FORMATION OF TRAPPED SURFACES II

SERGIU KLAINERMAN, JONATHAN LUK, AND IGOR RODNIANSKI

1. Introduction

2. Geometry of a null hypersurface

As in [?] we consider a region $\mathcal{D}=\mathcal{D}\left(u_{*}, \underline{u}_{*}\right)$ of a vacuum spacetime (M, g) spanned by a double null foliation generated by the optical functions (u, \underline{u}) increasing towards the future, $0 \leq u \leq u_{*}$ and $0 \leq \underline{u} \leq \underline{u}_{*}$. We denote by H_{u} the outgoing null hypersurfaces generated by the level surfaces of u and by $\underline{H}_{\underline{u}}$ the incoming null hypersurfaces generated level hypersurfaces of \underline{u}. We write $S_{u, \underline{u}}=H_{u} \cap \underline{H}_{\underline{u}}$ and denote by $H_{u}^{\left(\underline{u}_{1}, \underline{u}_{2}\right)}$, and $\underline{H}_{u}^{\left(u_{1}, u_{2}\right)}$ the regions of these null hypersurfaces defined by $\underline{u}_{1} \leq \underline{u} \leq \underline{u}_{2}$ and respectively $u_{1} \leq u \leq u_{2}$. Let $L=-g^{\alpha \beta} \partial_{\alpha} u \partial_{\beta}, \underline{L}=-g^{\alpha \beta} \partial_{\alpha} \underline{u} \partial_{\beta}, \underline{L}$ be the geodesic vectorfields associated to the two foliations and define,

$$
\begin{equation*}
g(L, \underline{L}):=-2 \Omega^{-2}=g^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} \underline{u} \tag{1}
\end{equation*}
$$

Observe that the flat value ${ }^{1}$ of Ω is 1 . As well known, our space-time slab $\mathcal{D}\left(u_{*}, \underline{u}_{*}\right)$ is completely determined (for small values of u_{*}, \underline{u}_{*}) by data along the null, characteristic, hypersurfaces H_{0}, \underline{H}_{0} corresponding to $\underline{u}=0$, respectively $u=0$. Following [?] we assume that our data is trivial along \underline{H}_{0}, i.e. assume that H_{0} extends for $\underline{u}<0$ and the spacetime (M, g) is Minkowskian for $\underline{u}<0$ and all values of $u \geq 0$. Moreover we can construct our double null foliation such that $\Omega=1$ along H_{0}, i.e.,

$$
\begin{equation*}
\Omega(0, \underline{u})=1, \quad 0 \leq \underline{u} \leq \underline{u}_{*} \tag{2}
\end{equation*}
$$

We denote by $r=r(u, \underline{u})$ the radius of the 2 -surfaces $S=S(u, \underline{u})$, i.e. $|S(u, \underline{u})|=4 \pi r^{2}$. We denote by r_{0} the value of r for $S(0,0)$, i.e. $r_{0}=r(0,0)$. For simplicity we assume $r_{0}=1$.

Throughout this paper we work with the normalized null pair $\left(e_{3}, e_{4}\right)$,

$$
e_{3}=\Omega \underline{L}, \quad e_{4}=\Omega L, \quad g\left(e_{3}, e_{4}\right)=-2 .
$$

[^0]${ }^{1}$ Note that our normalization for Ω differ from that of [?]

Given a 2-surfaces $S(u, \underline{u})$ and $\left(e_{a}\right)_{a=1,2}$ an arbitrary frame tangent to it we define the Ricci coefficients,

$$
\begin{equation*}
\Gamma_{(\lambda)(\mu)(\nu)}=g\left(e_{(\lambda)}, D_{e_{(\nu)}} e_{(\mu)}\right), \quad \lambda, \mu, \nu=1,2,3,4 \tag{3}
\end{equation*}
$$

These coefficients are completely determined by the following components,

$$
\begin{array}{ll}
\chi_{a b}=g\left(D_{a} e_{4}, e_{b}\right), \quad \chi_{a b}=g\left(D_{a} e_{3}, e_{b}\right), \\
\eta_{a}=-\frac{1}{2} g\left(D_{3} e_{a}, e_{4}\right), & \underline{\eta}_{a}=-\frac{1}{2} g\left(D_{4} e_{a}, e_{3}\right) \\
\omega=-\frac{1}{4} g\left(D_{4} e_{3}, e_{4}\right), & \underline{\omega}=-\frac{1}{4} g\left(D_{3} e_{4}, e_{3}\right), \tag{4}\\
\zeta_{a}=\frac{1}{2} g\left(D_{a} e_{4}, e_{3}\right)
\end{array}
$$

where $D_{a}=D_{e_{(a)}}$. We also introduce the null curvature components,

$$
\begin{align*}
& \alpha_{a b}=R\left(e_{a}, e_{4}, e_{b}, e_{4}\right), \quad \underline{\alpha}_{a b}=R\left(e_{a}, e_{3}, e_{b}, e_{3}\right), \\
& \beta_{a}=\frac{1}{2} R\left(e_{a}, e_{4}, e_{3}, e_{4}\right), \quad \underline{\beta}_{a}=\frac{1}{2} R\left(e_{a}, e_{3}, e_{3}, e_{4}\right), \tag{5}\\
& \rho=\frac{1}{4} R\left(L e_{4}, e_{3}, e_{4}, e_{3}\right), \quad \sigma=\frac{1}{4}{ }^{*} R\left(e_{4}, e_{3}, e_{4}, e_{3}\right)
\end{align*}
$$

Here ${ }^{*} R$ denotes the Hodge dual of R. We denote by ∇ the induced covariant derivative operator on $S(u, \underline{u})$ and by ∇_{3}, ∇_{4} the projections to $S(u, \underline{u})$ of the covariant derivatives D_{3}, D_{4}. Observe that,

$$
\begin{array}{ll}
\omega=-\frac{1}{2} \nabla_{4}(\log \Omega), & \underline{\omega}=-\frac{1}{2} \nabla_{3}(\log \Omega), \tag{6}\\
\eta_{a}=\zeta_{a}+\nabla_{a}(\log \Omega), & \underline{\eta}_{a}=-\zeta_{a}+\nabla_{a}(\log \Omega)
\end{array}
$$

We recall the integral formulas ${ }^{2}$ for a scalar function f in \mathcal{D},

$$
\begin{align*}
\frac{d}{d \underline{u}} \int_{S(u, \underline{u})} f & =\int_{S(u, \underline{u})}\left(\frac{d f}{d \underline{u}}+\Omega \operatorname{tr} \chi f\right)=\int_{S(u, \underline{u})} \Omega\left(e_{4}(f)+\operatorname{tr} \chi f\right) \\
\frac{d}{d u} \int_{S(u, \underline{u})} f & =\int_{S(u, \underline{u})}\left(\frac{d f}{d u}+\Omega \operatorname{tr} \underline{\chi} f\right)=\int_{S(u, \underline{u})} \Omega\left(e_{3}(f)+\operatorname{tr} \underline{\chi} f\right) \tag{7}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\frac{d r}{d \underline{u}}=\frac{1}{8 \pi} \int_{S(u, \underline{u})} \Omega \operatorname{tr} \chi, \quad \frac{d r}{d u}=\frac{1}{8 \pi} \int_{S(u, \underline{u})} \Omega \operatorname{tr} \underline{\chi} \tag{8}
\end{equation*}
$$

We also recall the following commutation formulas: We record below commutation formulae between ∇ and ∇_{4}, ∇_{3} :

[^1]Lemma 2.1. For a scalar function f :

$$
\begin{align*}
& {\left[\nabla_{4}, \nabla\right] f=\frac{1}{2}(\eta+\underline{\eta}) D_{4} f-\chi \cdot \nabla f} \tag{9}\\
& {\left[\nabla_{3}, \nabla\right] f=\frac{1}{2}(\eta+\underline{\eta}) D_{3} f-\underline{\chi} \cdot \nabla f} \tag{10}
\end{align*}
$$

For a 1-form tangent to S :

$$
\begin{aligned}
{\left[\nabla_{4}, \nabla_{a}\right] U_{b} } & =-\chi_{a c} \nabla_{c} U_{b}+\epsilon_{a c} * \beta_{b} U_{c}+\frac{1}{2}\left(\eta_{a}+\underline{\eta}_{a}\right) D_{4} U_{b} \\
& -\chi_{a c} \underline{\eta}_{b} U_{c}+\chi_{a b} \underline{\eta} \cdot U \\
{\left[\nabla_{3}, \nabla_{a}\right] U_{b} } & =-\underline{\chi}_{a c} \nabla_{c} U_{b}+\epsilon_{a c} * \underline{\beta}_{b} U_{c}+\frac{1}{2}\left(\eta_{a}+\underline{\eta}_{a}\right) D_{3} U_{b} \\
& -\underline{\chi}_{a c} \eta_{b} U_{c}+\underline{\chi}_{a b} \eta \cdot U
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& {\left[\nabla_{4}, \operatorname{div}\right] U=-\frac{1}{2} \operatorname{tr} \chi \operatorname{div} U-\hat{\chi} \cdot \nabla U-\beta \cdot U+\frac{1}{2}(\eta+\underline{\eta}) \cdot \nabla_{4} U-\underline{\eta} \cdot \hat{\chi} \cdot U} \\
& {\left[\nabla_{3}, \operatorname{div}\right] U=-\frac{1}{2} \operatorname{tr} \underline{\chi} \operatorname{div} U-\underline{\hat{\chi}} \cdot \nabla U+\underline{\beta} \cdot U+\frac{1}{2}(\eta+\underline{\eta}) \cdot \nabla_{3} U-\eta \cdot \hat{\hat{\chi}} \cdot U}
\end{aligned}
$$

2.2. Christodoulou's heuristic argument. We recall here the assumptions needed in Christodoulou's heuristic argument for the formation of a trapped surface as described in [?]. As mentioned above we assume that our data is trivial along \underline{H}_{0}, i.e. assume that H_{0} extends for $\underline{u}<0$ and the spacetime (M, g) is Minkowskian for $\underline{u}<0$ and all values of $u \geq 0$. We introduce a small parameter $\delta>0$ and restrict the values of \underline{u} to $0 \leq \underline{u} \leq \delta$, i.e. $\underline{u}_{*}=\delta$.

