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Abstract. The theory of nonlinear filtering concerns the optimal estimation
of a Markov signal in noisy observations. Such estimates necessarily depend on
the model that is chosen for the signal and observations processes. This thesis
studies the sensitivity of the filter to the choice of underlying model over long
periods of time, in the framework of continuous time filtering with white noise
type observations. A good understanding of filter sensitivity is important
for the practical application of nonlinear filters: a physical system is never
exactly described by an idealized Markov model, so that high sensitivity to
the underlying model would be fatal to the reliable application of nonlinear
filters on all but very short time scales. Sensitivity is also directly related to

the approximation error in approximate nonlinear filtering.
The first topic of this thesis is the asymptotic stability of the filter—i.e.,

the long-time sensitivity of the filter to the initial measure. This is a much-
studied problem in nonlinear filtering. Here I study filter stability using the
theory of conditional diffusions. This leads to some improvements on pathwise
stability bounds, and to new insight into existing stability results in a fully
probabilistic setting. As a matter of independent interest, I develop in detail
the theory of conditional diffusions for finite-state Markov signals and clarify
the duality between estimation and stochastic control in this context.

The second topic of this thesis is the sensitivity of the nonlinear filter to
the model parameters of the signal and observations processes. This section
concentrates on the finite state case, where the corresponding model parame-
ters are the jump rates of the signal, the observation function, and the initial
measure. The main result is that the expected difference between the filters
with the true and modified model parameters is bounded uniformly on the
infinite time interval, and converges to zero uniformly in time as the approx-
imate model converges to the true model, provided that the signal process
satisfies a mixing property. Such filters are consequently extremely robust to
variations in the model parameters. The proof of this result uses properties
of the stochastic flow generated by the filter on the simplex, as well as the
Malliavin calculus and the associated anticipative stochastic calculus.

The third and final topic of this thesis is the asymptotic stability of non-
commutative (quantum) filters. I begin by developing quantum filtering theory
using reference probability methods. The stability of the resulting filters is not
easily studied using the preceding methods, as smoothing violates the nonde-
molition requirement. Fortunately, progress can be made by randomizing the
initial state of the filter. Using this technique, I prove that the filtered estimate
of the measurement observable is stable regardless of the underlying model,
provided that the initial states are absolutely continuous in a suitable sense.
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Introduction

“Just what kind of a doctor are you?” he asked suspiciously.
“Well, you might say I’m a specialist,” said the doctor. “I spe-
cialize in noise—all kinds—from the loudest to the softest, and
from the slightly annoying to the terribly unpleasant.”

—Norton Juster, The Phantom Tollbooth

0.1. Nonlinear filtering: Stability, robustness, and applications

Noise is ubiquitous both in nature and in engineering. Many systems are prone
to some form of noise in their dynamics, be it due to the coupling of the system to a
complex and unpredictable environment, due to our fundamental lack of knowledge
about the system dynamics at the fast time scales, or due to the inherent quantum
mechanical uncertainty that is unavoidably present at the smallest energy scales.
Similarly, any observations we make of a system are likely to be corrupted by some
amount of noise. Depending on the particular application, the presence of noise
may be terribly unpleasant or only slightly annoying; but in either case one needs
methodology to separate the useful signal from the noise. As such these methods
play an important role across a broad spectrum of science and technology.

This thesis is about one such method—the method of optimal filtering, whose
goal is optimal estimation, in the L2 sense, of a Markov signal in noisy observations.
To fix some ideas, let us briefly discuss this method in a fairly general context.

0.1.1. Optimal filtering. As is usual in probability theory, we fix some un-
derlying probability space (Ω,F ,P). We presume that there is a Markov process
Xt that lives on this probability space and takes values in some state space S. In
this thesis we will consider the case of continuous time t ∈ R+, though other time
sets are common as well (discrete time N, two-sided discrete or continuous time
Z or R, or even higher-dimensional “times”, e.g., Zd, for image processing or the
estimation of random fields). The process Xt represents the signal of interest—e.g.,
the dynamics of a physical system that we wish to observe.

Also on this probability space lives the observation process Yt, which takes
values in some space Yt ∈ O. Yt need not be a Markov process itself, but the joint
process (Xt, Yt) is Markov. Yt is the process we are allowed to observe, and should
be correlated in some way with the signal process Xt. In this thesis, we will study
white noise type observations: i.e., we will take (with O = R or Rp)

Ẏt = h(Xt) + ξ(t),

1



2 INTRODUCTION

where h is called the observation function and ξ is white noise. In practice, as is
usual in stochastic analysis, we will work with the integrated version

Yt =

∫ t

0

h(Xs) ds+Bt,

where Bt is a Wiener process or Brownian motion. This circumvents questions of
mathematical well-posedness of white noise.

Now suppose we have been observing the observation process Yt from the initial
time t = 0 up to some time t = T . The information we have collected through these
observations is characterized by the σ-algebra FY

T = σ{Yt : 0 ≤ t ≤ T}. The goal
of optimal filtering theory is to find a best L2-estimate πT (f) of some function
of the signal process f(XT ) based on the observations: i.e., we wish to find an
FY

T -measurable random variable πT (f) that minimizes the L2-error ‖π − f(XT )‖2
over all FY

T -measurable random variables π. It is well known that this estimate is
uniquely determined by the conditional expectation

πT (f) = E(f(XT )|FY
T ),

up to a.s. equivalence. The goal of filtering theory then becomes to provide an
explicit expression for πT (f) in terms of the observation history {Yt : 0 ≤ t ≤ T}.

If we wish to estimate f(Xt) for some t < T , or if we are interested in esti-
mating some functional f(X[0,T ]) of the entire history of the signal, we could form

the estimates E(f(Xt)|FY
T ) and E(f(X[0,T ])|FY

T ), respectively. This is known as
smoothing (as opposed to filtering), and the latter case is also called path estimation.
Even when we are interested in properties of the optimal filter, the consideration
of these smoothers will play an important role in our proofs.

One of the main results of optimal filtering theory with white noise observations
can be stated as follows. Under suitable technical conditions, The filtered estimate
πt(f) satisfies the Kushner-Stratonovich equation (in Itô form)

πT (f) = ν(f) +

∫ T

0

πt(L f) dt+

∫ T

0

{πt(hf)− πt(h)πt(f)} (dYt − πt(h) dt),

where L is the infinitesimal generator of the Markov process Xt and ν is the law
of X0. Note that the expression for πT (f) does not close, i.e., it is not expressed
only in terms of πt(f) for t ≤ T ; rather, we have to know πt(L f) as well, etc. To
obtain a closed form expression, define formally

πt(f) =

∫

S

f(x) pt(x) dx, ν(f) =

∫

f dν =

∫

S

f(x) p0(x) dx,

i.e., pt(x) is the density of the conditional law of Xt and p0(x) is the density of ν.
Formally integrating by parts gives

pT (x) = p0(x) +

∫ T

0

L
∗pt(x) dt+

∫ T

0

{h(x)− πt(h)} pt(x) (dYt − πt(h) dt),

which is a stochastic integro-differential equation (L ∗ is the formal adjoint of L ).
Note that everything here is formal, as we have not imposed any technical condi-
tions, etc., but these manipulations can be given a precise meaning in many cases
of practical interest. Further details and references can be found in chapter 1.
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0.1.2. Approximations. The discussion above directly raises two points.

(1) To implement the filtering equation one would have to propagate the entire
conditional density pt(x), which is usually an infinite-dimensional object.
Hence filtering often suffers from the curse of dimensionality.

(2) The filter depends explicitly on the model chosen for the signal process
Xt (through ν and L ) and for the observations (through h).

There are two exceptions to the curse of dimensionality. First, it can be the case
that there is a finite-dimensional family of densities {pθ(x) : θ ∈ Θ ⊂ Rq} that is
invariant for the Kushner-Stratonovich equation, i.e., pt(x) = pθt(x). The optimal
filter can then be reduced to a finite-dimensional equation for θt. With the exception
of a few cases of marginal practical interest (such as the Beneš filter [Ben81]), this
is only the case if (Xt, Yt) is a Gauss-Markov process (i.e., (Xt, Yt) is the solution
of a linear stochastic differential equation). The family pθ then consists of the
Gaussian distributions, and the corresponding filter is the celebrated Kalman-Bucy
filter which is used extensively in many engineering applications. Much is known
about linear filtering (an excellent reference is [KSH00]), and the special structure
of this problem makes it amenable to simple and elegant methods of analysis that
usually do not generalize to the much more poorly understood nonlinear setting.
It is the latter case that we are chiefly concerned with in this thesis.

The second class of filters that escape the curse of dimensionality are those
where S is a finite set. In this case, the density pt(x) takes values in a finite-
dimensional simplex and the Kushner-Stratonovich equation reduces to a finite-
dimensional stochastic differential equation called the Wonham equation. Approx-
imately half of this thesis is devoted to the finite state case. There are two good
reasons for this: First, being the simplest type of nonlinear filtering problem, we can
obtain much valuable intuition about more general nonlinear situations by studying
the technically less demanding finite state case. Second, being one of the few non-
linear filters that admit direct implementation, the Wonham filter is of significant
practical value in engineering applications. In contrast, a “truly” nonlinear filter
with continuous state space S is infinite dimensional [CM84] and hence can not be
implemented without some form of (suboptimal) approximation.

Let us now turn to the second issue, i.e., to the dependence of the filter on
the model parameters ν, L , and h. Any mathematical model is necessarily an
idealization of a true physical system; but even if we are willing to accept the validity
of the model, as we will do, one rarely has access to the exact model parameters:
these have to be obtained through some system identification procedure. Hence
even if the curse of dimensionality can be overcome, one still deals in practice with
suboptimal filters where the model parameters match only approximately those of
the underlying system. The main theme of this thesis is the study of the sensitivity
of various filters with respect to variations in the model parameters ν, L , and h.
This is a matter of significant practical importance, as almost all applications of
nonlinear filtering necessarily operate with approximate model parameters. We also
note at this point that the approximation of the model parameters is not unrelated
to the type of approximation needed to circumvent the curse of dimensionality; this
is mostly a topic for further research, but see section 0.2 and chapter 3.

0.1.3. Filter stability. A much studied problem in nonlinear filtering theory
is the sensitivity of the filter to the initial measure ν. In particular, if the signal and
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observations are sufficiently nice, the filter will “forget” the initial measure ν after
some period of time: i.e., the sensitivity of the filter πµ

t (f) (where πµ
0 (f) = µ(f))

to changes in the initial measure µ decays to zero as t→∞. In this case, the filter
is said to be stable. Clearly this is a desirable state of affairs: we do not want a
small error made at t = 0 to haunt us forever.

Filter stability gains extra significance if we interpret the filter as a statistical
procedure. Nonlinear filtering can be thought of in the context of Bayesian infer-
ence, where µ plays the role of the prior distribution in our setup. Unlike in the
probabilistic context, however, where µ = ν is the correct initial measure and any
other choice of µ leads to suboptimal results (i.e., πµ

t (f) has a larger mean-square
error than πν

t (f)), the choice of prior is much more subjective in Bayesian infer-
ence. As a Bayesian estimator, the filter can only be used reliably if the information
gained from the observations over a long period of time completely supersedes the
prior, i.e., if the filter is stable. (In the remainder of this thesis we will always
consider filtering in the probabilistic context, not in a statistical sense.)

The main questions are now:

(1) Under what conditions is the optimal filter guaranteed to be stable?
(2) If the filter is stable, how fast is the initial measure forgotten?

In the Kalman-Bucy case, there are some simple and powerful results in this direc-
tion, see, e.g., [OP96]. Roughly speaking, if the linear system (Xt, Yt) is control-
lable and observable, then the filter is stable and the initial condition is forgotten
at an explicitly computable exponential rate.

In the nonlinear setting, matters are not as clear cut. An excellent survey of the
results to date can be found in [Chi06], to which we refer for a detailed discussion
and an exhaustive list of references. Let us briefly highlight, however, some of the
major results that are currently available (concentrating on the continuous time
case). Many of the results are variations on a statement of the following form, first
considered in [DZ91]. These results state that under certain conditions

lim sup
t→∞

1

t
log ‖πµ

t − πν
t ‖TV ≤ κ < 0,

where ‖ · ‖TV denotes the total variation norm of a signed measure. It follows
immediately that ‖πµ

t −πν
t ‖TV → 0 at an exponential rate as t→∞. The analysis is

significantly simplified when a particularly convenient metric, the Hilbert projective
metric, is used in the proofs. This fact is exploited in [AZ97b, AZ97a] and in
much of the subsequent literature. In the finite state case, stability is guaranteed
in the following main cases: (i) if the signal process obeys a mixing condition, i.e.,
if all its transition rates are strictly positive [AZ97b] (see [BCL04] for slightly
weaker conditions); (ii) in the low signal-to-noise limit [DZ91]; (iii) in the high
signal-to-noise limit, with a nondegeneracy condition on the observation function
[AZ97b]. In all these cases, estimates on the rate κ are available. The case that Xt

is a strictly elliptic diffusion on a compact manifold also implies stability [AZ97a],
but no useful estimate on κ is given. In a noncompact state space these methods
are much less useful, as the Hilbert metric is not well suited to this situation; some
progress can be made, however (see [Chi06] for discussion and references).

A much stronger form of filter stability is implied by the following statement:

‖πµ
t − πν

t ‖TV ≤ C(µ, ν) e−κt,
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for some rate κ > 0 and deterministic positive constant C(µ, ν). Such a bound
was first obtained in the finite state case in [BCL04], where the condition for
stability is the mixing condition mentioned above. The technique used to prove
this bound relies on the fact that the filter πµ

t (f) with initial measure µ can be
related to a smoothing problem under the initial measure ν, at least in the case
that the two initial measures are equivalent µ ∼ ν (see also [COC99]). One can
thus express ‖πµ

t − πν
t ‖TV in terms of conditional expectations with respect to

a single initial measure ν, and the exponential bound follows from analysis of the
corresponding smoothing problem. In the diffusion case (state space Rd), bounds of
this form are obtained in [Sta04, Sta05, Sta06]. The method used in these papers
is analytic in flavor, relying on transformations of PDEs and properties of certain
Feynman-Kac integrals. This is the only method to date that can accommodate
nonergodic signal processes Xt on a noncompact state space, and that provides
explicit stability bounds for diffusions. On the other hand, the method only works
for a very restrictive class of diffusions, observations and initial measures.

Finally, we mention some general results of a more qualitative type. In [OP96],
it is argued that (roughly) if the signal process Xt is ergodic, then

lim
t→∞

E(πµ
t (f)− πν

t (f))2 = 0,

for any bounded, continuous f . This is intuitively quite plausible, as ergodicity
implies that the unconditional law of Xt becomes insensitive to the initial measure
µ at long times; the statement is then, essentially, that this property is inherited
by the filter. Unfortunately, there is a serious gap in the proof of this result, see
[BCL04], so that the extent to which this statement holds remains unclear. A
much weaker result still is proved in [COC99]: these authors show that

∫ ∞

0

(πµ
t (h)− πν

t (h))2 dt <∞,

where h is the observation function, provided that ν � µ. Hence in a very weak
sense, at least the estimate of the observation function is always stable. The beauty
of this result is its generality: other than the absolute continuity condition on the
initial measures, the result holds for any Markov signal observed in white noise,
without any further assumption on the structure of the signal or observations.

It can be concluded from the discussion above that the stability problem in
nonlinear filtering theory is still far from being completely understood. Conditions
that guarantee filter stability are only known in a restricted set of cases, and it
is often difficult to obtain explicit estimates. As such, the development of new
approaches to studying these problems is still of significant interest.

0.1.4. Conditional diffusions and filter stability. In this thesis, I propose
to study filter stability using the method of conditional diffusions. The application
of this method to the filter stability problem appears to be new, though we will see
that it is closely related to the seemingly quite different methods of P. Chigansky
et al. [BCL04] and of W. Stannat [Sta04, Sta05, Sta06].

To introduce the notion of a conditional diffusion, let us consider the path
estimation problem for a signal process that is an Itô diffusion in Rd

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x,
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where Wt is a k-dimensional Wiener process, x is some nonrandom vector in Rd,
and b : Rd → Rd, σ : Rd → Rd×k. We consider the usual white noise type observa-
tions Yt. In the path estimation problem we are interested in calculating conditional
expectations of the form E(f(X[0,T ])|FY

T ), where f : C → R is a measurable func-

tional on the space C = C([0, T ]; Rd) of signal sample paths. Equivalently, we are
interested in conditional probabilities of the form P(X−1

[0,T ](A)|FY
T ), where A is an

event in the Borel σ-algebra C of C (under the uniform topology). As in the rest of
this introductory chapter, we forgo any form of technical precision here and below.

Now assume that we have chosen a regular version of the conditional probability
P( · |FY

T ) (a technicality that we do not worry about at this point). Then for any

event A ∈ C, the quantity P(X−1
[0,T ](A)|FY

T ) can be expressed as a measurable

functional ΠT (A, ·) of the sample paths of the observation, i.e.

P(X−1
[0,T ](A)|FY

T ) = ΠT (A, Y[0,T ]) a.s. ∀A ∈ C,
such that for every fixed observation sample path y ∈ C([0, T ]) the map ΠT (·, y)
is a probability measure on the space of signal sample paths (C, C). The path
estimation problem can now be stated more precisely: for any fixed y ∈ C([0, T ]),
we would like to find an explicit way to calculate ΠT (A, y) for any event A ∈ C.

An elegant solution to this problem follows from the remarkable fact that for
fixed y ∈ C([0, T ]), the measure ΠT (·, y) can be characterized as the measure in-

duced on C by a diffusion processXT,y
t which is a simple modification of the original

diffusion Xt. In fact, XT,y
t may be obtained as the solution of

dXT,y
t = b(XT,y

t ) dt+ σ(XT,y
t ) (dW̃t + uT,y(t,XT,y

t ) dt), XT,y
0 = x,

where W̃t is a Wiener process that is independent of Yt and uT,y(t, x) is a time-
dependent drift which depends on the observation sample path y ∈ C([0, T ]) (this
function can be obtained, e.g., by solving backwards in time a PDE that is driven by
y; we postpone the details for later). The key point is that for every y ∈ C([0, T ]),

the law of the conditional diffusion XT,y
t on [0, T ] is precisely the conditional law

ΠT (·, y) of the signal process Xt given the observation path y. Explicitly,

E(f(X[0,T ])|Y[0,T ] = y) =

∫

C

f(ξ) ΠT (dξ, y) = Ẽ(f(XT,y
[0,T ])),

for any measurable functional f : C → R and any y ∈ C([0, T ]), where Ẽ denotes

the expectation with respect to the Wiener process W̃t.
How are these ideas related to filter stability? Let us outline a potential ap-

proach. In the discussion above X0 = x was deterministic, so that the initial
measure is the Dirac measure ν = δx. In particular, we can now write

πT (g) = πδx

T (g) = E(g(XT )|FY
T ) = Ẽ(g(X

T,Y[0,T ]

T )).

As it turns out, however, uT,y(t, x) is a functional of the observation sample paths
only, i.e., it does not depend on the initial measure ν for fixed y. Hence if we

choose XT,y
0 = x′ instead of XT,y

0 = x, it is evident that XT,y
T must be distributed

according to the filter with misspecified initial measure δx′ :

π
δx′

T (g) = Ẽ(g(X
T,Y[0,T ]

T (x′))),

where XT,y
T (x′) denotes the solution of the equation for XT,y

t with initial condition

XT,y
0 = x′. We could now investigate a form of filter stability by studying the
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properties of the conditional diffusion XT,y
t . For example, let g be a Lipschitz

continuous function. If we could show that the stochastic flowXT,y
t (·) is contracting

at an exponential rate independent of y and T , i.e., that

‖XT,y
t (x)−XT,y

t (x′)‖ ≤ C ‖x− x′‖ e−κt,

then we would immediately obtain the stability result

|πδx

T (g)− πδx′

T (g)| ≤ C ‖g‖lip ‖x− x′‖ e−κT .

The significant simplification that is gained by using conditional diffusions is that all
the conditioning has been hidden in the drift uT,y(t, x), and we are left with proving

properties of an ordinary diffusion process under the ordinary Wiener measure Ẽ,
for which a large number of methods are already available. The problem does not
trivialize, of course, as the properties of the conditional diffusion depend on the
properties of the drift function uT,y(t, x). Nonetheless, this problem can be much
more tractable than the filter stability problem in its original form.

The study of conditional Markov processes was initiated by R. L. Stratonovich
[Str60, Str68], at least on a formal level, but the theory of conditional diffusions in
the spirit of the above discussion appears to have its origins in the paper [BM82]
of J.-M. Bismut and D. Michel. These authors show that the Radon-Nikodym
derivative of ΠT (·, y) with respect to the measure of the unconditional diffusion

X[0,T ] is of Girsanov type. It is evident that XT,y
t should then have the above form.

To find the drift term explicitly, they apply the Clark-Haussmann-Ocone formula
(see, e.g., [Nua95]) and the theory of stochastic flows.

Recently, the theory of conditional diffusions was developed from a rather differ-
ent perspective in a remarkable paper by S. K. Mitter and N. J. Newton [MN03].
These authors show that nonlinear estimation can be expressed in a variational
form, where the abstract Bayes formula (which is at the heart of filtering theory)
obtains a natural information-theoretic interpretation. In the case of path esti-
mation, this variational problem can be expressed as a stochastic control problem
for which the function uT,y(t, x) is precisely the optimal control strategy. Beside
the aesthetic appeal of such a formulation, we will find that the stochastic control
perspective gives us an additional technical tool that can be used in the analysis
of the filter stability problem. In different contexts, the use of stochastic control as
an analytic tool is not unusual [FM83, She91, DE97, Bor00, FS06].

In the sequel, we will apply the theory of conditional diffusions to study filter
stability for finite-state signals (chapter 2) and for diffusions (chapter 4). In the
former case, we first need to develop conditional diffusions for finite-state signals;
only the diffusion theory is currently available in the literature. Filter stability can
then be studied essentially as in the example above. In the diffusion case, it can be
more convenient to use a time-reversed version of the theory described above. In

particular, one can introduce a process X̃T,y
t on [0, T ], X̃T,y

0 = x, such that

E(f(X[0,T ]) |Y[0,T ] = y, XT = x) = Ẽ(f(X̃T,y
T−[0,T ])),

for any measurable functional f . As we will see, this form of the theory is closely
related to the methods of P. Chigansky et al. and of W. Stannat.

0.1.5. Filter robustness. Let us now turn to the issue of robustness, i.e., the
sensitivity of the filter simultaneously to the model parameters ν, L , and h.
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Continuity with respect to the model parameters of nonlinear filtering estimates
on a fixed finite time interval is well established, e.g., [BKK95, BKK99, BJP02,

GY06]; generally speaking, it is known that the error incurred in a finite time
interval due to the choice of incorrect model parameters can be made arbitrarily
small if the model parameters are chosen sufficiently close to those of the true model.
As the corresponding error bounds grow rapidly with the length of the time interval,
however, such estimates are of little use if we are interested in robustness of the
filter over a long period of time. One would like to show that the approximation
errors do not accumulate, so that the error remains bounded uniformly over an
infinite time interval. This requires a more subtle analysis.

The model robustness of nonlinear filters on the infinite time horizon has been
investigated in discrete time in [BK98, LO03, LO04, OR05]. The main idea
of the approach is simple and intuitive: if the filter is exponentially stable, i.e., if
the initial measure is forgotten at a geometric rate, then the filter is also robust to
the remaining model parameters. Let us give a rough indication as to why this is
the case. Consider a discrete filter of the form pn+1 = Π(yn, pn), where pn is the
conditional density at time step n, yn is the observation obtained in time step n,
and Π(y, p) is the one time step map of the filter. Similarly, p̄n+1 = Π̄(yn, p̄n) is the
filter with misspecified model parameters. Furthermore, let d(p1, p2) be a distance
metric under which the filter is contracting: d(Π(y, p1),Π(y, p2)) ≤ κ d(p1, p2) for
some κ < 1, i.e., the filter is exponentially stable. Using the triangle inequality,

d(pn+1, p̄n+1) ≤ d(pn+1,Π(yn, p̄n)) + d(Π(yn, p̄n), p̄n+1)

≤ κ d(pn, p̄n) + d(Π(yn, p̄n), Π̄(yn, p̄n)).

The second term on the right-hand side measures the local error due to the mis-
specification of the model parameters, i.e., the distance after one time step between
the correct and misspecified filters that are started at the same point. Let us call
this local error δ(yn, p̄n). By iterating the bound above, we obtain

d(pn+1, p̄n+1) ≤
n
∑

`=0

κn−`δ(y`, p̄`).

Now suppose that we can show that the local error is bounded in some sense, e.g.,
suppose that supk≥0 E δ(yk, p̄k) ≤ C for some constant C <∞. Then

sup
n≥0

E d(pn, p̄n) ≤ C
∞
∑

`=0

κ` =
C

1− κ.

In particular, if C → 0 as we let the misspecified model parameters get closer
and closer to the true model parameters, then the error between the true and
approximate filter vanishes uniformly over the infinite time interval. In this case, we
will call the filter robust to misspecification of the model parameters. The existing
results proceed roughly along these lines, and are thus restricted to discrete time
filtering; with some additional work, the same technique can be made to work in
the case of point process observations in continuous time [BK98] (this is essentially
like the discrete time case, but the times are now random).

In chapter 3, we will demonstrate how to extend these ideas to the context of
continuous time filtering with white noise observations. We restrict ourselves to the
case of a finite-state signal process that obeys the mixing condition, where strong
exponential stability results can be obtained. The analysis in the continuous time
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case is significantly more subtle than the discrete time case outlined above. The
analysis begins by considering the stochastic flow that is generated by the filter
on the simplex. Rather than requiring the filter to forget its initial measure at an
exponential rate, we now need to require that the derivative of the filter flow with
respect to the initial measure admits an exponential bound. In the case of a mixing
signal process, we show that this is indeed the case. An additional complication in
proving robustness is that the corresponding error bounds can only be expressed
in terms of anticipative stochastic integrals. Hence the usual Itô calculus breaks
down, and we resort to using tools from the Malliavin calculus [Nua95] and the
associated anticipative calculus for Skorokhod integrals [NP88, Nua95].

We finish this section by mentioning a related result. In [BK99], the object of
interest is the estimation error of the filter over a long time interval; in particular,
these authors consider the pathwise time average of the squared difference between
the filtered estimate of the signal and the actual signal. It is shown that if the filter is
approximated in some way—e.g., by misspecifying the model parameters, though
much more general approximations are covered—then under suitable conditions,
the pathwise time average estimation error of the approximate filter converges to
that of the exact filter as the approximate filter converges to the exact filter. This
result is somewhat different in spirit than our previous discussion, however. In
particular, it does not show that the approximate filter is close to the exact filter
at any particular time; rather, it is shown that as an estimator, the time average
performance of the approximate filter is close to that of the exact filter.

0.1.6. Quantum filtering and filter stability. In the models which we con-
sidered above, the signal process was modelled as a classical Markov process. A
typical example is a stochastic differential equation, which could model a physi-
cal system that is somehow driven by an auxiliary, independent white noise input.
In applications, such noisy driving is often introduced to model the effects of un-
avoidable wide bandwidth disturbances, caused by the coupling of the system to an
unknown environment or by other factors that introduce uncertainty in the model.
Some applications of nonlinear filtering are listed at the end of this section.

The increasing miniaturization of technology, however, suggests a different set
of models of interest: those consisting of small numbers of atoms or photons. Such
models do not only suffer from unknown auxiliary disturbances, but also from the
inherent quantum mechanical uncertainty that is present at these scales. There is
yet a long way to go before such systems can be said to be useful as a practical
technology. Even at the time of writing, however, concrete technological applica-
tions to precision sensing and detection are emerging and are being explored in a
laboratory setting [AAS+02, GSDM03, GSM05]. It is perhaps not surprising
that filtering plays an important role in these applications.

In quantum mechanics, physical quantities are described by random variables
(called observables) that may not commute with each other. In every realization,
one must choose a commuting set of observables (as determined by the method of
observation) and at this level, the model reduces to a classical probability model.
This idea is the starting point for the theory of noncommutative or quantum prob-
ability. Within this framework, one can develop Markov models; these are quite
ubiquitous in the physics literature, as is easily seen from the large number of phys-
ical systems that are routinely modeled by Lindblad-type master equations (the di-
rect noncommutative analog of the Kolmogorov forward equation). These Markov
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models can be obtained as solutions to quantum stochastic differential equations,
which model, e.g., an atomic system in interaction with the electromagnetic field.
The field serves a dual purpose: it acts as a source of noise (the inherent quantum
vacuum fluctuations), but it also carries off energy and hence information from the
atoms. If we place a photodetector in the field, we can subsequently estimate (in
least-mean-square) the atomic observables based on the observations history; this
is the domain of quantum filtering theory.

Quantum filtering has its origins in [Bel80, Bel88, Bel92], and has found
its way into the physics literature from a different perspective [Dav76, Car93].
The development of the theory strongly resembles that of classical filtering theory:
in particular, the derivation of the filtering equations using martingale methods
[Bel92, BGM04, BVJ06b] is almost identical to the classical martingale method
[Kal80, LS01, Kri05]. In the first half of chapter 5 we will develop the theory using
a reference probability method, as outlined in [BV06]. This approach parallels the
approach we take to classical filtering theory in chapter 1.

There are some significant differences with the classical theory that make quan-
tum filtering theory interesting in its own right. First, unlike filtering, there is no
natural noncommutative counterpart to smoothing (let alone path estimation); the
reason for this will become evident when we develop the theory. Second, nothing is
known about filter stability for quantum nonlinear filtering. Essentially all of the
classical methods for proving filter stability fail in the quantum setting: methods
based on some form of smoothing suffer from the lack of a quantum smoother,
whereas the lack of a satisfactory noncommutative analog of the Hilbert projective
metric limits the applicability of much of the remaining literature.

In the second half of chapter 5, we obtain a first filter stability result for quan-
tum filters. This result is in the same spirit as the classical result of J.M. C. Clark,
D. L. Ocone and C. Coumarbatch cited previously [COC99]: we will show that the
filtered estimate of a particular system observable, called the measurement observ-
able, is always stable regardless of the details of the underlying model. The only
requirement is a certain absolute continuity condition on the correct and misspeci-
fied initial states of the filter. The key insight that allows us to obtain this result is
the realization that some of the “smoothing” theory can be recovered by suitably
randomizing the initial state of the system. The stability result then follows by
using change of measure techniques and some elementary analysis.

0.1.7. Applications of nonlinear filtering. To complete this introductory
section, we list below a set of selected applications of nonlinear filtering. The list
includes applications of nonlinear filters with discrete and continuous time, state
and observation spaces, and is far from exhaustive: it serves mainly to indicate
the breadth of potential applications. Though this thesis is concerned with the
case of continuous time and white noise type observations, it is not unusual for
lessons learned in one form of nonlinear filtering to be illuminating also in other
contexts. We have excluded the Kalman-Bucy filter and its relatives (including the
extended Kalman filter), however, for which a seemingly inexhaustible number of
applications can be found throughout the engineering and scientific literature.

Navigation and target tracking: Guidance is one of the classic applica-
tions of filtering theory [BJ87]. Nonlinear filtering can be used to navigate
a vehicle through an unknown terrain using noisy sensor data or to track
a moving object using noisy data; see, e.g., [GGB+02]. One particular
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recent application is the use of filtering in GPS navigation in the case
when access to the satellites varies with time [CDMS97, ASK05].

Changepoint detection: When a device or an industrial process breaks
down, one would like to detect this as quickly as possible so that the fault
can be repaired. When only noisy data are available, however, this can be
a challenging task. Nonlinear filtering provides a good method to detect
a fault with noisy observations [Shi73, HC99, VC03, ASK04].

Stochastic control: If we wish to use feedback to control a stochastic sys-
tem, but only noisy observations are available, the controller design is
usually split into a filtering step and a control step. In optimal control
theory, this in fact turns out to be the optimal controller design: the fil-
ter is an information state for such a control problem [Ben92, EAM95].
Filtering is also the basis for certain adaptive control strategies which may
be easier to implement than the optimal control [CZ95].

Finance: In models where the volatility is taken to be a random process,
filtering can be used to estimate the volatility from stock market data
[FR01, CLR06]. Filtering is also used for portfolio optimization in a
market with randomly varying instantaneous returns [SH04].

Audio and image enhancement: Nonlinear filters can be used for noise
removal and signal enhancement of audio signals and images; see, e.g.,
[FGDW02, Eph92, Bes86, EAM95].

Biology: Nonlinear filtering is applied in patch-clamp experiments to es-
timate neuronal spike trains from noisy patch-clamp data [CMX+90,

CKM91, FR92]. Other applications areas in biology include electrocar-
diography (ECG) [CCB90] and DNA sequencing [LB98].

Quantum optics: Quantum filtering theory has found a large number of
applications in quantum optics, both as an optimal estimator [AAS+02,

GSDM03, GSM05] and for the modelling and simulation of optical pho-
tocurrents [Car93, GZ04]. As in the classical theory, quantum filtering
plays a central role in quantum feedback control [BV06, BVJ06a] as it
provides a suitable information state for quantum control problems.

Various: Other applications include speech recognition [Rab89, EM02],
communication theory [EM02, BP03], and data assimilation for weather
prediction and ocean current modelling [AA99, AHSV06].

0.2. A suggestive numerical experiment

The theme of this thesis was originally inspired by an attempt to find accurate
approximate filters for an interesting quantum optical system [VM05]. Numeri-
cal experiments showed a much better performance of the approximate filter than
was originally expected; particularly surprising was the observation that the perfor-
mance does not degrade at all with time, in contrast to commonly used approxima-
tion methods where nonlinear filters are approximated by Kalman filters through
local linearization. The existence of uniform approximations is crucial for real-time
applications, as it allows the curse of dimensionality to be circumvented using an
approximate filter of fixed complexity (requiring limited computational resources)
regardless of the length of the time interval over which the filter is used.

In this section we will briefly describe some of the numerical results obtained in
this system. This serves both as an illustration of an application of filtering in the
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Figure 0.1. Schematic of an optical phase bistability experiment. A
single two-level atom is placed in a high-Q optical cavity and is strongly
driven using an external laser. The radiation emitted from the cavity in
the forward direction is detected using a homodyne detection setup.

context of quantum optics, and as a motivation for the development of new methods
to study filter stability and robustness. The results obtained in the sequel do not
apply directly to this model; nonetheless, it is the stability property of this filter that
allows one to obtain approximations with uniform in time performance. Further
development of the technical machinery for studying filter stability and robustness
could allow an important application, the design of approximations with guaranteed
uniform error bounds for (a class of) infinite-dimensional nonlinear filters, to be
realized. We are not close to achieving this goal, but the analysis of chapter 3
provides a modest step in this direction (in a finite-dimensional context).

The model is illustrated in figure 0.1. A strongly coupled two-level atom in a
resonant, single-mode optical cavity is strongly driven by a resonant driving laser.
One of the cavity mirrors is leaky, and the radiation emitted from that mirror is
detected using a homodyne detection setup. Spontaneous emission is also taken
into account. In this operating regime, the atom-cavity system exhibits bistable
behavior: when the atom spontaneously emits a photon of a certain frequency
(this photon goes off in a random direction and is not detected), the phase of the
intracavity field switches. Our goal is to detect these switches using the noisy
photocurrent signal obtained from the homodyne detector.

The use of optical bistability in technological applications was suggested a
long time ago [AS82]. In particular, such systems could be used to build optical
transistors, optical memory elements or similar devices for applications in high-
speed optical signal processing. The actual engineering of devices of this type has
only recently become feasible [YFSJ03] through advances in fabrication of optical
technology. A different application of bistability has been suggested for low-noise
detection [SVP+04]. Even experiments involving a single atom are well within the
reach of current technology [MYK99], and an experiment implementing the setup
of figure 0.1 is now under way [Mab06]. Progress in this direction, using either
real or artificial atoms (quantum dots), may enable the development of ultrafast
(picosecond) and extremely low energy (attojoule) optical switches, a regime that
is effectively out of reach for more conventional technology [AM06].

The physical modelling of the setup of figure 0.1 was done in detail in [VM06],
and we will not repeat it here. In fact, as we have not yet introduced quantum
filtering theory, we will side-step quantum filtering in the context of this example.
This is impossible for most quantum models, but in this particular case it turns out
that the filter can be expressed, by a suitable change of variables, as a stochastic
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PDE that coincides with a classical nonlinear filter.1 The state space for this filter
is S = R× {−1,+1} 3 (x, j), and the corresponding PDE is given by

dPt(x, j) = L
∗Pt(x, j) dt +

√

2κη (x− 〈x〉t)Pt(x, j) (dYt −
√

2κη 〈x〉t dt),
where the adjoint generator L ∗ is defined as

L
∗P (x, j) =

∂

∂x
[(jg + κx)P (x, j)] +

γ

2
(P (x,−j)− P (x, j)),

and we have written

〈x〉t =
∑

j=±1

∫ ∞

−∞

xPt(x, j) dx.

Here κ > 0 is the cavity decay rate, g > 0 is the coupling strength between the
atom and the cavity mode, γ > 0 is the spontaneous emission rate, η ∈ [0, 1] is
the detection efficiency of the homodyne detector, and Yt is the (semimartingale)
photocurrent obtained from the homodyne detector.

Now note that L ∗ is the adjoint generator of the following Markov process:






J(t) is a Markov jump process that switches between ± 1 at rate γ/2,

d

dt
X(t) = −κX(t)− g J(t).

These equations have a natural physical interpretation. J(t) represents the state
of the atom at time t—recall that we are dealing with a two-level atom—which
switches repeatedly due to the combined effect of the strong drive and the spon-
taneous emission (the drive has been eliminated in the description, so that J(t)
represents a “dressed state” of the atom). X(t) represents a quadrature of the
intracavity field; it is damped at the cavity decay rate κ, and is coupled to the
atomic state with strength g. Every time the atomic state switches, X(t) decays to
a fixed point with opposite sign (phase bistability). It now appears that Pt(x, j) is
the density of the conditional expectation πt(f) = E(f(X(t), J(t))|FY

t ) if we define

dYt =
√

2κηX(t) dt+ dBt,

as then the equation for Pt(x, j) above is precisely the corresponding Kushner-
Stratonovich equation. In particular, 〈x〉t = πt(x) is then the conditional expec-
tation of the phase quadrature of the intracavity field. This is in fact the correct
interpretation [VM05], but one should keep in mind that the classical system above
was reverse engineered from a fully quantum mechanical model.

The problem that we are facing is that the filter for our system suffers from
the curse of dimensionality. After all, Pt(x, j) is an infinite-dimensional object,
and the filtering equation does not leave invariant some finite-dimensional family
of densities. If we wish to build a device that relies on real-time processing of
the photocurrent coming from the cavity, the filter in the above form would be
practically useless. Hence we need to find a suitable approximation. To this end,
[VM05] uses the approximation method introduced by D. Brigo, B. Hanzon and
F. Le Gland [BHL99], adapted to the current context. The idea is very simple: if
the filter does not leave invariant some family {P θ(x) : θ ∈ Θ}, we can always fix

1 This is done by using a special (P -function) representation of the conditional density op-
erator [MW98, VM05]. This representation will not be used in the sequel. There are also other
special cases where quantum filters can be expressed as classical filtering equations, most notably
the linear case [Bel80, DJ99] and certain types of switching filters [VM06, Van07].
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such a family and then constrain the filter always to remain in this family. We will
choose the following finite-dimensional family of densities:

P θ(x, j) = νj δ(x − µj), θ ∈ Θ = {(µ±, ν±) : µ± ∈ R, ν± > 0, ν+ + ν− = 1}.
We now proceed as follows. First, as our densities are singular, we need to smooth
the problem out a little. To this end, we transfer our attention to the function

Qt(x, j) =
1√
4π

∫

Pt(x
′, j) e−(x−x′)2/4 dx′.

This is another normalized probability density, but is smoother than Pt(x, j).
2 This

new density once again satisfies a PDE, which is easily found. We would like to
constrain this PDE to leave the following (smooth) manifold invariant:

S =

{

Qθ(x, j) =
νj

√
4π

e−(x−µj)2/4 : θ ∈ Θ

}

.

To this end, let us write the PDE for Qt(x, j) suggestively as

dQt = A[Qt] dt+B[Qt] ◦ dYt,

where ◦ denotes the Stratonovich differential. We use the Stratonovich form here as
it allows us to interpret the equation geometrically (see, e.g., [Bis81]). If Qt leaves
S invariant, then the “vector fields” A[Q] and B[Q] should lie in the tangent space
TQS for every point Q ∈ S. As this is not the case, we will constrain the equation
to leave S invariant by projecting A and B onto TQS. To project, however, we need
a suitable inner product, and TQS ⊂ L1(R × {−1,+1}) does not have a natural
inner product. Hence we perform a final transformation:

d
√

Qt =
A[Qt]

2
√
Qt

dt+
B[Qt]

2
√
Qt
◦ dYt.

The tangent space to S1/2 = {
√

Qθ : θ ∈ Θ} at θ ∈ Θ is given by

TθS
1/2 = span

{

∂
√

Qθ

∂µ+
,
∂
√

Qθ

∂µ−
,
∂
√

Qθ

∂ν+

}

⊂ L2(R× {−1,+1}).

(Recall that ν+ + ν− = 1, so we do not need to include ν−). The usual L2 inner
product gives the (Fisher) metric g(θ) with matrix elements

〈

∂
√

Qθ

∂θk
,
∂
√

Qθ

∂θl

〉

L2

= gkl(θ), (θ1, θ2, θ3) = (µ+, µ−, ν+).

Using the corresponding orthogonal projection

ΠθX =

3
∑

k,l=1

(g−1(θ))kl

〈

∂
√

Qθ

∂θl
, X

〉

L2

∂
√

Qθ

∂θk
, X ∈ L2(R× {−1,+1}),

we define the approximate filter

d
√

Qθt = Πθt

A[Qθt ]

2
√

Qθt

dt+ Πθt

B[Qθt ]

2
√

Qθt

◦ dYt.

2 This transformation is rather odd from the classical perspective, but it is quite natural in the
quantum context. In fact, it is yet another representation, called the Q-function representation,
of the conditional density operator, and is equivalent to the P -function representation. See, e.g.,
[MW95, WM94] for details on the definitions and properties of these representations.
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Figure 0.2. Simulation of the filters for the phase bistability model.
The dashed lines denote IJ(t)=+1 (top plot) and X(t) (bottom plot). The
solid lines are the filtered estimates, and the dotted lines are obtained
from the approximate filter. Here η = 1, g = 120, κ = 40, and γ = 20.

This expression leaves S1/2 invariant by construction. Explicitly working out the
various steps, we arrive at the approximate filter (in Itô form)

dν+
t = −γ(ν+

t − 1
2 ) dt+

√

2κη ν+
t (1− ν+

t ) (µ+
t − µ−

t )

× {dYt −
√

2κη (µ+
t ν

+
t + µ−

t (1− ν+
t )) dt},

d

dt
µj

t = −κµj
t − g j +

γ

2

(

1− ν+
t

ν+
t

)j

(µ−j
t − µj

t ).

We refer to [BHL99] for for further details on the projection filter approximation
method, and to [VM05] for details on the calculations above.

Despite that we have followed a relatively clean procedure to approximate our
full infinite-dimensional filter, there is no particular reason to expect at this point
that the approximation will be a good one. We have chosen a rather arbitrary
finite-dimensional family to constrain to, based only on intuition, computational
convenience, and some inspiration from numerical experiments on the exact filter.
Moreover, there is not a unique way to constrain an equation to remain in some
low-dimensional space. Most of all, perhaps, there is no particular reason to expect
that constraining the exact filter (essentially a geometric procedure) should give a
reasonable approximation for the conditional expectations (a probabilistic notion).

In contrast to these concerns, numerical simulations demonstrate remarkable
performance for our approximate filter. A glance at a typical simulation using even
a not-too-flattering set of parameters, see figure 0.2, should convince the reader that
we must be doing something right. Numerical experiments in a higher signal-to-
noise regime, see figure 0.3, show essentially indistinguishable performance between
the plotted estimates obtained from the optimal and approximate filters. Not only
is the approximation error small, but it is also remakably stable over time. Small
excursions between the approximate and exact filters are visible in figure 0.2, but
these errors tend to correct themselves rapidly rather than accumulating over time.
Evidently the exact filter is extremely robust to approximation. The analysis of
chapter 3, albeit in a finite-dimensional context, shows how this suppression of the
approximation error can be related to the exponential stability of the optimal filter.

The example which we have discussed in this section is not the only example
in which behavior of this kind was observed. In [VC03] the projection filter ap-
proach was used to obtain a finite-dimensional filter for the purpose of changepoint
detection, an application of significant practical importance. Also here, almost
indistinguishable performance was observed between the optimal and approximate
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Figure 0.3. Simulation with η = 1, g = 600, κ = 200, and γ = 20.

filters. A better understanding of this phenomenon could both help to design better
filter approximations, as well as to obtain error bounds for existing approximations
such as the filter of this section or the changepoint detection filter of [VC03]. The
example of this section and that of [VC03] are similar in other ways as well. In
both cases, the underlying system is of jump-linear type (see also [HC99]), and the
approximate filters can be interpreted as adaptive versions of the Wonham filter.
Considering its relative simplicity and practical importance, this class of systems
in particular merits further investigation.

0.3. Outline of this thesis, main results, and outlook

This thesis consists of five chapters and two appendices.
Chapter 1 contains an introduction to nonlinear filtering theory using the ref-

erence probability method. The goal of this chapter is to provide most of the
necessary background material for the remaining chapters. As such I have provided
a fairly detailed development, together with a large number of references to the
literature where further details can be found.

Chapter 2 develops in detail the theory of conditional signals in the case of a
finite state space. This material is new, and complements the existing diffusion
theory. The theory is developed from two different perspectives: a direct approach
is based on a Girsanov-type theorem for finite-state Markov processes, while a
second approach uses stochastic control methods. The duality between estimation
and stochastic control is fundamental in this context, and is developed in detail.
The last part of the chapter applies the conditional signal theory to obtain a new
nonasymptotic bound on the stability of the Wonham filter. This bound has the
same decay rate as previous bounds, but, unlike previous bounds, the prefactor is
constant and does not diverge for initial measures on the boundary of the simplex.

Chapter 3 is devoted to studying the robustness of the Wonham filter, on
the infinite time interval, to changes in the underlying model parameters: the
initial measure, the transition intensities of the signal process, and the observation
function. Beside the filter stability theory developed in chapter 2, this chapter uses
technical tools from the Malliavin calculus and the associated stochastic calculus
of Skorokhod integrals. Additional background on this topic is given in appendix
A. This chapter is based on the paper [CV06] (joint work with P. Chigansky).

Chapter 4 is devoted to the study of filter stability in a class of diffusion models
(of gradient form), using conditional signal and stochastic control methods. Some
of the results resemble (and are inspired by) those obtained by W. Stannat in
[Sta04, Sta05, Sta06], but the methods used here are new and provide significant
insight into the structure of the problem in a completely probabilistic setting. I
also show that much stronger results can be obtained, using similar techniques,
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if we are willing to impose more stringent requirements on the signal process. Of
independent interest is a new probabilistic proof of a Brascamp-Lieb type inequality
using stochastic differential equations and the Malliavin calculus.

Finally, chapter 5 is devoted to quantum filtering theory. The first part of
the chapter develops the theory of quantum filtering using reference probability
methods, which parallel those used in chapter 1. This method is due to joint work
with L. Bouten [BV06], but many of the technical details appear here for the
first time. The necessary background on quantum probability theory is provided
in appendix B. The second part of the chapter develops a simple filter stability
result for quantum filters, which is the first such result available in the literature.
Key to the proof of this result is the development of a suitable notion of absolute
continuity for quantum states, which allows changes of measure to be implemented
in the quantum case through randomization of the initial state.

The methods and results developed in this thesis suggest several interesting
directions for further research. Some of these are listed below.

• An important topic for further research is the improvement of the bounds
obtained in chapter 3. For the reasons explained there, the estimates
used in this thesis do not give quantitative bounds on the approximation
error of the filter. Improved estimates could open the door to the devel-
opment of near-optimal filter approximations, the feasibility of which is
demonstrated numerically in section 0.2, with guaranteed error bounds.

• A particularly interesting class of models for further investigation are
jump-linear systems, which consist of linear observations and a linear sig-
nal whose coefficients are switched according to a finite-state Markov pro-
cess. Such models are widely used in applications, and appear to admit
excellent filter approximations, but neither filter stability nor robustness
have been studied for this class of models. Beside the practical importance
of such results, these models are attractive as a testbed for the study of fil-
ter stability and robustness, as they are intermediate between the simpler
linear and finite state space cases and the difficult general nonlinear case.
Initial progress in this direction can be made by combining and extending
the results of chapters 2 and 4 in this thesis.

• Though we have described several ways in which the conditional signal the-
ory can be used to study filter stability, the deeper connections between
filter stability and the stochastic control method merit further investiga-
tion. The fact that filter stability is intimately related with controllability
and observability in the linear case [OP96], makes it tempting to look
for such connections in the nonlinear case. Another interesting question
is whether the stochastic control method can be extended to the infinite
time horizon through, e.g., an ergodic cost criterion, so that the asymp-
totic behavior of the conditional signal can be studied.3 Finally, the well-
known connection between stochastic control and large deviations [DE97]
could be interesting in the filtering context (see also [JB88]).

3 A connection between “filter stability” and asymptotic properties of the conditional signal
can be found, in a rather different context, in the old paper [Bež71]. The problem studied there
is quite different from what we are interested in, and this paper predates much of the modern
filtering theory; but some of the objects that appear in the paper look surprisingly familiar.
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• The conditional signal theory developed in chapter 2 appears to be quite
universal. The generalization of these techniques to a class of general
Markov signals could be of fundamental interest.

• Though we present a first result on quantum filter stability in this thesis,
this topic is still essentially uncharted territory. We will demonstrate in
chapter 5 how some of the problems can be overcome through random-
ization; it could be fruitful to build on this method, or to apply other
methods such as Lyapunov exponent techniques.

0.4. Other work

This thesis grew out of the desire to present as a coherent story a set of ideas
which have collected on my desk, in the form of illegible notes on backs of envelopes
and other varieties of scratch paper, over the course of about a year. Many of the
details were worked out in the months leading up to the defense of this thesis.
On the other hand, I have omitted the majority of the work which I have done
throughout my graduate career, mostly on the topic of quantum filtering and feed-
back control, as this work can now be found in various publications and preprints.
An exception to this omission policy is the paper [CV06], of which chapter 3 is
an edited version. Below I provide some brief comments on and references to the
remaining work which is not presented in this thesis.

Early work concentrated on the design of feedback controls for deterministic
state preparation in atomic systems using stochastic stability methods, a topic
motivated by ongoing laboratory experiments. The basic ideas were presented in
[VSM05a], inspired by earlier numerical work [SVM04]. A full development of
the theory appears in [MV06], while a unified overview of the physical modelling
aspects of the theory appear in [VSM05b].

A new type of stochastic stability theory, the notion of almost global stability
for stochastic differential equations and the corresponding Lyapunov-type methods,
was developed in the paper [Van06].

Later work has concentrated on the foundations of quantum filtering and feed-
back control. Both the reference probability method, and the fundamental notion
of controlled quantum flows, were developed in [BV06]. An overview of quantum
filtering theory appears in [BVJ06b], while [BVJ06a] gives a unified treatment of
quantum filtering and feedback control in the context of a discrete model, similar
to the Cox-Ross-Rubinstein models developed in mathematical finance.

The topic of quantum filter approximation using the projection filter method
was studied in [VM05] in the context of an optical bistability model. These re-
sults were discussed briefly in section 0.2. Further investigations include the use of
quantum filtering for the estimation of external disturbances to a quantum mem-
ory [VM06], and the development of singular perturbation results for quantum
stochastic differential equations [GV06].

The following articles based on graduate work are currently in preparation. The
quantum filtering and control framework was developed in [BV06] with emphasis
on the conceptual framework; technical details in the uncontrolled case can be found
in chapter 5. A full technical account of the controlled case will appear in [BV07].
Finally, the fundamental role of quantum stopping times in quantum filtering and
control, and in particular the application to optimal stopping and impulse control
problems in the quantum context, is developed in [Van07].



CHAPTER 1

Fundamentals of Nonlinear Filtering

This chapter is intended as an introduction to nonlinear filtering theory. It is
impossible to do justice here to the full breadth and depth of the theory; such an
exposition would (and indeed does) fill several textbooks. Our brief introduction
serves to set the stage for the following chapters, and to make this thesis somewhat
self-contained. We will not attempt to provide an introduction to the stochastic
calculus of semimartingales, which is fundamental and will be used throughout.
Detailed expositions can be found in, e.g., the excellent textbooks by P. Protter
[Pro04], L.C. G. Rogers and D. Williams [RW00], R. J. Elliott [Ell82], or the
classic tome by C. Dellacherie and P.-A. Meyer [DM82].

The study of nonlinear filtering has its origins in the work of R. L. Stratonovich
[Str60, Str68]. Early work on nonlinear filtering in continuous time was largely
heuristic. The Stratonovich theory suffered particularly from the lack of a sto-
chastic integral (Stratonovich appears to have been unaware of Itô’s theory, and
later introduced a new stochastic integral [Str66] to justify his earlier work). H. J.
Kushner [Kus64] developed the theory from the Itô perspective, and obtained
a corrected version of the filtering equation (still using largely heuristic methods).
Other important early contributions to nonlinear filtering include the work of W. M.
Wonham [Won65], A. N. Shiryaev [Shi63], and R. Bucy [Buc65].

The modern theory of nonlinear filtering was developed in the late 1960s and
early 1970s. There are two main approaches to the theory. The martingale method is
based on the innovations process (see below) and on the systematic use of martingale
representation theorems. The central role of the innovations process in filtering
problems was developed by T. Kailath and P. Frost [FK71], but the definitive
treatment of this approach (resolving a delicate representation issue) was given by
M. Fujisaki, G. Kallianpur and H. Kunita [FKK72]. The martingale method is
the focus of several textbooks on nonlinear filtering [LS01, Kal80, Kri05].

In this thesis we will use a different approach to nonlinear filtering theory—the
reference probability method. This method relies fundamentally on the transfor-
mation of the filtering problem under absolutely continuous changes of the under-
lying probability measure, a technique that will be of central importance in the
sequel. The reference probability approach was developed in fundamental work
by G. Kallianpur and C. Striebel [KS68, KS69], H. J. Kushner [Kus67], T. E.
Duncan [Dun68], R. E. Mortensen [Mor66], and M. Zakai [Zak69]. Textbook
accounts can be found in [Par91, Ben92, EAM95].
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20 1. FUNDAMENTALS OF NONLINEAR FILTERING

1.1. Nonlinear filtering of a signal in white noise

1.1.1. The basic model. We will work on a standard filtered probability
space (Ω,F , {Ft}t≥0,P) satisfying the usual hypotheses (see, e.g., [Pro04]). On
this space are defined the following Ft-adapted processes:

(1) A càdlàg process Xt in a Polish state space S.
(2) A p-dimensional Wiener process Bt independent of Xt.

Xt is called the signal process, and Bt is called the observation noise. We assume for
sake of technical concreteness that Xt is càdlàg (right-continuous with left limits)
with values in a Polish (complete separable metric) space; this ensures, for example,
that regular conditional probabilities always exist. In practice, any reasonable
model encountered in applications will be of this form. For the time being we
impose no further structure on the signal process.

We now introduce the p-dimensional observation process, defined as

(1.1) Yt =

∫ t

0

h(Xs) ds+Bt,

where h : S→ Rp is a measurable map called the observation function. We denote
by FY

t = σ{Ys : 0 ≤ s ≤ t} the filtration generated by Yt. The goal of filtering
theory is to compute the filtered estimates

(1.2) πt(f) = E(f(Xt)|FY
t ),

for a class of sufficiently nice measurable functions f : S → R. Throughout this
thesis, E denotes the expectation EP with respect to the measure P.

1.1.2. An explicit construction. Though it is not strictly necessary at this
point, it is convenient to work with an explicit construction of the probability space
(Ω,F , {Ft}t≥0,P) and the processes Xt, Yt and Bt. There is no loss of general-
ity in doing so, and some of the arguments in the following become particularly
transparent in this context. Let us therefore introduce this setup now, and adopt
it consistently throughout the rest of this thesis.

In most applications of filtering theory, the real quantities of interest are the
sample paths of the observation process and the sample paths of the signal process.
It is thus convenient to define Ω as the set of all possible signal/observation sample
paths. To this end, we will set Ω = D(R+; S) × C(R+; Rp). Here D(R+; S) is
the space of càdlàg paths with values in S, endowed with the Skorokhod topology
which turns it into a Polish space, and C(R+; Rp) is the space of continuous paths
with values in Rp, endowed with the topology of uniform convergence on bounded
intervals. For a detailed study of these spaces, see [Bil99, EK86]. We now define
F as the Borel σ-algebra on Ω (with respect to the above topology).

Note that any ω ∈ Ω can be represented as a pair of sample paths ω = (x, y),
where x ∈ D(R+; S) and y ∈ C(R+; Rp). Define the coordinate processes

Xt : Ω→ S, Xt(x, y) = xt, Yt : Ω→ Rp, Yt(x, y) = yt ∀ t ∈ R+.

Hence we can really think of a point (x, y) = ω ∈ Ω as representing a joint sig-
nal/observation sample path. We can now define FXY

t = σ{(Xs, Ys) : 0 ≤ s ≤ t}
and FY

t = σ{Ys : 0 ≤ s ≤ t}. Next, we introduce the measure P on (Ω,F) such
that (Xt, Yt) has the correct law; such a measure could be obtained, e.g., as the
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measure induced on the path space D(R+; S)×C(R+; Rp) by a more general model
as in the previous subsection. In particular, if we define

Bt = Yt −
∫ t

0

h(Xs) ds,

then Bt is an (FXY
t ,P)-Wiener process independent of Xt. Finally, we define Ft as

the P-augmentation of FXY
t ; this guarantees that this filtration satisfies the usual

hypotheses (see [KS91, sec. 2.7] for extensive discussion). We have now obtained
an explicit construction for the probability space (Ω,F , {Ft}t≥0,P).

1.1.3. The Kallianpur-Striebel formula. The very simplest filtering sce-
nario occurs when h(x) = 0. In this case, we can write P = µx × µw, where µx is
the marginal of P on D(R+; S) (i.e., µx is the law of the signal process) and µw is
the Wiener measure on C(R+; Rp). But then for any bounded measurable f ,

(1.3) E(f(X[0,T ], Y[0,T ])|FY
T ) =

∫

f(x, Y[0,T ])µx(dx)

is clearly a version of the conditional expectation. This scenario is of course ex-
traordinarily uninteresting, as the observations are completely uninformative.

Nonetheless, this is not at all a bad idea; it would be extremely convenient to
express conditional expectations with respect to FY

T by simply integrating out the
signal process against a suitable measure. The problem is: how do we obtain the
appropriate measure? The key point, as we will shortly see, is that the measure
P and the reference measure Q = µx × µw are always equivalent—at least when
restricted to a finite observation interval. Hence we can express conditional expec-
tations under P as conditional expectations under Q, and the latter are precisely
of the form (1.3). This is the main idea of the reference probability method.

Let us begin by recalling how conditional expectations transform under an
equivalent change of measure.

Lemma 1.1.1. Let µ ∼ ν be two equivalent probability measures on a probability
space (Ω,F), let X ∈ L1(ν), and let G ⊂ F be a sub-σ-algebra. Then

Eν(X |G) =
Eµ( dν

dµ X |G)
Eµ( dν

dµ |G)
ν−a.s., µ−a.s.

Proof. Choose any A ∈ G. Then

Eµ(Eµ( dν
dµ X |G) IA) = Eµ( dν

dµ X IA) = Eν(X IA)

= Eν(Eν(X |G) IA) = Eµ( dν
dµ Eν(X |G) IA) = Eµ(Eµ( dν

dµ |G)Eν(X |G) IA).

As A ∈ G is arbitrary, we must have

Eµ( dν
dµ X |G) = Eµ( dν

dµ |G)Eν(X |G) µ−a.s.

(and ν-a.s. as µ ∼ ν). It remains to note that µ ∼ ν implies that dν
dµ > 0 a.s. �

Corollary 1.1.2. Let µ1 be a probability measure on (Ω1,F1), µ2 be a proba-
bility measure on (Ω2,F2), and let µ be a probability measure on (Ω1×Ω2,F1×F2)
such that µ ∼ µ1 × µ2. Then for G = {∅,Ω1} × F2 and any X ∈ L1(µ),

Eµ(X |G)(ω1, ω2) =

∫

dµ
d[µ1×µ2]

(ω, ω2)X(ω, ω2)µ1(dω)
∫ dµ

d[µ1×µ2]
(ω, ω2)µ1(dω)

a.s.
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This is one particular form of the well-known Bayes formula (for a more general
discussion of the abstract Bayes formula, see, e.g., [LS01, sec. 7.9]).

To apply these ideas in the filtering context, we could attempt to show that
P ∼ Q, where Q = µx×µw is the reference measure defined above. We have to be
a bit careful, however: the following standard example [KS91, pp. 192–193] shows
that this is unlikely to be the case.

Example 1.1.3. Consider another trivial filtering scenario: h(x) = 1. Then
Yt = t+Bt where Bt is a Brownian motion under P. On the other hand, Yt is itself
a Brownian motion under Q. Hence we obtain

lim
t→∞

Yt

t
= 0 Q−a.s., lim

t→∞

Yt

t
= 1 P−a.s.

by the law of large numbers. Clearly P ∼ Q is impossible!

Fortunately, this example does not present any problems in practice, provided
that we eliminate these pathological events. To this end, let us define the filtration
F∞

T = D × σ{yt : 0 ≤ t ≤ T}, where D is the Borel σ-algebra on the Skorokhod
space D(R+; S). We denote by P∞

T and Q∞
T the restriction to F∞

T of the measures
P and Q, respectively. Under a mild condition, we will show that a.s.

(1.4)
dP∞

T

dQ∞
T

= ZT (X[0,T ], Y[0,T ]) = exp

(

∫ T

0

h(Xs) · dYs −
1

2

∫ T

0

‖h(Xs)‖2 ds
)

(h(Xs) · dYs denotes the Itô differential
∑

i h
i(Xs) dY

i
s ). This result is not surpris-

ing: ZT (X[0,T ], Y[0,T ]) is precisely the Girsanov transformation that makes Y[0,T ] a
Wiener process under Q. The assumption we need for this to work is the basic as-
sumption of the Girsanov theorem, i.e., that Zt(x, Y[0,t]) is an (FY

t ,Q)-martingale
for µx-a.e. x ∈ D(R+; S). To guarantee that this is the case, let us impose the
following integrability condition on the signal.

Assumption 1.1.4. µx satisfies the following integrability assumption:
∫ T

0

‖h(xs)‖2 ds <∞ ∀T <∞, for µx−a.e. x ∈ D(R+; S).

Note in particular that this assumption holds if h is continuous, as any path
x ∈ D([0, T ]; S) is necessarily bounded [Bil99]. The assumption is trivial if h is
bounded. In the sequel, we will always presume that Assumption 1.1.4 holds.

We are now in the position to prove (1.4).

Lemma 1.1.5. Equation (1.4) holds, provided Assumption 1.1.4 is satisfied.

Proof. Let f : D(R+; S) → R and g : C([0, T ]; Rp) → R be nonnegative,
bounded and measurable. Then f(X[0,∞)) and g(B[0,T ]) are F∞

T -measurable, and
indeed F∞

T is generated by all random variables of this type. To prove the Lemma,
it thus suffices to show that

EP(f(X[0,∞)) g(B[0,T ])) = EQ(f(X[0,∞)) g(B[0,T ])ZT (X[0,T ], Y[0,T ])).

To this end, recall that under P, Bt is a Wiener process which is independent of
Xt. Hence the left-hand side reduces to

EP(f(X[0,∞)) g(B[0,T ])) =

∫

D(R+;S)

f(x)µx(dx) ×
∫

C([0,T ];Rp)

g(b)µw(db).
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The right-hand side, on the other hand, reduces to

EQ(f(X[0,∞)) g(B[0,T ])ZT (X[0,T ], Y[0,T ]))

=

∫

D(R+;S)

f(x)

[

∫

C([0,T ];Rp)

g(B(x, y))ZT (x, y)µw(dy)

]

µx(dx),

where we have used Tonelli’s theorem. Here we have written B(x, y) to denote
the dependence of the process B[0,T ] ∈ C([0, T ]; Rp) on X[0,∞) and Y[0,T ]. But by
Assumption 1.1.4, Novikov’s criterion and Girsanov’s theorem, we obtain

∫

C([0,T ];Rp)

g(B(x, y))ZT (x, y)µw(dy) =

∫

C([0,T ];Rp)

g(b)µw(db)

for µx-a.e. x ∈ D(R+; S). Hence the proof is complete. �

Remark 1.1.6. Lemma 1.1.5 implies directly that Zt = Zt(X[0,t], Y[0,t]) is a
martingale under Q. Indeed, Zt is a positive local martingale, and hence a positive
supermartingale by Fatou’s Lemma [Pro04, p. 138]. To show that Zt is a martin-
gale, it suffices to note that EQ(Zt) = EP(1) = 1 for all t <∞. After all, suppose
that Zt is not a martingale; then we can find s < t such that EQ(Zt|Fs) < Zs with
positive probability. But then EQ(Zt) < EQ(Zs), which is a contradiction.

Using these results, we immediately obtain an explicit representation of the
conditional expectation. We always presume that Assumption 1.1.4 holds.

Corollary 1.1.7 (Kallianpur-Striebel). If X ∈ L1(P) is F∞
T -measurable, then

(1.5) E(X |FY
T )(x, y) =

∫

X(x′, y)ZT (x′, y)µx(dx′)
∫

ZT (x′, y)µx(dx′)
a.s.

1.1.4. The Zakai and Kushner-Stratonovich equations. Let us return
to the filtering problem. We begin by defining for any measurable f : S→ R

σt(f)(x, y) =

∫

f(x′t)Zt(x
′, y)µx(dx′).

By the Kallianpur-Striebel formula, it is evidently the case that a.s.

πt(f) = E(f(Xt)|FY
t ) =

σt(f)

σt(1)
.

It is often convenient to work with an equation for σt(f) rather than with πt(f)
directly. The former is called the Zakai equation (or Duncan-Mortensen-Zakai equa-
tion), while we have already encountered the latter as the Kushner-Stratonovich
equation. We will actually derive the latter by applying the Kallianpur-Striebel
formula and Itô’s rule to the Zakai equation.

Before we can proceed along this path, we need to impose some more structure
on our signal process—up to the present point we have required almost nothing
of the signal. The theory can be set up for general semimartingale signals (as in
[FKK72]), but this does not generally give rise to recursive filters (i.e., filters that
can be updated at each time step using the new observations only). To obtain the
latter, we restrict our attention to Markov signals.

Assumption 1.1.8. Xt is a Feller-Markov process with generator L .
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What does this do for us? Of particular interest at this point is the following
elementary result, known as Dynkin’s formula [Kal97, Lemma 17.21]: for any
f ∈ D(L ) (D(L ) is the domain of the generator L ), the process

Mf
t = f(Xt)− f(X0)−

∫ t

0

L f(Xs) ds

is a martingale. Hence in particular f(Xt) is a semimartingale, and we can apply
the Itô calculus. The basic approach will now consist of applying Itô’s rule to the
integrand in the definition of σt(f); after taking the µx-expectation, this gives the
Zakai equation. Let us work out the details.

Remark 1.1.9. In the following, we will impose significantly more restrictive
conditions on the signal and observations than is strictly necessary; however, these
will suffice for our purposes, and the proofs are highly simplified. For a reference
probability proof that does not suffer from these restrictions, see [Ben92]. The
martingale method can also be used under weaker conditions, see, e.g., [LS01].

Proposition 1.1.10 (Zakai equation). Let f ∈ D(L ). Let E((M f
t )2) <∞,

EQ

∫ t

0

Z2
s ds <∞, EQ

∫ t

0

(Zs f(Xs)h(Xs))
2 ds <∞, E

∫ t

0

|L f(Xs)| ds <∞.

Then the Zakai equation holds (here ν(f) = E(f(X0))):

(1.6) σt(f) = ν(f) +

∫ t

0

σs(L f) ds+

∫ t

0

σs(hf) · dYs.

Proof. Using Itô’s rule and Dynkin’s formula, we obtain

f(Xt)Zt = f(X0) +

∫ t

0

Zs f(Xs)h(Xs) · dYs +

∫ t

0

Zs L f(Xs) ds+

∫ t

0

Zs dM
f
s ,

where Zt = Zt(X[0,t], Y[0,t]). The usual quadratic variation term [M f , Y ] does not

appear in this expression, as M f
t Yt is a martingale under Q and hence [M f , Y ]t = 0

[Pro04, p. 73]. We now take the µx-expectation on both sides. The last term on
the right vanishes, as by our first two assumptions this is a martingale under µx

for µw-a.e. observation sample path (see, e.g., [Ell82, Ch. 11]). It remains to show
that the order of integration in the remaining terms on the right may be exchanged.
That µx and the time integral may be exchanged follows from our last assumption
and Fubini’s theorem. The exchange of integration order in the remaining stochastic
integral follows from our assumption that the integrand is square-integrable, so that
we can apply the Fubini theorem for stochastic integrals [LS01, Thm. 5.15]. �

Note that the (rather restrictive) integrability assumptions in this result are
needed to have the various integrals behave nicely under the measure µx. If all the
integrands were bounded, this would not be an issue; but Zt will not be bounded
regardless of what we choose for h! A trick to dispose of the integrability conditions
is to approximate Zt by the bounded quantity Zε

t = Zt/(1 + εZt), go through the
procedure above, and then take the limit ε → 0 at the end of the day. This
establishes the Zakai equation under weak conditions—enough to make the limits
converge—but requires a lot of work and is not very insightful. We refer to [Ben92]
for the details. A similar but less tedious approach to weaken the conditions of Prop.
1.1.10 proceeds through localization, see [Par91]. Rather than taking this route,
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we will content ourselves by obtaining some sufficient conditions that ensure that
the requirements of Prop. 1.1.10 are satisfied.

Lemma 1.1.11. For any measurable g : S→ R, we have

EQ

(
∫ t

0

Z2
s g(Xs)

2 ds

)

= E

∫ t

0

exp

(
∫ s

0

‖h(Xu)‖2 du
)

g(Xs)
2 ds.

Proof. As the integrand is nonnegative, we may freely exchange the order of
integration by Tonelli’s theorem. Let us write

EQ

(∫ t

0

Z2
s g(Xs)

2 ds

)

=

∫ t

0

[∫ [∫

Zs(x, y)
2 µw(dy)

]

g(xs)
2 µx(dx)

]

ds,

But using Assumption 1.1.4, the inner integral evaluates to
∫

Zs(x, y)
2 µw(dy) = exp

(∫ s

0

‖h(xu)‖2 du
)

.

This completes the proof. �

Corollary 1.1.12. The conditions of Proposition 1.1.10 are satisfied if h, f
and L f are bounded, or alternatively if h is bounded and

E

∫ t

0

f(Xs)
2 ds <∞, E

∫ t

0

|L f(Xs)| ds <∞, E((Mf
t )2) <∞.

Let us finally show how to obtain the Kushner-Stratonovich equation.

Corollary 1.1.13 (Kushner-Stratonovich equation). Under the conditions of
Proposition 1.1.10 or Corollary 1.1.12, the filtered estimate πt(f) satisfies

(1.7) πt(f) = ν(f) +

∫ t

0

πs(L f) ds+

∫ t

0

{πs(hf)− πs(h)πs(f)} (dYs−πs(h) ds).

Proof. We simply apply Itô’s rule to the Kallianpur-Striebel formula πt(f) =
σt(f)/σt(1), using the Zakai equation for σt(·). Note that σt(1) > 0 a.s. as Zt > 0
a.s., so that we can directly apply the function x−1, being C2 on {x ∈ R : x > 0},
using Itô’s rule. The result now follows by straightforward calculation. �

1.1.5. The innovations process. The innovations process dW t = dYt −
πt(h) dt that appears in the Kushner-Stratonovich equation has a special signifi-
cance: W t is in fact an (FY

t ,P)-Wiener process. Let us prove this.

Proposition 1.1.14 (Innovations process). Suppose that

E

∫ T

0

‖h(Xt)‖ dt <∞ ∀T <∞.

Then the innovations process W t, defined by

W t = Yt −
∫ t

0

πs(h) ds,

is an (FY
t ,P)-Wiener process.

Proof. First, we show that W t is a martingale. Note that

E(W t −W s|Fs) = E(Bt −Bs|Fs) + E

(∫ t

s

(h(Xu)− πu(h)) du

∣

∣

∣

∣

Fs

)

.
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The first term vanishes by the martingale property of the Ft-Wiener process Bt.
Hence we obtain using FY

t ⊂ Ft

E(W t −W s|FY
s ) = E

(∫ t

s

(h(Xu)−E(h(Xu)|FY
u )) du

∣

∣

∣

∣

FY
s

)

.

Using the integrability condition to apply Fubini’s theorem, we can conclude that
the right-hand side vanishes. HenceW t is a FY

t -martingale. ButW t has continuous

paths and evidently [W
i
,W

j
]t = tδij , so the claim follows from Lévy’s theorem. �

We will need the following important corollary in the sequel.

Corollary 1.1.15. Under the condition of Proposition 1.1.14,

dP|FY
T

dQ|FY
T

= Q(ZT |FY
T ) = σT (1) = exp

(

∫ T

0

πs(h) · dYs −
1

2

∫ T

0

‖πs(h)‖2 ds
)

.

Proof. The first two equalities are immediate from (1.4) and Lemma 1.1.5.
The last equality follows from the fact that by Proposition 1.1.14, the exponential
expression is a Girsanov transformation that makes Yt a Wiener process under Q.
But this expression is FY

T -measurable, so that the claim follows from the uniqueness
of the Radon-Nikodym derivative. �

1.2. Finite-state Markov signals and the Wonham filter

In this section we will specialize the general filtering theory of the previous
section to the case that S is a finite set. This particularly simple case is widely used
in applications, and forms the basis for chapters 2 and 3.

Let S = {a1, . . . , ad}, d <∞. We choose the law µx of the signal process such
that Xt is a Feller-Markov process with the following generator:

L f(ai) =

d
∑

j=1

λij f(aj),

where the matrix Λ = (λij) is such that λij ≥ 0 for i 6= j, and λii = −∑j 6=i λij . Λ
is called the transition intensities matrix, as the Markov property implies

P(Xt+∆ = aj |Xt = ai) = λij ∆ + o(∆), i 6= j.

We will denote the initial distribution of the process by νi = P(X0 = ai). Note
that in the finite state case, we can naturally associate to any function g : S → R

a corresponding vector gi = g(ai). We will implicitly identify these two notations
whenever no confusion can arise. Note also that any such function is necessarily
bounded; a finite set always attains its extrema!

We now introduce, as usual, the white noise observations

Yt =

∫ t

0

h(Xs) ds+Bt.

For convenience and notational simplicity we will work with one-dimensional obser-
vations h : S→ R, but everything we will do extends without trouble to observations
of higher dimension.

The filtering theory of the previous section applies immediately; in particu-
lar, as any function on S is bounded, all the technical assumptions (e.g., those of
Corollary 1.1.12) are automatically satisfied. These filters, however, are not yet
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in recursive form: e.g., the Zakai equation for σt(f) depends on σt(L f), etc. To
obtain a recursive expression, we introduce the quantities

πi
t = P(Xt = ai|FY

t ), σi
t = EQ(IXt=ai

Zt|FY
t ),

so that we can write

πt(f) =

d
∑

i=1

πi
tf(ai) = f∗πt, σt(f) =

d
∑

i=1

σi
tf(ai) = f∗σt, σt(1) =

d
∑

i=1

σi
t = |σt|.

Here v∗ (M∗) is the adjoint of the vector v (matrix M), and |v| is the `1-norm of v.
From Proposition 1.1.10 and Corollary 1.1.13, we now obtain the following result.

Corollary 1.2.1 (Wonham filter). Let h : S → R. Then the conditional
density πt obeys the Wonham equation

(1.8) πt = ν +

∫ t

0

Λ∗πs ds+

∫ t

0

(H − h∗πs)πs (dYs − h∗πs ds),

and the unnormalized conditional density σt obeys the Wonham-Zakai equation

(1.9) σt = ν +

∫ t

0

Λ∗σs ds+

∫ t

0

Hσs dYs.

Here H = diag(h) is the diagonal matrix with (H)ii = h(ai).

This is very convenient: the filter is just a finite-dimensional stochastic differ-
ential equation, driven by the semimartingale Yt. If we can establish uniqueness of
the solution, then the utility of these equations is clear: a digital signal processing
device updates the current value of πt recursively at every time step; subsequently
any estimate of the signal at that time, i.e., the best estimate of f(Xt), can be
obtained through the simple inner product πt(f) = f∗πt.

Example 1.2.2 (Binary symmetric signal). Consider S = {a1, a2} with equal
transition rates λ12 = λ21 = λ. Then (1.8) becomes

dπ1
t = λ (π2

t − π1
t ) dt+ (h1 − h1π1

t − h2π2
t )π1

t {dYt − (h1π1
t + h2π2

t ) dt}.

But π1
t + π2

t = 1, so we obtain

dπ1
t = −2λ (π1

t − 1
2 ) dt+ (h1 − h2)π1

t (1− π1
t ) {dYt − (h1π1

t + h2(1− π1
t )) dt}.

Compare this expression to the discussion of section 0.2.

We conclude this section with a statement of uniqueness. This is important,
because we have only established that the conditional density πt must satisfy the
Wonham equation. Uniqueness, however, guarantees that we can always obtain the
conditional density by solving the Wonham equation.

Lemma 1.2.3. Equations (1.8) and (1.9) have unique solutions.

Proof. Equations (1.8) and (1.9) have locally and globally Lipschitz coef-
ficients, respectively. Hence existence and uniqueness of the solution to (1.9) is
immediate from standard results, whereas (1.8) must have a unique solution up to
an accessible explosion time ζ (see, e.g., [Pro04, Ch. V]). But ζ must be infinite
a.s., as πi

t = P(Xt = ai|FY
t ) for t < ζ by uniqueness and P(Xt = ai|FY

t ) ≤ 1. �
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1.3. Nonlinear filtering for diffusions

Let us now turn to the diffusion case. We are interested in the state space
S = Rd. The signal process is taken to be an Itô diffusion

(1.10) dXt = b(Xt) dt+ a(Xt) dWt, X0 ∼ ν,

where b : Rd → Rd and a : Rd → Rd×q are assumed to be of class C2 with bounded
first and second derivatives, Wt is a q-dimensional Wiener process, and the initial
measure ν has finite moments. This defines a Markov diffusion, whose generator
L is given by

L f(x) =

d
∑

i=1

bi(x)
∂f(x)

∂xi
+

1

2

d
∑

i,j=1

q
∑

k=1

aik(x)ajk(x)
∂2f(x)

∂xi∂xj

at least for bounded f with bounded first and second derivatives.

Remark 1.3.1. We have not taken into account the possible existence of Wt in
our construction of the probability space Ω, but this is not an essential issue. We
could either extend Ω to be slightly larger; or we could construct the strong solution
to (1.10) on a separate Wiener space, then choose µx to be the measure induced
by this diffusion on the path space of Xt. Perhaps the most elegant solution is
to characterize the weak solution to (1.10) as the solution of a Stroock-Varadhan
martingale problem: µx is defined as the (unique) measure that makes

Mf
t = f(Xt)− f(X0)−

∫ t

0

L f(Xs) ds

a martingale for any f ∈ C2 with compact support, and no auxiliary spaces are
necessary (see, e.g., [RW00, Sec. V.19]). Ultimately these methods are equivalent
(at least for the conditions we have placed on b and a), so we will not worry too
much about the specific construction.

We now introduce the observation function h : Rd → Rp and the observations

Yt =

∫ t

0

h(Xs) ds+Bt,

as usual. If h is bounded, then we can apply Corollary 1.1.12. Let us state here
without proof that under the conditions we have imposed, the boundedness require-
ment of h can be weakened to a linear growth condition: that is, we will assume
that ‖h(x)‖ ≤ K(1 + ‖x‖) for some finite constant K and all x ∈ Rd. The proof of
this fact, which proceeds as we have outlined in section 1.1.12 (approximate Zt by
Zε

t = Zt/(1 + εZt)), can be found in [Ben92, Ch. 4]. We then obtain:

Proposition 1.3.2. Under the above assumptions, the Zakai and Kushner-
Stratonovich equations (1.6) and (1.7) hold for any bounded f ∈ C2 with bounded
first and second derivatives.

In the finite state case, we converted the filtering equation to recursive form by
introducing the vectors σt and πt such that σt(f) = f∗σt and πt(f) = f∗πt. We
would like to do something similar here. Proceeding formally, we could introduce
the densities %t(x) and pt(x) by setting

σt(f) =

∫

Rd

f(x) %t(x) dx, πt(f) =

∫

Rd

f(x) pt(x) dx,
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(recall that ν(f) = π0(f), so p0(x) is the density of ν). Substituting these expres-
sions into the Zakai and Kushner-Stratonovich equations, and formally integrating
by parts, we obtain

%t(x) = p0(x) +

∫ t

0

L
∗%s(x) ds +

∫ t

0

h(x) %s(x) · dYs,

pt(x) = p0(x) +

∫ t

0

L
∗ps(x) ds

+

∫ t

0

{

h(x)−
∫

Rd

h(x) ps(x) dx

}

ps(x) ·
(

dYs −
∫

Rd

h(x) ps(x) dx dt

)

.

Here L ∗ denotes the formal adjoint of L , i.e.

L
∗f(x) = −

d
∑

i=1

∂

∂xi
(bi(x)f(x)) +

1

2

d
∑

i,j=1

q
∑

k=1

∂2

∂xi∂xj
(aik(x)ajk(x)f(x)).

The rigorous justification of this procedure is not at all straightforward, however.
It is far from clear that πt(·) and σt(·) even possess a density with respect to the
Lebesgue measure, let alone that it is sufficiently smooth to apply L ∗ to. Moreover,
the issue of uniqueness of the solutions to these equations is delicate. The well-
posedness of the equations for %t(x) and pt(x) has been studied extensively in the
literature in various settings and using a range of methods; see H. Kunita [Kun90],

É. Pardoux [Par82, Par91], B. L. Rozovskĭı [Roz90], A. Bensoussan [Ben92], and
S. J. Sheu [She83], for extensive discussion and further references.

1.4. Pathwise filtering

We conclude this introductory chapter with a discussion of the pathwise formu-
lation of nonlinear filtering problems. The goal of this theory is to give unambiguous
meaning to the statement: given an observation sample path y ∈ C([0, T ]; Rp), what
is the corresponding filtered estimate πT (f)? We have not answered this question
above; in fact, we have only defined the filter πT (f) on an unspecified set in the
Borel σ-algebra of C(R+; Rp) of measure one. This is all we can hope for, of course,
if we define the filter purely as a conditional expectation; in practice, on the other
hand, it could be important to demand a little more.

Consider the practical implementation of a nonlinear filter. When we observe a
signal in an engineering or laboratory environment, we just obtain one sample path
y ∈ C(R+; Rp) at a time. Moreover, such a sample path will never look exactly like
our white noise observation model: most real-world signals are either smooth or
sampled at a high frequency (the latter can be included in our setup by joining the
sampled points with straight line segments). In particular, real-world sample paths
are of finite variation, and the set of finite variation paths has measure zero under
the Wiener measure. Hence it is possible, within the framework of the previous
sections, to have a perfectly respectable version of the filter which takes arbitrary
values on any sample path that could possibly be obtained in the real world.

Clearly this is not a very desirable situation, but such a construction would also
be highly artificial. On the other hand, the fact that we are forced in real life to work
with approximate sample paths suggests that we would like to define our nonlinear
filter as a continuous functional on C(R+; Rp); this way, the filter will be close to
optimal even if we only have smoothed or sampled paths at our disposal. This
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is the motivation behind the notion of pathwise filtering as introduced by J.M. C.
Clark [Cla78], and subsequently studied by many authors including M. H. A. Davis

[Dav80, Dav82], H. J. Kushner [Kus79], and É. Pardoux [Par82]. It is not at all
obvious a priori that such a continuous version of the filter can be obtained, but it
turns out that this is in fact possible under quite general conditions (see [CC05]
for a recent exposition with careful attention to the technical subtleties).

The usefulness of the pathwise filtering theory significantly exceeds its original
intention. Certainly pathwise filters are important for the study of filtering with
smoothed observation sample paths, as well as for the design of good discretization
schemes (so-called robust discretizations, see, e.g., [Kus79]). The continuity prop-
erty of the filter is important for these applications. Another important application,
however, is the study of nonlinear filtering equations for diffusions. As we have seen
in the previous section, the question of well-posedness of the density forms of the
Zakai and Kushner-Stratonovich equations is quite delicate; one of the problems
here is the relative difficulty inherent in the study of stochastic partial differential
equations (SPDEs). The pathwise filtering method, on the other hand, allows us
to study filtering problems with a fixed observation path, and hence the SPDEs
reduce to ordinary PDEs with random coefficients. This provides an important
technical tool for the study of nonlinear filtering for diffusions (see, e.g., [Par82]);
it is not the continuity property that is important here, but the pathwise nature of
these filters. In a similar spirit, we will find it useful on occasion to study properties
of the nonlinear filter for some “frozen” observation path. The pathwise filtering
method provides an invaluable tool for this purpose, as it allows us to define the
filters unambiguously for an arbitrary observation y ∈ C(R+; Rp).

1.4.1. The pathwise Kallianpur-Striebel formula. Let us return for the
moment to the general filtering setup of section 1.1 and in particular to Corollary
1.1.7, the Kallianpur-Striebel formula. We would like to formulate this central result
in an unambiguous way for a fixed observation path y ∈ C(R+,R

p). An exami-
nation of the Kallianpur-Striebel formula quickly uncovers the basic problem: the
quantity ZT (x, y) is defined in terms of a stochastic integral with the observations
as the integrator. Such a stochastic integral can be defined as a limit in proba-
bility at best, and certainly cannot be given an unambiguous meaning for every
observation sample path individually (see [Pro04, Ch. I] for a nice discussion).

We are in luck, however: in this particular case the integrand is independent
of the observations, i.e., the stochastic integral can be interpreted pathwise as a
Wiener integral for every signal sample path. We could reverse the role of the
observation process and the signal process through a simple integration by parts,
provided that h(Xt) is a semimartingale: after all, by Itô’s rule

h(XT ) · YT =

∫ T

0

h(Xs) · dYs +

∫ T

0

Ys · dh(Xs) a.s.

The left-hand side and the last term on the right-hand side can both be interpreted
pathwise with respect to the observations. This is precisely what we will do.

For the rest of this section, we make the following basic assumption:

Assumption 1.4.1. h(Xs) is a càdlàg semimartingale.
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Proposition 1.4.2 (Pathwise Kallianpur-Striebel formula). Define

Z̃T (X[0,T ], y) = exp

(

h(XT ) · yT −
∫ T

0

ys · dh(Xs)−
1

2

∫ T

0

‖h(Xs)‖2 ds
)

for any y ∈ C0(R+,R
p) (the space of continuous paths such that y0 = 0, with the

topology of uniform convergence on bounded intervals). Let X be any µx-integrable
functional of the signal process. Then

(1.11) ΠT (X, y) =

∫

X(x) Z̃T (x, y)µx(dx)
∫

Z̃T (x, y)µx(dx)

defines a unique regular version of the conditional expectation E(·|FY
T ) on D(R+; S).

Proof. This follows from Itô’s rule and the Kallianpur-Striebel formula. �

For the purposes of filtering, let us introduce the pathwise filtering functional

(1.12) τt(f, y) = E

(

f(Xt) exp

(

−
∫ t

0

ys · dh(Xs)−
1

2

∫ t

0

‖h(Xs)‖2 ds
))

for any y ∈ C0(R+,R
p). Then by the Kallianpur-Striebel formula,

πt(f)(x, y) =
σt(f)(x, y)

σt(1)(x, y)
=
τt(f e

h·yt , y)

τt(eh·yt , y)
a.e. (x, y) ∈ Ω.

Under sufficient regularity conditions, the pathwise filtering functional is continu-
ously differentiable in time: applying the Itô rule to τt(f, y), we see that the latter
is given by the expectation over time integrals and local martingales. If the local
martingales are martingales, and Fubini’s theorem can applied, then we obtain a
pathwise form of the Zakai equation where the stochastic integral term has disap-
peared. Rather than working out general conditions under which this can be done,
let us briefly investigate the two cases which will be of interest to us in the sequel.

Remark 1.4.3. In the theory of stochastic differential equations, H. Doss
[Dos77] and H. J. Sussmann [Sus78] have suggested a general method to define
pathwise solutions. Their methods demonstrate that for a wide class of stochastic
differential equations, a change of variables can be constructed which transforms
such equations into ordinary differential equations. When applied to the unnor-
malized Wonham equation (1.9), for example, this method indeed gives rise to the
same pathwise filtering equation as in Proposition 1.4.5 below. In the filtering con-
text, however, the approach through integration by parts in the Kallianpur-Striebel
formula is much more fundamental. It is also somewhat simpler, as it does not re-
quire us to prove well-posedness of the solutions of filtering equations, which is
particularly advantageous in the infinite-dimensional setting.

1.4.2. The pathwise Wonham filter. Consider case where the signal pro-
cess has a finite state space S = {a1, . . . , ad}, as in section 1.2. Let us define

τ i
t (y) = E

(

IXt=ai
exp

(

−
∫ t

0

ys dh(Xs)−
1

2

∫ t

0

h(Xs)
2 ds

))

.

Then by the pathwise Kallianpur-Striebel formula, we evidently have

σi
t = eh(ai)Yt τ i

t (Y[0,t]), πi
t =

σi
t

|σt|
=

eh(ai)Yt τ i
t (Y[0,t])

∑

i e
h(ai)Yt τ i

t (Y[0,t])
, a.s.
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Let us begin by showing that the functional τ i
t (y) is continuous.

Proposition 1.4.4. τ i
t (y) is locally Lipschitz continuous in y.

Proof. We can readily estimate

|τ i
t (y)− τ i

t (y
′)| ≤ E

∣

∣

∣

∣

exp

(

−
∫ t

0

ys dh(Xs)

)

− exp

(

−
∫ t

0

y′s dh(Xs)

)∣

∣

∣

∣

.

Hence we obtain, using |ea − eb| ≤ ea∨b|a− b|,

|τ i
t (y)− τ i

t (y
′)| ≤ E

(

e|
∫

t

0
ys dh(Xs)| ∨ |

∫
t

0
y′

s dh(Xs)|

∣

∣

∣

∣

∫ t

0

(ys − y′s) dh(Xs)

∣

∣

∣

∣

)

.

Next, we estimate as follows: for any y ∈ C0([0, t]; R),
∣

∣

∣

∣

∫ t

0

ys dh(Xs)

∣

∣

∣

∣

≤ K J(t) sup
s∈[0,t]

|ys|,

where K = max{h(ai) − h(aj) : i 6= j} and J(t) is the number of jumps made by
Xs in the interval s ∈ [0, t]. Hence we obtain

|τ i
t (y)− τ i

t (y
′)| ≤ E

(

K J(t) eK R J(t)
)

sup
s∈[0,t]

|ys − y′s|,

where R = max{sups∈[0,t] |ys|, sups∈[0,t] |y′s|}. But it follows from standard results

(see, e.g., [RW00, sec. IV.21]) that the expectation is finite. Hence we have shown
that for every R <∞, there is some constant KR such that

|τ i
t (y)− τ i

t (y
′)| ≤ KR sup

s∈[0,t]

|ys − y′s| ∀ ys, y
′
s s.t. sup

s∈[0,t]

|ys|, sup
s∈[0,t]

|y′s| ≤ R.

Hence the functional τ i
t (y) is locally Lipschitz continuous. �

We can now find a differential equation for τ i
t (y).

Proposition 1.4.5 (Pathwise Wonham filter). τt(y) satisfies

dτ i
t (y)

dt
=

d
∑

j=1

τ j
t (y)λji e

(h(aj)−h(ai))yt − 1

2
h(ai)

2 τ i
t (y), τ i

0 = νi.

Proof. Let us first establish the result for y ∈ C1. In this case, we can
integrate by parts on a pathwise basis:

τ i
t (y) = E

(

IXt=ai
exp

(

−h(Xt) yt +

∫ t

0

h(Xs) ẏs ds−
1

2

∫ t

0

h(Xs)
2 ds

))

= e−h(ai)yt E

(

IXt=ai
exp

(
∫ t

0

h(Xs) ẏs ds−
1

2

∫ t

0

h(Xs)
2 ds

))

.

Using Dynkin’s formula, we have

IXt=ai
= IX0=ai

+
d
∑

j=1

λji

∫ t

0

IXs=aj
ds+Nt,

where Nt is a bounded martingale on any bounded time interval. Define

T i
t (y) = E

(

IXt=ai
exp

(∫ t

0

h(Xs) ẏs ds−
1

2

∫ t

0

h(Xs)
2 ds

))

.
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Using Itô’s rule and the fact that the exponential term is bounded, we easily obtain

T i
t (y) = νi +

d
∑

j=1

λji

∫ t

0

T j
s (y) ds− 1

2

∫ t

0

h(ai)
2 T i

s(y) ds+

∫ t

0

h(ai)T
i
s(y) ẏs ds.

Calculating the time derivative of τ i
t (y) = e−h(ai)yt T i

t (y), the desired result follows
for y ∈ C1. To generalize the result to arbitrary y ∈ C0(R+,R), recall that contin-
uously differentiable paths are dense in the set of all continuous paths. Hence we
can approximate y by a sequence yn ∈ C1, then apply Proposition 1.4.4. �

1.4.3. Pathwise diffusion filtering. We finally consider the diffusion case,
with the signal and observations as defined in section 1.3. To develop the pathwise
theory, let us investigate the pathwise filtering functional (1.12).

Proposition 1.4.6. Assume that f ∈ C2 has compact support, h ∈ C2 is Lips-
chitz continuous, and a is bounded. Define hy(t, x) = y∗t h(x), g

y(t, x) = ∇hy(t, x),

V y(t, x) =
1

2
‖a(x)∗gy(t, x)‖2 −L hy(t, x)− 1

2
‖h(x)‖2,

and define the time-dependent generator

L
y
t f(x) = L f(x)− gy(x, t)∗a(x)a(x)∗∇f(x).

Then the pathwise filtering functional τt(f, y) satisfies for any y ∈ C0(R+,R
p)

d

dt
τt(f, y) = τt((L

y
t + V y(t, ·))f, y), τ0(f, y) = ν(f).

Proof. Applying Itô’s rule to h(Xt) and rearranging, we can write

τt(f, y) = E

(

f(Xt) exp

(∫ t

0

V y(s,Xs) ds

)

× exp

(

−
∫ t

0

gy(s,Xs)
∗a(Xs) dWs −

1

2

∫ t

0

‖a(Xs)
∗gy(s,Xs)‖2 ds

))

.

Introduce a new measure P̃ such that

dP̃

dP
= exp

(

−
∫ t

0

gy(s,Xs)
∗a(Xs) dWs −

1

2

∫ t

0

‖a(Xs)
∗gy(s,Xs)‖2 ds

)

.

By our assumptions, gy and a are bounded. Hence we find that

τt(f, y) = Ẽ

(

f(Xt) exp

(∫ t

0

V y(s,Xs) ds

))

= E

(

f(X̃t) exp

(∫ t

0

V y(s, X̃s) ds

))

by Girsanov’s theorem and Novikov’s condition, where

dX̃t = b(X̃t) dt− a(X̃t) a(X̃t)
∗gy(t, X̃t) dt+ a(X̃t) dWt, X̃0 = X0.

Using Itô’s rule, we find that

f(X̃t) exp

(∫ t

0

V y(s, X̃s) ds

)

= f(X0)+

∫ t

0

e
∫

s

0
V y(u,X̃u) du (∇f(X̃s))

∗a(X̃s) dWs

+

∫ t

0

(L y
s + V y(s, X̃s))f(X̃s) exp

(
∫ s

0

V y(u, X̃u) du

)

ds.

As f has compact support, all the integrands are bounded. Hence we can take the
expectation and apply Fubini’s theorem to the time integral. �
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Now suppose that we can establish that the measure τt(f, y) has a C1,2 density
Hy(t, x) with respect to the Lebesgue measure, i.e., that

τt(f, y) =

∫

f(x)Hy(t, x) dx, Hy(t, x) ∈ C1,2 ∀ y ∈ C0(R+,R
p).

Then it follows from the pathwise filtering equation that Hy(t, x) must satisfy the
parabolic equation

∂

∂t
Hy(t, x) = (L y

t )∗Hy(t, x) + V y(t, x)Hy(t, x).

The question of uniqueness of the solutions for this type of equation is a standard
one; see, e.g., [Fri75, sec. 6.4]. If the equation admits a unique solution, then
we have obtained a filtering equation for diffusions in recursive form (though in
practice, of course, this equation suffers from the curse of dimensionality). We can
then compute any filtered estimate as

πt(f) =

∫

f(x) eh(x)·Yt HY[0,t](t, x) dx
∫

eh(x)·Yt HY[0,t](t, x) dx
a.s.

This highlights the importance of the pathwise filtering theory in the treatment of
filtering problems for diffusions, as the filtering problem then reduces to a problem
in the relatively tractable theory of parabolic equations. For explicit conditions
under which this PDE approach is successful, see, e.g., [Par82, Kun90].

Finally, we remark that continuity of the pathwise filter with respect to the
observation paths can be established also in the diffusion case, under suitable con-
ditions. For example, we can repeat the proof of local Lipschitz continuity (see
Proposition 1.4.4) if b, a, h, and their derivatives are assumed to be bounded. For
a study of continuity of the pathwise filters in a general setup, see [CC05].



CHAPTER 2

Filter Stability and Conditional Signals: Finite

State Space

2.1. Conditional finite-state signals: A direct approach

In chapter 1, we showed how to calculate the conditional expectation of any
functional of the signal process through the Kallianpur-Striebel formula. In partic-
ular, we defined uniquely a regular version ΠT (X, y) of the conditional expectation,
equation (1.11): for every y ∈ C0([0, T ]; Rp)

ΠT (X, y) =

∫

X(x) Z̃T (x, y)µx(dx)
∫

Z̃T (x, y)µx(dx)
,

so that E(X |FY
T ) = ΠT (X,Y[0,T ]) a.s. For fixed y and T , we can thus consider

ΠT (X, y) as a measure on the space (D(R+; S),D) of signal sample paths (with its
Borel σ-algebra D) by setting ΠT (A, y) = ΠT (IA, y) for every A ∈ D. Evidently

dΠT (·, y)
dµx

=
Z̃T (x, y)

∫

Z̃T (x, y)µx(dx)
.

The idea which we will explore in this chapter is that this change of measure can be
interpreted as a Girsanov-type transformation: in particular, if the signal process
Xt is a Feller-Markov process, then Xt is still an (albeit time-nonhomogeneous)
Markov process under ΠT (·, y) for fixed y and T , and we can explicitly find its

conditional generator L
T,y
t . We can now obtain the conditional expectation of any

functional of the signal process Xt (with generator L ), given the observation path
y ∈ C0([0, T ]; Rp), by calculating the (unconditional) expectation of a new Markov

process XT,y
t with the modified generator L

T,y
t .

R. L. Stratonovich initiated the investigation of conditional Markov processes
[Str60, Str68], at least on a formal level. The study of conditional diffusions in
the spirit of this chapter has its origins in the paper of J.-M. Bismut and D. Michel
[BM82], where the diffusion case is treated using stochastic flow methods. A
different perspective appears in the paper of S. K. Mitter and N. J. Newton [MN03],

also in the context of diffusions, where XT,y
t is characterized as the solution of an

optimal control problem. Both these treatments are restricted to diffusion processes
and use the properties of stochastic flows. In this chapter, we develop a parallel
theory for finite-state Markov signals. In fact, it appears that the theory can be
extended to general Markov signals, and we will briefly comment on this case as
well. In this section we pursue a direct approach to the theory; section 2.2 explores

35
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the stochastic control perspective. Finally, section 2.3 applies the theory to obtain
results on filter stability for the Wonham filter.

2.1.1. Change of measure for finite-state signals. In the following we
will be interested in the Radon-Nikodym derivative between the laws of two Markov
processes on a finite state space. There is a simple analog of the Girsanov theory for
this case, see [RW00, sec. IV.22]. Let us briefly develop and extend some results
along these lines that are needed in the sequel.

We work in the following context. The signal state space is S = {a1, . . . , ad},
d <∞. We let Xt be the coordinate process onD([0, T ]; S) for some T <∞, and let
µx be the measure on D([0, T ]; S) that makes Xt a Markov process with transition
intensities matrix Λ = (λij) and initial density ν. Let µ′

x be the law under which Xt

is a time-nonhomogeneous Markov process with intensities matrix Λ′(t) = (λ′ij(t)),
which we assume to be bounded, and with the same initial distribution ν. We also
assume λ′ij(t) > 0 iff λij > 0; if this is not the case, then µ′

x 6∼ µx! We now have

the following result (cf. [RW00, sec. IV.22] for a more general setup).

Proposition 2.1.1. Assume λ′ij(t) > 0 iff λij > 0. Define

γij(t) =

{

λ′ij(t)/λij i 6= j, λij > 0,
1 otherwise.

Then dµ′
x/dµx = ΥT , where Υt is the martingale (under µx) defined by

Υt = exp



−
d
∑

i,j=1

∫ t

0

λij γij(s) IXs=ai
ds





∏

0<s≤t

∑

i6=j

γij(s
−) IXs−=ai

IXs=aj
.

Proof. Let us begin by showing that Υt is martingale. Clearly Υt > 0 a.s.,
so we can define a process Nt by dNt = Υ−1

t− dΥt, N0 = 0. Using Itô’s rule, we find

Nt = 1 +
∑

0<s≤t

∑

i6=j

(γij(s
−)− 1) IXs−=ai

IXs=aj
−
∫ t

0

d
∑

i,j=1

λij γij(s) IXs=ai
ds

= 1 +
∑

i6=j

∫ t

0+

(γij(s
−)− 1) IXs−=ai

(dIXs=aj
− λij ds)

= 1 +
∑

i6=j

∫ t

0+

(γij(s
−)− 1) IXs−=ai

(

dIXs=aj
−

d
∑

k=1

λkj IXs−=ak
ds

)

.

But the integrator in the last integral is a bounded martingale (by Dynkin’s formula)
and the integrand is bounded. HenceNt is a martingale, and consequently Υt (being
the Doléans exponential of Nt) is a martingale as well. It is now evident that

µ′
x(X0 = ai) = Eµx

(ΥT IX0=ai
) = Eµx

(Eµx
(ΥT |σ{X0}) IX0=ai

) = µx(X0 = ai).

To show that Xt is a Markov process with generator Λ′(t) under µ′
x, it suffices to

show that Dynkin’s formula holds: i.e., we will show that

M ′
t(i) = IXt=ai

− IX0=ai
−

d
∑

j=1

∫ t

0

λ′ji(s) IXs=aj
ds
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is a martingale under µ′
x for any i, i.e., we need to show thatM ′

t(i)Υt is a martingale
under µx (by the Bayes formula, Lemma 1.1.1). Using the Itô rule, we have

M ′
t(i)Υt =

∫ t

0+

M ′
s−(i) dΥs +

∫ t

0+

Υs− dM
′
s−(i) + [M ′(i),Υ]t.

As Υt and M ′
t(i) are finite variation processes,

[M ′(i),Υ]t =
∑

0<s≤t

(M ′
s(i)−M ′

s−(i))(Υs −Υs−)

=
∑

0<s≤t

∑

j 6=k

Υs− (γkj(s
−)− 1) IXs−=ak

IXs=aj
(IXs=ai

− IXs−=ai
)

=
∑

0<s≤t

∑

j 6=k

Υs− (γkj(s
−)− 1)(δji − δki) IXs−=ak

IXs=aj

=
∑

j 6=k

∫ t

0+

Υs− (γkj(s
−)− 1)(δji − δki) IXs−=ak

dIXs=aj
.

But as in the proof that Nt is a martingale, we find that

N ′
t =

∑

j 6=k

∫ t

0+

Υs− (γkj(s
−)− 1)(δji − δki) IXs−=ak

(dIXs=aj
− λkj ds)

is a martingale under µx. We can now write

[M ′(i),Υ]t = N ′
t +

∑

j 6=k

∫ t

0+

Υs (λ′kj(s)− λkj)(δji − δki) IXs−=ak
ds

= N ′
t +

d
∑

j=1

∫ t

0+

Υs (λ′ji(s)− λji) IXs−=aj
ds.

But then we obtain

M ′
t(i)Υt =

∫ t

0+

M ′
s−(i) dΥs +N ′

t +

∫ t

0+

Υs−



dIXs=ai
−

d
∑

j=1

λji IXs−=aj
ds



 .

The first two terms are evidently martingales under µx, whereas the last term is a
martingale by Dynkin’s formula. Hence the proof is complete. �

Corollary 2.1.2. Suppose that there is a time-dependent vector v(t) such that

λ′ij(t) = λij
vj(t)

vi(t)
, i 6= j.

Then we can write

dµ′
x

dµx
= exp

(

d
∑

i=1

[

∫ T

0+

log vi(s−) dIXs=ai
−
∫ T

0

(Λv)i(s)

vi(s)
IXs=ai

ds

])

.
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Proof. Apply the following manipulations:

∏

0<s≤t

∑

i6=j

γij(s
−) IXs−=ai

IXs=aj
= exp





∑

0<s≤T

d
∑

i,j=1

log γij(s
−) IXs−=ai

IXs=aj





= exp





∑

0<s≤T

d
∑

i=1

log vi(s−) ∆IXs=ai



 = exp

(

d
∑

i=1

∫ T

0+

log vi(s−) dIXs=ai

)

.

The statement now follows immediately. �

Let us now introduce yet another measure µ̃x, under which Xt has the same
transition intensities matrix Λ as under µx, but a different initial distribution ν̃.
Then we have the following result.

Proposition 2.1.3. Suppose that ν̃ � ν. Then we have

dµ̃x

dµx
=
dν̃

dν
(X0) =

d
∑

i=1

ν̃i

νi
IX0=ai

.

Proof. We first check that the initial law is correct:

µ̃x(X0 = ai) = Eµx

(

ν̃i

νi
IX0=ai

)

= ν̃i.

Hence it only remains to verify that Xt has the same transition intensities, i.e., we
should check Dynkin’s formula under µ̃x: i.e.,

M i
t = IXt=ai

− IX0=ai
−

d
∑

j=1

λji

∫ t

0

IXs=aj
ds

should be a martingale under µ̃x for any i. But

Eµ̃x
(M i

t | Fs) =
Eµx

(dν̃
dν (X0)M

i
t | Fs)

Eµx
(dν̃

dν (X0) | Fs)
= Eµx

(M i
t | Fs) = M i

s,

where we have used the Bayes formula. The proof is complete. �

2.1.2. Conditional signal—forward case. We begin by introducing a use-
ful device in the treatment of smoothing problems—the dual equation [Par82].

Definition 2.1.4. The (pathwise) dual filter vi
t,T (y) is defined by

vi
t,T (y) = E

(

Z̃T (X[0,T ], y)

Z̃t(X[0,t], y)

∣

∣

∣

∣

∣

Xt = ai

)

= e−h(ai) yt E

[

exp

(

h(XT ) yT −
∫ T

t+

ys dh(Xs)−
1

2

∫ T

t

h(Xs)
2 ds

)∣

∣

∣

∣

∣

Xt = ai

]

.

Lemma 2.1.5. ṽi
t,T (y) = eh(ai) yt vi

t,T (y) solves the pathwise dual Wonham filter:

dṽi
t,T (y)

dt
= −

d
∑

j=1

λij ṽ
j
t,T (y) e(h(ai)−h(aj))yt +

1

2
h(ai)

2 ṽi
t,T (y), ṽi

T,T (y) = eh(ai)yT .
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Proof. We proceed as in the proof of Proposition 1.4.5. For y ∈ C1,

ṽi
t,T (y) = eh(ai) yt E

[

exp

(

∫ T

t

h(Xs) ẏs ds−
1

2

∫ T

t

h(Xs)
2 ds

)∣

∣

∣

∣

∣

Xt = ai

]

.

We need a time-reversed form of Dynkin’s formula [Ell86]:

IXt−=ai
= IXT−=ai

+
d
∑

j=1

∫ T

t

[

pXs=ai

pXs=aj

λij IXs=aj
− pXs=aj

pXs=ai

λji IXs=ai

]

ds+
←−
M t,

where pXt=ai
= P(Xt = ai) and

←−
M t is an F̄X

t = σ{Xs− : t ≤ s ≤ T}-adapted
backward càglàd martingale. We may presume that pX0=ai

> 0 for all i, as we
are ultimately going to condition on X0; hence pXt=ai

> 0 for all t and i, and the
equation above is well defined. We can now calculate the quantity

Ri
t = IXt−=ai

exp

(

∫ T

t

h(Xs) ẏs ds−
1

2

∫ T

t

h(Xs)
2 ds

)

using the Itô calculus backwards in time. There is no problem in doing this, as
we can just work within the usual framework with the time-reversed filtration F̄X

t ,
provided we take care to make the integrators càglàd and the integrands càdlàg
(i.e., precisely reversed compared to the time-forward theory). This gives

Ri
t = IXT−=ai

+

∫ T

t

h(ai)R
i
s ẏs ds−

1

2

∫ T

t

h(ai)
2 Ri

s ds

+

d
∑

j=1

∫ T

t

[

pXs=ai

pXs=aj

λij R
j
s −

pXs=aj

pXs=ai

λji R
i
s

]

ds+
←−
M ′

t,

where
←−
M ′

t is another backward martingale. Now note that

vi
t,T (y) =

E(Ri
t)

P(Xt = ai)
, ṽi

t,T (y) = eh(ai) yt vi
t,T (y).

Using the ordinary chain rule, we easily find

d

dt
vi

t,T (y) = −
d
∑

j=1

λij v
j
t,T (y) +

1

2
h(ai)

2 vi
t,T (y)− h(ai) v

i
t,T (y) ẏt.

It remains to use the chain rule once more, and the result is established for y ∈ C1.
To generalize to arbitrary y ∈ C0([0, T ],R), we can proceed exactly as in Proposition
1.4.5 by taking limits of smooth approximations. The required continuity property
follows in an identical manner to the proof of Proposition 1.4.4. �

We now arrive at our first characterization of the conditional signal.

Theorem 2.1.6. Under ΠT (·, y), X[0,T ] is a time-nonhomogeneous Markov pro-
cess with conditional intensities matrix and initial distribution given by

λT,y
ij (t) = λij

vj
t,T (y)

vi
t,T (y)

(i 6= j), ν̃i = ΠT (X0 = ai, y).
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Proof. Clearly log vi
t,T (y) = log ṽi

t,T (y)− h(ai) yt. By Lemma 2.1.5,

d

dt
log ṽi

t,T (y) = − (Λvt,T (y))i

vi
t,T (y)

+
1

2
h(ai)

2.

Hence we can calculate
∫ T

0+

log ṽi
t,T (y) dIXt=ai

− h(ai) IXT =ai
yT + IX0=ai

log vi
0,T (y) =

−
∫ T

0

IXt=ai
d log ṽi

t,T (y) =

∫ T

0

(Λvt,T (y))i

vi
t,T (y)

IXt=ai
dt− 1

2

∫ T

0

h(ai)
2 IXt=ai

dt.

Summing over i and rearranging, we obtain

d
∑

i=1

[

∫ T

0+

log ṽi
t,T (y) dIXt=ai

−
∫ T

0

(Λvt,T (y))i

vi
t,T (y)

IXt=ai
dt

]

= h(XT ) yT −
1

2

∫ T

0

h(Xt)
2 dt−

d
∑

i=1

IX0=ai
log vi

0,T (y).

But note also that
d
∑

i=1

∫ T

0+

h(ai) yt dIXt=ai
=

∫ T

0+

yt dh(Xt).

Hence we obtain

d
∑

i=1

[

∫ T

0+

log vi
t,T (y) dIXt=ai

−
∫ T

0

(Λvt,T (y))i

vi
t,T (y)

IXt=ai
dt

]

= h(XT ) yT −
∫ T

0+

yt dh(Xt)−
1

2

∫ T

0

h(Xt)
2 dt−

d
∑

i=1

IX0=ai
log vi

0,T (y).

Exponentiating and substituting our standard notation, we obtain

e

∑
d
i=1[
∫

T

0+
log vi

t,T (y)dIXt=ai
−
∫

T

0

(Λvt,T (y))i

vi
t,T

(y)
IXt=ai

dt]
=

Z̃T (X[0,T ], y)

E(Z̃T (X[0,T ], y)|σ{X0})
.

Next, consider the following manipulations:

E(Z̃T (X[0,T ], y)|σ{X0})
E(Z̃T (X[0,T ], y))

=

d
∑

i=1

IX0=ai

E(Z̃T (X[0,T ], y)|X0 = ai)

E(Z̃T (X[0,T ], y))

=

d
∑

i=1

IX0=ai

E(IX0=ai
Z̃T (X[0,T ], y))

E(Z̃T (X[0,T ], y))P(X0 = ai)
=

d
∑

i=1

IX0=ai

ΠT (X0 = ai, y)

P(X0 = ai)
.

Putting together all of the above, and using the pathwise Kallianpur-Striebel for-
mula, we find that

dΠT (·, y)
dµx

=
Z̃T (x, y)

∫

Z̃T (x, y)µx(dx)
=

e

∑d
i=1[
∫

T

0+
log vi

t,T (y) dIXt=ai
−
∫

T

0

(Λvt,T (y))i

vi
t,T

(y)
IXt=ai

dt]
d
∑

i=1

IX0=ai

ΠT (X0 = ai, y)

P(X0 = ai)
.
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The statement now follows from Proposition 2.1.3 and Corollary 2.1.2. �

Remark 2.1.7. One is not restricted to the interval [0, T ]: it is easy to show that

Theorem 2.1.6 extends to an arbitrary finite time interval by setting λT,y
ij (t) = λij

for t > T . Indeed, all we have to verify is that

M i
t = IXt=ai

− IX0=ai
−

d
∑

j=1

∫ t

0

λT,y
ji (s) IXs=aj

ds

is a martingale under ΠT (·, y) even for t > T , which follows immediately from the
Bayes formula and the fact that dΠT (·, y)/dµx is FT -measurable.

2.1.3. Conditional signal—time-reversed case. It is sometimes conve-
nient to work with Theorem 2.1.6 in reverse time. This gives another charac-
terization of the conditional signal.

Theorem 2.1.8. Define the càdlàg reverse time signal process X̄t such that
X̄t− = XT−t. Under ΠT (·, y), X̄[0,T ] is a time-nonhomogeneous Markov process
with conditional intensities matrix and initial distribution given by

λ̄T,y
ij (t) = λji

ΠT−t(XT−t = aj , y)

ΠT−t(XT−t = ai, y)
(i 6= j), ν̄i = ΠT (XT = ai, y).

Proof. By standard time reversal arguments, see, e.g., [Ell86], X̄t is a Markov
process with the transition intensities

λ̄T,y
ij (t) = λT,y

ji (T − t) ΠT (XT−t = aj , y)

ΠT (XT−t = ai, y)
(i 6= j).

Hence the result follows if we can establish that for any j

ΠT (XT−t = aj , y)

vj
T−t,T (y)

= K ΠT−t(XT−t = aj , y),

where K does not depend on j. This show this, write

E(Z̃T (X[0,T ], y) IXT−t=aj
) = E(E(Z̃T (X[0,T ], y)|FT−t) IXT−t=aj

)

= E

[

E

(

Z̃T (X[0,T ], y)

Z̃T−t(X[0,T−t], y)

∣

∣

∣

∣

∣

FT−t

)

Z̃T−t(X[0,T−t], y) IXT−t=aj

]

= E

[

E

(

Z̃T (X[0,T ], y)

Z̃T−t(X[0,T−t], y)

∣

∣

∣

∣

∣

XT−t = aj

)

Z̃T−t(X[0,T−t], y) IXT−t=aj

]

= vj
T−t,T (y)E(Z̃T−t(X[0,T−t], y) IXT−t=aj

).

Note that this is precisely the characterization of [Par82] of the unnormalized
smoothing density as a product of the unnormalized filter and the dual filter. Di-
viding both sides by E(Z̃T (X[0,T ], y)), we obtain

ΠT (XT−t = aj , y)

vj
T−t,T (y)

=
E(Z̃T−t(X[0,T−t], y))

E(Z̃T (X[0,T ], y))
ΠT−t(XT−t = aj , y),

which is the desired result. The proof is now complete. �
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2.1.4. Smoothing and path estimation. The characterization of the con-
ditional law of the signal process in terms of the conditional signals (in forward or
reverse time) allows us to sample signal sample paths according to the conditional
measure using a simple Monte Carlo approach. For example, one could proceed as
follows. Given an observed sample path y, one first computes Πt(Xt = ai, y) on the
interval [0, T ] using, e.g., the pathwise Wonham filter, Proposition 1.4.5. It is then
straightforward to sample paths of Xt which are distributed according to ΠT (·, y)
using Theorem 2.1.8. If X0 is deterministic, one could instead calculate ṽt,T (y)
on the interval [0, T ] using the pathwise dual Wonham filter (Lemma 2.1.5), then
apply Theorem 2.1.6. If X0 is not deterministic, Theorem 2.1.6 is not as convenient
as we would have to somehow calculate ΠT (X0 = ai, y). For a different approach
to sampling the conditional measure, see [SVW04, HSV06].

The path estimation problem becomes a smoothing problem when we restrict
to estimates at a fixed time t < T . In this context, the smoothing equations
are precisely the Kolmogorov forward (or backward) equations associated to the
conditional signals of Theorems 2.1.6 and 2.1.8. In the latter case, we obtain

d

dt
ΠT (X̄t = ai, y) =

d
∑

j=1

[

λij

πi
T−t

πj
T−t

ΠT (X̄t = aj , y)− λji

πj
T−t

πi
T−t

ΠT (X̄t = ai, y)

]

,

where we have written πi
t = Πt(Xt = ai, y). Reversing time gives

− d

dt
ΠT (Xt = ai, y) =

d
∑

j=1

[

λij
πi

t

πj
t

ΠT (Xt = aj , y)− λji
πj

t

πi
t

ΠT (Xt = ai, y)

]

.

This is a well-known smoothing equation: see [LS01, Thm. 9.5]. The conditional
signal of Theorem 2.1.6, on the other hand, gives rise to the smoothing equation

d

dt
ΠT (Xt = ai, y) =

d
∑

j=1

[

λji

vi
t,T (y)

vj
t,T (y)

ΠT (Xt = aj , y)− λij

vj
t,T (y)

vi
t,T (y)

ΠT (Xt = ai, y)

]

which does not appear to have been considered previously (to my knowledge).

Remark 2.1.9. If we are only interested in smoothing, both smoothing equa-
tions can be obtained in a more direct manner. Recall that

E(Z̃T (X[0,T ], y) IXt=ai
) = vi

t,T (y)E(Z̃t(X[0,t], y) IXt=ai
),

as established in the proof of Theorem 2.1.8. In terms of the pathwise filter τ i
t (y)

(Proposition 1.4.5) and dual filter ṽi
t,T (y) (Lemma 2.1.5), this can be written as

E(Z̃T (X[0,T ], y) IXt=ai
) = ṽi

t,T (y) τ i
t (y),

and in particular we can write

ΠT (Xt = ai, y) =
ṽi

t,T (y) τ i
t (y)

E(Z̃T (X[0,T ], y))
.

Using Proposition 1.4.5, Lemma 2.1.5, and the ordinary chain rule, we easily find

d

dt
ΠT (Xt = ai, y) =

d
∑

j=1

[

λji v
i
t,T (y)σj

t (y)− λij v
j
t,T (y)σi

t(y)

E(Z̃T (X[0,T ], y))

]

,

where we have written σi
t(y) = eh(ai)ytτ i

t (y). But recall that πi
t(y) = σi

t(y)/|σt(y)|,
so that both smoothing equations above follow directly. Theorems 2.1.6 and 2.1.8
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provide a much stronger statement, however, as they characterize the conditional
statistics of entire sample paths of the signal. They also elucidate the reason be-
hind the conspicuous fact that the smoothing equations have precisely the form of
Kolmogorov forward equations. It is not difficult, on the other hand, to establish
directly that the conditional signal is itself a Markov process (see, e.g., Lemma 2.2.3
below), so that the transition intensities of the conditional signal are in some sense
implicit when the smoothing equations are written in the above form.

2.1.5. A note on general Markov signals. The theory developed in this
chapter for finite-state signals complements the existing theory for diffusion signals
[BM82, MN03]. One could wonder whether these ideas are universal, in the sense
that the theory can be developed for an arbitrary Markov signal process under some
mild regularity conditions (thus developing and significantly extending in scope the
program initiated by R. L. Stratonovich [Str60, Str68]). In fact, all that is needed
is in essence the Kallianpur-Striebel formula (which holds under exceedingly general
circumstances) and a change of measure result in the spirit of Corollary 2.1.2.

It turns out that the latter change of measure technique is quite natural within
the context of the general theory of Markov processes; the time-homogeneous case
(v(t) is independent of time) is investigated in a recent paper by Z. Palmowski
and T. Rolski [PR02], and the extension to the time-nonhomogeneous case does
not appear to be problematic. It would thus appear that the generalization of the
theory in this section to general Markov signals is mainly of a technical nature
(e.g., one has to show that a generalized analog of vt,T (y) can be defined in such a
way that it is in the domain of the generator L of the signal, etc.) Similarly, the
stochastic control approach explored in the next section should extend naturally to
the general Markov case (in this context, see also [She85]). The details required
for the completion of this program is an interesting topic for further investigation.

2.2. On the duality between estimation and stochastic control

In the previous section we characterized the conditional law of the signal pro-
cess directly using only the Kallianpur-Striebel formula, a Girsanov-type result and
some stochastic calculus. In this section we will take a rather different point of view,
following S. K. Mitter and N. J. Newton [MN03]. The starting point is a variational
formulation of the Kallianpur-Striebel formula, which characterizes the conditional
law as the minimizer of a certain information-theoretic cost function. This mini-
mization is subsequently expressed as a stochastic optimal control problem, so that
the law of the optimally controlled signal process coincides with the conditional
law of the signal process. The optimally controlled signal is then precisely the
conditional signal process which we encountered in the previous section.

The striking similarities between linear filtering and control were noticed al-
ready by Kalman [Kal60] (see [KSH00, Ch. 15] for a modern point of view). In
the nonlinear case, it was noticed by S. K. Mitter [Mit79, Mit81] in the context of
diffusion signals that the PDE for the logarithm of the nonlinear filtering density
coincides with the Hamilton-Jacobi-Bellman equation for the value function of a
particular stochastic control problem. This observation was developed further by
W. H. Fleming and S. K. Mitter in [FM83, Mit82]. The underlying reason for
this phenomenon was not elucidated, however, until the appearance of [MN03].
We will see that similar things happen in the finite state case. The corresponding
Bellman equations are somewhat difficult to recognize using the naked eye, but
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nonetheless we will find that they emerge naturally. As before, the extension to
general Markov signals is an interesting problem for further investigation.

We begin by recalling the variational formulation of the Kallianpur-Striebel
formula from [MN03]; there is nothing new in this section, but the proof is short
and illuminating. Specializing to a finite-state signal, we then develop the con-
ditional signal theory in the forward case by converting the variational estimation
problem into a dynamic programming problem. Finally, we develop also the reverse
case. Here we depart significantly from the corresponding discussion in [MN03] for
diffusions: we will show that the reverse case follows from a time-reversed version
of the dynamic programming method used in the forward case. This seems more
natural than the treatment of [MN03] using duality with a deterministic control
problem, and emphasizes that the two conditional signals are simply time-reversed
versions of each other. (It would be interesting to compare these approaches to the
various dualities which are known in the linear case [KSH00, Ch. 15]).

2.2.1. The variational Kallianpur-Striebel formula. We follow [MN03],
which treats both a much more general model and an additional variational formula.
We will not need the latter, however, and we restrict to the finite-state signal and
white noise observation model for notational convenience.

Let us begin by introducing the “energy function”

HT (x, y) = − log Z̃T (x, y).

Then the Kallianpur-Striebel formula can be expressed as

dΠT (·, y)
dµx

=
exp(−HT (x, y))

∫

exp(−HT (x, y))µx(dx)
.

In the language of statistical mechanics, we have written the conditional measure in
the form of a Gibbs-type distribution. Let us now introduce the following notation.
Px denotes the set of all probability measures on the space of signal sample paths
D(R+; S). For two measures µ, µ̃ ∈Px we define the relative entropy

D(µ||µ̃) =

∫

log

(

dµ

dµ̃

)

dµ if µ� µ̃, +∞ otherwise.

For any measurable function H̃ on D(R+; S), we define the total information

I(H̃) = − log

(∫

exp(−H̃) dµx

)

.

Finally, we define the expectation

〈H̃, µ〉 =
∫

H̃ dµ if the integral is finite, +∞ otherwise.

We now obtain the following fundamental result.

Lemma 2.2.1 (Variational Kallianpur-Striebel formula). The conditional law
ΠT (·, y) is the unique minimizer in the variational expression

I(HT (·, y)) = min
µ̃∈Px

{D(µ̃||µx) + 〈HT (·, y), µ̃〉} .

Proof. It is not difficult to establish, along the lines of the proof of Propo-
sition 1.4.4, that I(HT (·, y)) and 〈HT (·, y),ΠT (·, y)〉 are finite quantities for any
observation sample path y ∈ C0(R+,R). Hence we obtain

D(ΠT (·, y)||µx) = −〈HT (·, y),ΠT (·, y)〉+ I(HT (·, y)).
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It remains to show that

I(HT (·, y)) < D(µ̃||µx) + 〈HT (·, y), µ̃〉

for any µ̃ ∈ Px such that µ̃ 6= ΠT (·, y). If either of the terms on the right-hand
side are infinite, then the statement is clearly true. Let us thus suppose that the
right-hand side is finite. Note that we can split the relative entropy as

D(µ̃||µx) =

∫ [

log

(

dµ̃

dΠT (·, y)

)

+ log

(

dΠT (·, y)
dµx

)]

dµ̃.

Using the Kallianpur-Striebel formula, we thus obtain

I(HT (·, y)) +D(µ̃||ΠT (·, y)) = D(µ̃||µx) + 〈HT (·, y), µ̃〉.

But by Jensen’s inequality D(µ̃||ΠT (·, y)) ≥ 0 and D(µ̃||ΠT (·, y)) is strictly convex
in µ̃ (as x logx is a strictly convex function). Hence we have strict inequality
D(µ̃||ΠT (·, y)) > 0 for µ̃ 6= ΠT (·, y), and the result follows. �

Remark 2.2.2. Mitter and Newton attach an information-theoretic interpreta-
tion to this result. They interpret I(HT (·, y)) as the total information available to
the estimator through the sample path y. On the other hand, they call the quantity
F (µ̃, y) = D(µ̃||µx) + 〈HT (·, y), µ̃〉 the “apparent information” of the estimator. In
this sense, a suboptimal estimator appears to have access to more information than
is actually available. Regardless of the information-theoretic interpretation, it is
evident from the statement of the Lemma that the optimal estimator must find a
balance between being close to the prior law µx (the relative entropy term) and
being matched to the observed data (the expected log-likelihood term). We will
find a similar structure in the associated stochastic control problem.

2.2.2. Dynamic programming—forward case. We are going to express
the minimization of Lemma 2.2.1 as an optimal control problem. It is convenient
to restrict ourselves to minimizing over measures µ̃ under which Xt is a Markov
process, as we can then use Proposition 2.1.1 to characterize any such measure that
is equivalent to µx (and clearly ΠT (·, y) must be equivalent to µx). Let us thus
begin by showing that Xt is Markov under ΠT (·, y).

Lemma 2.2.3. Xt is a Markov process under ΠT (·, y).

Proof. Let t ≤ T , and let f(X[t,∞)) be nonnegative and bounded. Then

ΠT (f(X[t,∞))|Ft, y) =
E(f(X[t,∞)) e

−HT (X[0,T ],y)|Ft)

E(e−HT (X[0,T ],y)|Ft)
.

Using that fact that Ht(X[0,t], y) is Ft-measurable, we can write

ΠT (f(X[t,∞))|Ft, y) =
E(f(X[t,∞)) e

−HT (X[0,T ],y)+Ht(X[0,t],y)|Ft)

E(e−HT (X[0,T ],y)+Ht(X[0,t],y)|Ft)
.

But note thatHT (X[0,T ], y)−Ht(X[0,t], y) is a functional ofX[t,T ] only. Hence by the
Markov property of Xt under µx, the expression above is σ{Xt}-measurable. If t >
T , then the Bayes formula gives trivially ΠT (f(X[t,∞))|Ft, y) = E(f(X[t,∞))|Ft),
which is σ{Xt}-measurable. Hence the Markov property is established. �
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Remark 2.2.4. It is trivial to establish that Xt must have the same transition
intensities under µx and ΠT (·, y) for t > T : this is an immediate consequence of
the fact that then ΠT (f(X[t,∞))|Ft, y) = E(f(X[t,∞))|Ft). We can thus restrict the
discussion below to the time interval [0, T ].

Let µ̃ be the measure on D([0, T ]; S) under which Xt has transition intensities

λ̃ij(t) and initial measure X0 ∼ ν̃. By Propositions 2.1.1 and 2.1.3, we find that

dµ̃

dµx
=
dν̃

dν
(X0) e

∑d
i,j=1[

∫
T

0+
log γij(s

−) IXs−=ai
dIXs=aj

−
∫

T

0
λij γij(s) IXs=ai

ds].

Hence we can calculate using Dynkin’s formula

D(µ̃||µx) = D(ν̃||ν) +

d
∑

i,j=1

∫ T

0

λij γij(s) (log γij(s)− 1) µ̃(Xs = ai) ds.

For notational convenience, define the function

C(ak; {γij}) =
d
∑

j=1

λkj γkj (log γkj − 1) =
∑

j 6=k

λkj γkj (log γkj − 1)− λkk .

Then we can write

D(µ̃||µx) = D(ν̃||ν) + Eµ̃

[

∫ T

0

C(Xs; {γij(s)}) ds
]

.

Similarly, we can write explicitly

〈HT (·, y), µ̃〉 = Eµ̃

[

1

2

∫ T

0

h(Xs)
2 ds+

∫ T

0+

ys dh(Xs)− h(XT ) yT

]

.

Now suppose that y ∈ C1. Then we obtain, after integrating by parts,

D(µ̃||µx) + 〈HT (·, y), µ̃〉 = Eµ̃

[

log
dν̃

dν
(X0) +

∫ T

0

C(Xs; {γij(s)}) ds

+
1

2

∫ T

0

(ẏs − h(Xs))
2 ds− 1

2

∫ T

0

(ẏs)
2 ds

]

.

By Lemma 2.2.1, the law of Xt under ΠT (·, y) can be found by minimizing this
expression with respect to ν̃ and γij(s) at least for y ∈ C1 (we can restrict to this
case, and take limits at the end of the day). But this is a stochastic optimal control
problem for a finite-state Markov chain!

Remark 2.2.5. Recall that in our observation model ẏs = h(Xs)+noise, where

Xs is the uncontrolled signal. Let us call the controlled signal X̃s. If (ẏs−h(X̃s))
2

is too large then the estimator is not doing a good job. On the other hand, if
(ẏs − h(X̃s))

2 is too small then we are likely tracking the fluctuations of the noise
rather than the signal itself. The cost above vividly reflects this intuition. The
estimator tries to minimize (ẏs−h(X̃s))

2, but penalizes a large control effort through

the C(X̃s; {γij(s)}) term in order to avoid tracking the noise. The first term of the
cost only controls the initial distribution, and we will get rid of it presently.
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To solve the control problem, we can proceed using dynamic programming. To
this end, we define the cost-to-go

J{γij}(t, ai) = Eµ̃

(

∫ T

t

[

C(Xs; {γij(s)}) + h(Xs) ( 1
2h(Xs)− ẏs)

]

ds

∣

∣

∣

∣

∣

Xt = ai

)

.

Note that we can optimize separately over γij(s) and ν̃: after all,

D(µ̃||µx) + 〈HT (·, y), µ̃〉 = D(ν̃||ν) +
d
∑

i=1

ν̃i J{γij}(0, ai).

Hence the optimal γij(s) can be found by minimizing J{γij}(0, ai). Now define the

value function V (t, ai) = min{γij} J
{γij}(t, ai). Standard dynamic programming

arguments suggest that V (t, ai) should satisfy the Bellman equation

− d

dt
V (t, ai) =

min
{γij}





∑

j 6=i

λij γij (V (t, aj)− V (t, ai)) + C(ai; {γij})



+ h(ai) ( 1
2h(ai)− ẏt),

with the terminal condition V (T, ai) = 0; moreover, we expect that the optimal
control γ∗ij(t) will be given by

{γ∗ij(t)} = argmin
{γij}





∑

j 6=i

λij γij (V (t, aj)− V (t, ai)) + C(ai; {γij})



 .

Following a standard device of stochastic control theory, we will justify these state-
ments by proving an appropriate verification lemma.

Lemma 2.2.6. Suppose there exists {γ∗ij(t)} and V : [0, T ]× S→ R such that

(1) For all t ∈ [0, T ] and i = 1, . . . , d, the function V satisfies

d

dt
V (t, ai) +

∑

j 6=i

λij γ
∗
ij(t) (V (t, aj)− V (t, ai))

+ C(ai; {γ∗ij(t)}) + h(ai) ( 1
2h(ai)− ẏt) = 0.

(2) For all t ∈ [0, T ] and i = 1, . . . , d, and any {γij(t)}, V satisfies

d

dt
V (t, ai) +

∑

j 6=i

λij γij(t) (V (t, aj)− V (t, ai))

+ C(ai; {γij(t)}) + h(ai) ( 1
2h(ai)− ẏt) ≥ 0.

(3) For all i = 1, . . . , d, V satisfies the terminal condition V (T, ai) = 0.

Then V (t, ai) = min{γij} J
{γij}(t, ai) and {γ∗ij} ∈ argmin{γij} J

{γij}(t, ai).

Proof. The basic idea is to evaluate the quantity V (t,Xt). Using Dynkin’s
formula and the chain rule, we find that

V (T,XT ) = V (t,Xt) +

∫ T

t

[

∂

∂s
V (s,Xs) + L

{γij(s)}V (s,Xs)

]

ds+MT −Mt,



48 2. FILTER STABILITY AND CONDITIONAL SIGNALS: FINITE STATE SPACE

where MT is a martingale under µ̃ and the generator L {γij} is defined as

L
{γij}f(ai) =

∑

j 6=i

λij γij (f(aj)− f(ai)).

Rearranging, taking the expectation, and using part (3), we find that

V (t, ai) = Eµ̃

[

∫ T

t

{

− ∂

∂s
V (s,Xs)−L

{γij(s)}V (s,Xs)

}

ds

∣

∣

∣

∣

∣

Xt = ai

]

.

First, suppose that γij(t) = γ∗ij(t). Then we obtain, from part (1) of the statement

of the Lemma, that V (t, ai) = J{γ∗
ij}(t, ai). For any γij(t), on the other hand, we

find from part (2) that V (t, ai) ≤ J{γij}(t, ai). Hence we have established that

V (t, ai) = J{γ∗
ij}(t, ai) ≤ J{γij}(t, ai)

for any control strategy {γij}. The result follows immediately. �

Let us now proceed to evaluate these expressions explicitly. The minimum in
the Bellman equation is easily calculated; we find that

γ∗ij(t) = exp(V (t, ai)− V (t, aj)).

Substituting into the Bellman equation, we find the equation

d

dt
V (t, ai) =

d
∑

j=1

λij e
V (t,ai)−V (t,aj) − 1

2
h(ai)

2 + h(ai) ẏt.

In particular, note that we have

d

dt
e−V (t,ai) = −

d
∑

j=1

λij e
−V (t,aj) +

1

2
h(ai)

2 e−V (t,ai) − h(ai) e
−V (t,ai) ẏt.

Comparing with the identical expression in the proof of Lemma 2.1.5, we can con-
clude that evidently the value function for our control problem is given by the
expression V (t, ai) = − log vi

t,T (y).

Remark 2.2.7. This should not come as a surprise, as it can be concluded
directly from Lemma 2.2.1: indeed, it is easily verified that

V (t, ai) = min
µ̃∈Pt

x

{

D(µ̃||µt,i
x ) + 〈HT (·, y)−Ht(·, y), µ̃〉

}

,

where Pt
x denotes the set of probability measures on D([t, T ]; S) and µt,i

x ∈ Pt
x

denotes the measure under which Xs is a Markov process with transition intensities
λij and initial state Xt = ai a.s. Hence by Lemma 2.2.1, V (t, ai) = − log vi

t,T (y).

We are now essentially done: after all, we have found that

λ̃ij(t) = λij γ
∗
ij(t) = λij

vj
t,T (y)

vi
t,T (y)

are the transition intensities of the Markov process Xt under ΠT (·, y), which is
precisely the statement of Theorem 2.1.6 (the corresponding initial distribution
ΠT (X0 = ai, y) is a tautology). We see that this result emerges naturally in the
variational/stochastic control perspective adopted in this section from the mini-
mization of the cost function J{γij}(0, ·).

We are still missing one technical detail: we have only established the result for
y ∈ C1. This is not an issue, however. A simple limiting argument, of the type we
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have frequently used in the previous sections, can be used to extend the result to
all observation paths. The details are straightforward and we will omit them here.

2.2.3. Dynamic programming—time-reversed case. Having obtained a
forward characterization of the conditional signal, we could proceed to reverse time
exactly as in section 2.1.3. Here, however, we are interested in the variational
characterization of the conditional signals. Let us thus show how the time-reversed
conditional signal can be obtained directly from the solution of a reverse time
stochastic control problem. In essence, we proceed exactly as in the forward case,
only using the reverse time signal X̄t defined in Theorem 2.1.8 with its reversed
filtration F̄t = σ{X̄s : 0 ≤ s ≤ t} instead of the usual signal process (Xt,Ft).

Lemma 2.2.8. (X̄t, F̄t) is a Markov process under ΠT (·, y).

Proof. The proof is identical to that of Lemma 2.2.3. �

Now recall that under µx, X̄t has transition intensities and initial measure

λ̄ij(t) = λji
µx(XT−t = aj)

µx(XT−t = ai)
= λji

pX̄t=aj

pX̄t=ai

, ν̄i = µx(XT = ai) = pX̄0=ai
,

see, e.g., [Ell86]. Now let µ̃ be the measure on D([0, T ]; S) under which X̄t has

transition intensities λ̃ij(t) = λ̄ij(t) γij(t) (i 6= j) and initial measure ν̃. Then

dµ̃

dµx
=
dν̃

dν̄
(X̄0) e

∑
d
i,j=1[

∫
T

0+
log γij(s

−) IX̄s−=ai
dIX̄s=aj

−
∫

T

0
λ̄ij (s) γij (s) IX̄s=ai

ds]
.

This follows, as usual, from Propositions 2.1.1 and 2.1.3 (nothing changes in the
proofs of these results if we reverse time or have time-dependent intensities under
the prior measure µx). Using Dynkin’s formula, we calculate explicitly

D(µ̃||µx) = D(ν̃||ν̄) +

d
∑

i,j=1

∫ T

0

λ̄ij(s) γij(s) (log γij(s)− 1) µ̃(X̄s = ai) ds.

For notational convenience, define the function

C̄t(ak; {γij}) =
d
∑

j=1

λ̄kj(t) γkj (log γkj − 1).

Now suppose that y ∈ C1. Then we obtain, after integrating by parts,

D(µ̃||µx) + 〈HT (·, y), µ̃〉 = Eµ̃

[

log
dν̃

dν̄
(X̄0) +

∫ T

0

C̄s(X̄s; {γij(s)}) ds

+
1

2

∫ T

0

(ẏT−s − h(X̄s))
2 ds− 1

2

∫ T

0

(ẏT−s)
2 ds

]

.

By Lemma 2.2.1, the law of X̄t under ΠT (·, y) can be found by minimizing this
expression with respect to ν̃ and γij(s) at least for y ∈ C1. Hence everything is
exactly as in the previous section. Introduce the cost-to-go

J̄{γij}(t, ai) = Eµ̃

[

∫ T

t

[

C̄s(X̄s; {γij(s)}) + h(X̄s) ( 1
2h(X̄s)− ẏT−s)

]

ds

∣

∣

∣

∣

∣

X̄t = ai

]
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and the associated value function V̄ (t, ai) = min{γij} J̄
{γij}(t, ai). Proceeding as in

the previous section, we find that

{γ∗ij} = argmin
{γij}

J̄{γij}(t, ai), γ∗ij(t) = exp(V̄ (t, ai)− V̄ (t, aj)),

and that the value function satisfies the ODE

d

dt
V̄ (t, ai) =

d
∑

j=1

λ̄ij(t) e
V̄ (t,ai)−V̄ (t,aj) − 1

2
h(ai)

2 + h(ai) ẏT−t.

Can we make sense of this quantity? Let us look at Lemma 2.2.1 for some guidance.
It is not difficult to see that V̄ (t, ai) is characterized by

V̄ (t, ai) = min
µ̃∈P̄t

x

{

D(µ̃||µ̄t,i
x ) + 〈HT−t(·, y), µ̃〉

}

,

where P̄t
x denotes the set of probability measures on D([0, T − t]; S) and µ̄t,i

x ∈ P̄t
x

denotes the measure under which X̄s is a Markov process with the same transition
intensities as under µx, but with initial state X̄t = ai a.s. Hence by Lemma 2.2.1

V̄ (t, ai) = − logEµx
[e−HT−t(X[0,T−t],y) |XT−t = ai] = − log

[

σi
T−t(y)

µx(XT−t = ai)

]

.

Let us verify this explicitly. Using the ODE for V̄ (t, ai) above, we find

d

dt
e−V̄ (T−t,ai) =

d
∑

j=1

pXt=aj

pXt=ai

λji (e−V̄ (T−t,aj) − e−V̄ (T−t,ai))

− 1

2
h(ai)

2 e−V̄ (T−t,ai) + h(ai) e
−V̄ (T−t,ai) ẏt.

In anticipation of the result, define σi
t(y) = pXt=ai

e−V̄ (T−t,ai). Using the chain
rule, we find the expression

d

dt
σi

t(y) =

d
∑

j=1

λji σ
j
t (y)−

1

2
h(ai)

2 σi
t(y) + h(ai)σ

i
t(y) ẏt.

This is precisely the correct answer, compare with the proof of Proposition 1.4.5.
What have we achieved? Using our newfound expression for V̄ (t, ai), we can write

γ∗ij(t) = exp(V̄ (t, ai)− V̄ (t, aj)) =
σj

T−t(y)

σi
T−t(y)

pXT−t=ai

pXT−t=aj

=
πj

T−t(y)

πi
T−t(y)

pXT−t=ai

pXT−t=aj

(the latter equality follows from πi
t(y) = σi

t(y)/|σt(y)|). Hence under ΠT (·, y), the
process X̄t is a Markov process with transition intensities matrix

λ̃ij(t) = λ̄ij(t) γ
∗
ij(t) = λji

πj
T−t(y)

πi
T−t(y)

.

We have thus reproduced also the statement of Theorem 2.1.8 from the stochastic
control perspective (at least for y ∈ C1, which is generalized in a straightforward
manner). The corresponding cost was given by J̄{γij}(0, ·).
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2.2.4. Some more variations on the same theme. In the papers [Mit81,

FM83, Mit82], the connection between nonlinear filtering and stochastic control
was made by observing that in the case of diffusion signals, the logarithm of the
unnormalized (pathwise) filtering density satisfies a Hamilton-Jacobi-Bellman PDE.
Such equations have a characteristic form and it is not difficult to reconstruct an
underlying control problem. In the finite state space case the Bellman equations
are not as easily recognizable using the naked eye (but see [She85]). Nonetheless,
the logarithm of the unnormalized filter can be expressed as a Bellman equation,
just like in the diffusion case. Let us take a moment to deduce these equations,
and hence the corresponding control problems for which the logarithm of the filter
is the value function, from the results obtained in the previous sections.

In the previous section, we established that

V̂ (t, ai) = − logσi
T−t(y) = V̄ (t, ai)− log pX̄t=ai

,

where σi
T−t(y) is the unnormalized filter (it could be obtained from the Zakai equa-

tion if we were not interested in the pathwise form). Let us define

γ̂ij(t) = γij(t)
pX̄t=aj

pX̄t=ai

, Ĵ{γ̂ij}(t, ai) = J̄{γij}(t, ai)− log pX̄t=ai
.

Then it is evidently the case that

λ̃ij(t) = λji γ̂ij(t) (i 6= j), V̂ (t, ai) = min
{γ̂ij}

Ĵ{γ̂ij}(t, ai).

Call Q(t, ai) = − log pX̄t=ai
. Using Dynkin’s formula, we can write

Q(T, X̄T ) = Q(t, X̄t) +

∫ T

t

G(s, X̄s) ds+MT −Mt,

where Mt is an F̄t-martingale under µ̃ and

G(t, ai) =
∑

j 6=i

λ̄ij(t) γij(t) log

(

pX̄t=ai

pX̄t=aj

)

− λ̄ii(t) + λii.

Rearranging and taking the conditional expectation, we find that

Q(t, ai) = Eµ̃

[

Q(T, X̄T )−
∫ T

t

G(s, X̄s) ds

∣

∣

∣

∣

∣

X̄t = ai

]

.

Using Ĵ{γ̂ij}(t, ai) = J̄{γij}(t, ai) +Q(t, ai), we obtain

Ĵ{γ̂ij}(t, ai) =

Eµ̃

[

∫ T

t

[

Ĉ(X̄s; {γ̂ij(s)}) + h(X̄s) ( 1
2h(X̄s)− ẏT−s)

]

ds+Q(T, X̄T )

∣

∣

∣

∣

∣

X̄t = ai

]

where we have written

Ĉ(ak; {γ̂ij(t)}) = C̄s(ak; {γij(t)})−G(t, ak) =
d
∑

j=1

λjk γ̂kj(t) (log γ̂kj(t)− 1).

We see that minus the logarithm of the unnormalized filter is the value function

of the stochastic control problem of minimizing Ĵ{γ̂ij}(t, ai). Unlike the control
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problems of the previous sections, this control problem has a terminal costQ(T, X̄T )
as well as a running cost. The associated Bellman equation is given by

− d

dt
V̂ (t, ai) =

min
{γ̂ij}





∑

j 6=i

λji γ̂ij (V̂ (t, aj)− V̂ (t, ai)) + Ĉ(ai; {γ̂ij})



+ h(ai) ( 1
2h(ai)− ẏT−t),

with the terminal condition V̂ (T, ai) = Q(T, ai).
To check the result, let us verify explicitly that this Bellman equation reduces

to the equation for minus the logarithm of the unnormalized filter. The minimum
in the Bellman equation is easily seen to be attained at

γ̂∗ij(t) = exp(V̂ (t, ai)− V̂ (t, aj)).

Hence we obtain

d

dt
V̂ (t, ai) =

d
∑

j=1

λji e
V̂ (t,ai)−V̂ (t,aj) − 1

2
h(ai)

2 + h(ai) ẏT−t.

Using the chain rule, we now calculate

d

dt
e−V̂ (T−t,ai) =

d
∑

j=1

λji e
−V̂ (T−t,aj) − 1

2
h(ai)

2 e−V̂ (T−t,ai) + h(ai) e
−V̂ (T−t,ai) ẏt,

which is precisely the equation for e−V̂ (T−t,ai) = σi
t(y). Hence the equation for

− logσi
T−t(y) is indeed a Bellman equation just like in the diffusion case, and we

have constructed the corresponding control problem above.

Remark 2.2.9. Note that the controlled signal process for this control problem
is still the time-reversed conditional signal; i.e., its law is given by ΠT (·, y). After
all, we have done nothing to change the optimum of the control problem; we have
only performed a change of variables, shifting the cost J̄ and rescaling the control
parameters γij by constants. We are thus free to choose either this formulation, or
the one of the previous section, if we are interested in the conditional signal. The
formulation of the previous section follows directly from the variational Kallianpur-
Striebel formula, while this section makes the connection to the earlier literature
(where the interpretation of the controlled signal as the conditional signal is absent).

Finally, we consider the control problem for which the logarithm of the pathwise
Wonham filter τ i

t (y) is the value function (compare the following to the expressions
in [Mit81, FM83] for diffusions). Recall that τ i

t (y) = e−h(ai)ytσi
t(y), so that

Ṽ (t, ai) = − log τ i
T−t(y) = V̂ (t, ai) + h(ai) yT−t.

By this point, the way forward should not come as a surprise. We calculate

0 = h(X̄T ) y0 = h(X̄t) yT−t +

∫ T

t

G̃(s, X̄s) ds+ M̃T − M̃t,

where M̃t is an F̄t-martingale under µ̃ and

G̃(t, ai) = −h(ai) ẏT−t +
∑

j 6=i

λji γ̂ij(t) (h(aj)− h(ai)) yT−t.
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Taking the conditional expectation, we obtain

h(ai) yT−t = Eµ̃

[

−
∫ T

t

G̃(s, X̄s) ds

∣

∣

∣

∣

∣

X̄t = ai

]

.

Hence we can write

J̃{γ̂ij}(t, ai) = Ĵ{γ̂ij}(t, ai) + h(ai) yT−t =

Eµ̃

[

∫ T

t

[

C̃s(X̄s; {γ̂ij(s)}) +
1

2
h(X̄s)

2

]

ds+Q(T, X̄T )

∣

∣

∣

∣

∣

X̄t = ai

]

,

where we have written

C̃t(ak; {γ̂ij}) =

d
∑

j=1

λjk γ̂kj [log γ̂kj + (h(ak)− h(aj)) yT−t − 1] .

Evidently Ṽ (t, ai) = min{γ̂ij} J̃
{γ̂ij}(t, ai) is the value function for the stochastic

control problem of minimizing the cost J̃{γ̂ij}(0, ·).
Remark 2.2.10. Note that unlike in the previous control problems, this cost

is not restricted to y ∈ C1 as the derivative term ∝ ẏt has been transformed away.
This is entirely in the spirit of the pathwise filtering theory, and could be a possible
advantage of working with this form of the control problem.

It remains to find the corresponding Bellman equation. This is easily done:

− d

dt
Ṽ (t, ai) = min

{γ̂ij}





∑

j 6=i

λji γ̂ij (Ṽ (t, aj)− Ṽ (t, ai)) + C̃t(ai; {γ̂ij})



+
1

2
h(ai)

2,

with the terminal condition Ṽ (T, ai) = Q(T, ai). For completeness, let us check
once more that this is indeed the correct equation. The minimum in the Bellman
equation is attained at

γ̂∗ij(t) = exp(Ṽ (t, ai)− Ṽ (t, aj) + (h(aj)− h(ai)) yT−t).

Hence we obtain

d

dt
Ṽ (t, ai) =

d
∑

j=1

λji e
Ṽ (t,ai)−Ṽ (t,aj)e(h(aj)−h(ai)) yT−t − 1

2
h(ai)

2,

and in particular we find that

d

dt
e−Ṽ (T−t,ai) =

d
∑

j=1

e−Ṽ (T−t,aj) λji e
(h(aj)−h(ai)) yt − 1

2
h(ai)

2 e−Ṽ (T−t,ai).

This is precisely the pathwise Wonham filter, see Proposition 1.4.5.

2.3. Exponential stability of the Wonham filter

2.3.1. Filter stability. In this section we are going to apply the results of
the previous sections to the filter stability problem. Let us begin by describing
what we are trying to achieve.

Consider, for example, the Wonham filter:

dπt = Λ∗πt dt+ (H − h∗πt)πt (dYt − h∗πt dt), π0 = ν.
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The solution πt of this equation satisfies πi
t = P(Xt = ai|FY

t ) a.s. if the signal
process Xt is a finite-state Markov process with initial measure P(X0 = ai) = νi,
and the observations Yt are given by the usual expression. In practice, however, we
may not know exactly what the initial measure ν is. Hence we could erroneously
process the observations Yt using a filter with the wrong initial condition:

dπt(µ) = Λ∗πt(µ) dt+ (H − h∗πt(µ))πt(µ) (dYt − h∗πt(µ) dt), π0 = µ.

πt(µ) is no longer the least-mean-square estimate of the signal process Xt with ini-
tial measure ν. However, it is intuitively plausible that the initial measure should
not contribute much to the estimate of the signal at time t for large t: the informa-
tion obtained from the observations should supersede the prior information of the
signal. Hence one could hope that the wrongly initialized filter πt(µ) will converge
to the optimal filter πt as t→∞.

To study the wrongly initialized filter, it is useful to understand the meaning
of this quantity. Throughout this thesis, we will use three different representations
of the wrongly initialized filter. Let us list them here.

(1) πt(µ) is the solution of the Wonham equation with the initial condition
π0(µ) = µ; i.e., the wrongly initialized filter is characterized as the solution
of a certain stochastic differential equation.

(2) Note that the Wonham filter with initial condition µ would in fact be the
optimal filter, if only the signal process Xt had initial measure µ. Let
us call Pµ the measure under which this is the case. If µ � ν, then we
obtain using Proposition 2.1.3 and the Bayes formula

πi
t(µ) = Pµ(Xt = ai|FY

t ) =
E(dµ

dν (X0) IXt=ai
|FY

t )

E(dµ
dν (X0)|FY

t )
.

(3) Similarly, we can write using the Kallianpur-Striebel formula

πi
t(µ) =

Eµ(Zt(X[0,t], y) IXt=ai
)

Eµ(Zt(X[0,t], y))
,

or using Z̃t(x, y) instead of Zt(x, y) if a pathwise version is desired.

All three representations have their advantages and disadvantages. The first rep-
resentation is practically motivated: the filter is implemented using a differential
equation, so that operationally the wrongly initialized filter is the solution of this
equation with the wrong initial condition. A disadvantage of this representation is
that it is not probabilistic, i.e., it is divorced from the underlying estimation prob-
lem, which makes the direct analysis of this equation more challenging. The second
representation is probabilistic in nature, and directly demonstrates the connection
between the wrongly initialized filter and a smoothing problem. A disadvantage of
this representation is that it only makes sense for absolutely continuous initial dis-
tributions µ� ν. The third representation is also probabilistic in nature, but does
not suffer from this problem. The drawback compared to the second representation
is that the dependence on the initial condition is not as explicit.

Note that the first and third representations are equivalent for µw-a.e. obser-
vation sample path (and hence Pµ- and Pν-a.s., as the Kallianpur-Striebel formula
demonstrates that these measures are equivalent to the Wiener measure when re-
stricted to the σ-algebra generated by the observation sample paths). All three
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representations are equivalent if µ � ν. With this in mind, we may use any com-
bination of these representations to study the filter stability problem.

2.3.2. Exponential stability: A coupling proof. In this section we will
reformulate the filter stability problem, using the third representation above, in
terms of the conditional signal theory studied in the first part of the chapter. We
will see that this provides an intuitive way to study filter stability, and will allow
us to obtain an explicit exponential bound on the filtering error.

Let us denote by Πµ
t (·, y) the pathwise conditional measure on D(R+; S) for the

case where the unconditional signal process Xt has initial measure µ and transition
intensities matrix Λ. To be precise,

Πµ
t (A, y) =

Eµ(IA Z̃t(X[0,t], y))

Eµ(Z̃t(X[0,t], y))
.

We have seen above (Theorem 2.1.6) that under Πµ
t (·, y), the signal process Xt is

again a Markov process with transition intensities and initial measure (for t ≤ T )

λt,y
ij (s) = λij

vj
s,t(y)

vi
s,t(y)

(i 6= j), µ̃i = Πµ
t (X0 = ai, y).

Now note the following key point:

The dual filter vi
s,t(y) is independent of the initial measure µ of

the signal process.

This is true by construction, as the dual filter is obtained by conditioning on the
initial point of the signal—see Definition 2.1.4. As a consequence, the signal process
Xt has the same transition intensities under Πµ

t (·, y) and Πν
t (·, y), and only the

respective initial measures differ. Hence in order to prove exponential stability of
the filter, it would be sufficient to prove that the Markov process with transition
intensities λt,y

ij (s) is geometrically ergodic. This is precisely what we will do, using

a coupling approach similar to that of D. Griffeath [Gri75].

Proposition 2.3.1. The following holds for any y ∈ C0(R+,R) and t <∞:

d
∑

k=1

|Πµ
t (Xt = ak, y)− Πν

t (Xt = ak, y)| ≤ 2 exp

(

−
∫ t

0

min
i6=j
{λt,y

ij (s) + λt,y
ji (s)} ds

)

.

Proof. Fix y ∈ C0(R+; R). We are interested in studying the relative behavior

of two Markov processes with equal transition intensities λt,y
ij (s) (s ≤ t) but different

initial measures Πµ
t (X0 = ai, y) and Πν

t (X0 = ai, y). To this end, let us construct
two such processes on the same probability space. That is, we introduce a space
(Ω,F ,Pc), on which are defined two stochastic processes X1

s and X2
s , such that

both X1
s and X2

s have transition intensities λt,y
ij (s) for s ≤ t and 0 for s > t,

Pc(X
1
0 = ai) = Πµ

t (X0 = ai, y), and Pc(X
2
0 = ai) = Πν

t (X0 = ai, y).
We would like to bound

∑

i |Π
µ
t (Xt = ai, y)−Πν

t (Xt = ai, y)|. Note that

d
∑

i=1

|Πµ
t (Xt = ai, y)−Πν

t (Xt = ai, y)|

= 2 max
A⊂S

|Πµ
t (Xt ∈ A, y)−Πν

t (Xt ∈ A, y)|

= 2 max
A⊂S

|Pc(X
1
t ∈ A)−Pc(X

2
t ∈ A)|
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= 2 max
A⊂S

|Pc(X
1
t ∈ A,X1

t = X2
t ) + Pc(X

1
t ∈ A,X1

t 6= X2
t )

−Pc(X
2
t ∈ A,X1

t = X2
t )−Pc(X

2
t ∈ A,X1

t 6= X2
t )|

= 2 max
A⊂S

|Pc(X
1
t ∈ A,X1

t 6= X2
t )−Pc(X

2
t ∈ A,X1

t 6= X2
t )|

≤ 2 max
A⊂S

Ec(|IX1
t ∈A − IX2

t ∈A| IX1
t 6=X2

t
)

≤ 2Pc(X
1
t 6= X2

t ),

where we have used the usual identity of the `1-norm and the total variation norm.
The basic idea behind the coupling method [Lin02] is now as follows. Suppose that
Pc is such that there is some random time ζ, called the coupling time, such that
X1

t = X2
t a.s. for all t ≥ ζ. Then Pc(X

1
t = X2

t ) ≥ Pc(t ≥ ζ), and hence

d
∑

i=1

|Πµ
t (Xt = ai, y)−Πν

t (Xt = ai, y)| ≤ 2Pc(X
1
t 6= X2

t ) ≤ 2Pc(t < ζ).

This is the well-known coupling inequality. Our goal is to choose a convenient
measure Pc under which we can obtain an explicit bound on Pc(t < ζ).

We will now construct a convenient measure Pc. Let (X1
t , X

2
t ,Ξt) be a Markov

process on (Ω,F ,Pc) with the state space S = S × S × {0, 1}, initial measure
Πµ

t (X0 ∈ ·, y)×Πν
t (X0 ∈ ·, y)×δ{0}, and the following nonzero transition intensities:

u ∈ S v ∈ S intensity ξuv(s)

(j, j, 0) λt,y
ij (s)

(i, i, 0) (i, i, 1) κ(s)

(i, i, 0) λt,y
ii (s)− κ(s)

(i, i, 1) λt,y
ji (s)κ(s)/κij(s)

(i, i, 0) λt,y
ji (s) (1− κ(s)/κij(s))

(j, j, 1) λt,y
ij (s)κ(s)/κij(s)

(i, j, 0) (j, j, 0) λt,y
ij (s) (1− κ(s)/κij(s))

(i, k, 0) λt,y
jk (s)

(k, j, 0) λt,y
ik (s)

(i, j, 0) λt,y
ii (s) + λt,y

jj (s)

(i, i, 1) (j, j, 1) λt,y
ij (s)

(i, i, 1) λt,y
ii (s)

Here we have used i 6= j 6= k, κij(s) = λt,y
ij (s) + λt,y

ji (s), and κ(s) = mini 6=j κij(s).

It is easily verified that the marginal processes X1
t and X2

t are themselves Markov
processes with the correct statistics, whereas Ξt is a Markov process on {0, 1}
with transition intensities χ01(s) = κ(s) and χ10(s) = 0. Ξt serves as a coupling
indicator: Ξt only switches once, from zero to one, and after that time X1

t = X2
t

a.s. Hence evidently ζ = inf{t > 0 : Ξt = 1} may serve as the coupling time. But
Ξt is an exceedingly simple Markov process, and we easily evaluate explicitly

Pc(t < ζ) = Pc(Ξt = 0) = exp

(

−
∫ t

0

κ(s) ds

)

.

The statement now follows immediately from the coupling inequality. �
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Corollary 2.3.2. The following bound always holds a.s.:

|πt(µ)− πt(ν)| ≤ 2 exp

(

−2 t min
i6=j

√

λijλji

)

.

Proof. This follows from the following simple identity:

λt,y
ij (s) + λt,y

ji (s) = λij

vj
s,t(y)

vi
s,t(y)

+ λji

vi
s,t(y)

vj
s,t(y)

≥ inf
x>0

{

λij x+ λji
1

x

}

= 2
√

λijλji.

The proof is complete. �

This result should be compared with [BCL04, Thm. 4.3], which has the same
exponential rate but a prefactor that blows up as µ or ν approach the boundary
of the simplex. The constant prefactor 2 is a significant improvement, and shows
that nothing bad happens even when the two initial measures are mutually singular
(as we will see in chapter 3, the derivative of the filter with respect to its initial
condition does not share this nice property).

Remark 2.3.3. The bound can be improved a little more; see Remark 3.3.5.

In all fairness, it should be noted that the conditional signal theory is not key to
this improvement: the important difference between our result and that of [BCL04]
is that we use the forward rather than the time reverse characterization of the con-
ditional signal. As noted in Remark 2.1.9, the forward smoothing equation (i.e., the
Kolmogorov forward equation of the forward conditional signal) can be obtained by
more elementary means, after which the bound of Corollary 2.3.2 could be obtained
through direct analysis of this ODE similar to [BCL04]. Nonetheless, I think that
the conditional signal point of view is valuable. First, it gives a completely prob-
abilistic proof of the stability result, with a very intuitive interpretation. Second,
it is very close in spirit to the method which we will employ to obtain stability
bounds for diffusions (in that case a natural “coupling” is provided by the theory
of stochastic flows), so that a parallel development of the finite state case is quite
insightful. Finally, a parallel development of the finite state and diffusion cases
suggests that we might be able to combine these results to obtain filter stability
bounds for hybrid signals consisting of a diffusion and a switching component. Such
signals are important in applications and require further investigation.

Finally, we note that the exponential rate in Corollary 2.3.2 depends only on
the transition intensities of the signal process, and not on the observation structure.
This does not capture the intuitive idea that the stability of the filter should improve
if the signal-to-noise ratio increases (this need not always be the case, however:
see the examples in [DZ91, VM06]). The observation function only enters the
statistics of the conditional signal through the dual filter, however, so that in order
to include the effect of the observations we would have to quantify the dependence
of the dual filter on the observation structure. This adds significant difficulty to
the problem. It is even unclear whether a bound of the form of Corollary 2.3.2
can be significantly improved; even if a high signal-to-noise ratio leads to improved
stability for a typical observation sample path, this does not necessarily imply that
such a bound can be obtained for any y ∈ C0(R+; R).

In the diffusion case (chapter 4) we will nonetheless obtain pathwise upper
bounds on filter stability. As emphasized above, this requires an analysis of the
dependence of the generator of the conditional signal on the observation structure.
It will turn out that it is easier to quantify the dependence of the filter on the
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observations than to quantify the dependence of the dual filter on the observations.
As such it will pay off, unlike in the case of Corollary 2.3.2, to use the time-reversed
conditional signal. There we will also put the stochastic control formulation to good
use, as it will play a central role in the analysis of the conditional generator.



CHAPTER 3

Model Robustness of the Nonlinear Filter: Finite

State Space

3.1. Introduction

In the previous chapter, we showed that the Wonham filter started from the
wrong initial condition converges at an exponential rate 2 mini6=j(λijλji)

1/2 to the
Wonham filter started from the correct initial condition. This bodes well for the
applicability of the Wonham filter: even if we do not know the initial measure
exactly this would not matter on the long run, provided of course that the rate
above is positive. The latter requires the mixing condition λij > 0 for all i 6= j,
which we will assume throughout this chapter.

The initial measure is not the only model parameter, however, that is needed
as input for the filter. In practice, any of the parameters that determine our model
are likely to be at least slightly misspecified: the transition intensities λij for a
particular signal source and the observation function h for a particular measurement
device are rarely known precisely, and we can only do our best to characterize them.
Unlike the misspecification of the initial measure, which introduces an error at time
t = 0 only, it is clear that any errors in Λ or h are continuously perpetrated by the
misspecified filter. Hence such a filter can never become optimal as t → ∞. This
need not be a major problem, as long as the error can be made sufficiently small
when Λ and h are sufficiently well characterized. The danger, however, is the the
errors could accumulate over time, making the filter essentially useless after a short
and potentially uninteresting transient period. This sort of behavior is very common
in numerical approximations—for example, approximations of differential equations
typically have errors that grow rapidly in time—but would be quite unacceptable
in most signal processing applications.

The goal of this chapter is to show that this accumulation of errors can not
occur—i.e., even if we misspecify Λ, h and ν, the error remains bounded on the
infinite time interval and can be made arbitrarily small if the error in the model
parameters is sufficiently small. In section 0.1.5 we gave some intuition as to why
this should be the case in a discrete time setting. When the filter is exponentially
stable, it has a mechanism to suppress the error made in every time step, and
when this suppression happens at an exponential rate the total error is summable
as a geometric series. The method which we will use in the continuous time case
is based on similar ideas; the actual implementation of these ideas is much more

This chapter is based on the paper “Model robustness of finite state nonlinear filtering over
the infinite time horizon” by Pavel Chigansky and the author [CV06].
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subtle, however, and requires a different set of tools. To get some intuition for the
problems we will be faced with, let us begin by running through the argument in a
toy deterministic example.

3.1.1. A little deterministic intuition. Let us forget about filtering for
the moment and consider the simpler problem of approximating a deterministic,
time-nonhomogeneous differential equation. Let us define

dxt

dt
= f(t, xt), xt ∈ Rn.

We denote by ϕs,t(x) the solution xt of this equation when it is started at the initial
condition xs = x (s ≤ t). We will suppose that f is sufficiently regular so that the
flow ϕs,t(x) exists, is unique, and is a diffeomorphism for all 0 ≤ s ≤ t <∞. Now
consider another differential equation

dx̃t

dt
= f̃(t, x̃t), x̃t ∈ Rn,

where again we assume that f̃ is sufficiently regular so that this equation generates
a nice flow ϕ̃s,t(x) as above. We are now interested in obtaining a bound on the

error ‖xt − x̃t‖ = ‖ϕ0,t(x) − ϕ̃0,t(x)‖ in terms of the distance between f and f̃ .
This means we need to somehow relate the distance between the flows to the time
derivatives of the flows. The following Lemma shows how this can be done.

Lemma 3.1.1. The distance between the flows can be bounded as follows:

‖ϕ0,t(x) − ϕ̃0,t(x)‖ ≤
∫ t

0

∥

∥

∥

∥

d

ds
ϕs,t(ϕ̃0,s(x))

∥

∥

∥

∥

ds.

Proof. Note that

ϕ0,t(x) − ϕ̃0,t(x) = −
∫ t

0

d

ds
ϕs,t(ϕ̃0,s(x)) ds,

so we get, using the triangle inequality,

‖ϕ0,t(x) − ϕ̃0,t(x)‖ =

∥

∥

∥

∥

∫ t

0

d

ds
ϕs,t(ϕ̃0,s(x)) ds

∥

∥

∥

∥

≤
∫ t

0

∥

∥

∥

∥

d

ds
ϕs,t(ϕ̃0,s(x))

∥

∥

∥

∥

ds

which is the desired result. �

Next, we need to relate the time derivative of the flows to f and f̃ . This is
simple for the derivative of ϕ̃0,s with respect to s, and the remaining derivative
follows from the following elementary result.

Lemma 3.1.2. The backward time derivative of the flow satisfies

∂

∂s
ϕs,t(x) = −Dϕs,t(x) · f(s, x),

where Dϕs,t(x) · v is the directional derivative of ϕs,t(x) at x in the direction v.

Proof. As ϕs,t(ϕ0,s(x)) = ϕ0,t(x), we know that dϕs,t(ϕ0,s(x))/ds = 0. Hence

d

ds
ϕs,t(ϕ0,s(x

′)) =
∂ϕs,t

∂s
(ϕ0,s(x

′)) +Dϕs,t(ϕ0,s(x
′)) · f(s, ϕ0,s(x

′)) = 0.

Substituting x′ = ϕ−1
0,s(x), we obtain the desired result. �

Putting together these two results, we obtain our bound:
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Proposition 3.1.3. The following error bound holds:

‖ϕ0,t(x)− ϕ̃0,t(x)‖ ≤
∫ t

0

‖Dϕs,t(ϕ̃0,s(x))‖ ‖f(s, ϕ̃0,s(x)) − f̃(s, ϕ̃0,s(x))‖ ds.

Proof. From Lemmas 3.1.1 and 3.1.2 we obtain

‖ϕ0,t(x)− ϕ̃0,t(x)‖ ≤
∫ t

0

‖Dϕs,t(ϕ̃0,s(x)) · (f(s, ϕ̃0,s(x)) − f̃(s, ϕ̃0,s(x)))‖ ds.

The result follows from the definition ‖Dϕs,t(x)‖ = sup‖v‖=1 ‖Dϕs,t(x) · v‖. �

Note that the bound depends on two separate quantities: the local error
‖f(s, ϕ̃0,s(x))− f̃ (s, ϕ̃0,s(x))‖ (compare with the quantity δ(yn, p̄n) in section 0.1.5)
and the term ‖Dϕs,t(ϕ̃0,s(x))‖, which bounds the sensitivity of the flow ϕs,t(x) to
an infinitesimal perturbation of its initial condition.

Now suppose that the flow ϕs,t(x) is exponentially stable in the sense that its
derivative is exponentially bounded:

‖Dϕs,t(x)‖ ≤ K e−κ(t−s) for some κ, K > 0.

Then we obtain the error bound

‖ϕ0,t(x)− ϕ̃0,t(x)‖ ≤ K
∫ t

0

e−κ(t−s) ‖f(s, ϕ̃0,s(x)) − f̃(s, ϕ̃0,s(x))‖ ds.

Hence we see that if the flow ϕs,t(x) is stable in the above sense, then the local error
is suppressed at an exponential rate. In particular, if the local error is bounded
supt,x ‖f(t, x)− f̃(t, x)‖ ≤M , then

‖ϕ0,t(x) − ϕ̃0,t(x)‖ ≤ KM
∫ t

0

e−κ(t−s) ds =
KM

κ
,

which is precisely what we want. Note that the conceptual similarities are imme-
diately evident when these expressions are compared to those of section 0.1.5.

Remark 3.1.4. Let us make the connection to the projection filter method.
Suppose that we would like to approximate the flow ϕs,t(x) by a flow ϕ̃s,t(x) that
leaves some low-dimensional manifold S ⊂ Rn invariant; i.e., we are interested in
model reduction. Given that we have fixed the manifold S, how should we choose
f̃(t, x) to make this a good approximation? Note that the requirement that ϕ̃s,t(x)

leaves S invariant is equivalent to requiring that f̃(t, x) ∈ TxS, the tangent space
of S at x, for every x ∈ S. Hence to minimize the approximation error, the error
bound above suggests that we should choose f̃(t, x) to be the element of TxS that

minimizes the local error ‖f(t, x) − f̃(t, x)‖. But then f̃(t, x) must be precisely
the orthogonal projection of f(t, x) onto TxS (note that there is no need to define

f̃(t, x) outside S, as the error bound only requires us to evaluate f̃ at ϕ̃0,s(x) ∈ S).
Hence evidently our error bound is naturally related to the form of approximation
on which the projection filter technique is based.

3.1.2. Model robustness of the Wonham filter. Having investigated the
deterministic case, what problems can we expect to run into when we apply these
ideas to the Wonham filter? There are two main issues that need to be overcome.

(1) An exponential bound on the derivative of the filter with respect to its
initial condition is a significantly stronger result than a bound on the
distance between the optimal and wrongly initialized filters, as obtained
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in the previous chapter. We will find, in particular, that this quantity
behaves rather unpleasantly near the boundary of the simplex, making a
uniform bound of the form supx ‖Dϕs,t(x)‖ ≤ K e−κ(t−s) impossible.

(2) As the Wonham filter is a stochastic differential equation, we would expect
the procedure above to give rise to a time integral as well as a stochastic
integral. In principle this need not be a problem, as we could just bound
the expectation of the error rather than the error itself. Things are not so
straightforward, however, due to the following troublesome fact: the quan-
tity ‖Dϕs,t(x)‖ depends on the entire observation history in the interval
[s, t]. Hence when we try to repeat the above procedure in the stochastic
case, this gives rise to anticipating (nonadapted) stochastic integrals.

We will begin by tackling the first issue. Before we can begin, we need to
establish that the Wonham filter actually generates a flow which is differentiable
etc. This is rather straightforward, as the Wonham equation can be obtained by
normalizing a linear SDE (the Zakai equation), and linear SDE generate linear flows
(which are as regular as it gets). To bound the derivative of the flow, we employ
the second representation of the wrongly initialized filter as given in section 2.3.1.
This gives an exponential bound on the derivative of the filter when combined
with Corollary 2.3.2. Unfortunately, the prefactor in this bound blows up on the
boundary of the simplex, so that we need to do some extra work to bound the
expectation of this prefactor. This is a little tedious but essentially straightforward.

To deal with the anticipativity problem, we distinguish between two cases. If
the observation function of the exact and approximate filters are equal, then the
stochastic integral term in the error bound cancels. Hence most of the unpleasant-
ness is circumvented, and we obtain a simple error bound directly from elementary
manipulations of the flow of the filter. In the general case, however, we have no
recourse but to dump the Itô theory (which is firmly rooted in the nonanticipativity
requirement) and to seek an anticipative replacement. The theory of Skorokhod in-
tegrals, and in particular the associated stochastic calculus developed by D. Nualart
and É. Pardoux [NP88, Nua95] using Malliavin calculus techniques, provides a
suitable replacement which allows us to proceed to prove our main result. As this
theory is not as widely known as the traditional Itô theory, we have provided an
overview in appendix A of those results that will be needed in the proofs.

Let us briefly state the main result of this chapter. We consider the usual
Wonham filter setup, i.e., the signal process Xt is Markov process on the state
space S = {a1, . . . , ad} with transition intensities Λ = (λij ) and initial distribution
νi = P(X0 = ai). The observation process Yt is given by the usual expression

Yt =

∫ t

0

h(Xs) ds+Bt,

where h : S → R is the observation function (we will also write hi = h(ai)) and
B is a Wiener process that is independent of X . The conditional probabilities
πi

t = P(Xt = ai|FY
t ) satisfy the Wonham equation

(3.1) dπt = Λ∗πt dt+ (H − h∗πt)πt (dYt − h∗πt dt), π0 = ν,

where H = diag h. We will denote by πt(µ) the solution of the Wonham equation
at time t with an arbitrary initial distribution π0 = µ, and by πs,t(µ) the solution
of the Wonham equation at time t ≥ s with the initial condition πs = µ. Now
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consider the Wonham filter with incorrect model parameters:

(3.2) dπ̃t = Λ̃∗π̃t dt+ (H̃ − h̃∗π̃t)π̃t (dYt − h̃∗π̃t dt), π̃0 = ν,

where Λ̃ and h̃ denote a transition intensities matrix and observation function that
do not match the underlying signal-observation model (X,Y ), H̃ = diag h̃, and we
denote by π̃t(µ) the solution of this equation with initial condition π̃0 = µ and by
π̃s,t(µ) the solution with π̃s = µ. The goal of this chapter is to prove the following.

Theorem 3.1.5. Suppose νi, µi > 0 ∀i and λij , λ̃ij > 0 ∀i 6= j. Then

sup
t≥0

E‖π̃t(µ)− πt(ν)‖2 ≤ C1 |µ− ν|+ C2 |h̃− h|+ C3 |Λ̃∗ − Λ∗|,

where |Λ̃∗ − Λ∗| = sup{|(Λ̃∗ − Λ∗)τ | : τ i > 0 ∀i, |τ | = 1} and the quantities

C1, C2, C3 are bounded on any compact subset of parameters {(ν,Λ, h, µ, Λ̃, h̃) :

νi, µi > 0 ∀i, |ν| = |µ| = 1, λij , λ̃ij > 0 ∀i 6= j,
∑

j λij =
∑

j λ̃ij = 0 ∀i}.
Additionally we have the asymptotic estimate

lim sup
t→∞

E‖π̃t(µ)− πt(ν)‖2 ≤ C2 |h̃− h|+ C3 |Λ̃∗ − Λ∗|.

In particular, this implies that if νi > 0 ∀i, λij > 0 ∀i 6= j, then

lim
h̃→h

lim
Λ̃→Λ

lim
µ→ν

sup
t≥0

E‖π̃t(µ)− πt(ν)‖ = lim
h̃→h

lim
Λ̃→Λ

lim sup
t→∞

E‖π̃t(µ)− πt(ν)‖ = 0.

It should be mentioned that there is nothing in principle about our method
that prohibits us from obtaining quantitative bounds on filter robustness; in fact,
the constants C1,2,3 have explicit expressions which can be found in the proofs.
The real limiting factor in the sequel is our bound on the decay of the derivative of
the filter with respect to its initial condition, which is highly suboptimal. We will
discuss this point further in Remark 3.3.8. The unfortunate consequence is that
Theorem 3.1.5, though of significant interest to the filter robustness problem, does
not provide useful quantitative estimates on the filtering error. For this reason
we have not bothered to optimize the constants C1,2,3, nor have we considered
other approximations in the spirit of the projection filter for which a qualitative
result is not of particular interest. Nonetheless, there is no fundamental underlying
limitation, and numerical evidence suggests that improved stability bounds could
lead directly to quantitative estimates on filter robustness and approximation errors.

3.1.3. Notation. Let us fix some notation that will be used throughout the
chapter. We already defined the solutions πs,t(µ) and π̃s,t(µ) of the Wonham equa-
tions. We will also use the Zakai equation

dσt = Λ∗σt dt+Hσt dYt, σ0 = ν,

where as before σt(µ) and σs,t(µ) (t ≥ s) denote the solutions at time t with
the initial conditions σ0 = µ and σs = µ, respectively. Note that πs,t(µ) =
σs,t(µ)/|σs,t(µ)|. The misspecified Zakai equation

dσ̃t = Λ̃∗σ̃t dt+ H̃σ̃t dYt, σ̃0 = ν,

and the associated solutions σ̃t(µ) and σ̃s,t(µ), are defined analogously. Finally, let
us introduce some vector notation. For x ∈ Rd, we denote by |x| the `1-norm, by
‖x‖ the `2-norm, and by ‖x‖p the `p-norm. We write x � y (resp. ≺,�,�) if xi > yi

(<,≥,≤) ∀i. We will repeatedly use the following spaces. Probability distributions
on S are elements of the simplex ∆d−1 = {x ∈ Rd : x � 0, |x| = 1}. Usually, we
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will be interested in the interior of the simplex Sd−1 = {x ∈ Rd : x � 0, |x| = 1}.
The space of vectors tangent to Sd−1 is denoted by TSd−1 = {x ∈ Rd :

∑

ixi = 0}.
The positive orthant will be denoted by Rd

++ = {x ∈ Rd : x � 0}.

3.2. Stochastic semiflow of the Wonham filter

The main goal of this section is to establish some regularity properties of the
solutions of the Wonham and Zakai equations. In particular, as we will want to
calculate the derivative of the filter with respect to its initial condition, we have
to establish that πs,t(µ) is in fact differentiable. We will avoid problems at the
boundary of the simplex by disposing of it alltogether: we begin by proving that if
µ ∈ Sd−1, then a.s. πs,t(µ) ∈ Sd−1 for all times t > s.

Lemma 3.2.1. P(σs,t(µ) ∈ Rd
++ for all µ ∈ Rd

++, 0 ≤ s ≤ t <∞) = 1.

Proof. The following transformation (which is related to the pathwise filtering
method) reduces the Zakai equation to a random differential equation. First, we
write Λ∗ = S + T where S is the diagonal matrix with Sii = λii. Note that
the matrix T has only nonnegative entries. We now perform the transformation
fs,t(µ) = Ls,tσs,t(µ) where we have written

Ls,t = exp(( 1
2H

2 − S)(t− s)−H(Yt − Ys)).

Then fs,t(µ) satisfies

(3.3)
dfs,t

dt
= Ls,tTL

−1
s,t fs,t, fs,s = µ.

Now note that t 7→ Bt(ω) is continuous for every ω ∈ Ω. Hence t 7→ Ls,t, t 7→ L−1
s,t

are continuous in t and have strictly positive diagonal elements for every ω ∈ Ω.
By standard arguments, there exists for every ω ∈ Ω, µ ∈ Rd and s ≥ 0 a unique
solution fs,t(µ) to (3.3) where t 7→ fs,t(µ) is a C1-curve. Moreover, note that

Ls,tTL
−1
s,t has nonnegative matrix elements for every ω ∈ Ω, s ≤ t < ∞. Hence

if µ ∈ Rd
++ then clearly fs,t(µ) must be nondecreasing, i.e., fs,t � fs,r for every

t ≥ r ≥ s and ω ∈ Ω. But then Rd
++ must be forward invariant under (3.3), and as

Ls,t has strictly positive diagonal elements the result follows. �

Corollary 3.2.2. P(πs,t(µ) ∈ Sd−1 for all µ ∈ Sd−1, 0 ≤ s ≤ t <∞) = 1.

Let us now investigate the map σs,t(µ). As this map is linear in µ, we can write
σs,t(µ) = Us,tµ a.s. where the d× d matrix Us,t is the solution of

(3.4) dUs,t = Λ∗Us,t dt+HUs,t dYt, Us,s = I.

The following lemma establishes that Us,t defines a linear stochastic flow in Rd.

Lemma 3.2.3. For a.e. ω ∈ Ω (i) σs,t(µ) = Us,tµ for all s ≤ t; (ii) Us,t is

continuous in (s, t); (iii) Us,t is invertible for all s ≤ t, where U−1
s,t is given by

(3.5) dU−1
s,t = −U−1

s,t Λ∗ dt+ U−1
s,t H

2 dt− U−1
s,t H dYt, U−1

s,s = I ;

(iv) Ur,tUs,r = Us,t (and hence Us,tU
−1
s,r = Ur,t) for all s ≤ r ≤ t.

Proof. Continuity of Us,t (and U−1
s,t ) is a standard property of solution of

Lipschitz stochastic differential equations. Invertibility of U0,t for all 0 ≤ t <∞ is

established in [Pro04, p. 326], and it is evident that Us,t = U0,tU
−1
0,s satisfies (3.4).

The remaining statements follow, where we can use continuity to remove the time
dependence of the exceptional set as in the proof of [Pro04, p. 326]. �
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We now turn to the properties of the map πs,t(µ).

Lemma 3.2.4. The Wonham filter generates a smooth stochastic semiflow in
Sd−1, i.e., the solutions πs,t(µ) satisfy the following conditions:

(1) For a.e. ω ∈ Ω, πs,t(µ) = πr,t(πs,r(µ)) for all s ≤ r ≤ t and µ.
(2) For a.e. ω ∈ Ω, πs,t(µ) is continuous in (s, t, µ).
(3) For a.e. ω ∈ Ω, the injective map πs,t(·) : Sd−1 → Sd−1 is C∞ ∀ s ≤ t.

Proof. For x ∈ Rd
++ define the function Σ(x) = x/|x|, so that we can write

πs,t(µ) = Σ(σs,t(µ)) (µ ∈ Sd−1). Note that Σ is smooth on Rd
++. Hence continuity

in (s, t, µ) and smoothness with respect to µ follow directly from the corresponding
properties of σs,t(µ). The semiflow property πs,t(µ) = πr,t(πs,r(µ)) follows directly
from Lemma 3.2.3. It remains to prove injectivity.

Suppose that πs,t(µ) = πs,t(ν) for some µ, ν ∈ Sd−1. Then Us,tµ/|Us,tµ| =
Us,tν/|Us,tν|, and as Us,t is invertible we have µ = (|Us,tµ|/|Us,tν|)ν. But as µ and
ν must lie in Sd−1, it follows that µ = ν. Hence πt(·) is injective. �

Remark 3.2.5. These results hold identically if we replace Λ by Λ̃, h by h̃. We
will use the obvious notation π̃s,t(µ), σ̃s,t(µ), Ũs,t, etc.

We finish this section by obtaining an expression for the approximation error
in the case h̃ = h; in fact, we will demonstrate the bound for this simple case in a
more general setting than is considered in the following. Rather than considering
the approximate Wonham filter with modified Λ, we will allow the approximate
filter to have an arbitrary finite variation term, provided Sd−1 is left invariant.

Proposition 3.2.6. Let π̆t be a process with continuous paths in Sd−1 where

(3.6) dπ̆t = f(π̆t) dt+ (H − h∗π̆t)π̆t (dYt − h∗π̆t dt), π̆0 = µ ∈ Sd−1.

Then the difference between π̆t and the Wonham filter started at µ is a.s. given by

π̆t − πt(µ) =

∫ t

0

Dπs,t(π̆s) · (f(π̆s)− Λ∗π̆s) ds,

where Dπs,t(µ) · v is the derivative of πs,t(µ) in the direction v ∈ TSd−1.

Proof. Define the (scalar) process Γt by

Γt = exp

(∫ t

0

h∗π̆s dYs −
1

2

∫ t

0

(h∗π̆s)
2 ds

)

.

Using Itô’s rule, we evaluate

(3.7)
d

ds
(ΓsU

−1
0,s π̆s) = ΓsU

−1
0,s (f(π̆s)− Λ∗π̆s).

Multiplying both sides by U0,t, we obtain

d

ds
(ΓsUs,tπ̆s) = ΓsUs,t(f(π̆s)− Λ∗π̆s).

Now introduce as before the map Σ : Rd
++ → Sd−1, Σ(x) = x/|x|, which is smooth

on Rd
++. Define the matrix DΣ(x) with elements

[DΣ(x)]ij =
∂Σi(x)

∂xj
=

1

|x|
[

δij − Σi(x)
]

.
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Note that Σ(αx) = Σ(x) for any α > 0. Hence

d

ds
Σ(Us,tπ̆s) =

d

ds
Σ(ΓsUs,tπ̆s) = DΣ(ΓsUs,tπ̆s)

d

ds
(ΓsUs,tπ̆s).

But then we have, using DΣ(αx) = α−1DΣ(x) (α > 0),

d

ds
Σ(Us,tπ̆s) = DΣ(ΓsUs,tπ̆s)ΓsUs,t(f(π̆s)− Λ∗π̆s)

= DΣ(Us,tπ̆s)Us,t(f(π̆s)− Λ∗π̆s).

On the other hand, we obtain from the representation πs,t(µ) = Σ(Us,tµ)

Dπs,t(µ) · v = DΣ(Us,tµ)Us,tv, µ ∈ Sd−1, v ∈ TSd−1.

Note that f(π̆s) − Λ∗π̆s is necessarily in TSd−1 as π̆t evolves in Sd−1, so that
DΣ(Us,tπ̆s)Us,t(f(π̆s)− Λ∗π̆s) = Dπs,t(π̆s) · (f(π̆s)− Λ∗π̆s). Finally, note that

∫ t

0

d

ds
Σ(Us,tπ̆s) ds = Σ(π̆t)− Σ(U0,tπ̆0) = π̆t − πt(µ),

and the proof is complete. �

Corollary 3.2.7. Using the triangle inequality we obtain

|π̆t − πt(µ)| ≤
∫ t

0

|Dπs,t(π̆s)| |f(π̆s)− Λ∗π̆s| ds,

where |Dπs,t(µ)| = sup{|Dπs,t(µ) · v| : v ∈ TSd−1, |v| = 1}. Moreover

|π̆t − πt(ν)| ≤ |πt(µ)− πt(ν)| +
∫ t

0

|Dπs,t(π̆s)| |f(π̆s)− Λ∗π̆s| ds.

Remark 3.2.8. The result of Corollary 3.2.7 is essentially identical to the
deterministic example which we studied in section 3.1. The equality of h and h̃ is
key to this result: the stochastic integral term cancels in the proof, leaving only a
finite variation part (note that we circumvented anticipativity in the intermediate
steps of the proof by working initially with the inverse flow U−1

0,s ). In principle
the result is applicable to any approximation of the Wonham filter that leaves
untouched its stochastic integral part. This could be achieved, for example, using
a finite-dimensional form of the projection filter method. In order to obtain useful
error bounds for such approximations, however, one would need to have a fairly
tight estimate on the derivative of the filter with respect to its initial condition,
and as mentioned before we do not currently have such an estimate at our disposal.
In the remainder of this chapter we will restrict ourselves to studying the robustness
problem, but we will drop the requirement h = h̃ in section 3.4.

In the following, it will be convenient to turn around the role of the exact and
approximate filters in Corollary 3.2.7, i.e., we will use the estimate

(3.8) |πt − π̃t(µ)| ≤ |π̃t(ν)− π̃t(µ)|+
∫ t

0

|Dπ̃s,t(πs)| |(Λ∗ − Λ̃∗)πs| ds,

which holds provided h̃ = h. The proof is identical to the one given above.
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3.3. Exponential estimates for the derivative of the filter

In order for the bound (3.8) to be useful, we must have an exponential estimate
for |Dπ̃s,t(·)|. The goal of this section is to obtain such an estimate. We proceed in
two steps. First, we use the methods introduced in section 2.3 to obtain a pathwise
exponential estimate for |Dπ0,t(ν)|. As the laws of the observation process for
different initial measures, jump rates and observation functions are equivalent, we
can extend this a.s. bound to |Dπ̃s,t(µ)|. We find, however, that the proportionality
constant in the exponential estimate depends on µ and diverges as µ approaches
the boundary of the simplex. This makes a pathwise bound on |Dπ̃s,t(πs)| difficult
to obtain, as πs can get arbitrarily close to the boundary of the simplex on the
infinite time interval. Instead, we proceed to find a uniform bound on E|Dπ̃s,t(πs)|
by bounding the expectation of the prefactor.

We will use the following Lemma, which is similar to [BCL04, Lemma 5.7].
The coupling proof given here is new, however.

Lemma 3.3.1. For any 0 ≤ s ≤ t, we have the following bound a.s.:

d
∑

k=1

|P(Xt−s = ak|FY
t , Xt = ai)−P(Xt−s = ak|FY

t )| ≤ 2 exp

(

−2smin
p6=q

√

λpqλqp

)

.

Proof. We proceed exactly as in the proof of Proposition 2.3.1, only using the
time-reversed signal X̄t rather than the signal itself. Evidently P(Xt−s = ak|FY

t )
is the expectation of X̄s under the conditional measure Πt(·, Y[0,t]), whereas on the

other hand P(Xt−s = ak|FY
t , Xt = ai) is the conditional expectation of X̄s under

Πt(·, Y[0,t]) with respect to the event X̄0 = ai:

P(Xt−s = ak|FY
t , Xt = ai) =

P(Xt−s = ak, Xt = ai|FY
t )

P(Xt = ai|FY
t )

.

But as X̄ is a Markov process under Πt(·, y), the latter is equal to the expecta-
tion of a Markov process with the same transition intensities as the time-reversed
conditional signal, but with initial measure X̄0 ∼ δ{ai}. The result now follows
identically as in the proofs of Proposition 2.3.1 and Corollary 2.3.2. �

We can now obtain a bound on the derivative of the filter.

Proposition 3.3.2. Let λij > 0 ∀i 6= j and ν ∈ Sd−1, v ∈ TSd−1. Then a.s.

|Dπt(ν) · v| ≤
∑

k

|vk |
νk

exp

(

−2 tmin
p6=q

√

λpqλqp

)

.

Proof. Recall from section 2.3.1 that we can write

(3.9) πi
t(µ) =

E(dµ
dν (X0) IXt=ai

|FY
t )

E(dµ
dν (X0)|FY

t )
=

∑d
j=1(µ

j/νj)P(X0 = aj , Xt = ai|FY
t )

∑d
j=1(µ

j/νj)P(X0 = aj |FY
t )

.

It is straightforward to calculate the directional derivative of this expression:

(Dπt(µ) · v)i =

∑

j
vj

νj (P(X0 = aj , Xt = ai|FY
t )− πi

t(µ)P(X0 = aj |FY
t ))

∑

j
µj

νj P(X0 = aj |FY
t )

.
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Setting µ = ν, we obtain after some simple manipulations

(Dπt(ν) · v)i = πi
t(ν)

∑

j

vj

νj
{P(X0 = aj |FY

t , Xt = ai)−P(X0 = aj |FY
t )}.

By Lemma 3.3.1 and the fact that |µ1−µ2| = 2 maxA⊂S |µ1(A)−µ2(A)|, we obtain

|(Dπt(ν) · v)i| ≤ πi
t(ν)

∑

j

|vj |
νj

exp

(

−2 tmin
p6=q

√

λpqλqp

)

.

The result now follows immediately. �

To obtain this bound we had to use the true initial distribution ν, jump rates
λij and observation function h. However, the almost sure nature of the result allows
us to drop these requirements.

Corollary 3.3.3. Let λ̃ij > 0 ∀i 6= j and µ ∈ Sd−1, v ∈ TSd−1. Then a.s.

(3.10) |Dπ̃s,t(µ) · v| ≤
∑

k

|vk |
µk

exp

(

−2 (t− s) min
p6=q

√

λ̃pqλ̃qp

)

.

Moreover, the result still holds if µ, v are FY
s -measurable random variables with

values a.s. in Sd−1 and TSd−1, respectively.

Proof. Let P̃ be the measure under which Xt is a Markov process with tran-
sition intensities λ̃ij and initial measure µ, and such that dB̃t = dYt − h̃(Xt) dt

defines a Wiener process B̃t independent from Xt. Such a measure is easily con-
structed using Girsanov’s theorem and Propositions 2.1.1 and 2.1.3, and is certainly
equivalent to P. Then π̃i

t(µ) is precisely the optimal filter P̃(Xt = ai|FY
t ), and we

can invoke Proposition 3.3.2 under the new measure. But this bound holds with
unit probability, and P̃ ∼ P. Hence we have established the result for s = 0. The
result for s > 0 follows directly as the Wonham equation is time homogeneous.

To show that the result still holds when µ, v are random, note that π̃s,t only
depends on the observation increments in the interval [s, t], i.e., Dπ̃s,t(µ) ·v is FY

[s,t]-

measurable where FY
[s,t] = σ{Yr − Ys : s ≤ r ≤ t}. Under the reference measure Q,

Y is a Wiener process and hence FY
[s,t] and FY

s are independent. It follows from

the bound with constant µ, v that

EQ(I|Dπ̃s,t(µ)·v|≤(∗)|σ{µ, v}) = 1 Q-a.s.,

where (∗) is the right-hand side of (3.10). Hence EQ(I|Dπ̃s,t(µ)·v|≤(∗)) = 1, and the
statement follows from P ∼ Q. �

Next, let us obtain a filter stability bound. Unlike the bound of Corollary 2.3.2
which has a constant prefactor, this bound vanishes as µ1 → µ2.

Proposition 3.3.4. Let λ̃ij > 0 ∀i 6= j and µ1, µ2 ∈ Sd−1. Then a.s.

|π̃s,t(µ2)− π̃s,t(µ1)| ≤ C |µ2 − µ1| exp

(

−2 (t− s) min
p6=q

√

λ̃pqλ̃qp

)

,

where C = max{1/µk
1, 1/µ

k
2 : k = 1, . . . , d}.
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Proof. Define γ(u) = π̃s,t(µ1 + u(µ2 − µ1)), u ∈ [0, 1]. Then

π̃s,t(µ2)− π̃s,t(µ1) =

∫ 1

0

dγ

du
du =

∫ 1

0

Dπ̃s,t(µ1 + u(µ2 − µ1)) · (µ2 − µ1) du.

Using the triangle inequality, we obtain

|π̃s,t(µ2)− π̃s,t(µ1)| ≤ sup
u∈[0,1]

|Dπ̃s,t(µ1 + u(µ2 − µ1)) · (µ2 − µ1)|.

The result now follows from Corollary 3.3.3. �

Remark 3.3.5. Corollary 2.3.2 and Proposition 3.3.4 can be combined:

|πt(µ1)− πt(µ2)| ≤
[(

max
k

{

1

µk
1

,
1

µk
2

}

|µ2 − µ1|
)

∧ 2

]

e−2 t minp 6=q

√
λpqλqp .

To my knowledge, this is to date the best nonasymptotic filter stability bound that
is available for the Wonham filter.

Corollary 3.3.3 and Proposition 3.3.4 are exactly what we need to establish
boundedness of (3.8). Note, however, that the right-hand side of (3.10) is pro-
portional to 1/µi, and we must estimate |Dπ̃s,t(πs)|. Though we established in
Section 3.2 that πs cannot hit the boundary of the simplex in finite time, it can
get arbitrarily close to the boundary during the infinite time interval, thus ren-
dering the right-hand side of (3.10) arbitrarily large. If we can establish that
sups≥0 E(1/mink π

k
s ) <∞, however, then we can control E|Dπ̃s,t(πs)| to obtain a

useful bound. We begin with an auxiliary integrability property of πt:

Lemma 3.3.6. Let ν ∈ Sd−1 and T <∞. Then

E

∫ T

0

(πi
s)

−k ds <∞, ∀ i = 1, ..., d, k ≥ 1.

Proof. Applying Itô’s rule to the Wonham equation gives

d logπi
t =

(

λii −
1

2
(hi − h∗πt)

2

)

dt+
∑

j 6=i

λji
πj

t

πi
t

dt+ (hi − h∗πt) dW t,

where the innovation dW t = dYt − h∗πt dt is a Wiener process (recall Proposition
1.1.14). The application of Itô’s rule is justified by a standard localization argument,
as πt is in Sd−1 for all t ≥ 0 a.s. and log x is smooth in (0, 1). As λij ≥ 0 for j 6= i,

−k logπi
t ≤ −k log νi − kλiit+

k

2
max

j
(hi − hj)2 t− k

∫ t

0

(hi − h∗πs) dW s.

But as hi − h∗πt is bounded, Novikov’s condition is satisfied and hence

E exp

(

−k
∫ t

0

(hi − h∗πs) dW s −
k2

2

∫ t

0

(hi − h∗πs)
2 ds

)

= 1.

Estimating the time integral, we obtain

E(πi
t)

−k ≤ (νi)−k exp

(

−kλiit+
1

2
k(k + 1) max

j
(hi − hj)2 t

)

.

The Lemma now follows by the Tonelli theorem, as (πi
s)

−k ≥ 0 a.s. �

We are now in a position to bound supt≥0 E(1/mini π
i
t).
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Proposition 3.3.7. Let ν ∈ Sd−1 and suppose that λij > 0 ∀i 6= j. Then

sup
t≥0

E

(

1

mini πi
t

)

<∞.

Proof. By Itô’s rule and using the standard localization argument, we obtain

(πi
t)

−1 = (νi)−1 −
∫ t

0

λii(π
i
s)

−1 ds−
∫ t

0

(πi
s)

−2
∑

j 6=i

λjiπ
j
s ds

−
∫ t

0

(πi
s)

−1(hi − h∗πs) dW s +

∫ t

0

(πi
s)

−1(hi − h∗πs)
2 ds.

Using Lemma 3.3.6 we find

E

∫ t

0

(πi
s)

−2(hi − h∗πs)
2 ds ≤ max

j
(hi − hj)2 E

∫ t

0

(πi
s)

−2 ds <∞,

so the expectation of the stochastic integral term vanishes. Using the Tonelli the-
orem, we can thus write

E((πi
t)

−1) = (νi)−1 −
∫ t

0

λii E((πi
s)

−1) ds

−
∫ t

0

E



(πi
s)

−2
∑

j 6=i

λjiπ
j
s



 ds+

∫ t

0

E((πi
s)

−1(hi − h∗πs)
2) ds.

Taking the derivative and estimating each of the terms, we obtain

dM i
t

dt
≤ −min

j 6=i
λji (M i

t )
2 +

(

|λii|+ min
j 6=i

λji + max
j

(hi − hj)2
)

M i
t ,

where we have written M i
t = E((πi

t)
−1) and we have used (M i

t )
2 ≤ E(πi

t)
−2 by

Jensen’s inequality. Using the estimate

−Ki
1(M

i
t )

2 +Ki
2M

i
t ≤ −Ki

2M
i
t +

(Ki
2)

2

Ki
1

for Ki
1 > 0,

we now obtain

dM i
t

dt
≤ Ki

2

(

Ki
2

Ki
1

−M i
t

)

, Ki
2 = |λii|+ min

j 6=i
λji + max

j
(hi − hj)2,

where Ki
1 = minj 6=i λji > 0. Consequently we obtain

M i
t ≤ e−Ki

2t(νi)−1 +
(Ki

2)
2

Ki
1

e−Ki
2t

∫ t

0

eKi
2sds = e−Ki

2t(νi)−1 +
Ki

2

Ki
1

(1− e−Ki
2t).

We can now estimate

sup
t≥0

E

(

1

mini πi
t

)

≤
d
∑

i=1

sup
t≥0

E

(

1

πi
t

)

≤
d
∑

i=1

(

1

νi
∨ K

i
2

Ki
1

)

<∞,

which is what we set out to prove. �
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We can now prove Theorem 3.1.5 for the special case h̃ = h. Using (3.8),
Corollary 3.3.3, Proposition 3.3.4, and Proposition 3.3.7, we obtain

E|πt − π̃t(µ)| ≤ |µ− ν|max
k

{

1

µk
∨ 1

νk

}

exp

(

−2 tmin
p6=q

√

λ̃pqλ̃qp

)

+ |Λ∗ − Λ̃∗| sup
s≥0

E(1/min
k
πk

s )

∫ t

0

exp

(

−2 (t− s) min
p6=q

√

λ̃pqλ̃qp

)

ds,

where |Λ∗ − Λ̃∗| = sup{|(Λ∗ − Λ̃∗)µ| : µ ∈ Sd−1}. Thus

E|πt − π̃t(µ)| ≤ |µ− ν|max
k

{

1

µk
∨ 1

νk

}

e−βt + |Λ∗ − Λ̃∗|
sups≥0 E(1/mink π

k
s )

β
,

where we have written β = 2 minp6=q(λ̃pq λ̃qp)
1/2. The result follows directly using

‖πt − π̃t(µ)‖2 ≤ |πt − π̃t(µ)| (as |πi
t − π̃t(µ)i| ≤ 1).

Remark 3.3.8. As the constants in the bound above are easily computable,
it is interesting compare the bound to simulations. Unfortunately, it appears that
this bound is essentially useless as a quantitative bound, except in the case of
extremely low signal-to-noise. In the high signal-to-noise case, the error between
the approximate and exact filters appears to be much smaller than the bound above
for virtually every sample path. Numerical simulations suggest that a major reason
for this fact is the rather disappointing divergence of the bound of Proposition
3.3.2 at the boundary of the simplex. By taking the expectation of 1/πi

t, we have
managed to keep things finite. On the other hand, when the signal-to-noise ratio
is reasonably high, the filter will spend most of its time near the boundary of the
simplex so that the expectation of 1/πi

t and hence our error bound is huge.
Is this a real effect or an artefact of our method? After all, previous filter

stability bounds suggested that the prefactor in the exponential decay of |πt(µ) −
πt(ν)| should blow up near the boundary of the simplex, see [BCL04] or Proposition
3.3.4, but Corollary 2.3.2 corrects this problem. Similarly one might think that the
divergence of the bound of Proposition 3.3.2 could be an artefact of our method
of proof. Unfortunately, a simple simulation suggests that this is not the case. In
figure 3.1 we show 250 sample paths of the derivative of the filter for a symmetric
binary signal with unit transition intensities and observation function h(a1) = −5,
h(a2) = 5. Evidently the bound of Proposition 3.3.2 is quite decent at the center
of the simplex. On the boundary, however, rare but extremely large excursions are
observed, which is not conclusive but suggestive of an unbounded random variable.

On the other hand, the expectation of |Dπt(µ)| appears to behave very nicely,
even in the worst case scenario where µ and ν are mutually singular. Our approach,
which is based on an a.s. bound on |Dπt(µ)|, could never capture this nice behavior:
after all, an a.s. bound has to guarantee that every sample path lies below it, which
is an extremely harsh requirement. Hence it appears that a different method is
called for, which bounds directly the expectation of |Dπt(µ)|. This brings up the
question: with respect to what measure should the expectation be taken? A simple
result is easy to obtain: following the proof of Proposition 3.3.2, note that

(Dπt(ν) · v)i =
∑

j

vj

νj
{P(Xt = ai|FY

t , X0 = aj)− πi
t(ν)}P(X0 = aj |FY

t ).
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Figure 3.1. Simulation of |Dπt(µ)| for the binary signal model in
Remark 3.3.8. The top figure is for µ1 = µ2 = 0.5, the bottom figure is
for µ1 = 1, µ2 = 0. The actual initial distribution is ν1 = 0, ν2 = 1. In
each case 250 sample paths of |Dπ̃s,t(µ)| are shown in green, and their
average is shown in red. The blue line is the bound of Proposition 3.3.2.

Hence we can obtain, using the triangle inequality and Corollary 2.3.2,

E|Dπt(ν) · v| ≤ 2 |v| exp

(

−2 tmin
p6=q

√

λpqλqp

)

.

A bound on E|Dπt(µ) ·v| is much more difficult to obtain, however. If such a bound
could be obtained, on the other hand, then this could open the door to quantitative
bounds on the approximation error in nonlinear filtering.

3.4. Proof of the main result

We are now ready to proceed to the general case where the initial density, the
transition intensities matrix and the observation function can all be misspecified.
The simplicity of the special case h̃ = h that we have treated up to this point is
due to the fact that in the calculation of (3.7), the stochastic integral term drops
out and we can proceed with the calculation using only ordinary calculus. In the
general case we can not get rid of the stochastic integral, and hence we run into
anticipativity problems in the next step of the calculation.

We solve this problem by using anticipative stochastic integrals in the sense of
Skorokhod, rather than the usual Itô integral (which is a special case of the Sko-
rokhod integral defined for adapted processes only). Though the Skorokhod integral
is more general than the Itô integral in the sense that it allows some anticipating
integrands, it is less general in that we have to integrate against a Wiener process
(rather than against an arbitrary semimartingale), and that the integrands should
be functionals of the driving Wiener process.

In our setup, the most convenient way to apply this theory is to operate exclu-
sively under the measure Q which is defined as follows:

(3.11)
dP

dQ
= |σT (ν)| = |σT |
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for some fixed T < ∞. Recall that this Q is precisely the reference measure re-
stricted to FY

T , see Corollary 1.1.15. We will not feel bad about denoting the
restricted reference measure by the same symbol, as we will only work with FY

T -
measurable random variables from this point onwards: note that both the approx-
imate and exact filters are functionals of the observations only.

Note in particular that Y[0,T ] is a Wiener process under Q. Hence we can
interpret the Wonham and Zakai equations under Q as Itô stochastic differential
equations which are driven by the Wiener process Yt. The usual Skorokhod integral
coincides with the Itô integral for adapted processes, but is only defined when
the integrator is a Wiener process—hence the importance of working under Q

(this is in contrast to the Itô integral, for which any semimartingale can serve
as an integrator). We can thus reinterpret the Wonham and Zakai equations as
Skorokhod stochastic differential equations. What we have gained by this is that
we are now allowed to perform anticipative transformations. When we wish to
calculate expectations with respect to P at the end of the day, we can do this by
using explicitly the above expression for dP/dQ.

Our setup is further detailed in appendix A, together with a review of the
relevant results from the Malliavin calculus and anticipative stochastic calculus.
Below we will use the notations and results from this appendix without further
comment. We will also have the need for several estimates of a technical nature,
which are not very insightful to the structure of the proofs. These results have
been relegated to section 3.5 of this chapter. This organization will allow us to
proceed through the proofs below with minimal interruptions, but the reader should
probably take at least a brief glance at appendix A at this point.

We begin by obtaining an anticipative version of Proposition 3.2.6.

Proposition 3.4.1. The difference between πt and π̃t satisfies

πt − π̃t =

∫ t

0

Dπ̃r,t(πr) ·∆Λπr dr +

∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

−
∫ t

0

Dπ̃r,t(πr) ·
[

h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr

]

dr

+
1

2

∫ t

0

[

D2π̃r,t(πr) · (H − h∗πr)πr −D2π̃r,t(πr) · (H̃ − h̃∗πr)πr

]

dr,

where the stochastic integral is a Skorokhod integral and we have written ∆Λ =
Λ∗ − Λ̃∗, ∆H(π) = (H − h∗π)π − (H̃ − h̃∗π)π, and D2π̃r,t(µ) · v is the directional
derivative of Dπ̃r,t(µ) · v with respect to µ ∈ Sd−1 in the direction v ∈ TSd−1.

Note that this result is precisely of the form one would expect. The first two
lines follow the formula for the distance between two flows as one would guess, e.g.,
from the discussion in section 3.1.1; the last line is an “Itô correction term” which
contains second derivatives of the filter with respect to its initial condition.

Proof. Fix T > t. We begin by evaluating, using Itô’s rule and (3.5),

Ũ−1
0,sU0,sν = ν +

∫ s

0

Ũ−1
0,r (Λ∗ − Λ̃∗)U0,rν dr

−
∫ s

0

Ũ−1
0,r H̃(H − H̃)U0,rν dr +

∫ s

0

Ũ−1
0,r (H − H̃)U0,rν dYr.
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Now multiply from the left by Ũ0,t; we wish to use Lemma A.4.2 to bring Ũ0,t into
the Skorokhod integral term, i.e., we claim that

Ũs,tU0,sν = Ũ0,tν +

∫ s

0

Ũr,t(Λ
∗ − Λ̃∗)U0,rν dr −

∫ s

0

Ũr,tH̃(H − H̃)U0,rν dr

+

∫ s

0

Ũr,t(H − H̃)U0,rν dYr +

∫ s

0

(DrŨ0,t)Ũ
−1
0,r (H − H̃)U0,rν dr.

To justify this expression we need to verify the integrability conditions of Lemma
A.4.2. Note that all matrix elements of Ũs,t are in D∞ ∀ 0 ≤ s ≤ t < T , and that

DrŨs,t =

{

0 a.e. r 6∈ [s, t],

Ũr,tH̃Ũs,r a.e. r ∈ [s, t].

This follows directly from Proposition A.2.1 and Lemma 3.2.3 (note that the same

result holds for Us,t if we replace H̃ by H and Ũ by U). Once we plug this result
into the expression above, the corresponding integrability conditions can be verified
explicitly, see Lemma 3.5.1, and hence we have verified that

Ũs,tU0,sν = Ũ0,tν +

∫ s

0

Ũr,t(Λ
∗ − Λ̃∗)U0,rν dr +

∫ s

0

Ũr,t(H − H̃)U0,rν dYr.

Next we would like to apply the anticipating Itô rule, Proposition A.5.1, with the
function Σ : Rd

++ → Sd−1, Σ(x) = x/|x|. To this end we have to verify a set of
technical conditions, see Lemma 3.5.2. We obtain

Σ(Ũs,tU0,sν) = Σ(Ũ0,tν) +

∫ s

0

DΣ(Ũr,tU0,rν)Ũr,t(Λ
∗ − Λ̃∗)U0,rν dr

+
1

2

∑

k,`

∫ s

0

∂2Σ

∂xk∂x`
(Ũr,tU0,rν)(∇rŨr,tU0,rν)

k(Ũr,t(H − H̃)U0,rν)
` dr

+

∫ s

0

DΣ(Ũr,tU0,rν)Ũr,t(H − H̃)U0,rν dYr.

We need to evaluate ∇rŨr,tU0,rν. Using Prop. A.1.2 and Lemma A.1.3, we calculate

lim
ε↘0

DrŨr+ε,tU0,r+εν = lim
ε↘0

Ũr+ε,tUr,r+εHU0,rν = Ũr,tHU0,rν,

and similarly

lim
ε↘0

DrŨr−ε,tU0,r−εν = lim
ε↘0

Ũr,tH̃Ũr−ε,rU0,r−εν = Ũr,tH̃U0,rν.

After some rearranging, we obtain

Σ(Ũs,tU0,sν) = Σ(Ũ0,tν) +

∫ s

0

DΣ(Ũr,tU0,rν)Ũr,t(Λ
∗ − Λ̃∗)U0,rν dr

+
1

2

∑

k,`

∫ s

0

∂2Σ

∂xk∂x`
(Ũr,tU0,rν)(Ũr,tHU0,rν)

k(Ũr,tHU0,rν)
` dr

− 1

2

∑

k,`

∫ s

0

∂2Σ

∂xk∂x`
(Ũr,tU0,rν)(Ũr,tH̃U0,rν)

k(Ũr,tH̃U0,rν)
` dr

+

∫ s

0

DΣ(Ũr,tU0,rν)Ũr,t(H − H̃)U0,rν dYr.
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From this point onwards we will set s = t. We will need (on Rd
++)

D2Σik`(x) =
∂2Σi(x)

∂xk∂x`
= − 1

|x| (DΣik(x) +DΣi`(x)).

Recall that DΣ(αx) = α−1DΣ(x); it follows that also D2Σ(αx) = α−2D2Σ(x) for
α > 0. Using these expressions with α = |U0,rν|, we get

πt − π̃t =

∫ t

0

DΣ(Ũr,tπr)Ũr,t∆Λπr dr +

∫ t

0

DΣ(Ũr,tπr)Ũr,t(H − H̃)πr dYr

+
1

2

∑

k,`

∫ t

0

∂2Σ

∂xk∂x`
(Ũr,tπr)(Ũr,tHπr)

k(Ũr,tHπr)
` dr

− 1

2

∑

k,`

∫ t

0

∂2Σ

∂xk∂x`
(Ũr,tπr)(Ũr,tH̃πr)

k(Ũr,tH̃πr)
` dr.

Next we want to express the integrands in terms of Dπ̃r,t(πr) · v, etc., rather than

in terms of DΣ(x). Recall that Dπ̃r,t(πr) · v = DΣ(Ũr,tπr)Ũr,tv when v ∈ TSd−1.

Similar terms appear in the expression above, but, e.g., H̃πr 6∈ TSd−1. To rewrite
the expression in the desired form, we use that DΣ(Ũr,tπr)Ũr,tπr = 0. Hence

DΣ(Ũr,tπr)Ũr,tH̃πr = DΣ(Ũr,tπr)Ũr,t(H̃ − h̃∗πr)πr = Dπ̃r,t(πr) · (H̃ − h̃∗πr)πr

and similarly for the other terms. Note also that
∑

k

D2Σik`(Ũr,tπr)(Ũr,tπr)
k = −DΣi`(Ũr,tπr).

Substituting this into the expression for πt − π̃t and rearranging, we obtain

πt − π̃t =

∫ t

0

Dπ̃r,t(πr) ·∆Λπr dr +

∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

−
∫ t

0

Dπ̃r,t(πr) ·
[

h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr

]

dr

+
1

2

∑

k,`

∫ t

0

∂2Σ

∂xk∂x`
(Ũr,tπr)(Ũr,t(H − h∗πr)πr)

k(Ũr,t(H − h∗πr)πr)
` dr

− 1

2

∑

k,`

∫ t

0

∂2Σ

∂xk∂x`
(Ũr,tπr)(Ũr,t(H̃ − h̃∗πr)πr)

k(Ũr,t(H̃ − h̃∗πr)πr)
` dr.

It remains to note that we can write

(D2π̃s,t(µ) · v)i =
∑

k,`

D2Σik`(Ũs,tµ)(Ũs,tv)
k(Ũs,tv)

`.

The result follows immediately. �

Let et = πt − π̃t. We wish to estimate the norm of et. Unfortunately, we can
no longer use the triangle inequality as in Section 3.2 due to the presence of the
stochastic integral; instead, we choose to calculate ‖et‖2, which is readily estimated.
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Lemma 3.4.2. The filtering error can be estimated by

EP‖et‖2 ≤
∫ t

0

EP|Dπ̃r,t(πr) ·∆Λπr| dr +K

∫ t

0

EP|Dπ̃r,t(πr) ·∆H(πr)| dr

+

∫ t

0

EP|Dπ̃r,t(πr) · (h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr)| dr

+
1

2

∫ t

0

EP|D2π̃r,t(πr) · (H − h∗πr)πr −D2π̃r,t(πr) · (H̃ − h̃∗πr)πr| dr,

where K = 2 maxk |hk|+ maxk |h̃k|.

Proof. We wish to calculate EP‖et‖2 = EPe
∗
t et. Using Prop. 3.4.1, we obtain

EP‖et‖2 =

∫ t

0

EP e
∗
tDπ̃r,t(πr) ·∆Λπr dr

+ EP

[

e∗t

∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

]

−
∫ t

0

EP e
∗
tDπ̃r,t(πr) ·

[

h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr

]

dr

+
1

2

∫ t

0

EP e
∗
t

[

D2π̃r,t(πr) · (H − h∗πr)πr −D2π̃r,t(πr) · (H̃ − h̃∗πr)πr

]

dr.

The chief difficulty is the stochastic integral term. Using (3.11), we can write

EP

[

e∗t

∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

]

= EQ

[

|U0,tν| e∗t
∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

]

.

We would like to apply (A.1) to evaluate this expression. First, we must establish
that the integrand is in Dom δ; this does not follow directly from Proposition 3.4.1,
as the anticipative Itô rule which was used to obtain that result can yield integrands
which are only in L

1,2
loc. We can verify directly, however, that the integrand in this

case is indeed in Dom δ, see Lemma 3.5.3. Next, we must establish that |U0,tν| ei
t is

in D1,2 for every i. Note that |U0,tν| =
∑

i(U0,tν)
i, so |U0,tν| is in D∞. Moreover,

we establish in Lemma 3.5.4 that et ∈ D1,2 and that Dret is a bounded random
variable for every t. Hence it follows from Proposition A.1.1 that |U0,tν| ei

t ∈ D1,2.
Consequently we can apply (A.1), and we obtain

EQ

[

|U0,tν| e∗t
∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

]

=

∫ t

0

EQ [(|U0,tν|Dre
∗
t + Dr|U0,tν| e∗t )Dπ̃r,t(πr) ·∆H(πr)] dr

=

∫ t

0

EQ [|U0,tν| (Drπt −Drπ̃t)
∗Dπ̃r,t(πr) ·∆H (πr)] dr

+

∫ t

0

EQ

[

∑

i

(Ur,tHU0,rν)
i e∗tDπ̃r,t(πr) ·∆H(πr)

]

dr.

Now note that |ei
t| ≤ 1, and that by Lemma 3.5.4

|(Drπt −Drπ̃t)
i| ≤ |(Drπt)

i|+ |(Drπ̃t)
i| ≤ max

k
|hk|+ max

k
|h̃k|.
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Furthermore we can estimate
∣

∣

∣

∣

∑

i(Ur,tHU0,rν)
i

|U0,tν|

∣

∣

∣

∣

≤ 1

|U0,tν|
∑

i,j,k

U ij
r,t |hj |U jk

0,rν
k ≤ max

k
|hk|,

where we have used a.s. nonnegativity of the matrix elements of U0,r and Ur,t (this
must be the case, as, e.g., Ur,tµ has nonnegative entries for any vector µ with
nonnegative entries). Hence we obtain, using the triangle inequality,

EQ

[

|U0,tν| e∗t
∫ t

0

Dπ̃r,t(πr) ·∆H(πr) dYr

]

≤ (2 max
k
|hk|+ max

k
|h̃k|)

∫ t

0

EQ|U0,tν| |Dπ̃r,t(πr) ·∆H(πr)| dr.

The result follows after straightforward manipulations. �

Unlike in the case h̃ = h, we now have to deal also with second derivatives of
the filter with respect to its initial condition. These can be estimated much in the
same way as we dealt with the first derivatives.

Lemma 3.4.3. Let λ̃ij > 0 ∀i 6= j and µ ∈ Sd−1, v, w ∈ TSd−1. Then a.s.

|D2π̃s,t(µ) · v −D2π̃s,t(µ) · w|

≤ 2
∑

k

|vk + wk|
µk

∑

j

|vj − wj |
µj

exp

(

−2 (t− s) min
p6=q

√

λ̃pqλ̃qp

)

.

Moreover, the result still holds if µ, v, w are FY
s -measurable random variables with

values a.s. in Sd−1 and TSd−1, respectively.

Proof. Proceeding as in the proof of Proposition 3.3.2, we can calculate di-
rectly the second derivative of (3.9):

(D2πt(µ) · v)i = −2 (Dπt(µ) · v)i

∑

j(v
j/νj)P(X0 = aj |FY

t )
∑

j(µ
j/νj)P(X0 = aj |FY

t )
.

Setting µ = ν and using the triangle inequality, we obtain

|D2πt(ν) · v −D2πt(ν) · w| ≤ 2
∑

i,j

|vj(Dπt(ν) · v)i − wj(Dπt(ν) · w)i|
νj

.

Another application of the triangle inequality and using Proposition 3.3.2 gives

|D2πt(ν) · v −D2πt(ν) · w|

≤
∑

k

|vk + wk|
νk

|Dπt(ν) · (v − w)|+
∑

k

|vk − wk |
νk

|Dπt(ν) · (v + w)|

≤ 2
∑

k

|vk + wk|
νk

∑

j

|vj − wj |
νj

exp

(

−2 tmin
p6=q

√

λpqλqp

)

.

We can now repeat the arguments of Corollary 3.3.3 to establish that the result still
holds if we replace π0,t by π̃s,t, λpq by λ̃pq , and ν, v, w by FY

s -measurable random
variables µ, v, w. This completes the proof. �

We are now ready to complete the proof of Theorem 3.1.5.
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Proof of Theorem 3.1.5. Set β = 2 minp,q 6=p(λ̃pq λ̃qp)
1/2. Let us collect all

the necessary estimates. First, we have
∫ t

0

EP|Dπ̃r,t(πr) ·∆Λπr| dr ≤ β−1 sup
s≥0

EP(1/min
k
πk

s ) |Λ∗ − Λ̃∗|,

as we showed in Section 3.3. Next, we obtain
∫ t

0

EP|Dπ̃r,t(πr) ·∆H(πr)| dr ≤ β−1 sup
π∈Sd−1

∑

k

|hk − h̃k + h̃∗π − h∗π|

using Corollary 3.3.3. Using the triangle inequality, we can estimate this by
∫ t

0

EP|Dπ̃r,t(πr) ·∆H(πr)| dr ≤ (d+ 1)β−1|h− h̃|.

Next, we estimate using Corollary 3.3.3

∫ t

0

EP|Dπ̃r,t(πr) · (h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr)| dr

≤ β−1 sup
π∈Sd−1

∑

k

|h∗π (hk − h∗π)− h̃∗π (h̃k − h̃∗π)|

≤ β−1

(

(d+ 1) max
k
|hk|+ dmax

k,`
|h̃k − h̃`|

)

|h− h̃|,

where we have used the estimate
∑

k

|h∗π (hk − h∗π)− h̃∗π (h̃k − h̃∗π)|

≤ |h∗π|
∑

k

|hk − h̃k + h̃∗π − h∗π|+ |h∗π − h̃∗π|
∑

k

|h̃k − h̃∗π|

≤ (d+ 1) max
k
|hk| |h− h̃|+ |h− h̃|

∑

k

|h̃k − h̃∗π|

≤
(

(d+ 1) max
k
|hk|+ dmax

k,`
|h̃k − h̃`|

)

|h− h̃|.

Next we estimate using Lemma 3.4.3

1

2

∫ t

0

EP|D2π̃r,t(πr) · (H − h∗πr)πr −D2π̃r,t(πr) · (H̃ − h̃∗πr)πr | dr

≤ β−1 sup
π∈Sd−1

∑

k

|hk − h∗π + h̃k − h̃∗π|
∑

j

|hj − h̃j + h̃∗π − h∗π|

≤ d(d + 1)β−1

(

max
k,`
|hk − h`|+ max

k,`
|h̃k − h̃`|

)

|h− h̃|.

We have now estimated all the terms in Lemma 3.4.2, and hence we have bounded
EP‖et‖2 = EP‖πt(ν) − π̃t(ν)‖2. It remains to allow for misspecified initial condi-
tions. To this end, we estimate

‖πt(ν)− π̃t(µ)‖2 ≤ ‖et‖2 + ‖π̃t(ν) − π̃t(µ)‖ (‖π̃t(ν)− π̃t(µ)‖+ 2‖πt(ν)− π̃t(ν)‖).
Hence we obtain using the equivalence of finite-dimensional norms ‖x‖ ≤ K21 |x|

‖πt(ν)− π̃t(µ)‖2 ≤ ‖et‖2 + 6K21 |π̃t(ν)− π̃t(µ)|
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where we have used that the simplex is contained in the (d − 1)-dimensional unit
sphere, so ‖µ1 − µ2‖ ≤ 2 ∀µ1, µ2 ∈ ∆d−1. The statement of the Theorem now
follows directly from Lemma 3.4.2, Proposition 3.3.4, and the estimates above. �

3.5. Some technical lemmas

Lemma 3.5.1. The following equality holds:

Ũ0,t

∫ s

0

Ũ−1
0,r (H − H̃)U0,rν dYr =

∫ s

0

Ũr,t(H − H̃)U0,rν dYr +

∫ s

0

Ũr,tH̃(H − H̃)U0,rν dr.

The integral on the left is an Itô integral, on the right a Skorokhod integral.

Proof. We have already established in the proof of Proposition 3.4.1 that the
matrix elements of Ũ0,t are in D∞ ⊂ D1,2. Moreover,

EQ‖Ũr,t(H − H̃)U0,rν‖2 ≤ ‖H − H̃‖2 EQ(‖Ũr,t‖2 ‖U0,r‖2)

≤ ‖H − H̃‖2
√

EQ‖Ũr,t‖4 EQ‖U0,r‖4

≤ C4
4 ‖H − H̃‖2

√

EQ|||Ũr,t|||44 EQ|||U0,r|||44,

where we have used the Cauchy-Schwarz inequality and ‖ν‖ ≤ 1 for ν ∈ Sd−1.
Here |||U |||p = (

∑

ij U
p
ij)

1/p is the elementwise p-norm of U , ‖U‖ is the usual

matrix 2-norm, and Cp matches the norms ‖U‖ ≤ Cp|||U |||p (recall that all norms

on a finite-dimensional space are equivalent). As U0,r, Ũr,t are solutions of linear
stochastic differential equations, standard estimates give for any integer p ≥ 2

EQ

(

sup
0≤r≤t

|||Ũr,t|||pp
)

≤ D1(p) <∞, EQ

(

sup
0≤r≤t

|||U0,r|||pp
)

≤ D2(p) <∞,

and we obtain
∫ s

0

EQ‖Ũr,t(H − H̃)U0,rν‖2 dr ≤ s sup
0≤r≤s

EQ‖Ũr,t(H − H̃)U0,rν‖2 <∞.

Hence we can apply Lemma A.4.2 to obtain the result. By a similar calculation
we can establish that the right-hand side of the expression in Lemma A.4.2 for our
case is square integrable, so that the Skorokhod integral is well defined. �

Lemma 3.5.2. The anticipating Itô rule with Σ(x) = x/|x| can be applied to

Ũs,tU0,sν = Ũ0,tν +

∫ s

0

Ũr,t(Λ
∗ − Λ̃∗)U0,rν dr +

∫ s

0

Ũr,t(H − H̃)U0,rν dYr.

Proof. Clearly the Skorokhod integral term has a.s. continuous sample paths,
as both Ũs,tU0,sν and the time integrals do; moreover, Ũ0,tν ∈ (D∞)d. In order
to be able to apply Proposition A.5.1, it remains to check the technical conditions
vr = Ũr,t(Λ

∗ − Λ̃∗)U0,rν ∈ (L1,4)d, ur = Ũr,t(H − H̃)U0,rν ∈ (L2,4)d.
As D∞ is an algebra, ut and vt take values in D∞. Moreover, we can establish

exactly as in the proof of Lemma 3.5.1 that u and v are in L4(Ω × [0, t]). To
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complete the proof we must establish that

∑

i

∫ t

0

EQ

[∫ t

0

(Dsu
i
r)

2 ds

]2

dr <∞,
∑

i

∫ t

0

EQ

[∫ t

0

(Dsv
i
r)

2 ds

]2

dr <∞,

thus ensuring that u, v ∈ (L1,4)d, and

∑

i

∫ t

0

EQ

[∫ t

0

∫ t

0

(DσDsu
i
r)

2 ds dσ

]2

dr <∞

which ensures that u ∈ (L2,4)d. Using the Cauchy-Schwarz inequality we have

∑

i

∫ t

0

EQ

[∫ t

0

(Dsu
i
r)

2 ds

]2

dr

≤ t
∫ t

0

∫ t

0

EQ‖Dsur‖44 ds dr ≤ t3 sup
0≤r,s≤t

EQ‖Dsur‖44,

and similarly for v. Moreover, we obtain

∑

i

∫ t

0

EQ

[
∫ t

0

∫ t

0

(DσDsu
i
r)

2 ds dσ

]2

dr ≤ t5 sup
0≤r,s,σ≤t

EQ‖DσDsur‖44.

But using the chain rule Proposition A.1.2 we can easily establish that

Dsur =

{

Ũr,t(H − H̃)Us,rHU0,sν a.e. 0 < s < r < t,

Ũs,tH̃Ũr,s(H − H̃)U0,rν a.e. 0 < r < s < t,

and similarly

DσDsur =







































Ũr,t(H − H̃)Us,rHUσ,sHU0,σν a.e. 0 < σ < s < r < t,

Ũr,t(H − H̃)Uσ,rHUs,σHU0,sν a.e. 0 < s < σ < r < t,

Ũσ,tH̃Ũr,σ(H − H̃)Us,rHU0,sν a.e. 0 < s < r < σ < t,

Ũs,tH̃Ũr,s(H − H̃)Uσ,rHU0,σν a.e. 0 < σ < r < s < t,

Ũs,tH̃Ũσ,sH̃Ũr,σ(H − H̃)U0,rν a.e. 0 < r < σ < s < t,

Ũσ,tH̃Ũs,σH̃Ũr,s(H − H̃)U0,rν a.e. 0 < r < s < σ < t.

The desired estimates now follow as in the proof of Lemma 3.5.1. �

Lemma 3.5.3. The Skorokhod integrand obtained by applying the anticipative
Itô formula as in Lemma 3.5.2 is in Dom δ.

Proof. We use the notation σr = U0,rν. The integral in question is
∫ s

0

DΣ(Ũr,tσr)Ũr,t(H − H̃)σr dYr =

∫ s

0

fr dYr.

To establish f ∈ Dom δ, it suffices to show that f ∈ L1,2. We begin by showing

|DΣ(Ũr,tσr)Ũr,t(H − H̃)σr | =
∑

i

∣

∣

∣

∣

∣

∣

∑

j,k

δij − Σi(Ũr,tσr)

|Ũr,tσr|
Ũ jk

r,t(h
k − h̃k)σk

r

∣

∣

∣

∣

∣

∣

≤

1

|Ũr,tσr |
∑

i,j,k

Ũ jk
r,t |hk − h̃k|σk

r ≤
maxk |hk − h̃k|
|Ũr,tσr |

∑

i,j,k

Ũ jk
r,tσ

k
r = d max

k
|hk − h̃k|,
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where we have used the triangle inequality, |δij − Σi(x)| ≤ 1 for any x ∈ Rd
++,

and the fact that Ur,t and σr have nonnegative entries a.s. Hence fr is a bounded
process. Similarly, we will show that Dsfr is a bounded process. Note that fr is a
smooth function on Rd

++ of positive random variables in D∞; hence we can apply
the chain rule Proposition A.1.1. This gives

(Dsfr)
i =



















∑

jk D
2Σijk(Ũr,tσr)(Ũr,t(H − H̃)σr)

j(Ũr,tUs,rHσs)
k

+
∑

j DΣij(Ũr,tσr)(Ũr,t(H − H̃)Us,rHσs)
j a.e. s < r,

∑

jk D
2Σijk(Ũr,tσr)(Ũr,t(H − H̃)σr)

j(Ũs,tH̃Ũr,sσr)
k

+
∑

j DΣij(Ũr,tσr)(Ũs,tH̃Ũr,s(H − H̃)σr)
j a.e. s > r.

Proceeding exactly as before, we find that Df ∈ L∞(Ω × [0, t]2). But then by
Proposition A.1.1 we can conclude that Dsfr ∈ D1,2 for a.e. (s, t) ∈ [0, t]2, and in
particular f ∈ L1,2. Hence the proof is complete. �

Lemma 3.5.4. Drπs = Dπr,s(πr) · (H − h∗πr)πr a.e. r < s, Drπs = 0 a.e.
r > s. Moreover |(Drπs)

i| ≤ maxk |hk| for every i. The equivalent results hold for
Drπ̃s. In particular, this implies that πs and π̃s are in D1,2.

Proof. The case r > s is immediate from adaptedness of πs. For r < s, apply
the chain rule to πs = Σ(U0,sν) ∈ D

1,2
loc. Boundedness of the resulting expression

follows, e.g., as in the proof of Lemma 3.5.3, and hence it follows that πs ∈ D1,2. �





CHAPTER 4

Filter Stability and Conditional Signals:

Continuous State Space

The goal of this chapter is to obtain some filter stability results for a class of
filtering problems with a diffusive signal, similar to the filtering model considered
by W. Stannat [Sta04, Sta05, Sta06]. We both extend some results of Stannat
using new probabilistic proofs, and are also able to obtain a much stronger sta-
bility result (under much more stringent conditions). Our method is completely
probabilistic and, in my opinion, effectively demystifies the clever but not so intu-
itive PDE methods used in [Sta04, Sta05, Sta06] and gives a deeper insight into
the structure and limitations of this type of result. We will be a little less careful
with technicalities in this chapter in order to be able to focus on the main line of
the argument. It is fairly clear, however, how one could proceed to make certain
arguments rigorous, which I have tried to indicate in the text.

4.1. The filtering model

Consider the following signal-observation pair:

dXt = BXt dt+∇V (Xt) dt+ dWt,(4.1)

dYt = HXt dt+ dBt,(4.2)

whereXt,Wt ∈ Rd, Yt, Bt ∈ Rp. HereWt and Bt are independent Wiener processes,
B is a d × d matrix, H is a p × d matrix and V (x) is a C4,α potential function.
We denote by b(x) = Bx +∇V (x) the drift of Xt, and assume that it is of linear
growth and has bounded derivatives up to third order. Finally, let the initial law
X0 ∼ ν � dx have a C3 density p0(x) with respect to the Lebesgue measure, and
we assume that p0(x) is bounded and positive.

The technical conditions above could probably be weakened, though they are
not particularly restrictive. In particular, these conditions guarantee that (i) the
stochastic differential equation for the signal has a unique (strong) solution; and
(ii) that the pathwise filtering equation, see section 1.4.3, has a unique solution
with C2 density with respect to the Lebesgue measure (see [Kun90, Thm. 6.2.2]).
On the other hand, we have chosen a rather restrictive set of signal/observation
models: the signal drift must be of gradient plus linear type, the signal diffusion
coefficient must be constant and nondegenerate, and the observation function is
linear. The reason for these choices will become clear in due course.

Remark 4.1.1. The model above extends trivially to any signal of the form

dX ′
t = AA∗(B′X ′

t +∇V ′(X ′
t)) dt+AdWt,

83
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where A is an invertible matrix. Indeed, setting X ′
t = AXt, we find that

dX ′
t = ABA−1X ′

t dt+A∇V (A−1X ′
t) dt+AdWt,

so that we can apply the results of this chapter with V (x) = V ′(Ax), B = A∗B′A
(and a suitable rescaling of the final result). Extension to time-dependent B(t),
V (t, x) is not difficult, but we restrict to the model above for notational convenience.

4.2. Preliminaries: Some conditional signal theory

Before we turn our attention to the filter stability problem, let us take a mo-
ment to develop the time-reversed conditional signal theory that will be needed in
the following. The stochastic control problems which we are about to investigate
already appear in the papers [FM83, Mit81, Par81], but the interpretation of the
controlled process as the time-reversed conditional signal still appears to be lacking
even in [MN03]. It is not our goal to develop the theory here in its full generality,
but we will sketch how to proceed in the particular case under investigation.

4.2.1. Conditional signal—time-reversed case. First, let us recall a stan-
dard result on time reversal for diffusions [HP86]. Fix a terminal time T > 0; we

are interested in the time-reversed diffusion process X̃t = XT−t. Under the tech-

nical conditions which we have already imposed, there exists a Wiener process W̃t,
t ∈ [0, T ] such that X̃t is again a diffusion with

dX̃t = −b(X̃t) dt+∇ log pT−t(X̃t) dt+ dW̃t.

Here pt(x) is the (unconditional) density of Xt with respect to the Lebesgue mea-
sure, which is C2 and positive1 by our assumptions (for an investigation of the

growth properties of ∇ log pt(x), see [Hau85]). The Wiener process W̃t can be
identified explicitly, see [Par86], but we will forgo this issue here.

In the above, W̃t is a Wiener process under the usual measure P. To develop
the conditional diffusion theory, we would like to describe the law of X̃t under
the conditional measure ΠT (·, y). We now basically proceed exactly as in section
2.2.3. First, note that ΠT (·, y) is equivalent to µx, the unconditional law of the
signal process. The Girsanov theory [Pro04, sec. III.8] tells us that any equivalent
change of measure on the space of signal sample paths is equivalently described by
the addition of a drift term, i.e., by the process

dX̃u
t = −b(X̃u

t ) dt+∇ log pT−t(X̃
u
t ) dt+ ut dt+ dW̃t

where ut ∈ Rd is (backwards) progressively measurable. It is our goal to find the

control u? under which the law of X̃u?

t under P is precisely the law of X̃t under

1 The smoothness of pt(x) follows from standard results, while the fact that pt(x) is positive
can be seen, for example, as follows. As b(x) was assumed to be sufficiently regular, the solution
ξt(x) of the signal process Xt with initial condition X0 = x is a random diffeomorphism (by
the theory of stochastic flows [Kun84]). Hence the conditional law P(Xt ∈ · | σ{Ws, s ∈ [0, t]})
admits a density pt|W (x) which is simply the initial density transformed by the flow:

pt|W (x) = p0(ξ
−1
t (x)) det|∇ξ−1

t (x)|.

But p0(x) > 0 by assumption, while the Jacobian determinant must a.s. be positive by the a.s.
continuity and invertibility of the flow. Hence pt(x) = E(pt|W (x)) is positive.
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ΠT (·, y). Let us pose this problem as an optimal control problem, i.e., as usual we
will find u? from the variational Kallianpur-Striebel formula

I(HT (·, y)) = min
µ′∈Px

{D(µ′||µx) + 〈HT (·, y), µ′〉} .

(We refer to [MN03] for a thorough discussion of the technical details in the ap-
plication of this expression in the diffusion case.) The Girsanov theorem gives

D(µ′||µx) = D(ν′T ||νT ) + E

[

1

2

∫ T

0

‖us‖2 ds
]

,

where ν′T is the measure of X̃0 under µ′, and νT is the measure with density pT (x).
Similarly, we find that for y ∈ C1

〈HT (·, y), µ′〉 = E

[

1

2

∫ T

0

‖ẏT−s −HX̃u
s ‖2 ds−

1

2

∫ T

0

‖ẏT−s‖2 ds
]

,

and the expression for any y ∈ C0([0, T ]; Rp) is easily found by integration by parts.
To convert the problem to a dynamic programming problem we proceed, still

following section 2.2.3, by defining the cost-to-go

J̃u(t, x) = Ẽt,x

[

1

2

∫ T

t

(

‖us‖2 + ‖ẏT−s −HX̃u
s ‖2 − ‖ẏT−s‖2

)

ds

]

,

where P̃t,x is the measure under which X̃u
t = x. An explicit expression for the

corresponding value function2 Ṽ (t, x) = minu J̃
u(t, x) can be obtained directly from

the variational Kallianpur-Striebel formula:

Ṽ (t, x) = − log Ẽt,x

[

exp(−HT−t(X[0,T−t], y))
]

= − log %y
T−t(x) + log pT−t(x),

where %y
t (x) is the (pathwise) unnormalized filtering density, which is defined as

%y
t (x) = ey∗

t HxHy(t, x) where Hy(t, x) is the solution of the pathwise filtering equa-
tion (see section 1.4.3). Moreover, it is easily established using standard optimal
control methods [FR75] (we will elaborate below for a different control problem)

that the optimal control is given by u?
t = −∇Ṽ (t, X̃u?

t ), so that the diffusion

(4.3) dX̃?
t = −b(X̃?

t ) dt+∇ log %y
T−t(X̃

?
t ) dt+ dW̃t

has the same law under P as does X̃t under ΠT (·, y). We note that the Kolmogorov
backward equation for this diffusion is a well-known smoothing equation, see, e.g.,
[LSBS96] and the references therein.

Remark 4.2.1. The conditional diffusion admits an interesting physical pic-
ture, which is illustrated in cartoon form in figure 4.1. Consider the reversible
case where B = 0, V (x) = −U(x), and p0(x) is taken to be the stationary den-

sity p0(x) ∝ e−2U(x). Then X̃t has the same transition intensities as Xt, and
describes a (noninertial) particle diffusing, in reverse time, on the potential sur-
face U(x). When we change to the measure ΠT (·, y), this simply corresponds to a
change in the potential surface by the addition of the negative log-likelihood ratio
− log(%y

T−t(x)/pT−t(x)). In essence we must introduce, beside the physical forces
acting on the particle, additional forces that localize the particle in the regions of
enhanced likelihood. In this way, the “effective potential” U(x)+ Ṽ (t, x) takes into

2 Here and in the following, the minimum of the cost-to-go J̃u(t, x) at time t is understood

to be taken over all F̃t
s-adapted control strategies, F̃t

s = σ{W̃r − W̃t : r ∈ [t, s]}.
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U(x)
ρT-t(x) / pT-t(x)

U(x) + V(t,x)

XT-t

~

Figure 4.1. Cartoon of a conditional diffusion. Left figure: under P,
a particle diffuses on the potential U(x) in reverse time. The observation
path y is used to calculate the likelihood ratio %T−t(x)/pT−t(x). Right
figure: under ΠT (·, y), the particle sees an “effective potential” U(x) +

Ṽ (t, x), where Ṽ (t, x) = − log(%T−t(x)/pT−t(x)) is the value function.

The lightly shaded curves depict the individual terms U(x) and Ṽ (t, x).

account the information encoded in the observation sample path y. The forward
time case (see [MN03]) is very similar, only the likelihood ratio is replaced by its
time-reversed counterpart (the dual filter in the sense of [Par82]).

4.2.2. Conditional signal—gauge transformation. We can now proceed
exactly as in section 2.2.4 to find the control problems for which the logarithm
of the unnormalized filtering density or of the pathwise filtering density are the
respective value functions. For our purposes, however, it will be convenient to go
one step further by absorbing the gradient part of the drift b(x) into the value
function as well. This essentially corresponds to the “gauge transformation” (a
term borrowed from quantum mechanics) introduced in [Mit79], or a “parabolic
ground state transform” in the operator-theoretic language of [Sta04]. Though it
is not yet obvious at this point, it will be quite crucial in the following that this
method can be implemented in some form or another. We content ourselves for
the moment by showing how this is done, and we will elaborate further on the
significance of this procedure in section 4.3.2.

We would like to be in the situation where (i) the value function serves as the
“effective potential” described in the previous section, rather than just the log-
likelihood portion of it; and (ii) where in the absence of control, the signal process
is a linear diffusion. To this end, we should consider replacing the control input by3

ut 7→ ut +∇ log pT−t(X̃
u
t )−∇V (X̃u

t )− 1
2 (B+B∗)X̃u

t , while we should replace the

value function by Ṽ (t, x) 7→ Ṽ (t, x)− log pT−t(x) + V (x) + 1
2x

∗Bx. For additional
convenience, let us also add the term y∗T−tHx, so that we can integrate by parts and
define the control problem directly for any y ∈ C0([0, T ]; Rp) rather than having to
worry about taking limits of y ∈ C1 at the end of the day. We thus define

ǔt = ut +∇ log pT−t(X̃
u
t )−∇V (X̃u

t )− 1
2 (B +B∗)X̃u

t −H∗yT−t,

3 We incorporate the term 1
2
(B + B∗)x as this is the symmetric part of Bx, i.e., we have

Bx = 1
2
(B +B∗)x+ 1

2
(B −B∗)x = ∇( 1

2
x∗Bx)+ 1

2
(B −B∗)x. This separates the linear drift into

a gradient portion, which is absorbed into the value function, and a purely antisymmetric part
1
2
(B − B∗)x which, as we will see, does not contribute directly to the stability of the filter.
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so that we can write the controlled diffusion as

dX̌ ǔ
t = H∗yT−t dt− 1

2 (B −B∗)X̌ ǔ
t dt+ ǔt dt+ dW̃t.

We must now redefine the cost-to-go, and hence the value function, accordingly:

J̌ ǔ(t, x) = J̃u(t, x)− log pT−t(x) + V (x) + 1
2x

∗Bx+ y∗T−tHx,

where we define the new value function by V̌ (t, x) = minǔ J̌
ǔ(t, x). As none of the

added terms depend on u, the cost still attains its minimum at the control strategy
ǔ? which turns X̌ ǔ?

t into the time-reversed conditional signal, but ǔ and J̌ have
been redefined in such a way that ǔ?

t = −∇V̌ (t, X̌ ǔ?

t ) (we will see this in a little
more detail below). Moreover the uncontrolled process X̌0

t is now a linear diffusion,
and we have pushed all the nonlinearity into the “effective potential” V̌ (t, x). This
is precisely what we were aiming for.

Our first order of business is to bring the cost J̌ ǔ(t, x) back to standard form.
We have already seen how to do this in section 2.2.4; this is nothing more than an
exercise in the application of Dynkin’s formula. First, we calculate

Ẽt,x(log p0(X̃
u
T )) = log pT−t(x) + Ẽt,x

∫ T

t

1

2
‖∇ log pT−s(X̃

u
s )‖2 ds

+ Ẽt,x

∫ T

t

(∇ · b)(X̃u
s ) ds+ Ẽt,x

∫ T

t

(∇ log pT−s(X̃
u
s ))∗us ds.

Similarly, it is not difficult to calculate that

Ẽt,x(V (X̃u
T )) = V (x) + Ẽt,x

∫ T

t

(

1

2
(∇ · b)(X̃u

s )− 1

2
Tr(B)

)

ds

+ Ẽt,x

∫ T

t

(∇V (X̃u
s ))∗(us +∇ log pT−s(X̃

u
s )−∇V (X̃u

s )−BX̃u
s ) ds.

We obtain in the same way

0 = Ẽt,x(y∗0HX̃
u
T ) = y∗T−tHx− Ẽt,x

∫ T

t

(

ẏ∗T−sHX̃
u
s

)

ds

+ Ẽt,x

∫ T

t

y∗T−sH(us +∇ log pT−s(X̃
u
s )−∇V (X̃u

s )−BX̃u
s ) ds.

Finally, note that we can write

Ẽt,x((X̃u
T )∗BX̃u

T ) = x∗Bx+

∫ T

t

Tr(B) ds

+ Ẽt,x

∫ T

t

(X̃u
s )∗(B +B∗)(us +∇ log pT−s(X̃

u
s )−∇V (X̃u

s )−BX̃u
s ) ds.

Adding up these expressions, we can now obtain an expression for the cost-to-go in
the usual form (running cost integral plus terminal cost):

J̌ ǔ(t, x) = J̃u(t, x)− log pT−t(x) + V (x) + 1
2x

∗Bx+ y∗T−tHx

= Ẽt,x

[

1

2

∫ T

t

{

‖ǔs‖2 +W (X̌ ǔ
s ) +Gy

s (X̌ ǔ
s )
}

ds+R(X̌ ǔ
T )

]

.
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Here we have defined the running cost terms W (x) and Gy
t (x) by

W (x) = ‖Hx‖2 + ‖b(x)‖2 +∇ · b(x)− 1
4‖(B

∗ −B)x‖2,(4.4)

Gy
t (x) = y∗T−tH(B −B∗)x − ‖H∗yT−t‖2,(4.5)

and we have introduced the terminal cost

(4.6) R(x) = − log p0(x) + V (x) + 1
2x

∗Bx.

Note in particular that the derivative terms ẏT−t have disappeared in these expres-
sions, so that they make sense for any observation path y ∈ C0([0, T ]; Rp).

Remark 4.2.2. We have not been completely rigorous here; in particular, it
is not entirely clear at the outset whether Dynkin’s formula can be applied to
− log pT−t(x), V (x) or x∗Bx (as these functions need not have bounded derivatives),
or whether the controlled diffusion, equation (4.3), even has a well-defined (weak)
solution. Hence this and the previous section should be considered to be of a formal
nature. However, our manipulations can be made rigorous using approximation
techniques similar to the method used in [MN03].

Let us briefly indicate how the usual verification argument works (e.g., [FR75]).
The Bellman equation corresponding to the control problem above is given by

− ∂V̌ (t, x)

∂t
= 1

2∇
2V̌ (t, x) + (H∗yT−t − 1

2 (B −B∗)x) · ∇V̌ (t, x)

+ 1
2W (x) + 1

2G
y
t (x) + min

u∈Rd

{

u · ∇V̌ (t, x) + 1
2‖u‖

2
}

,

with the terminal condition V̌ (T, x) = R(x). Note that the minimum in the Bellman
equation is attained at u = −∇V̌ (t, x); substituting into the expression above, we
obtain the Hamilton-Jacobi-Bellman equation

− ∂V̌ (t, x)

∂t
= 1

2∇
2V̌ (t, x) + (H∗yT−t − 1

2 (B −B∗)x) · ∇V̌ (t, x)

− 1
2‖∇V̌ (t, x)‖2 + 1

2W (x) + 1
2G

y
t (x).

This is easily verified to coincide with what we know the value function should be,

V̌ (t, x) = − logHy(T − t, x) + V (x) + 1
2x

∗Bx,

using the pathwise filtering formula of section 1.4.3. To show that the control
strategy ǔ?

t = −∇V̌ (t, X̌ ǔ?

t ) is indeed optimal, we proceed formally as follows. For
a control strategy ǔ, Dynkin’s formula gives

V̌ (0, x) = Ẽ0,x

[

V̌ (T, X̌ ǔ
T )−

∫ T

0

{

∂

∂t
V̌ (t, X̌ ǔ

t ) +
1

2
∇2V̌ (t, X̌ ǔ

t )

}

dt

−
∫ T

0

(H∗yT−t − 1
2 (B −B∗)X̌ ǔ

t + ǔt) · ∇V̌ (t, X̌ ǔ
t ) dt

]

.

Substituting ǔ?
t = −∇V̌ (t, X̌ ǔ?

t ) and using the Bellman equation, we find that
V̌ (0, x) = J̌ ǔ?

(0, x), whereas for any ǔ it follows from the Bellman equation that
V̌ (0, x) ≤ J̌ ǔ(0, x). To make the argument rigorous we should introduce a suitable
class of admissible controls, prove that ǔ? is admissible, and justify the application
of Dynkin’s formula. This is most easily done as in [MN03] by solving the problem
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for a particularly simple case in which these technicalities can be dealt with in a
straightforward manner, then taking limits to establish the general result.

4.3. Filter stability for potential diffusions

4.3.1. Filter stability. Having worked our way through the preliminaries,
we now turn our attention to the problem of filter stability. We are interested in
bounding, in total variation norm, the distance between the filters started from two
initial measures. To this end, we begin by finding an explicit expression for this
quantity. The following result can be found in [COC99, Lemma 2.1].

Lemma 4.3.1. Let β � ν be measures on Rd. Then

dPβ

dPν
=
dβ

dν
(X0),

dΠβ
t (Xt ∈ · , y)

dΠν
t (Xt ∈ · , y)

=
Πν

t (dβ
dν (X0)|Xt, y)

Πν
t (dβ

dν (X0), y)
,

where Pβ is the measure under which the Markov process X has initial measure β,

and Πβ
t (·, y) is the corresponding pathwise conditional measure.

Proof. The first statement follows as in the proof of Proposition 2.1.3. To
prove the second statement, note that by the Kallianpur-Striebel formula

Πβ
t (A, y) =

Eβ(IAZ̃t(X[0,t], y))

Eβ(Z̃t(X[0,t], y))
=

Eν(dβ
dν (X0)IAZ̃t(X[0,t], y))

Eν(dβ
dν (X0)Z̃t(X[0,t], y))

=
Πν

t (dβ
dν (X0) IA, y)

Πν
t (dβ

dν (X0), y)
.

Hence we can write
dΠβ

t (·, y)
dΠν

t (·, y) =
dβ
dν (X0)

Πν
t (dβ

dν (X0), y)
,

and the result follows as Πt(Xt ∈ · , y) is the restriction of Πt(·, y) to σ{Xt}. �

Corollary 4.3.2. For β � ν, the total variation distance is given by

‖Πβ
t (Xt ∈ · , y)−Πν

t (Xt ∈ · , y)‖TV =
Πν

t

(∣

∣

∣Πν
t (dβ

dν (X0)|Xt, y)−Πν
t (dβ

dν (X0), y)
∣

∣

∣ , y
)

Πν
t (dβ

dν (X0), y)
.

In particular, if Πν
t (Xt ∈ · , y)� dx with dΠν

t (Xt ∈ · , y) = πν
t (x) dx, and if Λβν

t (x)

is any version of Πν
t (dβ

dν (X0)|Xt = x, y), then

‖Πβ
t (Xt ∈ · , y)−Πν

t (Xt ∈ · , y)‖TV =

∫

Rd

∣

∣

∣Λ
βν
t (x)−

∫

Rd Λβν
t (y)πν

t (y) dy
∣

∣

∣πν
t (x) dx

∫

Rd Λβν
t (y)πν

t (y) dy
.

Proof. This follows immediately from the definition of the TV distance. �

We can now proceed as follows. Note that

‖Πβ
t (Xt ∈ · , y)−Πν

t (Xt ∈ · , y)‖TV ≤
∫

Rd×Rd

∣

∣

∣Λ
βν
t (x)− Λβν

t (y)
∣

∣

∣πν
t (x)πν

t (y) dx dy
∫

Rd Λβν
t (y)πν

t (y) dy
.

Consider the quantity |Λβν
t (x)−Λβν

t (y)|. If the filter is to forget its initial condition,
one could expect that the smoothed estimate of the signal process at the initial time
X0 should become independent of Xt for large t; in particular, this would imply

that |Λβν
t (x)−Λβν

t (y)| → 0 as t→∞. If we can prove this, we are well on our way
to proving filter stability: assuming that dβ/dν is bounded from below we can easily
estimate the denominator in the above expression, while we could claim that the
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numerator converges to zero provided that we have some control on the integral
with respect to πν

t (x) dx × πν
t (y) dy. We thus initially concentrate on bounding

|Λβν
t (x) − Λβν

t (y)|, and work out the remaining details at the end.

Remark 4.3.3. We have already encountered the finite-state counterpart of

|Λβν
t (x) − Λβν

t (y)|: see, e.g., Lemma 3.3.1. In particular, our logic in the above
parallels the method used in [BCL04] to prove filter stability for signals on a
finite state space. The hard part, of course, is getting the requisite bound on

|Λβν
t (x)−Λβν

t (y)|, which we will approach below using the conditional signal theory.

Recall that the the time-reversed conditional signal,

dX̃?
t = (H∗yT−t − 1

2 (B −B∗)X̃?
t −∇V̌ (t, X̃?

t )) dt+ dW̃t,

has the same law under P as does XT−t under ΠT (·, y). In particular X̃?
t is a

diffusion, so that we can condition it on its initial point as follows4:

dX̃?
t (x) = (H∗yT−t − 1

2 (B −B∗)X̃?
t (x)−∇V̌ (t, X̃?

t (x))) dt + dW̃t, X̃?
0 (x) = x.

X̃?
t (x) is now defined on the same probability space for any x ∈ Rd, t ∈ [0, T ], and

Λβν
T (x) = E

(

dβ

dν
(X̃?

T (x))

)

defines a version of the conditional expectation Πν
T (dβ

dν (X0)|XT = x, y). Suppose
that dβ/dν is Lipschitz continuous. Then evidently

|Λβν
T (x)−Λβν

T (y)| ≤ E

(∣

∣

∣

∣

dβ

dν
(X̃?

T (x)) − dβ

dν
(X̃?

T (y))

∣

∣

∣

∣

)

≤
∥

∥

∥

∥

dβ

dν

∥

∥

∥

∥

Lip

E‖X̃?
T (x)−X̃?

T (y)‖

where ‖f‖Lip is the Lipschitz constant of f . Hence evidently |Λβν
T (x)−Λβν

T (y)| → 0

if the flow X̃?
T (x) of the time-reversed conditional signal is contracting, at least on

average. We would like to give conditions under which this can be proved.
The filtering model which we study in this chapter has a nice property that

allows us to obtain such a contraction in a straightforward manner. Note that

d

dt
(X̃?

t (x) − X̃?
t (y)) = − 1

2 (B −B∗)(X̃?
t (x) − X̃?

t (y))

− (∇V̌ (t, X̃?
t (x)) −∇V̌ (t, X̃?

t (y))).

Hence we obtain using the ordinary chain rule

d

dt
‖X̃?

t (x) − X̃?
t (y)‖2 = −2 (X̃?

t (x)− X̃?
t (y))∗(∇V̌ (t, X̃?

t (x)) −∇V̌ (t, X̃?
t (y))),

where we have used the fact that x∗(B−B∗)x = 0 for any vector x. But this means

that the distance ‖X̃?
t (x)− X̃?

t (y)‖ is strictly contracting, provided that we require
(x − y)∗(∇V̌ (t, x) − ∇V̌ (t, y)) > 0 for all t, x, y—which is identical to requiring
that the value function V̌ (t, x) be strictly convex for every t by the well-known

4 What we have done here is essentially to construct a stochastic flow [Kun84] associated to

X̃?
t , though we will not need any of its interesting properties. What we do need for this to work,

however, is that the equation for X̃?
t has a strong solution. But recall that by our assumptions

V̌ (t, x) is twice continuously differentiable in x, so that ∇V̌ (t, x) is locally Lipschitz continuous

and hence there is a unique strong solution up to an explosion time ζ. Moreover, the laws of X̃?
t

and XT−t are equivalent, so we see that X?
t is a.s. finite on [0, T ]. Hence ζ = ∞ a.s., and this is

sufficient to construct X?
t (x) on the same probability space as a function of x and t.
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first order condition for convexity [HUL01]. This is precisely what we are going
to show, using the characterization of V̌ (t, x) as the infimum of the cost-to-go.

Let us briefly summarize our strategy up to this point. Our next step will be to
prove that the value function V̌ (t, x) is uniformly convex. When this is the case, the

time-reversed conditional signal X̃?
t is a diffusion in a uniformly convex potential,

and hence its flow is contracting at an exponential rate. This in turn implies that

the quantity |Λβν
T (x)−Λβν

T (y)| decays exponentially. Finally we will substitute this
bound into the expression for the total variation distance between the differently
initialized filters, and it remains to control the double integral in the expression for
the total variation distance (which is not entirely trivial, as we will see).

4.3.2. Uniform convexity of the value function. In this section, we will
show that under certain conditions the value function V̌ (t, x) is uniformly convex.
The control-theoretic method lends itself particularly well to this task, as convexity
of the value function is essentially inherited from the cost-to-go. A similar method
was used by C. Borell [Bor00] to obtain certain geometric inequalities for diffusions.
We begin by recalling a basic definition.

Definition 4.3.4. f(x) is called κ-uniformly convex if f(x)− 1
2κ‖x‖2 is convex.

This concept is important to us for the following elementary reason.

Lemma 4.3.5. The following statements are equivalent:

(1) f(x) is κ-uniformly convex and differentiable;
(2) (x− y)∗(∇f(x) −∇f(y)) ≥ κ‖x− y‖2 for all x, y.

Proof. This follows immediately from the well-known first order conditions
for convexity [HUL01], applied to the convex function f(x)− 1

2κ‖x‖2. �

To explain the basic method, let us begin by proving when the value function
is simply convex. Recall that the cost-to-go is given by

J̌ ǔ(t, x) = Ẽt,x

[

1

2

∫ T

t

{

‖ǔs‖2 +W (X̌ ǔ
s ) +Gy

s(X̌ ǔ
s )
}

ds+R(X̌ ǔ
T )

]

.

We can write this differently, as follows: define

dX̌ ǔ,t,x
s = H∗yT−s ds− 1

2 (B −B∗)X̌ ǔ,t,x
s ds+ ǔs ds+ dW̃s, X̌ ǔ,t,x

t = x,

where ǔs is any σ{W̃r − W̃t : r ∈ [t, s]}-adapted control strategy. Then

J̌ ǔ(t, x) = E

[

1

2

∫ T

t

{

‖ǔs‖2 +W (X̌ ǔ,t,x
s ) +Gy

s(X̌ ǔ,t,x
s )

}

ds+R(X̌ ǔ,t,x
T )

]

,

and V̌ (t, x) = minǔ J̌
ǔ(t, x). Now note that as the equation for X̌ ǔ,t,x

s is linear in
x and ǔ, it follows immediately that

X̌λǔ+(1−λ)v̌,t,λx+(1−λ)y
s = λX̌ ǔ,t,x

s + (1− λ)X̌ v̌,t,y
s

for any pair of controls ǔ, v̌, initial points x, y, and λ ∈ [0, 1]. We can exploit
this fact to prove that the cost-to-go is convex, provided that W (x) and R(x) are
convex. Indeed, ‖ǔ‖2 and Gy

t (x) are obviously already convex, so we obtain

J̌λǔ+(1−λ)v̌(t, λx + (1− λ)y) ≤ λJ̌ ǔ(t, x) + (1− λ)J̌ v̌(t, y).

Now take the infimum over ǔ and v̌. This gives

V̌ (t, λx + (1− λ)y) ≤ λV̌ (t, x) + (1− λ)V̌ (t, y).
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Hence evidently the value function V̌ (t, x) is convex, provided that W (x) and R(x)
are chosen to be convex. We now extend this idea to the uniformly convex case.

Proposition 4.3.6. Suppose that R(x) is κ-uniformly convex and that W (x)
is κ′-uniformly convex, κ′ ≥ 2κ2. Then V̌ (t, x) is κ-uniformly convex for any t.

Proof. We would like to show that J̌ ǔ(t, x)− 1
2κ‖x‖2 is convex in (ǔ, x). To

this end, we adopt our seasoned approach, i.e., apply Dynkin’s formula to ‖x‖2:

E(‖X̌ ǔ,t,x
T ‖2) = ‖x‖2 + (T − t)d+ E

[

∫ T

t

2X̌ ǔ,t,x
s · (H∗yT−s + ǔs) ds

]

.

Hence we can write, rearranging the terms suggestively,

J̌ ǔ(t, x)− 1
2κ‖x‖

2 = 1
2κ(T − t)d+ E

[

1

2

∫ T

t

{

W (X̌ ǔ,t,x
s )− 1

2κ
′‖X̌ ǔ,t,x

s ‖2
}

ds

]

+ E

[

1

2

∫ T

t

{

Gy
s(X̌ ǔ,t,x

s ) + 2κ y∗T−sHX̌
ǔ,t,x
s

}

ds+R(X̌ ǔ,t,x
T )− 1

2κ‖X̌
ǔ,t,x
T ‖2

]

+ E

[

1

2

∫ T

t

{

‖ǔs‖2 + 2κX̌ ǔ,t,x
s · ǔs + 1

2κ
′‖X̌ ǔ,t,x

s ‖2
}

ds

]

.

By our assumptions all the terms in this expression are convex, except possibly the
last line. We are thus interested in making ‖u‖2+2κx·u+ 1

2κ
′‖x‖2 a convex function

in (x, u). But it is easily verified, by requiring the Hessian of this expression to be
positive semidefinite, that this is the case iff κ′ ≥ 2κ2. Proceeding as in the proof
of simple convexity above, the statement follows. �

We will resume the proof of the main result in section 4.3.3. The rest of this
section is devoted to a discussion of the role of the “gauge transformation” in the
model under investigation; in particular, we will aim to clarify why these results do
not easily extend to more general signal models.

Let us consider the simplest possible generalization: the signal-observation pair

dXt = b(Xt) dt+ dWt,

dYt = h(Xt) dt+ dBt,

where b(x) and h(x) are not necessarily of linear-gradient form and of linear form,
respectively. We forgo all technicalities and assume that everything is regular. To
find the time-reversed conditional signal, we once again consider the control system

dX̃u
t = −b(X̃u

t ) dt+∇ log pT−t(X̃
u
t ) dt+ ut dt+ dW̃t,

with the corresponding cost-to-go

J̃u(t, x) = Ẽt,x

[

1

2

∫ T

t

(

‖us‖2 + ‖ẏT−s − h(X̃u
s )‖2 − ‖ẏT−s‖2

)

ds

]

.

It is convenient to absorb the term − log pT−t(x) into the value function. It is easily
seen that the corresponding control system can be written as

dX̌ ǔ
t = ǔt dt+ dW̃t,
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with the modified cost-to-go

J̌ ǔ(t, x) = Ẽt,x

[

∫ T

t

(

1

2
‖ǔs + b(X̌ ǔ

s )‖2 + (∇ · b)(X̌ ǔ
s )

)

ds

]

+ Ẽt,x

[

1

2

∫ T

t

(

‖ẏT−s − h(X̌ ǔ
s )‖2 − ‖ẏT−s‖2

)

ds− log p0(X̌
ǔ
T )

]

.

The corresponding value function is V̌ (t, x) = minǔ J̌
ǔ(t, x) = − log %y

T−t(x), and

the optimal control is given by ǔ?
t = −b(X̌ ǔ?

t )−∇V̌ (t, X̌ ǔ?

t ). It would appear that
we can now proceed exactly as before: note that

d

dt
‖X̌ ǔ?

t (x) − X̌ ǔ?

t (y)‖2 = −2 (X̌ ǔ?

t (x)− X̌ ǔ?

t (y))∗(b(X̌ ǔ?

t (x)) − b(X̌ ǔ?

t (y)))

− 2 (X̌ ǔ?

t (x)− X̌ ǔ?

t (y))∗(∇V̌ (t, X̌ ǔ?

t (x)) −∇V̌ (t, X̌ ǔ?

t (y))).

Hence if we impose the mild condition that (x − y)∗(b(x) − b(y)) ≥ −α‖x − y‖2
for some α ∈ R—essentially the requirement that the rate of expansion of the un-
controlled diffusion is bounded—then contractivity of the time-reversed conditional
diffusion would follow if V̌ (t, x) could be made κ-uniformly convex with κ > α.

The problems quickly become evident, however, when why try to show that
the cost-to-go is uniformly convex. Consider even the simple convex case, and let
us assume for simplicity that d = p = 1 (one-dimensional signal and observations).
In order for the observation term in the cost to be convex, we must have

d2

dx2
(ẏ − h(x))2 = (h(x) − ẏ) d

2h

dx2
+

(

dh

dx

)2

≥ 0.

But this can clearly never be the case uniformly in ẏ, except if d2h/dx2 = 0 which
implies h(x) = Hx. Hence evidently linear observations are essential in the proof
of convexity of V̌ (t, x). Similarly, we need to show that 1

2 (u+ b(x))2 + db(x)/dx is
convex in (x, u), but this is easily verified to be impossible unless b(x) is linear. In
this case, however, we have another trick at our disposal. Clearly the difficult term
is b(X̌ ǔ

s ) ǔs, which is obtained by expanding the square. But note that

Ẽt,x

∫ T

t

b(X̌ ǔ
s ) ǔs ds = Ẽt,x

∫ T

t

b(X̌ ǔ
s ) dX̌ ǔ

s .

Hence if b(x) = dV (x)/dx for some function V (x), we can transform away the
problematic term:

Ẽt,x

∫ T

t

b(X̌ ǔ
s ) dX̌ ǔ

s = Ẽt,x

[

V (X̌ ǔ
T )− V (x)− 1

2

∫ T

t

db

dx
(X̌ ǔ

s ) ds

]

.

But this corresponds precisely to the (essential portion of) the gauge transformation
which we performed previously, and requires the signal drift to be of gradient type.

In conclusion, there is no a priori necessity to restrict to our linear-gradient
model, nor to perform a gauge transformation at the beginning of the argument
as we have done. However, once we start working our way through the proofs,
it quickly becomes evident that the gauge transformation, and hence the linear-
gradient model, are essential tools in proving that the value function is (uniformly)
convex. Of course, using convexity in order to prove contractivity of the conditional
signal is a rather primitive method; in particular, we do not really need the almost
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sure contractivity that is guaranteed by this method, as contractivity in the mean
would certainly suffice. Proving the latter, however, requires more sophisticated
tools, and these still remain to be developed.

4.3.3. Proof of the main result. We have seen that |Λβν
T (x)−Λβν

T (y)| decays

at an exponential rate, provided that the value function V̌ (t, x) is uniformly convex.
Moreover, we showed that the latter holds if W (x) and R(x) are uniformly convex.
The requirement that W (x) is uniformly convex will be a basic requirement of our
main result. The requirement that R(x) be uniformly convex might seem rather
strange, however, as this places a significant restriction on the initial measure ν.

It is important to realize that this is not in fact particularly restrictive. As we
will obtain an a.s. filter stability bound, it is essentially irrelevant what the true
initial measure is. In particular, we can bound the filter discrepancy given any pair
of initial measures β, β′ using the triangle inequality:

‖πβ
t − πβ′

t ‖TV ≤ ‖πβ
t − πν

t ‖TV + ‖πβ′

t − πν
t ‖TV.

Hence as long as β, β′ � ν, the choice of ν need not at all reflect the true initial
measure of the system. Instead, ν plays the role of a reference measure, and will
be chosen specifically to make R(x) uniformly convex.

Let us begin by introducing the basic assumptions that are needed for the main
result. We will add additional assumptions later when necessary.

Assumption 4.3.7. The function W (x), defined in (4.4), is 2κ2-uniformly con-
vex for some positive constant κ > 0.

Assumption 4.3.8. The density p0(x) of ν, satisfying the conditions of section
4.1, is chosen such that the function R(x) of (4.6) is κ-uniformly convex.

Assumption 4.3.9. β, β′ � ν are such that dβ/dν, dβ′/dν are globally Lips-
chitz continuous and bounded from below by some constant ε > 0.

The result of the previous sections can now be written as follows.

Lemma 4.3.10. Under Assumptions 4.3.7–4.3.9, we have

|Λβν
T (x) − Λβν

T (y)| ≤
∥

∥

∥

∥

dβ

dν

∥

∥

∥

∥

Lip

e−κT ‖x− y‖.

The equivalent result holds when β is replaced by β ′.

Proof. Recall that we can write

|Λβν
T (x)− Λβν

T (y)| ≤
∥

∥

∥

∥

dβ

dν

∥

∥

∥

∥

Lip

E‖X̃?
T (x) − X̃?

T (y)‖,

and that ‖X̃?
T (x)− X̃?

T (y)‖ has the following time derivative:

d

dt
‖X̃?

t (x) − X̃?
t (y)‖2 = −2 (X̃?

t (x)− X̃?
t (y))∗(∇V̌ (t, X̃?

t (x)) −∇V̌ (t, X̃?
t (y))).

By Proposition 4.3.6, V̌ (t, x) is κ-uniformly convex for every t ∈ [0, T ]. Hence

d

dt
‖X̃?

t (x)− X̃?
t (y)‖2 ≤ −2κ‖X̃?

t (x) − X̃?
t (y)‖2.

The result follows immediately. �
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To proceed, recall that we obtained the estimate

‖πβ
t − πν

t ‖TV ≤
∫

Rd×Rd

∣

∣

∣Λ
βν
t (x) − Λβν

t (y)
∣

∣

∣πν
t (x)πν

t (y) dx dy
∫

Rd Λβν
t (y)πν

t (y) dy
.

Using the previous Lemma and Assumption 4.3.9, we obtain

‖πβ
t − πν

t ‖TV ≤
1

ε

∥

∥

∥

∥

dβ

dν

∥

∥

∥

∥

Lip

e−κt

∫

Rd×Rd

‖x− y‖πν
t (x)πν

t (y) dx dy.

It remains to estimate the double integral. Note that
∫

Rd×Rd

‖x− y‖πν
t (x)πν

t (y) dx dy ≤
[
∫

Rd×Rd

‖x− y‖2 πν
t (x)πν

t (y) dx dy

]1/2

by Jensen’s inequality. But clearly

1

2

∫

Rd×Rd

‖x− y‖2 πν
t (x)πν

t (y) dx dy =

∫

‖x‖2 πν
t (x) dx −

∥

∥

∥

∥

∫

xπν
t (x) dx

∥

∥

∥

∥

2

.

Hence the double integral term is a measure of the conditional variance of the
signal. If the filter is stable, then it is not implausible that this quantity is uniformly
bounded; i.e., we have a guaranteed bound on the estimation quality. Proving this,
however, is not necessarily a straightforward exercise.

To obtain this final estimate, we use the idea of W. Stannat [Sta06] of using
an inequality of H. J. Brascamp and E. H. Lieb [BL76]. In this often cited paper,
those authors prove a Poincaré-type inequality for log-concave measures which can
be stated as follows. Let µ be a measure which has density p(x) with respect to
the Lebesgue measure on Rn. We suppose that − log p(x) is C2 and κ-uniformly
convex. Moreover, let h(x) ∈ C1 be such that varµ(h) = µ(h2)− µ(h)2 <∞. Then

varµ(h) ≤ µ(‖∇h‖2)
κ

.

(In fact the statement of Brascamp and Lieb is a little more general, but we will
only need this immediate corollary.) In section 4.3.4 we will give a new proof of
this result which is completely probabilistic. For the time being, however, let us
complete the proof of the main result by applying the Brascamp-Lieb inequality.

If we could guarantee that − logπν
t (x) is uniformly convex, then we could di-

rectly apply the Brascamp-Lieb inequality. This is easily done provided that the
signal process is not excessively unstable.

Definition 4.3.11. f(x) is called α-semiconcave if f(x)− 1
2α‖x‖2 is concave.

Theorem 4.3.12. Suppose that Assumptions 4.3.7–4.3.9 hold, and assume fur-
thermore that V (x) + 1

2x
∗Bx is α-semiconcave with α < κ. Then

‖πβ
t − πβ′

t ‖TV ≤
1

ε

√

2d

κ− α

(

∥

∥

∥

∥

dβ

dν

∥

∥

∥

∥

Lip

+

∥

∥

∥

∥

dβ′

dν

∥

∥

∥

∥

Lip

)

e−κt.

Remark 4.3.13. Note that α is a measure of how unstable the signal process is,
while κ measures the stability of the reverse time conditional signal. The current
bound is finite when the reverse time conditional signal is more stable than the
signal is unstable, i.e., when the information gain from the observations makes up
for the inherent information loss in the signal. This is a very intuitive idea.
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Proof. It is easily seen that we can write

∫

‖x‖2 πν
T (x) dx −

∥

∥

∥

∥

∫

xπν
T (x) dx

∥

∥

∥

∥

2

=

d
∑

i=1

varπν
T
(xi).

Now recall that V̌ (0, x) = − log %y
T (x)+y∗THx+V (x)+ 1

2x
∗Bx is κ-uniformly convex.

Hence − log %y
T (x) is (κ − α)-uniformly convex, and this holds for − logπν

T (x) as
well (as πν

T (x) and %y
T (x) coincide up to normalization). But then we obtain

∫

‖x‖2 πν
T (x) dx −

∥

∥

∥

∥

∫

xπν
T (x) dx

∥

∥

∥

∥

2

≤ d

κ− α
using the Brascamp-Lieb inequality. The result follows immediately. �

We note that Stannat uses the Brascamp-Lieb inequality in a somewhat differ-
ent way. Suppose there exists a concave function V ′(x) and some M > 0 s.t.

V ′(x) −M ≤ V (x) + 1
2x

∗Bx ≤ V ′(x) +M.

Then we can estimate the conditional density as follows:

πν
T (x) =

ey∗
T Hx+V (x)+

1
2x∗Bx−V̌ (0,x)

∫

ey∗
T

Hx+V (x)+
1
2x∗Bx−V̌ (0,x) dx

≤ e2M ey∗
T Hx+V ′(x)−V̌ (0,x)

∫

ey∗
T

Hx+V ′(x)−V̌ (0,x) dx
.

The right-hand side is, up to the factor e2M , another probability density π̄(x) such
that − log π̄(x) is κ-uniformly convex. Writing

∫

Rd×Rd

‖x− y‖πν
T (x)πν

T (y) dx dy ≤ e4M

∫

Rd×Rd

‖x− y‖ π̄(x) π̄(y) dx dy,

and proceeding as before, we obtain the bound

‖πβ
t − πβ′

t ‖TV ≤
e4M

ε

√

2d

κ

(

∥

∥

∥

∥

dβ

dν

∥

∥

∥

∥

Lip

+

∥

∥

∥

∥

dβ′

dν

∥

∥

∥

∥

Lip

)

e−κt.

The condition of Theorem 4.3.12 gives a much more vivid picture, however, of what
is actually going on in terms of “information flows”: in essence the contraction rate
of the time-reversed conditional signal must exceed the rate of expansion of the
signal process itself. In particular, in that case the conditional density πν

T (x) is
itself uniformly log-concave, and there is no need for any additional estimates.

4.3.4. A probabilistic proof of a Brascamp-Lieb inequality. In this sec-
tion we are going to give a probabilistic proof of the Brascamp-Lieb type inequality
used in the previous section. This section is independent from the rest of this
chapter, though we will use surprisingly familiar techniques in the proofs. As the
method is of independent interest, I will give a detailed proof here. The idea behind
this section is inspired by a recent note of A. N. Shiryaev [Shi06], who applies sim-
ilar techniques to provide a probabilistic proof of the Poincaré-Chernoff inequality
for a Gaussian random variable (related ideas can be found in [CHL97, HS87]).

The main idea behind the proof is the following. Consider the equation

(4.7) dxt = −1

2
∇U(xt) dt+ dWt, x0 = x,
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where U : Rd → R is a C2 potential and Wt is a d-dimensional Wiener process. It
is easily verified that this equation has an invariant measure µ� dx with density

(4.8) dµ =
exp(−U(x)) dx
∫

exp(−U(x)) dx
,

provided that the denominator is finite. We will prove that the variance of h(xt)
satisfies a Brascamp-Lieb type inequality, provided that U is uniformly convex. The
result then follows by taking the limit t→∞.

Let us first prove the result in a case with plenty of regularity. We will remove
the restrictions below.

Proposition 4.3.14. Let U ∈ C2 be κ-uniformly convex and have bounded
second derivatives. Let h ∈ C1, and let h(x) and ∇h(x) be bounded. Then

varµ(h) = µ(h2)− µ(h)2 ≤ µ(‖∇h‖2)
κ

.

Proof. First, note that U(x) being uniformly convex implies that exp(−U(x))
decays exponentially in all directions. Hence the denominator in (4.8) is finite,
and µ defines a log-concave probability measure. Moreover, the fact that U(x)
has bounded second derivative means that the drift in (4.7) is globally Lipschitz
continuous, and we can apply standard stochastic machinery. In particular, this
equation generates a C1 stochastic flow ξt(x).

Consider the quantity h(xt). We are going to obtain an explicit expression for
the variance of this random variable by applying the Clark-Ocone formula, Prop.
A.3.1. Note that by Prop. A.2.2, xt is in D1,2 for any t. Moreover, by Prop. A.1.1
and by the boundedness of h and its derivatives, h(xt) is also in D1,2. Applying
Propositions A.3.1, A.1.1 and A.2.2, we obtain

h(xt)−E(h(xt)) =

∫ t

0

E(∇h(xt)
∗Dξt(x)Dξs(x)

−1|Fs) dWs.

Hence we obtain by the Itô isometry (we write var(h(xt)) = E(h(xt)
2)−[E(h(xt))]

2)

var(h(xt)) =

∫ t

0

E‖E(∇h(xt)
∗Dξt(x)Dξs(x)

−1|Fs)‖2 ds.

We now obtain the straightforward estimate

var(h(xt)) ≤
∫ t

0

E(‖∇h(xt)‖2 ‖Dξt(x)Dξs(x)−1‖2) ds.

We need to bound ‖Dξt(x)Dξs(x)−1‖2. It follows from standard results that

d

dt
Dξt(x)Dξs(x)

−1 = −1

2
Uxx(xt)Dξt(x)Dξs(x)

−1,

where Uxx denotes the Hessian of U . We easily find that

d

dt
‖Dξt(x)Dξs(x)−1v‖2 ≤ −κ‖Dξt(x)Dξs(x)−1v‖2,

where v ∈ Rd is any vector and we have used the uniform convexity of U . Hence

‖Dξt(x)Dξs(x)−1‖2 ≤ e−κ(t−s).

Substituting into the bound above, we obtain

var(h(xt)) ≤ E(‖∇h(xt)‖2)
∫ t

0

e−κ(t−s) ds =
E(‖∇h(xt)‖2)

κ
(1− e−κt).
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The result is now almost obvious: we only need to justify the limit as t → ∞. To
this end, let x̃t be the solution of

dx̃t = −1

2
∇U(x̃t) dt+ dWt, x̃0 ∼ µ.

As µ is an invariant measure for this equation, E(f(x̃t)) = µ(f) for any f and t.
On the other hand, it is easily verified (as we have done repeatedly in this chapter)
that ‖xt − x̃t‖ → 0 a.s. as t → ∞. Hence E(f(xt)) → µ(f) as t → ∞ for any
bounded continuous f by dominated convergence. The result follows. �

We now remove the technical restrictions in this result.

Corollary 4.3.15. Let U ∈ C2 be κ-uniformly convex, and let h ∈ C1 be such
that varµ(h) <∞. Then varµ(h) ≤ µ(‖∇h‖2)/κ.

Proof. This is essentially an exercise in approximation; we give here one pos-
sible approach. Let us begin by eliminating the requirement that U have bounded
second derivatives. To this end, we construct a sequence of C2 functions U` such
that U` has bounded second derivatives and is κ`-uniformly convex for any `, and
κ` → κ, U` ↗ U as ` → ∞. Such a sequence of approximations exists and can be
constructed through the Moreau-Yosida regularization [HUL93, LS97]:

U`(x) = min{U(y) + 1
2`‖x− y‖

2 : y ∈ Rd}.

See [LS97] for the C2 property and uniform convexity of U`, and for the remaining
properties see [HUL93, pp. 317–321]. Denote by µ` the measure corresponding to
the potential function U`. By Proposition 4.3.14, we have

varµ`
(h) ≤ µ`(‖∇h‖2)

κ`
, h, ∇h bounded.

Letting ` → ∞ and using dominated convergence, we establish the claim of the
corollary for h ∈ C1 such that h(x) and ∇h(x) are bounded.

It remains to drop the restriction on h. To this end, introduce a smooth function
φ : Rd → R such that 0 ≤ φ ≤ 1, φ(x) = 1 for ‖x‖ ≤ 1 and φ has compact support.
Let φn(x) = φ(x/n); then h(x)φn(x) is bounded and has bounded derivatives, so

varµ(hφn) ≤ µ(‖∇(hφn)‖2)
κ

for all n.

Evidently hφn → h, ∇(hφn) → ∇h as n → ∞. We will justify the exchange of
limit and µ-expectation by dominated convergence. Note that

‖∇(hφn)‖2 = ‖φn∇h+ h∇φn‖2 ≤ 2φ2
n‖∇h‖2 + 2h2‖∇φn‖2 ≤ 2‖∇h‖2 + 2Ch2,

where C = supx∈Rd ‖∇φ(x)‖2 < ∞. But recall that we require varµ(h) < ∞, and
moreover we may presume that µ(‖∇h‖2) <∞ (otherwise the statement is trivial).
Hence we have established that ‖∇(hφn)‖2 is dominated by the integrable function
2‖∇h‖2 + 2Ch2, and the statement follows as n→∞. �

Remark 4.3.16. The condition varµ(h) <∞ is automatically satisfied if h(x)
grows at most polynomially as ‖x‖ → ∞; this follows from the fact that e−U decays
exponentially in all directions by uniform convexity of U .
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4.4. A strong stability result for stable signals

The filter stability bound obtained in the previous section has several draw-
backs. First, the densities of β, β′ are required to be Lipschitz continuous. This
is not a significant problem, however; the Lipschitz requirement can relaxed by
using a suitably modified procedure to bound the numerator of the Bayes formula
(see, e.g., [Sta04, Sta05]). A more severe problem is that the bound blows up as
ε→ 0, i.e., as β, β′ approach the boundary of the space of measures on Rd. Hence
we cannot say anything, for example, about initial measures that are compactly
supported or about deterministic initial conditions.

The ε−1 factor can be traced to the fact that we used the Bayes formula to
express the incorrectly initialized filter in terms of the time-reversed conditional sig-
nal. The denominator of the Bayes formula had to be bounded, and this prompted
us to impose a lower bound on the densities of β, β′. This problem would not occur,
however, if we used the forward conditional signal rather than the time-reversed
conditional signal. The finite state space analysis of chapter 2 suggests that this is
not only feasible, but is a much preferable approach.

In this section we will pursue this approach in the diffusion signal case. We will
see that we can get a bound that does not blow up at the boundary, but we pay a
heavy price: we have to require that the signal process is itself stable, in which case
the forgetting rate of the filter is inherited from the signal. This is in contrast to
the approach taken in the previous sections, where a sufficiently good observation
could make up for the instability of the signal. The reason for this difference is
that we lose a valuable tool in the forward conditional signal case—the use of a
conveniently chosen ν to force uniform convexity of the value function.

We begin by quoting the necessary conditional signal results from [MN03].
Consider the controlled signal process

dXu
t = b(Xu

t ) dt+ ut dt+ dWt,

and introduce the following cost-to-go (for y ∈ C1):

Ju(t, x) = Et,x

[

1

2

∫ T

t

{

‖ut‖2 + ‖ẏt −HXu
t ‖2 − ‖ẏt‖2

}

dt

]

.

The value function V (t, x) = minu J
u(t, x) is minus the logarithm of the dual filter

(see [Par82]), and the optimal control strategy is given by u?
t = −∇V (t,Xu?

t ).
Moreover, the conditional signal

dX?
t = b(X?

t ) dt−∇V (t,X?
t ) dt+ dWt, X?

0 ∼ Πβ
T (X0 ∈ · , y),

has the same law under P as does Xt under Πβ
T (·, y). Note in particular that V (t, x)

does not depend on β. As before, we proceed by absorbing the gradient part of
b(x) into the cost-to-go. That is, we define

ŭt = ut +∇V (Xu
t ) + 1

2 (B +B∗)Xu
t +H∗yt,

so that we can write the controlled diffusion as

dX̆ ŭ
t = −H∗yt dt+ 1

2 (B −B∗)X̆ ŭ
t dt+ ŭt dt+ dWt.

Similarly, we redefine the cost-to-go as

J̆ ŭ(t, x) = Ju(t, x) − V (x)− 1
2x

∗Bx− y∗tHx,
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and we define the new value function by V̆ (t, x) = minŭ J̆
ŭ(t, x). The optimal

control can now be written as ŭ?
t = −∇V̆ (t, X̆ ŭ

t ). Applying Dynkin’s formula, it is

a straightforward exercise to write the cost-to-go J̆ ŭ(t, x) in the standard form:

J̆ ŭ(t, x) = Et,x

[

1

2

∫ T

t

{

‖ŭt‖2 +W (X̆ ŭ
t ) +Gy

T−t(X̆
ŭ
t )
}

dt+ R̆(X̆ ŭ
T )

]

,

where W (x) and Gy
t (x) are as before, and the terminal cost is given by

R̆(x) = −V (x) − 1
2x

∗Bx− y∗THx.
We can now obtain the following result in the same way as Proposition 4.3.6.

Proposition 4.4.1. Suppose that V (x) + 1
2x

∗Bx is γ-uniformly concave, and

W (x) is κ′-uniformly convex with κ′ ≥ 2γ2. Then V̆ (t, x) is γ-uniformly convex.

Let us concentrate, for sake of demonstration, on the discrepancy between
the filters with deterministic initial measures δx and δx′ (with a little more work
more general bounds are obtainable; this particularly simple case is in some sense a
worst case scenario, where the initial measures are extremal and mutually singular).
Denoting by X?

t (x) the conditional signal process started at X?
0 = x, evidently

Πδx

T (f(XT ), y) = E(f(X?
T (x))), Π

δx′

T (f(XT ), y) = E(f(X?
T (x′))).

It is easily verified that by Proposition 4.4.1 (under the appropriate conditions)

‖X?
T (x)−X?

T (x′)‖ ≤ e−γT ‖x− x′‖,
so that we obtain (assuming that f is Lipschitz continuous)

|Πδx

T (f(XT ), y)−Π
δx′

T (f(XT ), y)| ≤ ‖f‖Lip‖x− x′‖ e−γT .

In particular, we immediately obtain stability in terms of the Wasserstein 1-distance

W1(Π
δx

t (Xt ∈ · , y),Πδx′

t (Xt ∈ · , y)) ≤ ‖x− x′‖ e−γt.

These arguments are trivially extended at least to the case where two initial mea-
sures β, β′ are supported in a ball of radius R <∞.

In conclusion, we have seen two stability bounds for diffusions. Both bounds
required that W (x) be uniformly convex. If, in addition, V (x)+ 1

2x
∗Bx is semicon-

cave with a not-too-large constant (i.e., the signal process is not too unstable), then
stability is guaranteed for initial densities that are bounded from below. If, on the
other hand, V (x) + 1

2x
∗Bx is uniformly concave (i.e., the signal process is stable),

then we have a bound even for extremal/mutually singular initial measures, using
the forward conditional signal rather than its time-reversed counterpart.

The restrictions on the initial measures may be artefacts of our crude bounding
procedure. Indeed, there is no reason to believe that something bad should happen
to filter stability when the support of the initial measures is not all of Rd, even
when the signal itself is not stable. It is not so easy to obtain a uniform bound,
however. It is interesting, in this context, to note the relative merits of the forward
and time-reversed conditional signals. The forward conditional signal allows us to
bound stability without using the Bayes formula, which makes it easier to apply to a
wider class of initial conditions. Unfortunately, it is impossible for the forward value
function V̆ (t, x) to be uniformly convex for all t unless V (x) + 1

2x
∗Bx is uniformly

concave: after all, V̆ (T, x) = R̆(x) would not be uniformly convex otherwise.
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This is a real effect. Consider the observations on the interval [0, T ]. The
transition probabilities of the conditional signal at time t can clearly depend only
on the observations in the interval [t, T ]. But when t is close to the terminal
time T , there is very little information in the remaining observations, so that the
transition probabilities should then be close to those of the unconditional signal
process. Consequently, if the unconditional signal is unstable, then the forward
conditional signal should always be unstable close to the terminal time T—even if
the signal is strictly contracting during most of the interval [0, T ].

Evidently it is very well possible for the forward conditional signal to be con-
tracting overall, but it is not possible for this to be the case uniformly on the entire
interval [0, T ]. This highlights the difficulty of using the forward conditional sig-
nal to bound filter stability; a much more sophisticated analysis would be required
to quantify the time-dependent contraction rate of the forward conditional signal.
The time-reversed conditional signal does not suffer from these problems; indeed,
by choosing a convenient reference measure ν, we can make the time-reversed con-
ditional signal contracting uniformly on the interval [0, T ]. The drawback is now
that the initial measures are restricted by the necessity of using the Bayes formula.





CHAPTER 5

Quantum Filtering and Filter Stability

The goal of this chapter is twofold. First, we will develop in detail the theory
of quantum filtering using the reference probability method. Quantum filtering
theory has its origins in the work of V. P. Belavkin [Bel88, Bel92] (using various
methods), but the reference probability method, which parallels the classical theory
described in chapter 1 and makes systematic use of change of measure techniques,
is due to L. Bouten and the author [BV06] (see also [BVJ06b, BVJ06a]). Here
we follow [BV06], but with increased attention to technical details. The second
part of the chapter develops a first filter stability result for quantum filters.

Throughout this chapter, we concentrate on the case where the initial system
lives on a finite-dimensional Hilbert space. This case, which is the quantum coun-
terpart of the Wonham filter, is very common in the literature and is the most useful
in applications. Our results can be generalized to more general systems, however,
with no conceptual and only relatively straightforward technical improvements; a
full account of the general case will appear in [BV07].

Before starting this chapter, the reader is strongly encouraged to read the
background material in appendix B. The reader who is unfamiliar with quantum
probability theory, which will be used throughout this chapter, will find there a
crash course on the necessary topics. The appendix also serves to set the notation
which we will use throughout this chapter, so that even the quantum probability
veteran would be advised at least to skim the appendix before proceeding.

5.1. Conditional expectations and the Bayes formula

5.1.1. Conditional expectations in quantum probability. Before we can
develop filtering theory, we need a suitable notion of conditional expectations in
quantum probability. Many such notions have been introduced over the past few
decades, but most of these are motivated more by formal similarly to the classical
case than by truly probabilistic considerations. The one exception is the notion of
conditional expectation that is introduced in quantum filtering theory. This notion
is very restrictive—actually, it is just the classical conditional expectation, “pulled
back” using the spectral theorem—but it is nonetheless the most general notion of
conditional expectation that has a well-defined operational meaning.

There are two considerations that play a role in defining a probabilistic condi-
tional expectation. First, we can only condition on something that can actually be
observed; if we can not observe the events which are being conditioned on, what
does conditioning even mean? In the noncommutative case, this imposes the follow-
ing restriction: we can only condition on commutative algebras. Next, we should
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consider what can be conditioned. Suppose that we would like to find the con-
ditional probability of the occurrence of a certain event, given a particular set of
(commuting) observations. Such a concept is meaningless if the event in question
does not commute with the observations, as in that case the joint statistics of the
event and the observations is an undefined concept (i.e., if the probability of an
event is meaningless in a realization where we have made our observations, then
certainly the conditional probability of that event is a meaningless concept). This
imposes the second restriction: we can only condition observables that commute
with the observations on which we are conditioning.

With these restrictions in place, there is little noncommutativity left. Let
(A ,P) be a quantum probability space, X ηA an observable and C ⊂ A a Von
Neumann subalgebra. By our discussion above, the conditional expectation P(X |C )
can only be defined if C is commutative and if X commutes with every element
of C . But then CX = vN{X,C } is again a commutative algebra, and the condi-
tional expectation can be defined on a completely classical basis: i.e., if ιX is the
∗-isomorphism obtained by applying the spectral theorem to CX and PX is the cor-
responding measure, then we can simply define ι(P(X |C )) = PX (ι(X)|σ{ι(C )}).
In this sense, the quantum conditional expectation is completely classical; but this
is how it should be, as probability theory lives precisely on the commutative sub-
algebras of A . Beware, however, of the following: if X and Y both commute with
every element of C , this need not imply that X and Y commute with each other.
In this sense, we should see P( · |C ) as a truly noncommutative conditional state.

Let us first define the conditional expectation for bounded operators.

Definition 5.1.1. Let (A ,P) be a quantum probab. space, C ⊂ A be a com-
mutative subalgebra, and C ′ = {X ∈ A : XC = CX ∀C ∈ C } (the commutant of
C in A ). Let X ∈ C ′. Then any P(X |C ) ∈ C such that P(P(X |C )C) = P(XC)
for all C ∈ C is called (a version of) the conditional expectation of X given C .

Let us show that the conditional expectation is well defined.

Lemma 5.1.2. For any commutative C and X ∈ C ′, P(X |C ) exists and is
unique P-a.s., i.e., P((A−B)2) = 0 for any two versions A,B of P(X |C ).

Proof. For self-adjoint X , existence follows directly from the classical con-
ditional expectation and the spectral theorem. For X 6= X∗, define P(X |C ) =
P( 1

2 (X + X∗)|C ) + iP( i
2 (X∗ − X)|C ); it is easily verified that this satisfies the

definition of the conditional expectation. To verify uniqueness, let A and B be two
versions of P(X |C ). Then P((A − B)C) = 0 for all C ∈ C by the definition of the
conditional expectation. But A,B ∈ C by construction, so P((A−B)2) = 0. �

The conditional expectation only has a truly probabilistic meaning for self-
adjoint X ; however, the extension to all of C ′ allows us to think of the conditional
expectation as a sort of conditional state. All of the standard properties of the clas-
sical conditional expectation carry over to its quantum counterpart, including a.s.
linearity and positivity, the tower property P(P(X |C )|D) = P(X |D) for D ⊂ C , the
module property P(AC|C ) = P(A|C )C for C ∈ C , etc. This follows immediately
by copying the classical proofs of these properties; see, e.g., [Wil91].

A simple property of the conditional expectation which is worth emphasizing
is its L2 property. This provides an attractive interpretation of the conditional
expectation as the optimal L2 estimator in the quantum setting.
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Lemma 5.1.3. P(X |C ) is the least-mean-square estimate of X given C , i.e.,
for any C ∈ C we have ‖X −P(X |C )‖2 ≤ ‖X −C‖2, where ‖X‖2 = (P(X∗X))1/2.

Proof. