
FORMATION OF TRAPPED SURFACES II

SERGIU KLAINERMAN, JONATHAN LUK, AND IGOR RODNIANSKI

1. Introduction

2. Geometry of a null hypersurface

As in [?] we consider a region D = D(u∗, u∗) of a vacuum spacetime (M, g) spanned by a double
null foliation generated by the optical functions (u, u) increasing towards the future, 0 ≤ u ≤ u∗ and
0 ≤ u ≤ u∗. We denote by Hu the outgoing null hypersurfaces generated by the level surfaces of u and
by Hu the incoming null hypersurfaces generated level hypersurfaces of u. We write Su,u = Hu ∩Hu

and denote by H
(u1,u2)
u , and H(u1,u2)

u the regions of these null hypersurfaces defined by u1 ≤ u ≤ u2

and respectively u1 ≤ u ≤ u2. Let L = −gαβ∂αu∂β, L = −gαβ∂αu∂β, L be the geodesic vectorfields
associated to the two foliations and define,

g(L,L) := −2Ω−2 = gαβ∂αu∂βu (1)

Observe that the flat value1 of Ω is 1. As well known, our space-time slab D(u∗, u∗) is completely
determined (for small values of u∗, u∗) by data along the null, characteristic, hypersurfaces H0, H0

corresponding to u = 0, respectively u = 0. Following [?] we assume that our data is trivial along
H0, i.e. assume that H0 extends for u < 0 and the spacetime (M, g) is Minkowskian for u < 0 and
all values of u ≥ 0. Moreover we can construct our double null foliation such that Ω = 1 along H0,
i.e.,

Ω(0, u) = 1, 0 ≤ u ≤ u∗. (2)

We denote by r = r(u, u) the radius of the 2-surfaces S = S(u, u), i.e. |S(u, u)| = 4πr2. We denote
by r0 the value of r for S(0, 0), i.e. r0 = r(0, 0). For simplicity we assume r0 = 1.

Throughout this paper we work with the normalized null pair (e3, e4),

e3 = ΩL, e4 = ΩL, g(e3, e4) = −2.
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.
1Note that our normalization for Ω differ from that of [?]
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Given a 2-surfaces S(u, u) and (ea)a=1,2 an arbitrary frame tangent to it we define the Ricci coeffi-
cients,

Γ(λ)(µ)(ν) = g(e(λ), De(ν)e(µ)), λ, µ, ν = 1, 2, 3, 4 (3)

These coefficients are completely determined by the following components,

χab = g(Dae4, eb), χ
ab

= g(Dae3, eb),

ηa = −1

2
g(D3ea, e4), η

a
= −1

2
g(D4ea, e3)

ω = −1

4
g(D4e3, e4), ω = −1

4
g(D3e4, e3),

ζa =
1

2
g(Dae4, e3)

(4)

where Da = De(a) . We also introduce the null curvature components,

αab = R(ea, e4, eb, e4), αab = R(ea, e3, eb, e3),

βa =
1

2
R(ea, e4, e3, e4), β

a
=

1

2
R(ea, e3, e3, e4),

ρ =
1

4
R(Le4, e3, e4, e3), σ =

1

4
∗R(e4, e3, e4, e3)

(5)

Here ∗R denotes the Hodge dual of R. We denote by ∇ the induced covariant derivative operator on
S(u, u) and by ∇3, ∇4 the projections to S(u, u) of the covariant derivatives D3, D4. Observe that,

ω = −1

2
∇4(log Ω), ω = −1

2
∇3(log Ω),

ηa = ζa +∇a(log Ω), η
a

= −ζa +∇a(log Ω)
(6)

We recall the integral formulas2 for a scalar function f in D,

d

du

∫
S(u,u)

f =

∫
S(u,u)

( df
du

+ Ωtrχf
)

=

∫
S(u,u)

Ω
(
e4(f) + trχf

)
d

du

∫
S(u,u)

f =

∫
S(u,u)

( df
du

+ Ωtrχf
)

=

∫
S(u,u)

Ω
(
e3(f) + trχf

)
(7)

In particular,

dr

du
=

1

8π

∫
S(u,u)

Ωtrχ,
dr

du
=

1

8π

∫
S(u,u)

Ωtrχ (8)

We also recall the following commutation formulas: We record below commutation formulae between
∇ and ∇4,∇3:

2see for example Lemma 3.1.3 in [?]
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Lemma 2.1. For a scalar function f :

[∇4,∇]f =
1

2
(η + η)D4f − χ · ∇f (9)

[∇3,∇]f =
1

2
(η + η)D3f − χ · ∇f, (10)

For a 1-form tangent to S:

[∇4,∇a]Ub = −χac∇cUb+ ∈ac ∗βbUc +
1

2
(ηa + η

a
)D4Ub

− χac ηb Uc + χab η · U

[∇3,∇a]Ub = −χ
ac
∇cUb+ ∈ac ∗βbUc +

1

2
(ηa + η

a
)D3Ub

− χ
ac
ηb Uc + χ

ab
η · U

In particular,

[∇4, div ]U = −1

2
trχ div U − χ̂ · ∇U − β · U +

1

2
(η + η) · ∇4U − η · χ̂ · U

[∇3, div ]U = −1

2
trχ div U − χ̂ · ∇U + β · U +

1

2
(η + η) · ∇3U − η · χ̂ · U

2.2. Christodoulou’s heuristic argument. We recall here the assumptions needed in Christodoulou’s
heuristic argument for the formation of a trapped surface as described in [?]. As mentioned above we
assume that our data is trivial along H0, i.e. assume that H0 extends for u < 0 and the spacetime
(M, g) is Minkowskian for u < 0 and all values of u ≥ 0. We introduce a small parameter δ > 0 and
restrict the values of u to 0 ≤ u ≤ δ, i.e. u∗ = δ.

Main Assumptions. We assume that throughout D = D(u∗, u∗) we have the following estimates:

MA1. For small δ, Ω is comparable with its standard value in flat space, i.e.

Ω = 1 +O(δ1/2).

MA2. The Ricci coefficients χ, ω, η, χ, ω verify

|χ̂, ω| = O(δ−1/2), |trχ, η| = O(1), |χ̂ , trχ+
2

r
, ω| = O(δ1/2).

MA3. Also for some c > 0,

|∇η| = O(δ−1/2+c).
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Note that in view of (8) we also have,

dr

du
= −1 +O(rδ1/2),

dr

du
= O(r) (11)

Thus, for δ sufficiently small, we infer that r is decreasing along the incoming null hypersurfaces and
remains bounded, 0 ≤ r ≤ r0 + 1 = 2, in D.

Christodoulou’s argument for the formation of trapped surfaces in [?] rests on the equations,

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 1

2
(trχ)2 − 2ωtrχ

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂ + η⊗̂η

In view of our Ricci coefficients assumptions we can rewrite,

∇4trχ = −|χ̂|2 +O(δ−1/2)

∇3χ̂+
1

2
trχχ̂ = O(δ−1/2+c)

Multiplying the second equation by χ̂,

∇4|χ̂|2 + trχ|χ̂|2 = O(δ−1+c)

Using also our assumptions for u, u,Ω we deduce,

d

du
trχ = −|χ̂|2 +O(δ−1/2) (12)

d

du
|χ̂|2 + trχ|χ̂|2 = O(δ−1+c) (13)

Integrating (12) we obtain,

trχ(u, u) =
2

r(u, 0)
−
∫ u

0

|χ̂|(u, u′)2du′ +O(δ1/2) (14)

In view of our assumptions for trχ and dr
du

d

du
(r2|χ̂|2) = r2 d

du
|χ̂|2 + 2r

dr

du
|χ̂|2 = r2

[
− trχ|χ̂|2 +O(δ−1+c)

]
+ 2r

[
− 1 +O(rδc)

]
|χ̂|2

= r2O(δ−1+c).

Therefore,

r2|χ̂|2(u, u) = r2(0, u)|χ̂|2(0, u) + r2O(δ−1+c)

As in [] we freely prescribe χ̂ along the initial hypersurface H
(0,δ)
0 , i.e.

χ̂(0, u) = χ̂0(u) = O(δ−1/2) (15)
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for some traceless 2 tensor χ̂0. We deduce, (need 0 < c ≤ 1
2
),

|χ̂|2(u, u) =
r2(0, u)

r2(u, u)
|χ̂0|2(u) +O(δ−1+c)

or, since |u| ≤ δ and r(u, u) = r0 + u− u+O(δc),

|χ̂|2(u, u) =
r2

0

r2(u, 0)
|χ̂0|2(u) +O(δ−1+c)

Thus, returning to (14),

trχ(u, δ) =
2

r(u, 0)
− r2

0

r2(u, 0)

∫ u

0

|χ̂0|2(u′)du′ +O(δc)

=
2

r(u, 0)
− r2

0

r2(u, 0)

∫ u

0

|χ̂0|2(u′)du′ +O(δc)

We have thus proved the following.

Proposition 2.3. Under the assumptions MA1- MA3 we have, for sufficiently small δ > 0 and
fixed c > 0,

trχ(u, δ) =
2

r(u, 0)
− r2

0

r2(u, 0)

∫ δ

0

|χ̂0|2(u′)du′ +O(δc) (16)

Since r(u, u) = r0 − u+ u+O(δc) formula (16) can also be written in the form,

trχ(u, δ) =
2

r(u, δ)
− r2

0

r2(u, δ)

∫ δ

0

|χ̂0|2(u′)du′ +O(δc) (17)

Corollary 2.4. The necessary condition to have trχ(u, u = δ) < 0

2r(u, 0)

r2
0

<

∫ δ

0

|χ̂0|2 +O(δc) (18)

for sufficiently small δ > 0. Since r(u, 0) = r0 − u+O(δc), condition (18) can also be written in the
form,

2(r0 − u)

r2
0

<

∫ δ

0

|χ̂0|2 +O(δc) (19)

3. Change of foliation

3.1. Main transformation formula. To improve on (18) we plan to change the u foliation along
u = δ and compute the corresponding incoming expansion trχ′. More precisely, given the foliation
induced by u, we look for a new foliation v = v(u, ω) defined by the equations

∇uv = ef , v|S0 = u|S0 = 0

∇uf = 0, f |S∗ = f0

(20)
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with f0 a function on S0 = S(0, δ) to be carefully chosen later.

NOTE CHANGE: BEFORE WE HAD ∇3v = ef WHICH LEADS TO THE UNDESIRED TERM
e−f∇ log Ω IN THE EQUATION FOR G.

We introduce the new null frame adapted to the v-foliation,

e′3 = e3, e′a = ea − e−fΩea(v)e3, e′4 = e4 − 2e−fΩea(v)ea + e−2fΩ2|∇v|2e3 (21)

Indeed since ∇u = Ω∇3 we have, e′a(v) = ea(v)− e−fΩea(v)e3(v) = ea(v)− e−fea(v)∇u(v) = 0. Also,
ince e3 is orthogonal to any vector tangent to H we easily check that

g(e′a, e
′
b) = g(ea, eb) = δab, g(e′4, e

′
a) = g(e′4, e

′
4) = 0, g(e′3, e

′
4) = −2.

We prove the following.

Lemma 3.2. The new incoming expansion trχ′ verifies the transformation formula,

trχ′ = trχ− 2efdiv (e−fF )− trχ|F |2 − 4χ̂ bcF
bF c − 2(η + ζ) · F (22)

where Fa = e−fΩ∇av and trχ, ζ, trχ, χ̂ , ω are connection coefficients for the given double null foliation
(u, u).

Proof. We have,

χ′(e′a, e
′
b) := g(D′ae

′
4, e
′
b) = g(Dae

′
4, e
′
b)− e−fΩ−1ea(v)g(D3e

′
4, e
′
b)

Now, writing e′4 = e4 − 2F + |F |2e3 with F = Fcec and e′b = eb − Fbe3,

g(Dae
′
4, e
′
b) = g

(
Da(e4 − 2F + |F |2e3) , eb − Fbe3

)
= χ(ea, eb)− 2Fbζa − 2∇aFb + 2Fbg(DaF, e3) + |F |2g(Dae3, eb − Fbe3)

= χab − 2ζaFb − 2∇aFb − 2Fb χ(F, ea) + |F |2χ
ab

= χab − 2ζaFb − 2∇aFb − 2Fb Fc χac + |F |2χ
ab

Also,

g(D3e
′
4, e
′
b) = g

(
D3(e4 − 2F + |F |2e3) , eb − Fbe3

)
= g(D3e4, eb)− Fbg(D3e4, e3)− 2∇3Fb

= 2ηb + 4Fbω − 2∇3Fb

Hence,

χ′ab = χab − 2ζbFa − 2∇aFb − 2Fb χ(F, eb) + |F |2χ
ab
− Fa

(
2ηb + 4Fbω − 2∇3Fb)

= χab − 2∇aFb + 2Fa∇3Fb − 2ζbFa − 2Faηb +
(
|F |2χ

ab
− 2FbFcχac

)
− 4ωFaFb

By symmetry in a, b we deduce the formula,

χ′ab = χab − (∇aFb +∇bFa) +∇3(FaFb)− (ζb + ηb)Fa + (ζa + ηa)Fb (23)

+
(
|F |2χ

ab
− FbFcχac − FaFcχbc

)
− 4ωFaFb
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and, taking the trace,

trχ′ = trχ− 2div F +∇3|F |2 − 2(η + ζ) · F + (|F |2trχ− 2χ
bc
F bF c)− 4ω|F |2

= trχ− 2div F +∇3|F |2 − 2(η + ζ) · F − 2χ̂ bcF
bF c − 4ω|F |2

We next calculate ∇3|F |2 using (20) and the commutation formula

[∇3,∇]h = (∇ log Ω)∇3h− χ · ∇h
or,

[∇u,∇]h = −Ωχ · ∇h

Since ∇uf = 0 and F = Ω−1ef∇v we deduce,

∇uFa = ∇u(Ωe
−f∇v) = Ωe−f∇u∇v +∇uΩe

−f∇v
= Ωe−f∇∇uv − Ωe−fΩχ · ∇v +∇uΩe

−f∇v
= Ω∇f − Ω2e−fχ · ∇v +∇uΩe

−f∇v
= Ω∇f − Ωχ · F − Ω−1∇uΩF

or,

∇3F = ∇F − χ · F − Ω−1∇3ΩF

= ∇F − χ · F + 2ωF

i.e.,

∇3F +
1

2
trχF = ∇f − χ̂ · F + 2ωF (24)

from which,

∇3|F |2 = −trχ|F |2 + 2F · ∇f − 2χ̂ bcF
bF c + 4ω|F |2

Therefore,

trχ′ = trχ− 2div F − 2(η + ζ) · F − 2χ̂ bcF
bF c − 4ω|F |2

− trχ|F |2 + 2F · ∇f − 2χ̂ bcF
bF c + 4ω|F |2

= trχ− 2div F + 2F · ∇f − trχ|F |2 − 4χ̂ bcF
bF c − 2(η + ζ) · F

= trχ− 2efdiv (e−fF ) + 2F · ∇f − trχ|F |2 − 4χ̂ bcF
bF c − 2(η + ζ) · F

as desired.

�

Remark. Note that we can eliminate ζ from the formula (22) by writing the term 2(η + ζ) · F =
4η · F − 2Ω−1∇Ω · F Thus,

trχ′ = trχ− 2efΩdiv (Ω−1e−fF )− trχ|F |2 − 4χ̂ bcF
bF c − 4η · F (25)
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To understand how trχ′ differs from trχ it only remains to derive a transport equation for div G
with G = e−fF .

3.3. Transport equation for div G. In view of (24) and e3(f) = 0 we have for G := e−fF .

∇3G+
1

2
trχG = e−f∇f − χ̂ ·G+ 2ωG (26)

To derive a transport equation for div G we make us of the following

Lemma 3.4. Assume that the S-tangent vectorfield V verifies an equation of the form,

∇3V +
1

2
trχV = −χ̂ · V +W

Then,

∇3(div V ) +
1

2
trχdiv V = div W +W · ∇(log Ω)− 2χ̂ · ∇V −∇trχ · V

+
(
trχζ − 2χ̂ ζ − 2χ̂ · ∇(log Ω)

)
· V

Proof.

∇3(div V ) +
1

2
trχdiv V = div

(
− χ̂ · V +W )− 1

2
∇trχ · V + [∇3, div ]V

We make use of the commutation formula, see lemma 2.1,

[∇3, div ]V = −1

2
trχdiv V − χ̂ · ∇V +

(
β − η · χ̂

)
· V +∇(log Ω) · ∇3V

Therefore,

∇3(div V ) + trχdiv V = div
(
− χ̂ · V +W )− χ̂ · ∇V +

(
β − 1

2
∇trχ− η · χ̂

)
· V

+ ∇(log Ω) · ∇3V

= div W − 2χ̂ · ∇V +
(
− div χ̂ + β − 1

2
∇trχ− η · χ̂

)
· V

+ ∇(log Ω) ·
(
− 1

2
trχV − χ̂ · V +W

)
= div W +W · ∇(log Ω))− 2χ̂ · ∇V

+
(
− div χ̂ − 1

2
∇trχ+ β − η · χ̂ − 1

2
trχ∇(log Ω)− χ̂ · ∇(log Ω)

)
· V
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Using the Codazzi equation, div χ̂ = 1
2
∇trχ + β + ζ · (χ̂ − 1

2
trχ) as well as η = ζ + ∇(log Ω) we

derive,

−div χ̂ − 1

2
∇trχ+ β − η · χ̂ − 1

2
trχ∇(log Ω)− χ̂ · ∇(log Ω))

= −∇trχ− ζ · (χ̂ − 1

2
trχ− η · χ̂ − 1

2
trχ∇(log Ω)− χ̂ · ∇(log Ω)

= −∇trχ− χ̂ · (ζ + η +∇(log Ω)) +
1

2
trχ(ζ +∇(log Ω))

= −∇trχ− 2χ̂ (ζ +∇(log Ω)) + trχη

Hence,

∇3(div V ) + trχdiv V = div W +W · ∇(log Ω)− 2χ̂ · ∇V −∇trχ · V
+

(
trχη − 2χ̂ ζ − 2χ̂ · ∇(log Ω)

)
· V

as desired.

�

Applying the lemma to equation (26) we derive,

∇3(div G) + trχdiv G = div W +W · ∇(log Ω)− 2χ̂ · ∇G−∇trχ ·G
+

(
trχη − 2χ̂ ζ − 2χ̂ · ∇(log Ω)

)
·G

with W = e−f∇f + 2ωG. Thus,

div W +W · ∇(log Ω) = div (e−f∇f) + e−f∇(log Ω) · ∇f + 2div (ωG) + 2∇(log Ω)ωG

We deduce the following transport equation for div G,

∇3(div G) + trχdiv G = div (e−f∇f) + 2ωdiv G+ Err1 (27)

with error term,

Err1 = e−f∇(log Ω) · ∇f − 2χ̂ · ∇G−∇trχ ·G
+

(
trχη − 2χ̂ ζ − 2χ̂ · ∇(log Ω) + 2∇ω + 2ω∇ log Ω

)
·G

In the same manner we deduce a transport equation for the principal term div (e−f∇f) on the right
hand side of (27). Indeed, since ∇3f = 0 we derive,

∇3(∇f) +
1

2
trχ∇f = −χ̂∇f

Therefore, using lemma 3.4,

∇3div (e−f∇f) + trχdiv (e−f∇f) = −2χ̂ · ∇(e−f∇f)−∇trχ · e−f∇f
+

(
trχη − 2χ̂ ζ − 2χ̂ · ∇(log Ω)

)
· e−f∇f.
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We summarize the results of this subsection in the following proposition. We summarize the results
of this subsection in the following proposition.

Proposition 3.5. Let v, f be defined according to (20), F = Ω−1e−f∇v and G = e−fF . The trace
of the null second fundamental form χ′, relative to the new frame (21), is given by the formula (22),
i.e.,

trχ′ = trχ− 2efdiv G− trχ|F |2 − 4χ̂ bcF
bF c − 2(η + ζ) · F (28)

F verifies the transport equation

∇3F +
1

2
trχF = ∇f − χ̂ · F + 2ωF (29)

and div G verifies,

∇3(div G) + trχdiv G = div (e−f∇f) + Err1 (30)

where,

Err1 = e−f∇(log Ω) · ∇f − 2χ̂ · ∇G
− ∇trχ ·G+

(
trχζ − 2χ̂ ζ − 2χ̂ · ∇(log Ω) + 2∇ω + 2ω∇ log Ω

)
·G

Also,

∇3f = 0 (31)

∇3(∇f) +
1

2
trχ∇f = −χ̂∇f (32)

∇3[efdiv (e−f∇f)] + trχ[efdiv (e−f∇f)] = Err2 (33)

with error term,

Err2 = −2χ̂ ·
(
∇2f −∇f∇f

)
−∇trχ · ∇f +

(
trχη − 2χ̂ ζ − 2χ̂ · ∇(log Ω)

)
· ∇f

3.6. Additional assumptions. To proceed we need to make stronger assumptions than those of
section 2.2. More precisely, we need, in addition MA1 -MA3 the following,

MA2-S. The Ricci coefficients η, η,∇ log Ω verify the stronger assumptions,

|η|, |η| = O(δc)

MA3-S For a fixed c > 0,

|∇η|, |∇η| = O(δ−1/2+c), |∇χ|, |β| = O(δc)
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As a corollary of proposition 3.5 and these assumptions we deduce first,

trχ′ = trχ− 2efdiv (G) +
2

r
|F |2 + |F |2O(δc) (34)

From the equation (32) ∇3(∇f) + 1
2
trχ∇f = −χ̂∇f we deduce,

∇u(r|∇f |) = O(δ1/2) r|∇f |
Therefore,

r|∇f | = r0|∇f0

∣∣(1 +O(δ1/2)
)

(35)

We can also deduce in the same manner an estimate for r2|∇2f |. Indeed, differentiating (32) and
commuting ∇ with ∇3, according to lemma 2.1 we deduce,

∇3(∇2f) + trχ∇2f = −χ̂∇2f +O(δc)(1 +
1

r
)|∇f |

Note that the 1
r

term is due to the contribution of the term trχη·∇f which appear in the commutation
lemma. Hence, since r ≤ r0 ≤ r we deduce using (35),

∇u(r
2|∇2f)| = O(δ1/2)r2|∇2f |+O(δc)(1 +

1

r
)r2|∇f |

= O(δ1/2)r2|∇2f |+O(rδc)r0|∇f0|
and we infer that,

r2|∇2f | . C
(
r2

0|∇2f0|+O(δc)r0|∇f0|
)

(36)

Proceeding in the same manner with (33) we derive, for H = efdiv (e−f∇f)

∇3H + trχH = O(δ1/2)
(
|∇2f |+ |∇f |2

)
+O(δc)(1 +

1

r
)|∇f |

We deduce,

∇u(r
2H) = O(δ1/2)r2|∇2f |+O(δc)r|∇f |

= O(δc)
[
r2

0|∇2f0|+ r0|∇f0|
]

Hence,

r2H = r2
0H0 +O(δc)

[
r2

0|∇2f0|+ r0|∇f0|
]

or,

r2div (e−f )∇f = −r2
0∆(e−f0) +O(δc)

[
r2

0|∇2f0|+ r0|∇f0|
]
e−f0 (37)

Now, from equation (38),

∇3|F |+
1

2
trχ|F | = |∇f |+O(δ1/2)F

we deduce,

∇u(r|F |) = O(δ1/2)r|F |+ r|∇f | = O(δ1/2)r|F |+ r0|∇f0|
(
1 +O(δc)

)
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and therefore, since F0 = e−f0 |∇v0| = 0,

r|F | = ur0|∇f0|
(
1 +O(δc)

)
(38)

with C > 0 independent of δ or f0.

We next calculate ∇F . Using the commutation lemma 2.1 we deduce,

∇3|∇F |+ trχ|∇F | ≤ |∇2f |+O(δ1/2)|∇F |+O(δc)|F |

Thus, according to (36)

∇u(r
2|∇F |) ≤ r2|∇2f |+O(δ1/2)r2|∇F |+O(δc)r2|F |

≤ O(δ1/2)r2|∇F |+ C
(
r2

0|∇2f0|+O(δc)r0|∇f0|
)

+O(δc)rr0|∇f0|
We deduce,

r2|∇F | ≤ C
(
r2

0|∇2f0|+O(δc)r0|∇f0|
)

(39)

Since G = e−fF we also deduce,

r2|∇G| ≤ C
(
r2

0|∇2f0|+O(δc)r0|∇f0|
)
e−f0 (40)

Next we calculate div G from (30) which we write in the form,

∇3(div G) + trχdiv G = div (e−f∇f) +O(δc)I0e
−f0

I0 :=
(
r2

0|∇2f0|+O(δc)r0|∇f0|
)
.

Hence, making use of (37)

∇u(r
2div G) = r2div (e−f∇f) +O(δc)r2I0e

−f0

= −r2
0∆(e−f0) +O(δc)I0 +O(δc)r2I0e

−f0

Therefore,

r2div G = −ur2
0∆(e−f0) +O(δc)I0 (41)

Finally, going back to (34), and formula (38) for |F |,

trχ′ = trχ− 2efdiv (G) +
2

r
|F |2 + |F |2O(δc)

= trχ+ 2ur−2r2
0e
f0∆(e−f0) +O(r−2δc)I0 +

2

r3
u2r2

0|∇f0|2
(
1 +O(δc)

)
= trχ+ 2ur−2r2

0

(
−∆f0 + |∇f0|2

)
+

2

r3
u2r2

0|∇f0|2
(
1 +O(δc)

)
+O(r−2δc)I0

= trχ+
2ur2

0

r2

(
−∆f0 +

[
1 + u/r

(
1 +O(δc)

]
|∇f0|2

])
+O(r−2δc)I0

We summarize the result in the following proposition.



TRAPPED SURFACES 13

Proposition 3.7. Assume that MA1-MA3 and MA2-S, MA3-S are verified in the space-time
region D(u∗, δ) and f, v defined according to (20) The the expansion trχ′ of the v foliation verifies,
for all 0 ≤ u ≤ u∗ and 0 ≤ u ≤ δ, with I0 =

(
r2

0|∇2f0|+O(δc)r0|∇f0|
)

verifies,

trχ′ = trχ+
2ur2

0

r2

(
−∆f0 +

[
1 + u/r

(
1 +O(δc)

]
|∇f0|2

])
+O(r−2δc)I0 (42)

In particular, if δ > 0 is sufficiently small,

trχ′ ≤ trχ+
2ur2

0

r2

[
−∆f0 +

(
1 +

u

r

)]
|∇f0|2 +O(r−2δc)I0 (43)

3.8. Main equation. We now combine the results of propositions 2.3 and 3.7. For simplicity we
shall also assume that r0 = 1. According to proposition 2.3 we have,

trχ(u, δ) =
2

r(u, δ)
− 1

r2(u, δ)

∫ δ

0

|χ̂0|2(u′)du′ +O(δc)

Thus, inserting in (42)

trχ′(u, δ) ≤ 2

r
+

2u

r2

(
−∆f0 +

[
1 + u/r

(
1 +O(δc)

]
|∇f0|2

])
− 1

r2
M0 +O(r−2δc)I0

where r = r(u, δ) and

M0 =

∫ δ

0

|χ̂0|2(u′)du′.

Now, along a level surface3 S1 := {v = 1} ∩ Hu we can express both u and r as functions along
S0 which we denote by U = U(f0) and R = R(f0). In fact, since v = uef0 we deduce U = e−f0 .
Moreover since according to (11) dr

du
= −1 +O(δ1/2r) = −1 +O(δ1/2) we can write,

R = 1− U +O(δ1/2)U

To have trχ′ non-positive along Sv0 we need,

2

R
+

2U

R2

(
−∆f0 +

[
1 + U/R

(
1 +O(δc)

]
|∇f0|2

])
≤ 1

r2

(
M0 −O(δc)I0

)
We deduce the following.

Corollary 3.9. A necessary condition for S1 to be a trapped surface, is that,

−∆f0 +
[
1 + U/R

(
1 +O(δc)

]
|∇f0|2

]
+
R

U
≤ 1

2U

(
M0 −O(δc)I0

)
(44)

where,

U = e−f0 , R = 1− e−f0 +O(δ1/2) e−f0

3with v the deformation function defined by (20)
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Note that the inequality is only meaningful in the domain D, i.e. for U = e−f0 ≤ u∗, or for δ
sufficiently small,

R > 1− u∗ (45)

We now re-express (44) with respect to R = R(f0). We have,

∇R =
R

df
(f0)∇f0

∆R =
R

df
(f0)∆f0 +

d2R

d2f
(f0)|∇f0|2

On the other hand,

dR

df
(f0) =

dr

du
· dU
df

= −∇ur · e−f0

d2R

d2f
(f0) = ∇2

ur · e−f0 +∇ure
−f0

In view of formula (7) and the equation,

∇3trχ+
1

2
(trχ)2 = −2ωtrχ− |χ̂ |2

we deduce,

∇u(r∇ur) =
1

8π
∇u

∫
S(u,u)

Ωtrχ =
1

8π

∫
S(u,u)

Ω
(
e3(Ωtrχ) + Ωtrχtrχ

)
=

1

16π

∫
S(u,u)

Ω2trχ2 − 1

8π

∫
S(u,u)

Ω2|χ̂ |2 = 1 + rO(δ1/2)

Hence,

r∇2
ur + (∇ur)

2 = Ω2 + rO(δ1/2) = 1 +O(δ1/2)

from which we deduce,

r∇2
ur = O(δ1/2). (46)

Hence,

|∇R|2 = |∇f0|2e−2f0 |∇ur|2 = |∇f0|2e−2f0
(
1 +O(δ1/2)

)
∆R = −∆f0e

−f0∇ur +
(
∇2
ur · e−f0 +∇ure

−f0
)
|∇f0|2

= e−f0∆f0

(
1 +O(δ1/2

)
+ (−1 +O(δ1/2)e−f0|∇f0|2

+ R−1e−f0|∇f0|2O(δ1/2)

= e−f0
(
∆f0 − |∇f0|2

)
+O(δ1/2)

(
∆f0 + (1 +R−1)|∇f0|2)
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Thus,

|∇f0|2 = e2f0|∇R|2 +O(δ1/2)|∇f0|2

∆f0 = ef0∆R + |∇f0|2 +O(δ1/2)
(
∆f0 + (1 +R−1)|∇f0|2)

= ef0∆R + e−2f0|∇R|2 +O(δ1/2)
(
∆f0 + (1 +R−1)|∇f0|2)

Note that,

The left hand side of (44) becomes,

L = −∆f0 +
[
1 + U/R

(
1 +O(δc)

)]
|∇f0|2

]
+
R

U

= −ef0∆R− e−2f0|∇R|2 + (1 + e−f0R−1)e2f0|∇R|2 +Ref0

+ O(δc)R−1 ef0|∇R|2 +O(δ1/2)
(
ef0∆R + e2f0 |∇R|2)

Hence,

L = ef0
[
−∆R +R−1|∇R|2

(
1 +O(δc)

)
+R +O(δ1/2)

(
∆R + ef0|∇R|2)

]
The inequality (44) becomes,

−∆R +R−1|∇R|2
(
1 +O(δc)

)
+R +O(δ1/2)

(
∆R + ef0|∇R|2 ≤ 1

2
(M0 −O(δc)I0)

or,

−∆R +R−1|∇R|2
(
1 +O(δc)

)
+R ≤ 2−1M0 +O(δc)J

where J is a fixed smooth function depending only on ∇2R and ∇R. We deduce the following.

Proposition 3.10. A necessary condition such that S1 is a trapped surface is that, for δ > sufficiently
small there exists a smooth function R on 0 verifying R > 1− u∗ and the differential inequality,

−∆R +
(
1 +O(δc)

)
R−1|∇R|2 +R ≤ 2−1M0 +O(δc)J (47)

To proceed we need to make the assumption R ≥ δ−c/2. Hence, it suffices to prove the inequality:

−∆R +R−1|∇R|2 +R ≤ 2−1M0 +O(δc/2)J

or, for δ sufficiently small,

−∆R +R−1|∇R|2 +R < 2−1M0. (48)

In order that the initial surface, corresponding to R = 1, is not trapped we need 2−1M0 < 1. We
also note, by the maximum principle that,

maxR < 2−1 maxM0



16 SERGIU KLAINERMAN, JONATHAN LUK, AND IGOR RODNIANSKI

Thus,

1− u∗ < 2−1 max
S0

M0. (49)

is a necessary condition for the formation of a trapped surface. Recall that u∗ is the maximum of u
for which our assumptions are satisfied in D(u, δ). Is it sufficient ?

Performing the transformation R = e−φ we derive,

∆φ+ 1 < 2−1M0e
φ

4. Solutions to the deformation equation on a fixed sphere (S, γ).

In this section we provide examples of solutions to our main deformation equation,

∆φ+ 1 < Meφ (50)

on a smooth, compact, 2−dimensional Riemnannian manifold S, diffeomorphic to the standard
sphere, with strictly positive Gaussian curvature K. We define r = r(S) such that |S| = 4πr2 and
define,

km = min
S
r2K, kM = max

S
r2K

We consider geodesic balls B(p, ε) = B(p, ε) for sufficiently small ε > 0. We start by proving the
following lemma.

Lemma 4.1. Given a ball B(p, ε) ⊂ S, there exists a function wε, smooth outside the point p, such
that

∆wε +K = 4πδp (51)

where δp is the Dirac measure at p. Moreover, if λ denotes the distance function from p,

wε = χε log λ+ v (52)

with v ∈ C1.1−(S), v(p) = 0, smooth in S \ {p} and χε a smooth cutoff function,{
χε = 1 on B(p, ε)

χε = 0 on B(p, 2ε)

Assuming the lemma true we consider the cut-off function{
ϕε = 0 on B(p, ε/2)

ϕε = 1 on Bε(p)
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and define w′ε = ϕεwε. Note that w′ε verifies the following properties:
w′ε = 0, on B(p, ε/2)

w′ε = log ε+O(1), on S \B(p, ε/2)

∇2w′ε = O(ε−2 log ε) on S \B(p, ε/2)

∆w′ε +K = 0 on S \B(p, ε)

(53)

Consider now the function wε = Λw′ε, for a fixed constant Λ and observe that, on S \ B(p, ε), we
must have, ∆wε + 1 = −ΛK + 1 < 0 provided that Λ > k−1

m . Thus, with a fixed choice of Λ > k−1
m

we have, 
wε = 0, on B(p, ε/2)

wε = Λ log ε+O(1), on S \B(p, ε/2)

∇2wε = O(ε−2 log ε) on S \B(p, ε/2)

∆wε + 1 < 0 on S \B(p, ε)

(54)

It remains to check under what conditions for M , the function wε verifies (50). Clearly, on S\B(p, ε),
(50) is trivially verified in view of the fact that M ≥ 0. Now let Mε = infB(p,ε)M . Thus, for some
constant C,

Mewε ≥ Mεe
wε ≥ CεΛMε,

∆wε + 1 = O(ε2 log ε)

Hence, to have (50) verified in B(p, ε) we need,

O(ε−2 log ε) < Mεε
Λ

This proves the following.

Proposition 4.2. Let Mε = minB(p,ε) M and let Λ > (minSK)−1. Assume that, for some universal
constant C > 0,

Mε > Cε−2−Λ log ε (55)

Then, for sufficiently small ε > 0, there exists a function φε verifying the inequality (50) and such
that

minφε > log ε+O(1) (56)

|∇φε| = O(ε−1 log ε), |∇2φε| = O(ε−2 log ε). (57)

In remains to prove lemma 4.1. This is a standard argument, see for example chapter 2 in [?], which
we sketch below.

Let λ be the geodesic distance function from p. In a neighborhood of p we can write,

ds2 = dλ2 + a2(λ, θ)dθ2, a(0) = 0,
da

dλ
(0) = 1.
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Let h be the geodesic curvature of the level curves of λ, i.e. denoting, e = γ(∂θ, ∂θ)
−1/2∂θ the unit

tangent vector to these curves,

h = γ(∇e∂λ, e) = a−1∂λa

h verifies the second variation formula,

∂λh = −h2 −K
or,

∂2
λa+Ka = 0. (58)

Since a(0) = 0, da
dλ

(0) = 1 we deduce from (58) that ∂2
λa(0) = 0. Consequently,

a(λ) = λ+O(λ3), ∂λa(λ) = 1 +O(λ2), h(λ) = λ−1 +O(λ)

Now,

∆ log λ = λ−1h− λ−2 = O(1)

Thus, for δ < ε converging to 0,∫
S\B(p,δ)

∆(χε log λ)dvγ = −2π +O(δ)2

Hence, passing to the limit, ∫
S

∆(χε log λ)dvγ = −2π

Note also that, ∫
S

χ∆(χε log λ)dvγ = −2πχ(p) (59)

for any smooth test function χ supported in B(p, ε).

We now solve the equation,

∆Sv = f. (60)

where, f is the bounded function{
f = K + 2∆(χε log λ) on S \ {p}
f = 0 at p

Note that (60) admits a C1,1 solution in view of the fact that f ∈ L∞(S) and,∫
S

fdvγ =

∫
S

Kdvγ + 2

∫
S

∆(χε log λ)dvγ = 4π − 4π = 0.

We can also normalized v such v(p) = 0. We now define,

wε = 2χε log λ− v
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and note that,

∆wε +K = 0, on S \ {p}
Moreover, in view of (59),

∆wε +K = −4πδ

as desired.

Remark 4.3. Note that the proof of the proposition only requires the existence of a smooth function
w on S which verifies ∆w + 1 < 0 in the complement of a closed domain D for which infDM :
MD > 0. Indeed if such a function exists we can produce a solution to our inequality simply by
taking φ = − log s + w for a sufficiently small constant s > 0. Indeed, with such a choice (50) is
automatically satisfied in the complement of D. In D, ∆φ = ∆w, eφ = s−1ew and therefore we need
maxD

[
e−w(∆w + 1)

]
< s−1MD. Finally we note that such solutions can easily be constructed for

balls B(p, δ) with δ < ip, the radius of injectivity of S at p.
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