Main Assumptions. We assume that throughout $\mathcal{D}=\mathcal{D}\left(u_{*}, \underline{u}_{*}\right)$ we have the following estimates:
MA1. For small δ, Ω is comparable with its standard value in flat space, i.e.

$$
\Omega=1+O\left(\delta^{1 / 2}\right)
$$

MA2. The Ricci coefficients $\chi, \omega, \eta, \underline{\chi}, \underline{\omega}$ verify

$$
|\hat{\chi}, \omega|=O\left(\delta^{-1 / 2}\right), \quad|\operatorname{tr} \chi, \eta|=O(1), \quad\left|\underline{\hat{\chi}}, \operatorname{tr} \underline{\chi}+\frac{2}{r}, \underline{\omega}\right|=O\left(\delta^{1 / 2}\right) .
$$

MA3. Also for some $c>0$,

$$
|\nabla \eta|=O\left(\delta^{-1 / 2+c}\right)
$$

Note that in view of (8) we also have,

$$
\begin{equation*}
\frac{d r}{d u}=-1+O\left(r \delta^{1 / 2}\right), \quad \frac{d r}{d \underline{u}}=O(r) \tag{11}
\end{equation*}
$$

Thus, for δ sufficiently small, we infer that r is decreasing along the incoming null hypersurfaces and remains bounded, $0 \leq r \leq r_{0}+1=2$, in \mathcal{D}.

Christodoulou's argument for the formation of trapped surfaces in [?] rests on the equations,

$$
\begin{aligned}
\nabla_{4} \operatorname{tr} \chi+\frac{1}{2}(\operatorname{tr} \chi)^{2} & =-|\hat{\chi}|^{2}-\frac{1}{2}(\operatorname{tr} \chi)^{2}-2 \omega \operatorname{tr} \chi \\
\nabla_{3} \hat{\chi}+\frac{1}{2} \operatorname{tr} \underline{\chi} \hat{\chi} & =\nabla \widehat{\otimes} \eta+2 \underline{\omega} \hat{\chi}-\frac{1}{2} \operatorname{tr} \chi \underline{\hat{\chi}}+\eta \widehat{\otimes} \eta
\end{aligned}
$$

In view of our Ricci coefficients assumptions we can rewrite,

$$
\begin{aligned}
\nabla_{4} \operatorname{tr} \chi & =-|\hat{\chi}|^{2}+O\left(\delta^{-1 / 2}\right) \\
\nabla_{3} \hat{\chi}+\frac{1}{2} \operatorname{tr} \underline{\chi} \hat{\chi} & =O\left(\delta^{-1 / 2+c}\right)
\end{aligned}
$$

Multiplying the second equation by $\hat{\chi}$,

$$
\nabla_{4}|\hat{\chi}|^{2}+\operatorname{tr} \underline{\chi}|\hat{\chi}|^{2}=O\left(\delta^{-1+c}\right)
$$

Using also our assumptions for u, \underline{u}, Ω we deduce,

$$
\begin{align*}
\frac{d}{d \underline{u}} \operatorname{tr} \chi & =-|\hat{\chi}|^{2}+O\left(\delta^{-1 / 2}\right) \tag{12}\\
\frac{d}{d u}|\hat{\chi}|^{2}+\operatorname{tr} \underline{\chi}|\hat{\chi}|^{2} & =O\left(\delta^{-1+c}\right) \tag{13}
\end{align*}
$$

Integrating (12) we obtain,

$$
\begin{equation*}
\operatorname{tr} \chi(u, \underline{u})=\frac{2}{r(u, 0)}-\int_{0}^{\underline{u}}|\hat{\chi}|\left(u, \underline{u}^{\prime}\right)^{2} d \underline{u}^{\prime}+O\left(\delta^{1 / 2}\right) \tag{14}
\end{equation*}
$$

In view of our assumptions for $\operatorname{tr} \underline{\chi}$ and $\frac{d r}{d u}$

$$
\begin{aligned}
\frac{d}{d u}\left(r^{2}|\hat{\chi}|^{2}\right) & =r^{2} \frac{d}{d u}|\hat{\chi}|^{2}+2 r \frac{d r}{d u}|\hat{\chi}|^{2}=r^{2}\left[-\operatorname{tr} \underline{\chi}|\hat{\chi}|^{2}+O\left(\delta^{-1+c}\right)\right]+2 r\left[-1+O\left(r \delta^{c}\right)\right]|\hat{\chi}|^{2} \\
& =r^{2} O\left(\delta^{-1+c}\right) .
\end{aligned}
$$

Therefore,

$$
r^{2}|\hat{\chi}|^{2}(u, \underline{u})=r^{2}(0, \underline{u})|\hat{\chi}|^{2}(0, \underline{u})+r^{2} O\left(\delta^{-1+c}\right)
$$

As in [] we freely prescribe $\hat{\chi}$ along the initial hypersurface $H_{0}^{(0, \delta)}$, i.e.

$$
\begin{equation*}
\hat{\chi}(0, \underline{u})=\hat{\chi}_{0}(\underline{u})=O\left(\delta^{-1 / 2}\right) \tag{15}
\end{equation*}
$$

for some traceless 2 tensor $\hat{\chi}_{0}$. We deduce, (need $0<c \leq \frac{1}{2}$),

$$
|\hat{\chi}|^{2}(u, \underline{u})=\frac{r^{2}(0, \underline{u})}{r^{2}(u, \underline{u})}\left|\hat{\chi}_{0}\right|^{2}(\underline{u})+O\left(\delta^{-1+c}\right)
$$

or, since $|\underline{u}| \leq \delta$ and $r(u, \underline{u})=r_{0}+\underline{u}-u+O\left(\delta^{c}\right)$,

$$
|\hat{\chi}|^{2}(u, \underline{u})=\frac{r_{0}^{2}}{r^{2}(u, 0)}\left|\hat{\chi}_{0}\right|^{2}(\underline{u})+O\left(\delta^{-1+c}\right)
$$

Thus, returning to (14),

$$
\begin{aligned}
\operatorname{tr} \chi(u, \delta) & =\frac{2}{r(u, 0)}-\frac{r_{0}^{2}}{r^{2}(u, 0)} \int_{0}^{\underline{u}}\left|\hat{\chi}_{0}\right|^{2}\left(\underline{u}^{\prime}\right) d \underline{u}^{\prime}+O\left(\delta^{c}\right) \\
& =\frac{2}{r(u, 0)}-\frac{r_{0}^{2}}{r^{2}(u, 0)} \int_{0}^{\underline{u}}\left|\hat{\chi}_{0}\right|^{2}\left(\underline{u}^{\prime}\right) d \underline{u}^{\prime}+O\left(\delta^{c}\right)
\end{aligned}
$$

We have thus proved the following.
Proposition 2.3. Under the assumptions MA1- MA3 we have, for sufficiently small $\delta>0$ and fixed $c>0$,

$$
\begin{equation*}
\operatorname{tr} \chi(u, \delta)=\frac{2}{r(u, 0)}-\frac{r_{0}^{2}}{r^{2}(u, 0)} \int_{0}^{\delta}\left|\hat{\chi}_{0}\right|^{2}\left(\underline{u}^{\prime}\right) d \underline{u}^{\prime}+O\left(\delta^{c}\right) \tag{16}
\end{equation*}
$$

Since $r(u, \underline{u})=r_{0}-u+\underline{u}+O\left(\delta^{c}\right)$ formula (16) can also be written in the form,

$$
\begin{equation*}
\operatorname{tr} \chi(u, \delta)=\frac{2}{r(u, \delta)}-\frac{r_{0}^{2}}{r^{2}(u, \delta)} \int_{0}^{\delta}\left|\hat{\chi}_{0}\right|^{2}\left(\underline{u}^{\prime}\right) d \underline{u}^{\prime}+O\left(\delta^{c}\right) \tag{17}
\end{equation*}
$$

Corollary 2.4. The necessary condition to have $\operatorname{tr} \chi(u, \underline{u}=\delta)<0$

$$
\begin{equation*}
\frac{2 r(u, 0)}{r_{0}^{2}}<\int_{0}^{\delta}\left|\hat{\chi}_{0}\right|^{2}+O\left(\delta^{c}\right) \tag{18}
\end{equation*}
$$

for sufficiently small $\delta>0$. Since $r(u, 0)=r_{0}-u+O\left(\delta^{c}\right)$, condition (18) can also be written in the form,

$$
\begin{equation*}
\frac{2\left(r_{0}-u\right)}{r_{0}^{2}}<\int_{0}^{\delta}\left|\hat{\chi}_{0}\right|^{2}+O\left(\delta^{c}\right) \tag{19}
\end{equation*}
$$

3. Change of foliation

3.1. Main transformation formula. To improve on (18) we plan to change the u foliation along $\underline{u}=\delta$ and compute the corresponding incoming expansion $\operatorname{tr} \chi^{\prime}$. More precisely, given the foliation induced by u, we look for a new foliation $v=v(u, \omega)$ defined by the equations

$$
\begin{align*}
\nabla_{u} v & =e^{f}, & \left.v\right|_{S_{0}}=\left.u\right|_{S_{0}}=0 \tag{20}\\
\nabla_{u} f & =0, & \left.f\right|_{S_{*}}=f_{0}
\end{align*}
$$

with f_{0} a function on $S_{0}=S(0, \delta)$ to be carefully chosen later.
NOTE CHANGE: BEFORE WE HAD $\nabla_{3} v=e^{f}$ WHICH LEADS TO THE UNDESIRED TERM $e^{-} f \nabla \log \Omega$ IN THE EQUATION FOR G.

We introduce the new null frame adapted to the v-foliation,

$$
\begin{equation*}
e_{3}^{\prime}=e_{3}, \quad e_{a}^{\prime}=e_{a}-e^{-f} \Omega e_{a}(v) e_{3}, \quad e_{4}^{\prime}=e_{4}-2 e^{-f} \Omega e_{a}(v) e_{a}+e^{-2 f} \Omega^{2}|\nabla v|^{2} e_{3} \tag{21}
\end{equation*}
$$

Indeed since $\nabla_{u}=\Omega \nabla_{3}$ we have, $e_{a}^{\prime}(v)=e_{a}(v)-e^{-f} \Omega e_{a}(v) e_{3}(v)=e_{a}(v)-e^{-f} e_{a}(v) \nabla_{u}(v)=0$. Also, ince e_{3} is orthogonal to any vector tangent to \underline{H} we easily check that

$$
g\left(e_{a}^{\prime}, e_{b}^{\prime}\right)=g\left(e_{a}, e_{b}\right)=\delta_{a b}, \quad g\left(e_{4}^{\prime}, e_{a}^{\prime}\right)=g\left(e_{4}^{\prime}, e_{4}^{\prime}\right)=0, \quad g\left(e_{3}^{\prime}, e_{4}^{\prime}\right)=-2 .
$$

We prove the following.
Lemma 3.2. The new incoming expansion tr χ^{\prime} verifies the transformation formula,

$$
\begin{equation*}
\operatorname{tr} \chi^{\prime}=\operatorname{tr} \chi-2 e^{f} \operatorname{div}\left(e^{-f} F\right)-\operatorname{tr} \underline{\chi}|F|^{2}-4 \underline{\hat{\chi}}{ }_{b c} F^{b} F^{c}-2(\eta+\zeta) \cdot F \tag{22}
\end{equation*}
$$

where $F_{a}=e^{-f} \Omega \nabla_{a} v$ and tr $\chi, \zeta, \operatorname{tr} \underline{\chi}, \underline{\hat{\chi}}, \underline{\omega}$ are connection coefficients for the given double null foliation (u, \underline{u}).

Proof. We have,

$$
\chi^{\prime}\left(e_{a}^{\prime}, e_{b}^{\prime}\right):=g\left(D_{a}^{\prime} e_{4}^{\prime}, e_{b}^{\prime}\right)=g\left(D_{a} e_{4}^{\prime}, e_{b}^{\prime}\right)-e^{-f} \Omega^{-1} e_{a}(v) g\left(D_{3} e_{4}^{\prime}, e_{b}^{\prime}\right)
$$

Now, writing $e_{4}^{\prime}=e_{4}-2 F+|F|^{2} e_{3}$ with $F=F_{c} e_{c}$ and $e_{b}^{\prime}=e_{b}-F_{b} e_{3}$,

$$
\begin{aligned}
g\left(D_{a} e_{4}^{\prime}, e_{b}^{\prime}\right) & =g\left(D_{a}\left(e_{4}-2 F+|F|^{2} e_{3}\right), e_{b}-F_{b} e_{3}\right) \\
& =\chi\left(e_{a}, e_{b}\right)-2 F_{b} \zeta_{a}-2 \nabla_{a} F_{b}+2 F_{b} g\left(D_{a} F, e_{3}\right)+|F|^{2} g\left(D_{a} e_{3}, e_{b}-F_{b} e_{3}\right) \\
& =\chi_{a b}-2 \zeta_{a} F_{b}-2 \nabla_{a} F_{b}-2 F_{b} \underline{\chi}\left(F, e_{a}\right)+|F|^{2} \underline{\chi}_{a b} \\
& =\chi_{a b}-2 \zeta_{a} F_{b}-2 \nabla_{a} F_{b}-2 F_{b} F_{c} \underline{\chi}_{a c}+|F|^{2} \underline{\chi}_{a b}
\end{aligned}
$$

Also,

$$
\begin{aligned}
g\left(D_{3} e_{4}^{\prime}, e_{b}^{\prime}\right) & =g\left(D_{3}\left(e_{4}-2 F+|F|^{2} e_{3}\right), e_{b}-F_{b} e_{3}\right) \\
& =g\left(D_{3} e_{4}, e_{b}\right)-F_{b} g\left(D_{3} e_{4}, e_{3}\right)-2 \nabla_{3} F_{b} \\
& =2 \eta_{b}+4 F_{b} \underline{\omega}-2 \nabla_{3} F_{b}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\chi_{a b}^{\prime} & =\chi_{a b}-2 \zeta_{b} F_{a}-2 \nabla_{a} F_{b}-2 F_{b} \underline{\chi}\left(F, e_{b}\right)+|F|^{2} \underline{\chi}_{a b}-F_{a}\left(2 \eta_{b}+4 F_{b} \underline{\omega}-2 \nabla_{3} F_{b}\right) \\
& =\chi_{a b}-2 \nabla_{a} F_{b}+2 F_{a} \nabla_{3} F_{b}-2 \zeta_{b} F_{a}-2 F_{a} \eta_{b}+\left(|F|^{2} \underline{\chi}_{a b}-2 F_{b} F_{c} \underline{\chi}_{a c}\right)-4 \underline{\omega} F_{a} F_{b}
\end{aligned}
$$

By symmetry in a, b we deduce the formula,

$$
\begin{align*}
\chi_{a b}^{\prime} & =\chi_{a b}-\left(\nabla_{a} F_{b}+\nabla_{b} F_{a}\right)+\nabla_{3}\left(F_{a} F_{b}\right)-\left(\zeta_{b}+\eta_{b}\right) F_{a}+\left(\zeta_{a}+\eta_{a}\right) F_{b} \tag{23}\\
& +\left(|F|^{2} \underline{\chi}_{a b}-F_{b} F_{c} \underline{\chi}_{a c}-F_{a} F_{c} \underline{\chi}_{b c}\right)-4 \underline{\omega} F_{a} F_{b}
\end{align*}
$$

and, taking the trace,

$$
\begin{aligned}
\operatorname{tr} \chi^{\prime} & =\operatorname{tr} \chi-2 \operatorname{div} F+\nabla_{3}|F|^{2}-2(\eta+\zeta) \cdot F+\left(|F|^{2} \operatorname{tr} \underline{\chi}-2 \underline{\chi}_{b c} F^{b} F^{c}\right)-4 \underline{\omega}|F|^{2} \\
& =\operatorname{tr} \chi-2 \operatorname{div} F+\nabla_{3}|F|^{2}-2(\eta+\zeta) \cdot F-2 \underline{\hat{\chi}}_{b c} F^{b} F^{c}-4 \underline{\omega}|F|^{2}
\end{aligned}
$$

We next calculate $\nabla_{3}|F|^{2}$ using (20) and the commutation formula

$$
\left[\nabla_{3}, \nabla\right] h=(\nabla \log \Omega) \nabla_{3} h-\underline{\chi} \cdot \nabla h
$$

or,

$$
\left[\nabla_{u}, \nabla\right] h=-\Omega \underline{\chi} \cdot \nabla h
$$

Since $\nabla_{u} f=0$ and $F=\Omega^{-1} e^{f} \nabla v$ we deduce,

$$
\begin{aligned}
\nabla_{u} F_{a} & =\nabla_{u}\left(\Omega e^{-f} \nabla v\right)=\Omega e^{-f} \nabla_{u} \nabla v+\nabla_{u} \Omega e^{-f} \nabla v \\
& =\Omega e^{-f} \nabla \nabla_{u} v-\Omega e^{-f} \Omega \underline{\chi} \cdot \nabla v+\nabla_{u} \Omega e^{-f} \nabla v \\
& =\Omega \nabla f-\Omega^{2} e^{-f} \underline{\chi} \cdot \nabla v+\nabla_{u} \Omega e^{-f} \nabla v \\
& =\Omega \nabla f-\Omega \underline{\chi} \cdot F-\Omega^{-1} \nabla_{u} \Omega F
\end{aligned}
$$

or,

$$
\begin{aligned}
\nabla_{3} F & =\nabla F-\underline{\chi} \cdot F-\Omega^{-1} \nabla_{3} \Omega F \\
& =\nabla F-\underline{\chi} \cdot F+2 \underline{\omega} F
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\nabla_{3} F+\frac{1}{2} \operatorname{tr} \underline{\chi} F=\nabla f-\underline{\hat{\chi}} \cdot F+2 \underline{\omega} F \tag{24}
\end{equation*}
$$

from which,

$$
\nabla_{3}|F|^{2}=-\operatorname{tr} \underline{\chi}|F|^{2}+2 F \cdot \nabla f-2 \underline{\hat{\chi}}_{b c} F^{b} F^{c}+4 \underline{\omega}|F|^{2}
$$

Therefore,

$$
\begin{aligned}
\operatorname{tr} \chi^{\prime} & =\operatorname{tr} \chi-2 \operatorname{div} F-2(\eta+\zeta) \cdot F-2 \underline{\hat{\chi}_{b c}} F^{b} F^{c}-4 \underline{\omega}|F|^{2} \\
& -\operatorname{tr} \underline{\chi}|F|^{2}+2 F \cdot \nabla f-2 \underline{\hat{\chi}}{ }_{b c} F^{b} F^{c}+4 \underline{\omega}|F|^{2} \\
& =\operatorname{tr} \chi-2 \operatorname{div} F+2 F \cdot \nabla f-\operatorname{tr}_{\underline{\chi}}|F|^{2}-4 \underline{\hat{\chi}}{ }_{b c} F^{b} F^{c}-2(\eta+\zeta) \cdot F \\
& =\operatorname{tr} \chi-2 e^{f} \operatorname{div}\left(e^{-f} F\right)+2 F \cdot \nabla f-\operatorname{tr} \underline{\chi}|F|^{2}-4 \underline{\hat{\chi}}{ }_{b c} F^{b} F^{c}-2(\eta+\zeta) \cdot F
\end{aligned}
$$

as desired.

Remark. Note that we can eliminate ζ from the formula (22) by writing the term $2(\eta+\zeta) \cdot F=$ $4 \eta \cdot F-2 \Omega^{-1} \nabla \Omega \cdot F$ Thus,

$$
\begin{equation*}
\operatorname{tr} \chi^{\prime}=\operatorname{tr} \chi-2 e^{f} \Omega \operatorname{div}\left(\Omega^{-1} e^{-f} F\right)-\operatorname{tr} \underline{\chi}|F|^{2}-4 \underline{\hat{\chi}} \underline{b}_{b c} F^{b} F^{c}-4 \eta \cdot F \tag{25}
\end{equation*}
$$

To understand how $\operatorname{tr} \chi^{\prime}$ differs from $\operatorname{tr} \chi$ it only remains to derive a transport equation for div G with $G=e^{-f} F$.
3.3. Transport equation for $\operatorname{div} G$. In view of (24) and $e_{3}(f)=0$ we have for $G:=e^{-f} F$.

$$
\begin{equation*}
\nabla_{3} G+\frac{1}{2} \operatorname{tr} \underline{\chi} G=e^{-f} \nabla f-\underline{\hat{\chi}} \cdot G+2 \underline{\omega} G \tag{26}
\end{equation*}
$$

To derive a transport equation for $\operatorname{div} G$ we make us of the following
Lemma 3.4. Assume that the S-tangent vectorfield V verifies an equation of the form,

$$
\nabla_{3} V+\frac{1}{2} \operatorname{tr} \underline{\chi} V=-\underline{\hat{\chi}} \cdot V+W
$$

Then,

$$
\begin{aligned}
\nabla_{3}(\operatorname{div} V)+\frac{1}{2} \operatorname{tr} \underline{\operatorname{div}} V & =\operatorname{div} W+W \cdot \nabla(\log \Omega)-2 \underline{\hat{\chi}} \cdot \nabla V-\nabla \operatorname{tr} \underline{\chi} \cdot V \\
& +(\operatorname{tr\chi } \underline{\zeta}-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)) \cdot V
\end{aligned}
$$

Proof.

$$
\nabla_{3}(\operatorname{div} V)+\frac{1}{2} \operatorname{tr} \underline{\chi} \operatorname{div} V=\operatorname{div}(-\underline{\hat{\chi}} \cdot V+W)-\frac{1}{2} \nabla \operatorname{tr} \underline{\chi} \cdot V+\left[\nabla_{3}, \operatorname{div}\right] V
$$

We make use of the commutation formula, see lemma 2.1,

$$
\left[\nabla_{3}, \operatorname{div}\right] V=-\frac{1}{2} \operatorname{tr} \underline{\chi} \operatorname{div} V-\underline{\hat{\chi}} \cdot \nabla V+(\underline{\beta}-\eta \cdot \underline{\hat{\chi}}) \cdot V+\nabla(\log \Omega) \cdot \nabla_{3} V
$$

Therefore,

$$
\begin{aligned}
\nabla_{3}(\operatorname{div} V)+\operatorname{tr} \underline{\chi} \operatorname{div} V & =\operatorname{div}(-\underline{\hat{\chi}} \cdot V+W)-\underline{\hat{\chi}} \cdot \nabla V+\left(\underline{\beta}-\frac{1}{2} \nabla \operatorname{tr} \underline{\chi}-\eta \cdot \underline{\hat{\chi}}\right) \cdot V \\
& +\nabla(\log \Omega) \cdot \nabla_{3} V \\
& =\operatorname{div} W-2 \underline{\hat{\chi}} \cdot \nabla V+\left(-\operatorname{div} \underline{\hat{\chi}}+\underline{\beta}-\frac{1}{2} \nabla \operatorname{tr} \underline{\chi}-\eta \cdot \underline{\hat{\chi}}\right) \cdot V \\
& +\nabla(\log \Omega) \cdot\left(-\frac{1}{2} \operatorname{tr} \underline{\chi} V-\underline{\hat{\chi}} \cdot V+W\right) \\
& =\operatorname{div} W+W \cdot \nabla(\log \Omega))-2 \underline{\hat{\chi}} \cdot \nabla V \\
& +\left(-\operatorname{div} \underline{\hat{\chi}}-\frac{1}{2} \nabla \operatorname{tr} \underline{\chi}+\underline{\beta}-\eta \cdot \underline{\hat{\chi}}-\frac{1}{2} \operatorname{tr} \underline{\chi} \nabla(\log \Omega)-\underline{\hat{\chi}} \cdot \nabla(\log \Omega)\right) \cdot V
\end{aligned}
$$

Using the Codazzi equation, $\operatorname{div} \underline{\hat{\chi}}=\frac{1}{2} \nabla \operatorname{tr} \underline{\chi}+\underline{\beta}+\zeta \cdot\left(\underline{\hat{\chi}}-\frac{1}{2} \operatorname{tr} \underline{\chi}\right)$ as well as $\eta=\zeta+\nabla(\log \Omega)$ we derive,

$$
\begin{aligned}
& \left.-\operatorname{div} \underline{\hat{\chi}}-\frac{1}{2} \nabla \operatorname{tr} \underline{\chi}+\underline{\beta}-\eta \cdot \underline{\hat{\chi}}-\frac{1}{2} \operatorname{tr} \underline{\chi} \nabla(\log \Omega)-\underline{\hat{\chi}} \cdot \nabla(\log \Omega)\right) \\
& =-\nabla \operatorname{tr} \underline{\chi}-\zeta \cdot\left(\underline{\hat{\chi}}-\frac{1}{2} \operatorname{tr} \underline{\chi}-\eta \cdot \underline{\hat{\chi}}-\frac{1}{2} \operatorname{tr} \underline{\chi} \nabla(\log \Omega)-\underline{\hat{\chi}} \cdot \nabla(\log \Omega)\right. \\
& =-\nabla \operatorname{tr} \underline{\chi}-\underline{\hat{\chi}} \cdot(\zeta+\eta+\nabla(\log \Omega))+\frac{1}{2} \operatorname{tr} \underline{\chi}(\zeta+\nabla(\log \Omega)) \\
& =-\nabla \operatorname{tr} \underline{\chi}-2 \underline{\hat{\chi}}(\zeta+\nabla(\log \Omega))+\operatorname{tr} \underline{\chi} \eta
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\nabla_{3}(\operatorname{div} V)+\operatorname{tr} \underline{\chi} \operatorname{div} V & =\operatorname{div} W+W \cdot \nabla(\log \Omega)-2 \underline{\hat{\chi}} \cdot \nabla V-\nabla \operatorname{tr} \underline{\chi} \cdot V \\
& +(\operatorname{tr} \underline{\chi} \eta-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)) \cdot V
\end{aligned}
$$

as desired.

Applying the lemma to equation (26) we derive,

$$
\begin{aligned}
\nabla_{3}(\operatorname{div} G)+\operatorname{tr} \underline{\chi} \operatorname{div} G & =\operatorname{div} W+W \cdot \nabla(\log \Omega)-2 \underline{\hat{\chi}} \cdot \nabla G-\nabla \operatorname{tr} \underline{\chi} \cdot G \\
& +(\operatorname{tr} \underline{\chi} \eta-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)) \cdot G
\end{aligned}
$$

with $W=e^{-f} \nabla f+2 \underline{\omega} G$. Thus,

$$
\operatorname{div} W+W \cdot \nabla(\log \Omega)=\operatorname{div}\left(e^{-f} \nabla f\right)+e^{-f} \nabla(\log \Omega) \cdot \nabla f+2 \operatorname{div}(\underline{\omega} G)+2 \nabla(\log \Omega) \underline{\omega} G
$$

We deduce the following transport equation for $\operatorname{div} G$,

$$
\begin{equation*}
\nabla_{3}(\operatorname{div} G)+\operatorname{tr} \underline{\chi} \operatorname{div} G=\operatorname{div}\left(e^{-f} \nabla f\right)+2 \underline{\omega} \operatorname{div} G+\operatorname{Err}_{1} \tag{27}
\end{equation*}
$$

with error term,

$$
\begin{aligned}
\operatorname{Err}_{1} & =e^{-f} \nabla(\log \Omega) \cdot \nabla f-2 \underline{\hat{\chi}} \cdot \nabla G-\nabla \operatorname{tr} \underline{\chi} \cdot G \\
& +(\operatorname{tr} \underline{\chi} \eta-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)+2 \nabla \underline{\omega}+2 \underline{\omega} \nabla \log \Omega) \cdot G
\end{aligned}
$$

In the same manner we deduce a transport equation for the principal term div $\left(e^{-f} \nabla f\right)$ on the right hand side of (27). Indeed, since $\nabla_{3} f=0$ we derive,

$$
\nabla_{3}(\nabla f)+\frac{1}{2} \operatorname{tr} \underline{\chi} \nabla f=-\underline{\hat{\chi}} \nabla f
$$

Therefore, using lemma 3.4,

$$
\begin{aligned}
\nabla_{3} \operatorname{div}\left(e^{-f} \nabla f\right)+\operatorname{tr} \underline{\chi} \operatorname{div}\left(e^{-f} \nabla f\right) & =-2 \underline{\hat{\chi}} \cdot \nabla\left(e^{-f} \nabla f\right)-\nabla \operatorname{tr} \underline{\chi} \cdot e^{-f} \nabla f \\
& +(\operatorname{tr} \underline{\chi} \eta-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)) \cdot e^{-f} \nabla f .
\end{aligned}
$$

We summarize the results of this subsection in the following proposition. We summarize the results of this subsection in the following proposition.

Proposition 3.5. Let v, f be defined according to (20), $F=\Omega^{-1} e^{-f} \nabla v$ and $G=e^{-f} F$. The trace of the null second fundamental form χ^{\prime}, relative to the new frame (21), is given by the formula (22), i.e.,

$$
\begin{equation*}
\operatorname{tr} \chi^{\prime}=\operatorname{tr} \chi-2 e^{f} \operatorname{div} G-\operatorname{tr} \underline{\chi}|F|^{2}-4 \underline{\hat{\chi}}_{b c} F^{b} F^{c}-2(\eta+\zeta) \cdot F \tag{28}
\end{equation*}
$$

F verifies the transport equation

$$
\begin{equation*}
\nabla_{3} F+\frac{1}{2} \operatorname{tr} \underline{\underline{\chi}} F=\nabla f-\underline{\hat{\chi}} \cdot F+2 \underline{\omega} F \tag{29}
\end{equation*}
$$

and $\operatorname{div} G$ verifies,

$$
\begin{equation*}
\nabla_{3}(\operatorname{div} G)+\operatorname{tr} \underline{\chi} \operatorname{div} G=\operatorname{div}\left(e^{-f} \nabla f\right)+E r r_{1} \tag{30}
\end{equation*}
$$

where,

$$
\begin{aligned}
\operatorname{Err}_{1} & =e^{-f} \nabla(\log \Omega) \cdot \nabla f-2 \underline{\hat{\chi}} \cdot \nabla G \\
& -\nabla \operatorname{tr} \underline{\chi} \cdot G+(\operatorname{tr} \underline{\chi} \zeta-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)+2 \nabla \underline{\omega}+2 \underline{\omega} \nabla \log \Omega) \cdot G
\end{aligned}
$$

Also,

$$
\begin{align*}
\nabla_{3} f & =0 \tag{31}\\
\nabla_{3}(\nabla f)+\frac{1}{2} \operatorname{tr} \underline{\chi} \nabla f & =-\underline{\hat{\chi}} \nabla f \tag{32}\\
\nabla_{3}\left[e^{f} d i v\left(e^{-f} \nabla f\right)\right]+\operatorname{tr} \underline{\chi}\left[e^{f} d i v\left(e^{-f} \nabla f\right)\right] & =E r r_{2} \tag{33}
\end{align*}
$$

with error term,

$$
E r r_{2}=-2 \underline{\hat{\chi}} \cdot\left(\nabla^{2} f-\nabla f \nabla f\right)-\nabla \operatorname{tr} \underline{\chi} \cdot \nabla f+(\operatorname{tr} \underline{\chi} \eta-2 \underline{\hat{\chi}} \zeta-2 \underline{\hat{\chi}} \cdot \nabla(\log \Omega)) \cdot \nabla f
$$

3.6. Additional assumptions. To proceed we need to make stronger assumptions than those of section 2.2. More precisely, we need, in addition MA1 -MA3 the following,

MA2-S. The Ricci coefficients $\eta, \underline{\eta}, \nabla \log \Omega$ verify the stronger assumptions,

$$
|\eta|,|\underline{\eta}|=O\left(\delta^{c}\right)
$$

MA3-S For a fixed $c>0$,

$$
|\nabla \eta|,|\nabla \underline{\eta}|=O\left(\delta^{-1 / 2+c}\right), \quad|\nabla \underline{\chi}|,|\underline{\beta}|=O\left(\delta^{c}\right)
$$

As a corollary of proposition 3.5 and these assumptions we deduce first,

$$
\begin{equation*}
\operatorname{tr} \chi^{\prime}=\operatorname{tr} \chi-2 e^{f} \operatorname{div}(G)+\frac{2}{r}|F|^{2}+|F|^{2} O\left(\delta^{c}\right) \tag{34}
\end{equation*}
$$

From the equation (32) $\nabla_{3}(\nabla f)+\frac{1}{2} \operatorname{tr} \underline{\chi} \nabla f=-\underline{\hat{\chi}} \nabla f$ we deduce,

$$
\nabla_{u}(r|\nabla f|)=O\left(\delta^{1 / 2}\right) r|\nabla f|
$$

Therefore,

$$
\begin{equation*}
r|\nabla f|=r_{0}\left|\nabla f_{0}\right|\left(1+O\left(\delta^{1 / 2}\right)\right) \tag{35}
\end{equation*}
$$

We can also deduce in the same manner an estimate for $r^{2}\left|\nabla^{2} f\right|$. Indeed, differentiating (32) and commuting ∇ with ∇_{3}, according to lemma 2.1 we deduce,

$$
\nabla_{3}\left(\nabla^{2} f\right)+\operatorname{tr} \underline{\chi} \nabla^{2} f=-\underline{\hat{\chi}} \nabla^{2} f+O\left(\delta^{c}\right)\left(1+\frac{1}{r}\right)|\nabla f|
$$

Note that the $\frac{1}{r}$ term is due to the contribution of the term $\operatorname{tr} \underline{\chi} \eta \cdot \nabla f$ which appear in the commutation lemma. Hence, since $r \leq r_{0} \leq r$ we deduce using (35),

$$
\begin{aligned}
\nabla_{u}\left(r^{2} \mid \nabla^{2} f\right) \mid & =O\left(\delta^{1 / 2}\right) r^{2}\left|\nabla^{2} f\right|+O\left(\delta^{c}\right)\left(1+\frac{1}{r}\right) r^{2}|\nabla f| \\
& =O\left(\delta^{1 / 2}\right) r^{2}\left|\nabla^{2} f\right|+O\left(r \delta^{c}\right) r_{0}\left|\nabla f_{0}\right|
\end{aligned}
$$

and we infer that,

$$
\begin{equation*}
r^{2}\left|\nabla^{2} f\right| \lesssim C\left(r_{0}^{2}\left|\nabla^{2} f_{0}\right|+O\left(\delta^{c}\right) r_{0}\left|\nabla f_{0}\right|\right) \tag{36}
\end{equation*}
$$

Proceeding in the same manner with (33) we derive, for $H=e^{f} \operatorname{div}\left(e^{-f} \nabla f\right)$

$$
\nabla_{3} H+\operatorname{tr} \underline{\chi} H=O\left(\delta^{1 / 2}\right)\left(\left|\nabla^{2} f\right|+|\nabla f|^{2}\right)+O\left(\delta^{c}\right)\left(1+\frac{1}{r}\right)|\nabla f|
$$

We deduce,

$$
\begin{aligned}
\nabla_{u}\left(r^{2} H\right) & =O\left(\delta^{1 / 2}\right) r^{2}\left|\nabla^{2} f\right|+O\left(\delta^{c}\right) r|\nabla f| \\
& =O\left(\delta^{c}\right)\left[r_{0}^{2}\left|\nabla^{2} f_{0}\right|+r_{0}\left|\nabla f_{0}\right|\right]
\end{aligned}
$$

Hence,

$$
r^{2} H=r_{0}^{2} H_{0}+O\left(\delta^{c}\right)\left[r_{0}^{2}\left|\nabla^{2} f_{0}\right|+r_{0}\left|\nabla f_{0}\right|\right]
$$

or,

$$
\begin{equation*}
r^{2} \operatorname{div}\left(e^{-f}\right) \nabla f=-r_{0}^{2} \Delta\left(e^{-f_{0}}\right)+O\left(\delta^{c}\right)\left[r_{0}^{2}\left|\nabla^{2} f_{0}\right|+r_{0}\left|\nabla f_{0}\right|\right] e^{-f_{0}} \tag{37}
\end{equation*}
$$

Now, from equation (38),

$$
\nabla_{3}|F|+\frac{1}{2} \operatorname{tr} \underline{\chi}|F|=|\nabla f|+O\left(\delta^{1 / 2}\right) F
$$

we deduce,

$$
\nabla_{u}(r|F|)=O\left(\delta^{1 / 2}\right) r|F|+r|\nabla f|=O\left(\delta^{1 / 2}\right) r|F|+r_{0}\left|\nabla f_{0}\right|\left(1+O\left(\delta^{c}\right)\right)
$$

and therefore, since $F_{0}=e^{-f_{0}}\left|\nabla v_{0}\right|=0$,

$$
\begin{equation*}
r|F|=u r_{0}\left|\nabla f_{0}\right|\left(1+O\left(\delta^{c}\right)\right) \tag{38}
\end{equation*}
$$

with $C>0$ independent of δ or f_{0}.
We next calculate ∇F. Using the commutation lemma 2.1 we deduce,

$$
\nabla_{3}|\nabla F|+\operatorname{tr} \underline{\chi}|\nabla F| \leq\left|\nabla^{2} f\right|+O\left(\delta^{1 / 2}\right)|\nabla F|+O\left(\delta^{c}\right)|F|
$$

Thus, according to (36)

$$
\begin{aligned}
\nabla_{u}\left(r^{2}|\nabla F|\right) & \leq r^{2}\left|\nabla^{2} f\right|+O\left(\delta^{1 / 2}\right) r^{2}|\nabla F|+O\left(\delta^{c}\right) r^{2}|F| \\
& \leq O\left(\delta^{1 / 2}\right) r^{2}|\nabla F|+C\left(r_{0}^{2}\left|\nabla^{2} f_{0}\right|+O\left(\delta^{c}\right) r_{0}\left|\nabla f_{0}\right|\right)+O\left(\delta^{c}\right) r r_{0}\left|\nabla f_{0}\right|
\end{aligned}
$$

We deduce,

$$
\begin{equation*}
r^{2}|\nabla F| \leq C\left(r_{0}^{2}\left|\nabla^{2} f_{0}\right|+O\left(\delta^{c}\right) r_{0}\left|\nabla f_{0}\right|\right) \tag{39}
\end{equation*}
$$

Since $G=e^{-f} F$ we also deduce,

$$
\begin{equation*}
r^{2}|\nabla G| \leq C\left(r_{0}^{2}\left|\nabla^{2} f_{0}\right|+O\left(\delta^{c}\right) r_{0}\left|\nabla f_{0}\right|\right) e^{-f_{0}} \tag{40}
\end{equation*}
$$

Next we calculate div G from (30) which we write in the form,

$$
\begin{aligned}
\nabla_{3}(\operatorname{div} G)+\operatorname{tr} \underline{\chi} \operatorname{div} G & =\operatorname{div}\left(e^{-f} \nabla f\right)+O\left(\delta^{c}\right) I_{0} e^{-f_{0}} \\
I_{0} & :=\left(r_{0}^{2}\left|\nabla^{2} f_{0}\right|+O\left(\delta^{c}\right) r_{0}\left|\nabla f_{0}\right|\right)
\end{aligned}
$$

Hence, making use of (37)

$$
\begin{aligned}
\nabla_{u}\left(r^{2} \operatorname{div} G\right) & =r^{2} \operatorname{div}\left(e^{-f} \nabla f\right)+O\left(\delta^{c}\right) r^{2} I_{0} e^{-f_{0}} \\
& =-r_{0}^{2} \Delta\left(e^{-f_{0}}\right)+O\left(\delta^{c}\right) I_{0}+O\left(\delta^{c}\right) r^{2} I_{0} e^{-f_{0}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
r^{2} \operatorname{div} G=-u r_{0}^{2} \Delta\left(e^{-f_{0}}\right)+O\left(\delta^{c}\right) I_{0} \tag{41}
\end{equation*}
$$

Finally, going back to (34), and formula (38) for $|F|$,

$$
\begin{aligned}
\operatorname{tr} \chi^{\prime} & =\operatorname{tr} \chi-2 e^{f} \operatorname{div}(G)+\frac{2}{r}|F|^{2}+|F|^{2} O\left(\delta^{c}\right) \\
& =\operatorname{tr} \chi+2 u r^{-2} r_{0}^{2} e^{f_{0}} \Delta\left(e^{-f_{0}}\right)+O\left(r^{-2} \delta^{c}\right) I_{0}+\frac{2}{r^{3}} u^{2} r_{0}^{2}\left|\nabla f_{0}\right|^{2}\left(1+O\left(\delta^{c}\right)\right) \\
& =\operatorname{tr} \chi+2 u r^{-2} r_{0}^{2}\left(-\Delta f_{0}+\left|\nabla f_{0}\right|^{2}\right)+\frac{2}{r^{3}} u^{2} r_{0}^{2}\left|\nabla f_{0}\right|^{2}\left(1+O\left(\delta^{c}\right)\right)+O\left(r^{-2} \delta^{c}\right) I_{0} \\
& =\operatorname{tr} \chi+\frac{2 u r_{0}^{2}}{r^{2}}\left(-\Delta f_{0}+\left[1+u / r\left(1+O\left(\delta^{c}\right)\right]\left|\nabla f_{0}\right|^{2}\right]\right)+O\left(r^{-2} \delta^{c}\right) I_{0}
\end{aligned}
$$

We summarize the result in the following proposition.

Proposition 3.7. Assume that MA1-MA3 and MA2-S, MA3-S are verified in the space-time region $\mathcal{D}\left(u_{*}, \delta\right)$ and f, v defined according to (20) The the expansion tr χ^{\prime} of the v foliation verifies, for all $0 \leq u \leq u_{*}$ and $0 \leq \underline{u} \leq \delta$, with $I_{0}=\left(r_{0}^{2}\left|\nabla^{2} f_{0}\right|+O\left(\delta^{c}\right) r_{0}\left|\nabla f_{0}\right|\right)$ verifies,

$$
\begin{equation*}
\operatorname{tr} \chi^{\prime}=\operatorname{tr} \chi+\frac{2 u r_{0}^{2}}{r^{2}}\left(-\Delta f_{0}+\left[1+u / r\left(1+O\left(\delta^{c}\right)\right]\left|\nabla f_{0}\right|^{2}\right]\right)+O\left(r^{-2} \delta^{c}\right) I_{0} \tag{42}
\end{equation*}
$$

In particular, if $\delta>0$ is sufficiently small,

$$
\begin{equation*}
t r \chi^{\prime} \leq \operatorname{tr} \chi+\frac{2 u r_{0}^{2}}{r^{2}}\left[-\Delta f_{0}+\left(1+\frac{u}{r}\right)\right]\left|\nabla f_{0}\right|^{2}+O\left(r^{-2} \delta^{c}\right) I_{0} \tag{43}
\end{equation*}
$$

3.8. Main equation. We now combine the results of propositions 2.3 and 3.7. For simplicity we shall also assume that $r_{0}=1$. According to proposition 2.3 we have,

$$
\operatorname{tr} \chi(u, \delta)=\frac{2}{r(u, \delta)}-\frac{1}{r^{2}(u, \delta)} \int_{0}^{\delta}\left|\hat{\chi}_{0}\right|^{2}\left(\underline{u}^{\prime}\right) d \underline{u}^{\prime}+O\left(\delta^{c}\right)
$$

Thus, inserting in (42)

$$
\operatorname{tr} \chi^{\prime}(u, \delta) \leq \frac{2}{r}+\frac{2 u}{r^{2}}\left(-\Delta f_{0}+\left[1+u / r\left(1+O\left(\delta^{c}\right)\right]\left|\nabla f_{0}\right|^{2}\right]\right)-\frac{1}{r^{2}} M_{0}+O\left(r^{-2} \delta^{c}\right) I_{0}
$$

where $r=r(u, \delta)$ and

$$
M_{0}=\int_{0}^{\delta}\left|\hat{\chi}_{0}\right|^{2}\left(\underline{u}^{\prime}\right) d \underline{u}^{\prime}
$$

Now, along a level surface ${ }^{3} S_{1}:=\{v=1\} \cap H_{\underline{u}}$ we can express both u and r as functions along S_{0} which we denote by $U=U\left(f_{0}\right)$ and $R=R\left(f_{0}\right)$. In fact, since $v=u e^{f_{0}}$ we deduce $U=e^{-f_{0}}$. Moreover since according to (11) $\frac{d r}{d u}=-1+O\left(\delta^{1 / 2} r\right)=-1+O\left(\delta^{1 / 2}\right)$ we can write,

$$
R=1-U+O\left(\delta^{1 / 2}\right) U
$$

To have $\operatorname{tr} \chi^{\prime}$ non-positive along $S_{v_{0}}$ we need,

$$
\frac{2}{R}+\frac{2 U}{R^{2}}\left(-\Delta f_{0}+\left[1+U / R\left(1+O\left(\delta^{c}\right)\right]\left|\nabla f_{0}\right|^{2}\right]\right) \leq \frac{1}{r^{2}}\left(M_{0}-O\left(\delta^{c}\right) I_{0}\right)
$$

We deduce the following.
Corollary 3.9. A necessary condition for S_{1} to be a trapped surface, is that,

$$
\begin{equation*}
-\Delta f_{0}+\left[1+U / R\left(1+O\left(\delta^{c}\right)\right]\left|\nabla f_{0}\right|^{2}\right]+\frac{R}{U} \leq \frac{1}{2 U}\left(M_{0}-O\left(\delta^{c}\right) I_{0}\right) \tag{44}
\end{equation*}
$$

where,

$$
U=e^{-f_{0}}, \quad R=1-e^{-f_{0}}+O\left(\delta^{1 / 2}\right) e^{-f_{0}}
$$

[^2]Note that the inequality is only meaningful in the domain \mathcal{D}, i.e. for $U=e^{-f_{0}} \leq u_{*}$, or for δ sufficiently small,

$$
\begin{equation*}
R>1-u_{*} \tag{45}
\end{equation*}
$$

We now re-express (44) with respect to $R=R\left(f_{0}\right)$. We have,

$$
\begin{aligned}
\nabla R & =\frac{R}{d f}\left(f_{0}\right) \nabla f_{0} \\
\Delta R & =\frac{R}{d f}\left(f_{0}\right) \Delta f_{0}+\frac{d^{2} R}{d^{2} f}\left(f_{0}\right)\left|\nabla f_{0}\right|^{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\frac{d R}{d f}\left(f_{0}\right) & =\frac{d r}{d u} \cdot \frac{d U}{d f}=-\nabla_{u} r \cdot e^{-f_{0}} \\
\frac{d^{2} R}{d^{2} f}\left(f_{0}\right) & =\nabla_{u}^{2} r \cdot e^{-f_{0}}+\nabla_{u} r e^{-f_{0}}
\end{aligned}
$$

In view of formula (7) and the equation,

$$
\nabla_{3} \operatorname{tr} \underline{\chi}+\frac{1}{2}(\operatorname{tr} \underline{\chi})^{2}=-2 \underline{\omega} \operatorname{tr} \underline{\chi}-|\underline{\hat{\chi}}|^{2}
$$

we deduce,

$$
\begin{aligned}
\nabla_{u}\left(r \nabla_{u} r\right) & =\frac{1}{8 \pi} \nabla_{u} \int_{S(u, \underline{u})} \Omega \operatorname{tr} \underline{\chi}=\frac{1}{8 \pi} \int_{S(u, \underline{u})} \Omega\left(e_{3}(\Omega \operatorname{tr} \underline{\chi})+\Omega \operatorname{tr} \underline{\chi} \operatorname{tr} \underline{\chi}\right) \\
& =\frac{1}{16 \pi} \int_{S(u, \underline{u})} \Omega^{2} \operatorname{tr} \underline{\chi}^{2}-\frac{1}{8 \pi} \int_{S(u, \underline{u})} \Omega^{2}|\underline{\hat{\chi}}|^{2}=1+r O\left(\delta^{1 / 2}\right)
\end{aligned}
$$

Hence,

$$
r \nabla_{u}^{2} r+\left(\nabla_{u} r\right)^{2}=\Omega^{2}+r O\left(\delta^{1 / 2}\right)=1+O\left(\delta^{1 / 2}\right)
$$

from which we deduce,

$$
\begin{equation*}
r \nabla_{u}^{2} r=O\left(\delta^{1 / 2}\right) \tag{46}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
|\nabla R|^{2} & =\left|\nabla f_{0}\right|^{2} e^{-2 f_{0}}\left|\nabla_{u} r\right|^{2}=\left|\nabla f_{0}\right|^{2} e^{-2 f_{0}}\left(1+O\left(\delta^{1 / 2}\right)\right) \\
\Delta R & =-\Delta f_{0} e^{-f_{0}} \nabla_{u} r+\left(\nabla_{u}^{2} r \cdot e^{-f_{0}}+\nabla_{u} r e^{-f_{0}}\right)\left|\nabla f_{0}\right|^{2} \\
& =e^{-f_{0}} \Delta f_{0}\left(1+O\left(\delta^{1 / 2}\right)+\left(-1+O\left(\delta^{1 / 2}\right) e^{-f_{0}}\left|\nabla f_{0}\right|^{2}\right.\right. \\
& +R^{-1} e^{-f_{0}}\left|\nabla f_{0}\right|^{2} O\left(\delta^{1 / 2}\right) \\
& =e^{-f_{0}}\left(\Delta f_{0}-\left|\nabla f_{0}\right|^{2}\right)+O\left(\delta^{1 / 2}\right)\left(\Delta f_{0}+\left(1+R^{-1}\right)\left|\nabla f_{0}\right|^{2}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|\nabla f_{0}\right|^{2} & =e^{2 f_{0}}|\nabla R|^{2}+O\left(\delta^{1 / 2}\right)\left|\nabla f_{0}\right|^{2} \\
\Delta f_{0} & =e^{f_{0}} \Delta R+\left|\nabla f_{0}\right|^{2}+O\left(\delta^{1 / 2}\right)\left(\Delta f_{0}+\left(1+R^{-1}\right)\left|\nabla f_{0}\right|^{2}\right) \\
& =e^{f_{0}} \Delta R+e^{-2 f_{0}}|\nabla R|^{2}+O\left(\delta^{1 / 2}\right)\left(\Delta f_{0}+\left(1+R^{-1}\right)\left|\nabla f_{0}\right|^{2}\right)
\end{aligned}
$$

Note that,
The left hand side of (44) becomes,

$$
\begin{aligned}
L & \left.=-\Delta f_{0}+\left[1+U / R\left(1+O\left(\delta^{c}\right)\right)\right]\left|\nabla f_{0}\right|^{2}\right]+\frac{R}{U} \\
& =-e^{f_{0}} \Delta R-e^{-2 f_{0}}|\nabla R|^{2}+\left(1+e^{-f_{0}} R^{-1}\right) e^{2 f_{0}}|\nabla R|^{2}+R e^{f_{0}} \\
& +O\left(\delta^{c}\right) R^{-1} e^{f_{0}}|\nabla R|^{2}+O\left(\delta^{1 / 2}\right)\left(e^{f_{0}} \Delta R+e^{2 f_{0}}|\nabla R|^{2}\right)
\end{aligned}
$$

Hence,

$$
L=e^{f_{0}}\left[-\Delta R+R^{-1}|\nabla R|^{2}\left(1+O\left(\delta^{c}\right)\right)+R+O\left(\delta^{1 / 2}\right)\left(\Delta R+e^{f_{0}}|\nabla R|^{2}\right)\right]
$$

The inequality (44) becomes,

$$
-\Delta R+R^{-1}|\nabla R|^{2}\left(1+O\left(\delta^{c}\right)\right)+R+O\left(\delta^{1 / 2}\right)\left(\Delta R+e^{f_{0}}|\nabla R|^{2} \leq \frac{1}{2}\left(M_{0}-O\left(\delta^{c}\right) I_{0}\right)\right.
$$

or,

$$
-\Delta R+R^{-1}|\nabla R|^{2}\left(1+O\left(\delta^{c}\right)\right)+R \leq 2^{-1} M_{0}+O\left(\delta^{c}\right) J
$$

where J is a fixed smooth function depending only on $\nabla^{2} R$ and ∇R. We deduce the following.
Proposition 3.10. A necessary condition such that S_{1} is a trapped surface is that, for $\delta>$ sufficiently small there exists a smooth function R on ${ }_{0}$ verifying $R>1-u_{*}$ and the differential inequality,

$$
\begin{equation*}
-\Delta R+\left(1+O\left(\delta^{c}\right)\right) R^{-1}|\nabla R|^{2}+R \leq 2^{-1} M_{0}+O\left(\delta^{c}\right) J \tag{47}
\end{equation*}
$$

To proceed we need to make the assumption $R \geq \delta^{-c / 2}$. Hence, it suffices to prove the inequality:

$$
-\Delta R+R^{-1}|\nabla R|^{2}+R \leq 2^{-1} M_{0}+O\left(\delta^{c / 2}\right) J
$$

or, for δ sufficiently small,

$$
\begin{equation*}
-\Delta R+R^{-1}|\nabla R|^{2}+R<2^{-1} M_{0} \tag{48}
\end{equation*}
$$

In order that the initial surface, corresponding to $R=1$, is not trapped we need $2^{-1} M_{0}<1$. We also note, by the maximum principle that,

$$
\max R<2^{-1} \max M_{0}
$$

Thus,

$$
\begin{equation*}
1-u_{*}<2^{-1} \max _{S_{0}} M_{0} \tag{49}
\end{equation*}
$$

is a necessary condition for the formation of a trapped surface. Recall that u_{*} is the maximum of u for which our assumptions are satisfied in $\mathcal{D}(u, \delta)$. Is it sufficient?

Performing the transformation $R=e^{-\phi}$ we derive,

$$
\Delta \phi+1<2^{-1} M_{0} e^{\phi}
$$

4. Solutions to the deformation equation on a fixed $\operatorname{Sphere}(S, \gamma)$.

In this section we provide examples of solutions to our main deformation equation,

$$
\begin{equation*}
\Delta \phi+1<M e^{\phi} \tag{50}
\end{equation*}
$$

on a smooth, compact, 2-dimensional Riemnannian manifold S, diffeomorphic to the standard sphere, with strictly positive Gaussian curvature K. We define $r=r(S)$ such that $|S|=4 \pi r^{2}$ and define,

$$
k_{m}=\min _{S} r^{2} K, \quad k_{M}=\max _{S} r^{2} K
$$

We consider geodesic balls $B(p, \epsilon)=B(p, \epsilon)$ for sufficiently small $\epsilon>0$. We start by proving the following lemma.

Lemma 4.1. Given a ball $B(p, \epsilon) \subset S$, there exists a function w_{ϵ}, smooth outside the point p, such that

$$
\begin{equation*}
\Delta w_{\epsilon}+K=4 \pi \delta_{p} \tag{51}
\end{equation*}
$$

where δ_{p} is the Dirac measure at p. Moreover, if λ denotes the distance function from p,

$$
\begin{equation*}
w_{\epsilon}=\chi_{\epsilon} \log \lambda+v \tag{52}
\end{equation*}
$$

with $v \in C^{1.1-}(S), v(p)=0$, smooth in $S \backslash\{p\}$ and χ_{ϵ} a smooth cutoff function,

$$
\left\{\begin{array}{lll}
\chi_{\epsilon}=1 & \text { on } & B(p, \epsilon) \\
\chi_{\epsilon}=0 & \text { on } & B(p, 2 \epsilon)
\end{array}\right.
$$

Assuming the lemma true we consider the cut-off function

$$
\left\{\begin{array}{lll}
\varphi_{\epsilon}=0 & \text { on } & B(p, \epsilon / 2) \\
\varphi_{\epsilon}=1 & \text { on } & B_{\epsilon}(p)
\end{array}\right.
$$

and define $w_{\epsilon}^{\prime}=\varphi_{\epsilon} w_{\epsilon}$. Note that w_{ϵ}^{\prime} verifies the following properties:

$$
\left\{\begin{array}{lr}
w_{\epsilon}^{\prime}=0, & \text { on } \quad B(p, \epsilon / 2) \tag{53}\\
w_{\epsilon}^{\prime}=\log \epsilon+O(1), & \text { on } \quad S \backslash B(p, \epsilon / 2) \\
\nabla^{2} w_{\epsilon}^{\prime}=O\left(\epsilon^{-2} \log \epsilon\right) & \text { on } \quad S \backslash B(p, \epsilon / 2) \\
\Delta w_{\epsilon}^{\prime}+K=0 & \text { on } \quad S \backslash B(p, \epsilon)
\end{array}\right.
$$

Consider now the function $w_{\epsilon}=\Lambda w_{\epsilon}^{\prime}$, for a fixed constant Λ and observe that, on $S \backslash B(p, \epsilon)$, we must have, $\Delta w_{\epsilon}+1=-\Lambda K+1<0$ provided that $\Lambda>k_{m}^{-1}$. Thus, with a fixed choice of $\Lambda>k_{m}^{-1}$ we have,

$$
\left\{\begin{array}{lr}
w_{\epsilon}=0, & \text { on } \quad B(p, \epsilon / 2) \tag{54}\\
w_{\epsilon}=\Lambda \log \epsilon+O(1), & \text { on } \quad S \backslash B(p, \epsilon / 2) \\
\nabla^{2} w_{\epsilon}=O\left(\epsilon^{-2} \log \epsilon\right) & \text { on } \quad S \backslash B(p, \epsilon / 2) \\
\Delta w_{\epsilon}+1<0 & \text { on } \quad S \backslash B(p, \epsilon)
\end{array}\right.
$$

It remains to check under what conditions for M, the function w_{ϵ} verifies (50). Clearly, on $S \backslash B(p, \epsilon)$, (50) is trivially verified in view of the fact that $M \geq 0$. Now let $M_{\epsilon}=\inf _{B(p, \epsilon)} M$. Thus, for some constant C,

$$
\begin{aligned}
M e^{w_{\epsilon}} & \geq M_{\epsilon} e^{w_{\epsilon}} \geq C \epsilon^{\Lambda} M_{\epsilon} \\
\Delta w_{\epsilon}+1 & =O\left(\epsilon^{2} \log \epsilon\right)
\end{aligned}
$$

Hence, to have (50) verified in $B(p, \epsilon)$ we need,

$$
O\left(\epsilon^{-2} \log \epsilon\right)<M_{\epsilon} \epsilon^{\Lambda}
$$

This proves the following.
Proposition 4.2. Let $M_{\epsilon}=\min _{B(p, \epsilon)} M$ and let $\Lambda>\left(\min _{S} K\right)^{-1}$. Assume that, for some universal constant $C>0$,

$$
\begin{equation*}
M_{\epsilon}>C \epsilon^{-2-\Lambda} \log \epsilon \tag{55}
\end{equation*}
$$

Then, for sufficiently small $\epsilon>0$, there exists a function ϕ_{ϵ} verifying the inequality (50) and such that

$$
\begin{align*}
\min \phi_{\epsilon} & >\log \epsilon+O(1) \tag{56}\\
\left|\nabla \phi_{\epsilon}\right| & =O\left(\epsilon^{-1} \log \epsilon\right), \quad\left|\nabla^{2} \phi_{\epsilon}\right|=O\left(\epsilon^{-2} \log \epsilon\right) \tag{57}
\end{align*}
$$

In remains to prove lemma 4.1. This is a standard argument, see for example chapter 2 in [?], which we sketch below.

Let λ be the geodesic distance function from p. In a neighborhood of p we can write,

$$
d s^{2}=d \lambda^{2}+a^{2}(\lambda, \theta) d \theta^{2}, \quad a(0)=0, \frac{d a}{d \lambda}(0)=1
$$

Let h be the geodesic curvature of the level curves of λ, i.e. denoting, $e=\gamma\left(\partial_{\theta}, \partial_{\theta}\right)^{-1 / 2} \partial_{\theta}$ the unit tangent vector to these curves,

$$
h=\gamma\left(\nabla_{e} \partial_{\lambda}, e\right)=a^{-1} \partial_{\lambda} a
$$

h verifies the second variation formula,

$$
\partial_{\lambda} h=-h^{2}-K
$$

or,

$$
\begin{equation*}
\partial_{\lambda}^{2} a+K a=0 \tag{58}
\end{equation*}
$$

Since $a(0)=0, \frac{d a}{d \lambda}(0)=1$ we deduce from (58) that $\partial_{\lambda}^{2} a(0)=0$. Consequently,

$$
a(\lambda)=\lambda+O\left(\lambda^{3}\right), \quad \partial_{\lambda} a(\lambda)=1+O\left(\lambda^{2}\right), \quad h(\lambda)=\lambda^{-1}+O(\lambda)
$$

Now,

$$
\Delta \log \lambda=\lambda^{-1} h-\lambda^{-2}=O(1)
$$

Thus, for $\delta<\epsilon$ converging to 0 ,

$$
\int_{S \backslash B(p, \delta)} \Delta\left(\chi_{\epsilon} \log \lambda\right) d v_{\gamma}=-2 \pi+O(\delta)^{2}
$$

Hence, passing to the limit,

$$
\int_{S} \Delta\left(\chi_{\epsilon} \log \lambda\right) d v_{\gamma}=-2 \pi
$$

Note also that,

$$
\begin{equation*}
\int_{S} \chi \Delta\left(\chi_{\epsilon} \log \lambda\right) d v_{\gamma}=-2 \pi \chi(p) \tag{59}
\end{equation*}
$$

for any smooth test function χ supported in $B(p, \epsilon)$.
We now solve the equation,

$$
\begin{equation*}
\Delta_{S} v=f \tag{60}
\end{equation*}
$$

where, f is the bounded function

$$
\begin{cases}f=K+2 \Delta\left(\chi_{\epsilon} \log \lambda\right) & \text { on } S \backslash\{p\} \\ f=0 & \text { at } p\end{cases}
$$

Note that (60) admits a $C^{1,1}$ solution in view of the fact that $f \in L^{\infty}(S)$ and,

$$
\int_{S} f d v_{\gamma}=\int_{S} K d v_{\gamma}+2 \int_{S} \Delta\left(\chi_{\epsilon} \log \lambda\right) d v_{\gamma}=4 \pi-4 \pi=0
$$

We can also normalized v such $v(p)=0$. We now define,

$$
w_{\epsilon}=2 \chi_{\epsilon} \log \lambda-v
$$

and note that,

$$
\Delta w_{\epsilon}+K=0, \quad \text { on } S \backslash\{p\}
$$

Moreover, in view of (59),

$$
\Delta w_{\epsilon}+K=-4 \pi \delta
$$

as desired.
Remark 4.3. Note that the proof of the proposition only requires the existence of a smooth function w on S which verifies $\Delta w+1<0$ in the complement of a closed domain D for which $\inf _{D} M$: $M_{D}>0$. Indeed if such a function exists we can produce a solution to our inequality simply by taking $\phi=-\log s+w$ for a sufficiently small constant $s>0$. Indeed, with such a choice (50) is automatically satisfied in the complement of D. In $D, \Delta \phi=\Delta w, e^{\phi}=s^{-1} e^{w}$ and therefore we need $\max _{D}\left[e^{-w}(\Delta w+1)\right]<s^{-1} M_{D}$. Finally we note that such solutions can easily be constructed for balls $B(p, \delta)$ with $\delta<i_{p}$, the radius of injectivity of S at p.

Department of Mathematics, Princeton University, Princeton NJ 08544
E-mail address: seri@@math.princeton.edu

Department of Mathematics, Princeton University, Princeton NJ 08544

E-mail address: irod@@math.princeton.edu

[^0]: 1991 Mathematics Subject Classification. 35J10

[^1]: ${ }^{2}$ see for example Lemma 3.1.3 in [?]

[^2]: ${ }^{3}$ with v the deformation function defined by (20)

