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1. Introduction

The cosmic censorhip conjectures are a bold couple of hypothesis, put
forth by R. Penrose [Pen1], [Pen2], concerning the nature of gravita-
tional collapse in General Relativity. According to the so called weak
version of this conjecture, which applies only to isolated physical sys-
tems, singularities in GR have no effect on distant observers. In other
words asymptotically flat spacetimes in general relativity are free of sin-
gularities, in fact free of any possible effects of singularities, outside well
specified regions, called black holes, bounded by event horizons. The
strong cosmic censorship conjecture, which does not require asymptotic
flatness and thus applies also to cosmological spacetimes, asserts that
time-like singularities cannot occur under any circumstances, so even
observers falling into a black hole will not register their effects. Both
conjectures can be violated by specific, yet non-generic, examples thus
one can only hope that they are true generically in a sense which is
best left open until a satisfactory solution will be found.

The conjectures are fundamental from the point of view of Physics in
so far as their violation might1 create serious problems, of failure of
predictability, to General Relativity as a classical theory. One would
be obliged to find a solution to such difficulties by appealing to a more
complete theory, such as Quantum Gravity, yet with all the efforts
made by so many brilliant physicists, such a theory is no way in sight.
If both conjectures are true, however, then a new theory will only be
needed to deal with the non- timelike curvature singularities predicted
to exist in the interior of black holes.

1991 Mathematics Subject Classification. 35J10.
1It is entirely possible, however, that some weak violations could be treated in

the framework of the classical theory.
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The conjecture also provide pure mathematicians, both geometers and
analysts, with great challenges. Indeed they fit perfectly the defini-
tion given by Hilbert to good mathematical problems. A good problem,
he advised, should be clear and easy to comprehend, difficult yet not
completely inaccessible lest it mocks at our efforts. It should provide
a landmark on our way through the confusing maze and thus guide us
towards hidden truth. A good problem, I would accentuate, should
provide us with a strategic height in our quest towards a higher goal,
one whose solution leads unequivocally to an important milestone in
our understanding of the main issues facing our subject. There is no
doubt that the cosmic censorship conjectures verifies this last criterion,
its solution will be a a great advance in our understanding of general
solutions to the Einstein field equations. There is also no doubt that
they are very difficult. Though young in comparison to the other big
challenges in mathematics, such as the magnificent seven millennium
problems, they have resisted so far all our efforts and it is obvious to all
concerned that a solution is nowhere in sight. The conjectures are also
clear and easy to comprehend even though a completely tight formu-
lation could only be given once a solution will be found. It thus only
remains to argue, as I will attempt here, that they are not completely
inaccessible as they have generated, and will continue to generate, reach
scientific, activity excellent results and new mathematical techniques
which allow us to see a glimmer of light at the end of the tunnel.

In dealing with mathematical problems Hilbert advises us, special-
ization plays, I believe, a still more important part then generaliza-
tion. Perhaps in most cases where we seek in vain the answer to a
question, the cause of the failure lies in the fact that problems sim-
pler than the one in hand have been either not at all or incompletely
solved. Cosmic censorship offers us a great choice of possible simpli-
fications based on various symmetry assumptions or special choices of
matter-fields. Other simplifications can be made by considering special
classes of initial conditions, such as perturbations of initial conditions
for Minkowski, Kerr or Kerr-Newmann solutions, or by making a-priori
assumptions on the space-time under consideration. In this lecture I
will give a few examples of such recent results.

2. Initial value problem and basic results

The cosmic censorship conjectures make specific predictions about the
global properties of Cauchy developments of general initial data sets.



We recall that an initial data set consists of 3 dimensional manifold Σ,
a complete Riemannian metric g(0), a symmetric 2-tensor k(0), and a
well specified set of initial conditions corresponding to the matter-fields
under consideration. These have to be restricted to a well known set
of constraint equations. A Cauchy development of an initial data set
is a globally hyperbolic spacetime (M, g), verifying the Einstein field
equations,

EFE Rαβ − 1
2
Rgαβ = Tαβ,

and an embedding i : Σ −→M such that i∗(g(0)), i∗(k(0)) are the first
and second fundamental forms of i(Σ(0)) in M. In what follows I will
mostly restrict the discussion to the Einstein vacuum equations, i.e.
the case when the energy momentum tensor vanishes identically and
the equations take the purely geometric form,

EVE Rαβ = 0.

Most results I will mention can be extended to the case when mat-
terfields are present, yet often including them will only encumber the
presentation. In what follows I will restrict myself to asymptotically
flat initial data sets, i.e. I assume that outside a sufficiently large com-
pact set K, Σ(0)\K is diffeomorphic to the complement of the unit ball
in R3 and admits a system of coordinates in which g(0) is asymptotically
euclidean and k(0) vanishes at appropriate order.

2.1. Special solutions. We recall that EVE admits a remarkable fam-
ily of explicit, stationary, solutions are given by the two parameter fam-
ily of Kerr solutions among which one distinguishes the Schwarzschild
family of solutions, of mass m > 0,

gS = −(1− 2m

r
)dt2 + (1− 2m

r
)−1dr2 + r2dσS2 (1)

Though the metric seems singular at r = 2m it turns out that one
can glue together two regions r > 2m and two regions r < 2m of
the Schwarzschild metric to obtain a metric which is smooth along
H = {r = 2m}, see [H-E], called the Schwarzschild horizon. The
portion of r < 2m to the future of the hypersurface t = 0 is a black
hole whose future boundary r = 0 is singular. The region r > 2m,
called the domain of outer communication, is free if singularities.



The Schwarzschild family is included in a larger two parameter family
of solutions K(a,m) discovered by Kerr. A given Kerr space-time,
with 0 ≤ a < m has a well defined domain of outer communication
r > r+ := m + (m2 − a2)1/2. In Boyer-Lindquist coordinates, well
adapted to r > r+ the Kerr metric has the form,

gK = −∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ
dtdφ+

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 dφ2 +

Σ

∆
dr2 + Σdθ2

with Σ = r2 + a2 cos2 θ,∆ = r2 + a2 − 2mr. As in the Schwarzschild
case, the exterior Kerr metric extends smoothly across the Kerr event
horizon, H = {r = r+}. It can be shown that the future and past
sets of any point in the domain of outer communication intersects any
timelike curve, passing through points of arbitrary large values of r, in
finite time as measured relative to proper time along the curve. This
fact is violated by points in the region r ≤ r+, which defines the black
hole region of the space-time. Thus physical signals which initiate at
points in r ≤ r+ cannot be registered by far away observers. The
extended Kerr is singular only at r = 0. Thus the singularities in Kerr
cannot have any effect on the domain of outer communication which is
completely smooth.

The exterior Kerr metrics are stationary, which means, roughly, that
the coefficients of the metric are independent of the time variable t. One
can reformulate this by saying that the vectorfield T = ∂t is Killing2

and time-like at points with r large. One can also easily check that
T is tangent to the horizon H, which is itself a null hypersurface, i.e.
the restriction of the metric to the tangent space to H is degenerate.
In addition to being stationary the coefficients of the Kerr metric are
independent of the circular variable φ. Thus Kerr is stationary and
axially symmetric. The Schwarzschild metrics, corresponding to a = 0,
are not just axially symmetric but spherically symmetric, which means
that the metric is left invariant by the whole rotation group of the
standard sphere S2. A well known theorem of Birkhoff, shows that
they are the only such solutions of the vacuum Einstein equations.
Another peculiarity of a Schwarzschild metric, not true in the case of
Kerr, is that the stationary Killing vectorfield T = ∂t is orthogonal
to the hypersurface t = 0. A stationary spacetime which has this

2A vectorfield X is said to be Killing if its locally induced one parameter flow
consists of isometries of g, i.e. the Lie derivative of the metric g with respect to X
vanishes, LXg = 0.



property is called static. Moreover T is timelike for all r > 2m and
null along the Schwarzschild horizon H = {r = 2m}. This is not
the case for Kerr solutions in which case T = ∂t is only time-like for
r > m + (m2 − a2 cos2 θ)1/2, null for r = m + (m2 − a2 cos2 θ)1/2 and
space-like in the region between r+ and r = m + (m2 − a2 cos2 θ)1/2,
called the ergosphere.

2.2. General results. The most primitive question asked about the
initial value problem, solved in a satisfactory way, for very large classes
of evolution equations, is that of local existence and uniqueness of solu-
tions. For the Einstein equations this type of result was first established
by Y.C. Bruhat[Br] with the help of wave coordinates which allowed
her to cast the Einstein vacuum equations in the form of a system of
nonlinear wave equations to which one can apply3 the standard theory
of symmetric hyperbolic systems. The optimal, classical4, result, see
[HKM], states the following,

Theorem 2.3 (Local existence). Let (Σ(0), g(0), k(0)) be an initial data
set for the Einstein vacuum equations (EVE). Assume that Σ(0) can
be covered by a locally finite system of coordinate charts Uα related to
each other by C1 diffeomorphisms, such that (g(0), k(0)) ∈ Hs

loc(Uα) ×
Hs−1

loc
(Uα) with s > 5

2
. Then there exists a unique(up to an isometry)

globally hyperbolic, development (M, g), verifying EVE, for which Σ(0)

is a Cauchy hypersurface5.

In the case of nonlinear systems of differential equations the local exis-
tence and uniqueness result leads, through a straightforward extension
argument, to a global result concerning the maximal time interval of
existence. If this interval is bounded the solution must become infinite
at its upper boundary. The formulation of the same type of result for
the Einstein equations is a little more subtle; something similar was
achieved in [Br-Ge].

