A.

To estimate T 1)2[0] we apply the Strichartz inequality with a bound M, see(156),
ITYa[0lll e oo < M|[102[0]]]2

[0,6]
where,
[42[0][[% = sup < w,2[0] >3, < Cl|0¢2(0)]| 2.

flwll2 <1
We shall now make use of the energy estimate (153) for ¢, verifying the equation
Ope = e, subject to the initial conditions ¥ (t,) = Opth2(tx) =0

109%2(0)][ L2 < Cllellry,, 12 < ClIOH||y 1210l

[0,t4] [0, ] m
Therefore, with the help of the condition (154), we have
1T¢2[00llLg, , 1 —M||8¢||L

] (164)

L2
Ot]m

We shall now estimate the other error term 7 Rf. Since the operator norm of 7 is
bounded by M,

ITEDeg,, 1z < MR-
On the other hand,
IR(F)llse = sup < w,R(f) >x

llwll2 <1

9a/1H] ,
=— sup / (Haﬁia ¢ Outp + Oy (H® 3¢3a¢>
lwllz <1 J[0,t.]xR? JH| BP Ot  (H*")03

Estimating in a straightforward manner we derive,

VRl < ClOH 1y, 1 100l10ss, ]Lmuawup;t 2.
We use the energy inequality (153) to estimate ||0¢]| L, L . Since the initial data

lwlly <1 we infer that, ||8¢||Loo g2 < C'. Therefore, w1th the help of (154), w
have

—_

TR s, 1 < 7MI0¥ILss (165)

2.
Ot] z

~

To estimate ||61/J||Looi rz we rely on the following:

Lemma 8.36. The solution v of the equation Ot = —Pf, ¥(t.) = Ou)(t.) =
verifies the estimate,

10¥lzss, oz < 2MIIfll e 1 (166)

Ot]m—



NONLINEAR WAVE EQUATIONS 45

Gathering together (163),(164),(165) and (166) we infer that,

* 1
ITTfllx = IT @1 (0] + 92[0] + R(N)lze,, 1 < (C+ QMQ)IIfIIL[q(;t Ly
Therefore, in view of (162),

1

Thus we infer that M is a universal constant, as desired.

It only remains to prove the lemma 8.36. We proceed as follows. Let ¢ be fixed in
the interval [0, t.]. We rewrite the equation Oy ¢ = 0 in the form,

Op¢=F = —Haﬁwaﬁqb (167)
VIH]
with initial data ¢(t) = wo, Opp(t) = wy, and (wo,w1) = w € Hy, ||w||ly, < 1.
Here, the space ; is defined by the scalar product < w,v >3, =[5, —Hy; vy +
H 9wy 0;vo. We also recall that, see (159),

Out = —Pf (168)

with initial data ¢y () = 0¢)1(t«) = 0. As in [K11] and [KI-Ro] we multiply (167)
by 0:1p and (168) by 0;¢ after which we sum and integrate on our spacetime slab
[t,t.] x R3. Observe that,

00 (H*P051)) = (0a H*")031) + H* 0,051
HP0,05v 00 + H*P 0,050 01 = H*P9,(8;005¢) + H*’ D5 (041) 0 )
— H*%(0,0:005¢) — H*" (9504180 0)
= HP9,(0:005¢) + H**83(0:09)
- Haﬁat(aa(ﬁaﬁl/’)
Thus
0o (H*P0510)0;p + 00 (H P 036)05tp = Do (HY? 01601 + 013pD5)
— 0 (H*?00¢05¢) + (0 H*)0apO31)
= 0i(H" 8,¢951 + 0093¢)
+ 0 (—H0,00:1) + H 0;00;1)
+ (0:H") 00 $051)
Integrating in the region [t,t.] X R™ we derive the identity,

ta
/ (—H006t¢3t1/1+Hij5i¢3j‘/1> = —/ / <—5t¢Pf+3t1/J F+3t(HaB)6a¢66‘/’>-
¢ t p
Therefore,

10v®)llzz < 1P OeBllg, , e lIflly o HCNOHLy , pl0¢llrs, 2210V, 22

[0,tx] "= [0,tx] [0,tx] " [0,tx] "
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We recall that according to our assumption ||P8t¢||Lt[z e < Mlwlly, < M.
Also according to the energy estimate, ||8¢||Loo 2 < 2||w||yt < 2. Therefore,

[0,te] T2 —

10¢llegs, ez < Mlfllg o+ ClOHIILy,

Ot]w_

olovllos, e

and therefore, since Cl|0H |11 1o < 3

1oL < gy we conclude that,
ty

10¢]|Lee

[0,t4]

L2 S 2M||f||L([10’,i*]Li

as desired.

To prove the Strichartz estimate for the spatial derivatives we rely on the proof,
given above, for P 0;¢. We thus assume that the estimate (8.36) holds true for
P 0,¢ with a universal constant M.

To estimate || P 8k¢||Lq L it suffices to estimate the integral, 7 = fo £]xR? P oy¢ fdtdz
for functions f with ||f||L 1o < 1. Let o verify the equation Opt = Pf with
[0,t4] "=

P(te) = Opp(t.) = 0. Integréting by parts as before we infer that
I:/ on¢Opp = | H <ak¢ag¢+ak¢ aggb)
[0 t ]XR3 20

— / (DH¢ak1/J - (8kH“3)5a¢661/1>
[0,¢.]xR?

Once again

L2
[0,ts] = [0,ts] 2 Ut]z

| / O] < ClOH sy, 1100l 12106115
[0,t.]xR3
Also,

2.
o1l

[ (amaﬁwawagqs) < 1106(0) |2 10 1=

The energy estimate (153) gives [|09||r 12 < 2||0¢(0)]|z2- According to the

[0,t4 ] Ed
lemma 8.36 we have,

|| Q/JHLOS’t ]Li < 2M||f||Lﬁ)’,t*]L;.

Observe that the M in lemma 8.36 depends only on the Strichartz estimate (155)
for P 0;¢ which we have already proved. Therefore,

12l < CM{I0(O)=2(L+ 10H Nz, pe)lFlly 1y < CMIOFO)]]z2

0,61 L%

which implies, ||P aa¢||L‘[10 L < CM||8¢(0)||z2 as desired. [ |
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8.37. Commutator lemma. We conclude this section by presenting the proof
of lemma 7.1 from section 2.1. Recall that the definition of the exterior region
Ext, = {u < t/2}.

Lemma 8.38. Consider a vectorfield X = ZiXiai vanishing on the complement
of the exterior region Ext; of ¥y and P the standard Littlewood-Paley projection on
frequencies of size 1. Then, for arbitrary scalar functions f we have the inequality:

0P, X111ty S SO IO Nt M 5 (169)

Proof First observe, by expanding X = Xjaj relative to our system of our coor-
dinates on ¥, that [P, X] = [P0}, X7] — P(9;X7). We shall denote P; = P9;, the
modified cut-off of the unit frequencies. In what follows, the roles of P and P; are
identical. The convolution kernels of P, P; are represented by the smooth functions
P(z), Pj(x) verifying the condition that |P(z)|,|P;(z)| < |z|~* for any k > 0 and
|z] > 1. In particular, for any functions w,v

v= / Pz — y) (w(y) — w(@))v(y) dy

1
. / / P(z — y)(e — y)'dsw(ra + (1 - r)y)oly) dy dr
0 t
As a consequence,

1P, wloll s S 19wl Bt 022 (170)

Similar inequality also holds for P;.

We shall show that
1P, X7 1f L2 + 1P (05 X)) ll2ess S sup 10: X7 oo (Bixct 111 £2(520)

Since all X7 vanish outside of Ext; and P is a bounded operator on L2(X;), we
can easily estimate the second term,

IP((0:X7) )20 S sup 10iX7 || (Bt 1/l 2250)
i
According to (170) we also have
1P, X flleacny S sup 10:X7 [l o (Bt o |11 2250)
i
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