Theorem 2.4 (Bruhat-Geroch). For each smooth initial data set there
exists a unique maximal future global hyperbolic development (MFGHD).

Thus any construction, obtained by an evolutionary approach from a
specific initial data set, must be necessarily contained in its maximal

3The original proof in [Br] relied instead on representation formulas.
4Based on only energy estimates and classical Sobolev inequalities.
5That is any past directed, in-extendable causal curve in M intersects Σ0



development MFGHD. This may be said to solve the problem of global6

existence and uniqueness in General Relativity; all further questions,
one could say, concern the qualitative properties of these maximal de-
velopments. The central issue becomes that of existence and character
of singularities. We can start by defining a regular MFGHD as one
which is future geodesically complete, i.e. all future time-like and null
geodesics are complete. Roughly speaking this means that any freely
moving observer in M can be extended indefinitely, as measured rela-
tive to its proper time. It turns out that any initial data set, which is
sufficiently close to the flat one, admits a regular MFGHD, see [Ch-Kl]
and the resent result in [Lind-Rodn]. This result stated below is a
rough version of the global stability of Minkowski, the complete result
also provides very precise information about the decay of the curvature
tensor along null and timelike directions as well as many other geomet-
ric information concerning the causal structure of the corresponding
spacetime. Of particular interest are peeling properties i.e. the precise
decay rates of various components of the curvature tensor along future
null geodesics.

Theorem 2.5 (Global Stability of Minkowski). Any asymptotically flat
initial data set which is sufficiently close to the trivial one has a regular
MFGHD.

A related result, see [Kl-Ni] solves the problem of radiation for arbitrary
AF initial data sets. In particular the result establishes the following.

Theorem 2.6 (Klainerman-Nicolo). For any, suitably defined, asymp-
totically flat initial data set with maximal future development (M, g)
one can find a suitable domain Ω0 with compact closure in the initial
hypersurface Σ(0) such that the boundary N+

0 of J +(Ω0), in M has
complete null geodesic generators (with respect to the corresponding
affine parameter).

One can in fact foliate Σ0 \ Ω0 by by 2−surfaces Ωr such that the
boundaries N+

r of all future domains J +(Ωr) have complete null ge-
odesic generators. As in the case of the global stability of Minkowski
this result provides a wealth of additional informations. In particular

6This is of course misleading, for equations defined in a fixed background global
is a solution which exists for all time. In general relativity, however, we have no
such background as the spacetime itself is the unknown. A proper definition of
global solutions in GR requires a special discussion concerning the proper time of
timelike geodesics.



peeling properties, similar to the ones mentioned above hold in the
complement of J +(Ω0). At the opposite end of these results, when the
initial data set is very far from flat, we have the following singularity
theorem of Penrose, see [Pen1], [Pen2].

Theorem 2.7 (Penrose). If the manifold support of an initial data set
is non-compact and contains a closed trapped surface the corresponding
maximal development is incomplete. The results holds true in the pres-
ence of any matterfields which verify the positive energy conditions, i.e.
if for any null vector L,

Ric(L,L) ≥ 0. (2)

The notion of a trapped surface S ⊂ Σ, can be rigorously defined
in terms of a local condition on S. The flat initial data set (whose
development is the Minkowski space) have, of course, no such surfaces.
On the other hand, for the Schwarzschild initial data set, i.e. the
one whose development is Schwarzschild, any surface r = r0, with
r0 < 2m is trapped. Of course, the Schwarzschild metric has a genuine
singularity at r = 0, where the curvature tensor becomes infinite. This
is a lot stronger than just saying that space-time is incomplete. All
Kerr solutions, with the exception of the flat Minkowski space itself,
have trapped surfaces. Unlike Schwarzschild, Kerr spacetimes have
Cauchy horizons, which belong to the boundaries of the MFGHD, of
the initial data set at t = 0, thus contradicting the non-generic form of
strong cosmic censorship.

3. Main Conjectures

3.1. Cosmic Censorship Conjectures. The unavoidable presence
of singularities, for sufficiently large initial data sets, as well as the
analysis of explicit examples, mainly Schwarzschild and Kerr, have led
Penrose to formulate his two conjectures. To understand the statement
of the weak cosmic censorship (WCC) consider the different behavior
of null rays in Schwarzschild and Minkowski spacetimes. In Minkowski
space light originating at any point p = (t0, x0) propagates, towards
future, along the null rays of the null cone t− t0 = |x− x0|. Any free
observer in R1+3, following a straight time-like line, will necessarily
meet the this light cone in finite time, thus experiencing the event p.
On the other hand, any point p in the trapped region r < 2m of the
Schwarzschild space, is such that all null rays initiating at p remain
trapped in the region r < 2m. In particular events connected to the



singularity at r = 0 cannot influence events in the domain of outer
communication r > 2m which is thus entirely free of singularities. The
same holds true in any Kerr solution with 0 ≤ a < m. WCC is an
optimistic extension of this fact to the future developments of general,
asymptotically flat initial data. The desired conclusion of the conjec-
ture is that any such development, with the possible exception of a
non-generic set of initial conditions, has the property that any suffi-
ciently distant observer will never encounter singularities or any other
effects propagating from them. To make this more precise one needs de-
fine what a sufficiently distant observer means. This is typically done
by introducing the notion of future null infinity S+ which, roughly
speaking, provides end points for the null geodesics which propagate
to asymptotically large distances. The future null infinity is formally
constructed by conformally embedding the physical spacetime M un-
der consideration to a larger space-time M̄ with a null boundary S+.

Definition The future null infinity S+ is said to be complete if any
future null geodesics along it can be indefinitely extended relative an
afine parameter.

Given this enlarged space-time, with complete S+, one defines the black
hole region to be

B =M−I−(S+) (3)

with the chronological past I− defined relative to the enlarged, non-
physical space-time M̄. The event horizon E of the black hole is defined
to be the boundary of B in M. The requirement that space-time M
has a complete future null infinity can be informally reformulated, by
saying that the complement of the black hole region should be free of
singularities. Indeed singularities outside the black hole region will nec-
essarily have to affect the completeness of S+. The black hole region,
however, can only be defined a-posterior after the completeness of S+

has been established.

A more precise definition of complete future null infinity, which avoids
the technical and murky issue of the precise degree of smoothness of
the conformal compactification was proposed by Christodoulou [Chr1].
It is based on the statement of theorem 2.6.

Definition 3.2. The maximal future development (M, g) of an AF
initial data set possesses as complete future null infinity if, for any
A > 0, we can find a domain Ω ⊂ Σ0 containing the set Ω0 of Theorem
2.6 such that the boundary N−(Ω) of the domain of dependence D−(Ω)



of Ω in M has the property that each of its null geodesic generators
has a total affine length, measured from N+(Ω0), of at least A.

Here is now a precise formulation of the Weak Cosmic Censorship
(WCC) conjecture.

Conjecture 1[WCC Conjecture] Generic asymptotically flat initial
data have maximal future developments possessing a complete future
null infinity.

The WCC conjecture was formulated in order to guarantee the unique
predictability of observations visible from infinity. It does not preclude,
however, the possibility that singularities may be visible by local ob-
servers inside the black hole region. Since predictability is a fundamen-
tal requirement of all classical physics it seems reasonable to want it
valid throughout spacetime. Predictability is known to fail, however,
within the black hole of a Kerr solution7 in which case the maximum
domain of development of any complete spacelike hypersurface has a
future boundary, called a Cauchy horizon, where the Kerr solution is
perfectly smooth and yet beyond which there are many possible smooth
extensions. This failure of predictability is due to a global pathology
of the geometry of characteristics and not to a loss of local regularity.
It is to avoid this pathology and ensure uniqueness that we want the
maximum domain of development of generic data to be in-extendible.
This motivation has led Penrose to introduce the following conjecture,
called Strong Cosmic Censorship (SCC). Since Kerr itself, however, vi-
olates this requirement we can only hope that the conjecture holds for
generic data.

Conjecture 2 [SCC Conjecture] Generic asymptotically flat or com-
pact initial data sets have maximal future developments which are lo-
cally in-extendible.

Thus the MFGHD of generic AF initial data are either complete, as
those provided by theorem 2.5 on the global stability of the Minkowski
space, or terminate in a singular future boundary. According to this
scenario the presence of smooth Cauchy horizons (across which the
metric can be smoothly extended) in Kerr spacetimes is accidental, i.e.
they cannot persist for arbitrary small perturbations of the Kerr initial
conditions. The formulation above leads open the sense in which the

7Or the Reissner-Nordstrom solution of the Einstein -Maxwell equations.



maximal future developments are in-extendible. The precise notion of
extendibility, which is to be avoided by SCC, is a subtle issue which
may only be settled together with a complete solution of the conjecture.
There have been various proposals among which I will only mention
two, see [Chr1] for a more thorough discussion.

(1) The maximal future development is in-extendible as a C1,1 Lorentzian
manifold. This means, in particular, that some components of
the curvature tensor must become infinite8

(2) The maximal future development is in-extendible as a continu-
ous Lorentzian manifold.

The maximalist requirement of the second proposal was shown to be
deficient in the particular case of spherically symmetric solutions of
the Einstein equations coupled with both the Maxwell equations and a
scalar field, see [D1], [D2]. M. Dafermos has shown in fact that in fact
Cauchy horizons persist, through which the metric can be continued in
a C0 manner but such there exist no local coordinate systems, around
any point of these horizons, in which the Christoffel symbols are square
integrable. Though a precise version of extendibility, in connection to
SCC, is not available one can nevertheless hope to gain some insight
about it by considering the related question of optimal well-posedness,
i.e. the minimum regularity for which predictability of solutions can
be maintained. We will discuss this issue in the next section.

As alluded in the introduction cosmic censorship offers important sim-
plifications based on various symmetry assumptions, special choices
of matter-fields, special classes of initial conditions or by making a-
priori assumptions. Additional symmetry assumptions greatly reduce
the mathematical difficulties of the conjectures and, for some choices of
matterfields, allow us to actually settle the conjectures. In the asymp-
totically flat case the two relevant symmetry simplifications are those
corresponding to a SO(3) action, i.e. spherical symmetry, and SO(2)
action corresponding to axial symmetry. A lot of progress has been
made in the case of spherical symmetry in the case of specific matter-
fields, such as a scalar field (for a comprehensive discussion and com-
plete set of references see the prologue in [Chr2]), scalar and Maxwell

8More precisely, along any future, in-extendible, timelike geodesic of finite length
the some components of the Riemann curvature tensor, expressed relative to a
parallel transported orthonormal frame along the geodesic, become infinite as the
value of the arc-length approaches its limiting value.



field (see [D1], [D2]) and colisionless plasma (see [D-R] and the ref-
erences therein). The case of axial symmetry is far less studied. In
what follows I will restrict the discussion to some recent results in con-
nection to the other type of simplification mentioned above, namely
special classes of initial conditions and a-priori assumptions.

3.3. Other Conjectures. Though general, asymptotically flat, solu-
tions of the Einstein vacuum equations are exceedingly complicated we
expect that their asymptotic behavior is quite simple and is dictated
in fact by the two parameter family of explicit Kerr solutions, corre-
sponding to axially symmetric, rotating black holes. Here is a rough
version of the final state conjecture.

Conjecture 3 [Final State Conjecture] Generic asymptotically flat
initial data sets have maximal future developments which can be de-
scribed, asymptotically, as a finite number of black holes, Kerr solu-
tions, moving away from each other.

The simple motivation behind this conjecture is that one expects,
due to gravitational radiation, that general, dynamic, solutions of the
Einstein field equations settle down, asymptotically, into a stationary
regime. A spacetime is said to be stationary if it admits a Killing vec-
torfield which is timelike in the asymptotic region, i.e. at space-like
infinity. The Kerr family of solutions are obvious examples of regu-
lar9, stationary solutions but are they unique ? Can there be, in other
words, other stationary solutions of the Einstein vacuum equations? It
has been shown, under very general conditions, that if the Killing vec-
torfield is also static, i.e. hypersurface orthogonal, than the spacetime
must be Schwarzschild, see discussion and references in [Be-Chr]. A less
satisfactory uniqueness result holds true for stationary, real analytic
space-times, see discussion and references in [Be-Chr]. The condition
of real analyticity is however very unnatural in General Relativity and
ought to be removed.

Conjecture 4[Uniqueness of Kerr] Remove the analyticity assump-
tion in the Hawking-Carter-Robinson proof of uniqueness of the Kerr
space-time among stationary solutions.

9The space-time is assumed smooth, asymptotically flat and satisfies an appro-
priate causality condition



Recent progress in this direction was made in [I-Kl] and [Al-Io-Kl1],
[Al-Io-Kl2]. In [I-Kl], based on a characterization of the Kerr solution
(see [Ma]) by the vanishing of four covariant complex valued tensor10 S,
we were able to remove the analyticity assumption by replacing it with
a complex scalar condition to be satisfied on the bifurcate sphere of
the horizon. The main idea of the proof was to derive a covariant wave
equation for S, show that S vanishes on the bifurcate event horizon
of the stationary solution, and then use Carleman estimates to deduce
that S must vanish in the entire domain of outer communication of the
space-time. In [Al-Io-Kl2] we also remove the additional complex scalar
condition but require instead that the Mars-Simon tensor is sufficiently
small. In other words we prove that any regular, non-degenerate sta-
tionary, asymptotically flat solution which is a small perturbation of
a given Kerr solution K(a,m), 0 ≤ a < m, is in fact a Kerr solution.
The proof is based on Hawking’s original idea of showing that, under
suitable assumptions, stationary, real analytic solutions have to be axi-
ally symmetric. Uniqueness would then follow from a previous work of
Carter-Robinson concerning stationary, axially symmetric space-times,
not necessarily analytic. In his work, see [H-E], Hawking proves that
the event horizon of these stationary solutions11 must support a vec-
torfield, tangent to the generators of the horizon, which is Killing up to
any order along the horizon. This vectorfield can then be extended by
a Cauchy-Kowalewsky type argument12. In the absence of analyticity
one would like to extend this Hawking vectorfield K by solving a covari-
ant wave equation �gK = 0 with prescribed data on the horizon. This
problem is however ill-posed, that is one cannot prove existence in the
non analytic, smooth, category. Our work in [Al-Io-Kl2] circumvents
this difficulty by starting with some natural, geometric, extension of
K consider its associated flow Ψt, and show that, for small |t|, the pull
back metric Ψ∗tg must coincide with g, in view of the fact they they
are both solutions of the Einstein vacuum equations which coincide, by
construction, on the horizon. We are then reduced to prove a unique-
ness result for two Einstein vacuum metrics g, g′ which coincide on the
horizon. This strategy is illustrated in [Al-Io-Kl1] where we prove a
local version of Hawking’s result which does not rely on analyticity.

10which is traceless and possesses all the symmetries of the Riemann curvature
tensor

11This is based on the fact that the stationary Killing field is tangent to the
horizon. I also assume, in this discussion, that it is not tangent to its generators.

12A correct extension was in fact



Another important open problem in general relativity, whose solution
would have to be understood long before the full Final State conjecture
is settled, is that of the nonlinear stability of the exterior Kerr metric.

Conjecture 5 [Global stability of Kerr] Any small perturbation of
the initial data set of a Kerr space-time has a global future develop-
ment with a complete future null infinity which, within its domain of
outer communication13, behaves asymptotically like a (another) Kerr
solution.

Though it is widely expected that the conjecture must be true (if false,
black holes would be nothing more than mathematical artifacts) so far
only the full, non-linear, stability of the Minkowski space has been es-
tablished. A first, essential step, in the proof of stability of the Kerr
solution is to establish to prove its linear stability, which amounts,
roughly, to prove appropriate decay estimates for solutions to linear
field equations in a fixed Kerr background. In a somewhat simplified
version, one has to show that all solutions of the covariant wave equa-
tion �gφ = 0, with g the space-time metric of K(m, a), 0 ≤ a < m, are
well behaved in the complement of the black hole region of the space-
time. By well behaved I mean, in particular, that solutions evolving
from smooth, compactly supported initial data, disperse and thus de-
cay at rates similar to those in flat space. A more elementary task, and
yet very difficult in the rotating case14, a > 0, is to show that solutions
remain bounded in the entire exterior region of the space-time. The dif-
ficulty is due to the presence of the ergo-region, in which the stationary
Killing vector-field becomes space-like. The presence of an ergo-region
is connected, physically, with the so called Penrose process according
to which energy can be extracted from a rotating black hole and thus
contribute to linear instability. To establish decay one has to overcome
another major difficulty, present even in the non-rotating case, due to
the presence of trapped null geodesics. In both cases one also has to
understand the behavior of solutions near and along the event horizon,
i.e. the boundary of the black hole region. It is important to stress
here that a satisfactory solution of these problems has to be robust,
i.e. it has to be applicable in principle to small perturbations of the
background metric. This disqualifies the methods used so far, based on
spectral decompositions (such as those of [Ch] or [F-K-S-Y]). Not only

13That means, roughly, outside the black hole region.
14The much simpler non-rotating case a = 0, corresponding to the Schwarzschild

space-time, was solved previously in work by Kay and Wald.



do these methods fail to give quantitative results; they do not extend,
in principle, to perturbations of the Kerr family.

In a recent series of papers Dafermos-Rodnianski, (see [D-Rodn1] and
references therein) give a satisfactory solution to these problems for
all Kerr space-times15 with small angular momentum, based on a far
reaching extension of the vectorfield method which takes into account
the geometry of the Kerr solution. In fact their proof of bounded-
ness holds not just for Kerr solutions, with small angular momentum,
but also small perturbations of these (among solutions of the Einstein
vacuum equations). I should remark that the vectorfield method is in-
trinsically robust and as such has played a crucial role in the proof of
nonlinear stability of the Minkowski space-time.

3.4. Bounded L2 curvature conjecture. One of the most interest-
ing phenomenon discovered by mathematicians in connection nonlinear
equations is the fact that below a certain regularity threshold, general-
ized solutions16 of important nonlinear PDE’s lose their predictability.
Thus, in the case of the incompressible Euler equations, for example,
one can prove (see [DL-Sz] and references to the previous results of
V. Schaeffer and A. Schnirelman) the existence of finite energy uni-
formly bounded solutions, v ∈ L∞(R × R3), solving the equations in
a distributional sense and having compact support in all of spacetime.
This raises the obvious question what is that threshold and what is its
physical relevance. In the case of the Euler equations it is believed that
the threshold, with respect to Hölder spaces Cα, is the Onsager expo-
nent α = 1/3, which corresponds exactly to the famous Kolmogorov-
Obukhov energy spectrum exponent −5/3, see [Co].

One can approach this issue from the point of view of optimal well-
posedness of the Einstein equations. According to the local existence
theorem 2.3 the initial value problem is well posed for exponents s >
5/2. Clearly this cannot be optimal. By only scaling considerations
one might expect to make sense of the initial value problem for s ≥
sc = 3/2. A result of well posedness for the Einstein equations for the
critical regularity, s = sc, is not only completely out of reach but it is

15Previous results in the non-rotating case of Schwarzschild were established in
works by Blue-Soffer, Blue-Sterbenz, Dafermos-Rodnianski, Alinhac and see precise
references in [D-Rodn1].

16These are non-smooth solutions of the equations which can be defined, typi-
cally, in a distributional sense.



probably wrong, as we shall argue below. A far more realistic goal at
the present time is the following:

Conjecture[L2-Bounded Curvature Conjecture BCC.] The Einstein
Vacuum equations are strongly, locally17, well posed for initial data sets
(Σ(0), g(0), k(0)) with locally finite L2 curvature and locally finite L2 norm
of the covariant derivatives of k(0).

It is important to emphasize here that the conjecture can be inter-
preted as a continuation argument for the Einstein equations; that
is the spacetime constructed by evolution from smooth data can be
smoothly continued, together with a time foliation, as long as the cur-
vature of the foliation and covariant derivatives of its second funda-
mental form remain L2- bounded on the leaves of the foliation. The
following, loosely formulated, removal of singularities result may be
viewed as a possible corollary of the bounded L2 curvature conjecture:

Corollary. Consider a future Cauchy development, for the Einstein-
vacuum equations, of smooth, regular, initial data set. If the curvature
flux along any backward null cone initiating in the past of a point p is
uniformly bounded, the solution cannot have a singularity at p.

Clearly, such a result would be an important step in understanding
formation and structure of singularities for the 3+1 Einstein equations.
The description of a local continuation criterion stated above in terms
of a curvature flux is natural from both geometric and physical point
of view. On the other hand, an even more ambitious goal is to find
geometrically meaningful dimensionless quantities whose boundedness
ensures a unique local extension of the corresponding spacetime.

Problem: Is there dimensionless local extension criteria for solutions
of the 3 + 1 Einstein vacuum equations ?

3.5. Strategy for BCC. The conjecture, first proposed in [Kl1], re-
quires one to significantly improve the classical local existence theorem

17The size of the extension may also depend on the radius of injectivity of the
original manifold.



2.3 mentioned above from s > 5/2 to s = 2. The conjecture was mo-
tivated by the progress18 made earlier on geometric semilinear wave
equations such as Wave Maps and Yang Mills.

To improve the exponent s > 5/2 one needs to abandon the naive use
of Sobolev inequalities, used in the classical existence and uniqueness
argument, and rely instead on the more sophisticated Strichartz and
bilinear type estimates. The difficulty lies in that one needs to extend
these estimates from the well known case of the standard wave equation
in flat space to wave operators on rough background metrics. Using
such generalized Strichartz estimates we were able to reduce the s >
5/2 condition to s > 2 (see [Kl-R1] and the references therein).

The case s = 2 is far more difficult. First of all such a result cannot
hold for general quasilinear wave equations of the type used in the proof
of the classical local existence result. As the experience with semilinear
wave equations demonstrates, see discussion in [Kl1], to prove such a
result we need the following ingredients:

A. Provide a system of coordinates relative to which (EV) verifies an
appropriate version of the null condition, similar to the one of [Kl-Ma2].

B. Construct a suitable parametrix for solutions to the homogeneous
wave equation �gφ = 0 on a fixed vacuum Einstein background and
provide control of the error term, relying only on the limited regularity
of the space-time metric.

C. Prove appropriate bilinear estimates for solutions to homogeneous
wave equations, of the type �gφ = 0, on a fixed Einstein Vacuum
background (endowed with the coordinate system indicated in step 1.
with bounded L2 curvature. In the flat case such estimates were first
proved in [Kl-M1] and used to prove global existence for the Yang Mills
equations in the energy norm, see [Kl-Ma2]

An approximate solution for the homogenous wave equation �gφ = 0
was constructed in [Kl-R6], in the form,

Tf(t, x) =

∫
S2

∫ ∞
0

eiλuω(t,x)fλωλ2dλdω (4)

18In that case, however, one expects (in the case of Wave Maps and higher dimen-
sional Yang -Mills it has actually been proved) well posedness for the corresponding
critical Sobolev exponents



where uω is a solution to the eikonal equation

gαβ∂αu∂βu = 0 (5)

such that uω = x · ω when |x| → ∞. To control the error term,

�gTf(t, x) =

∫
S2

∫ ∞
0

eiλuω(t,x)�uωf(λω)λ2dλdω

one needs to control the geometry of the level hypersurfaces of the
optical function uω. These are null hypersurfaces, characteristic hy-
persurfaces of the wave operator �g. We need, in particular, to derive
uniform bounds for �uω. This leads one to the fourth ingredient in a
proof of the bounded L2 conjecture.

D. Make sense of null hypersurfaces, on vacuum Einstein backgrounds
with only L2− bounds on their curvature tensor, and provide estimates
on their geometry.

The reason we suspect that the exponent s = 2 is optimal is due to the
geometry of null hypersurfaces19. In the sequence of papers [Kl-R2]–
[Kl-R5] we were able to establish, based on an extremely tight argu-
ment, lower bounds for the radius of injectivity of null hypersurfaces
depending, essentially, only on the boundedness of the flux of curva-
ture across them (this is, roughly, the integral along the hypersurface
of the square of the tangential components of the Riemann curvature
tensor). Our proof does not seem to allow any room for improvement,
and thus we think (though we don’t yet have an explicit counterexam-
ple) that it is highly improbable that one could control the geometry of
null hypersurfaces for regularity lower than s = 2. On the other hands
all known methods to deal with low regularity, such as Strichartz and
bilinear estimates, require regular null hypersurfaces as a starting point
for constructing approximate solutions or appropriate vectorfields. It
will be extremely interesting if a softness phenomenon (i.e. lack of pre-
dictability), similar to that mentioned above for the Euler equation20,
holds for s < 2.

The most difficult parts of the program to solve BCC are parts C and
D. Part D has, essentially, been resolved in the sequence of papers
[Kl-R2] [Kl-R3], [Kl-R4] and [Kl-R5]. In [Kl-R6] we were able to prove
bilinear estimates for the approximate solutions (4). The harder task,

19as known these play a fundamental role in the geometric optics approximation
of solutions to quasilinear hyperbolic equations

20A far simpler task would be to show that any notion of weak solution at the
level of one derivative of the metric must be soft



still open, is to provide estimates for the error term generated by our
parametrix, which depend only on the admissible L2− bounds for the
curvature of the metric g. Substantial progress in this direction has
been made in collaboration with I. Rodnianski and J. Szeftel

3.6. A Break-down criterion. Consider an asymptotically flat space-
time (M, g) foliated by the level hypersurfaces Σt of a time function
t. Let T be the future unit normal and n the lapse of the foliation.
Let Σ0 be a fixed leaf of the t foliation, corresponding to t = t0 ∈ I,
which we consider the initial slice, and assume that it M is included
in the MFGHD of Σ0. For any coordinate chart O, with coordinates
x = (x1, x2, x3), in Σ0 we denote by (x0 = t, x1, x2, x3) the transported
coordinates on I × O obtained by following the integral curves of T .
In these coordinates the spacetime metric g takes the form

−n2dt2 + gijdx
idxj, (6)

The breakdown criterion in [Kl-R7], though related to the L2-BC con-
jecture above, circumvents some of its main technical difficulties. It
asserts that any spacetime, which admits a regular maximal foliation
with lapse n and second fundamental form k can be continued as long
as n does not degenerate to zero and we control the uniform norms
of k and ∇ log n. No smallness conditions on the data are necessary.
This is a significant improvement of the result of L. Anderson [And]
which require uniform bounds on the curvature. The proof depends on
the results and methods of [Kl-R2]– [Kl-R5]21 which establish a lower
bound for the radius of injectivity of null hypersurfaces with finite cur-
vature flux as well as [Kl-R8] in which we construct a Kirchoff-Sobolev
type parametrix for solutions to covariant wave equations. Here is the
precise result.

Theorem 3.7. Let (M, g) be a globally hyperbolic development of an
asymptotically flat Σ0 foliated by maximal hypersurfaces Σt (with sec-
ond fundamental form k and lapse n), of a time function t, such that
Σ0 corresponds to the level surface t = t0. Then, under reasonable as-
sumptions of the initial data at Σ0, the first time T∗ of a breakdown is
characterized by the condition

lim sup
t→T−∗

(
‖k(t)‖L∞ + ‖n−1(t)‖L∞ + ‖∇ log n(t)‖L∞

)
=∞. (7)

21Which were initially developed for the L2 BC conjecture



More precisely the space-time together with the foliation Σt can be ex-
tended beyond any value t∗ for which,

‖n−1(t)‖L∞ < ∞ (8)

sup
t∈[t0,t∗)

‖k(t)‖L∞ + ‖∇ log n(t)‖L∞ < ∞, (9)

Recently condition (9) was relaxed by D. Parlongue [Par]. He was able
to replace it with the integral condition,∫ t∗

0

(
‖k(t)‖L∞ + ‖∇ log n(t)‖L∞

)2
dt <∞ (10)
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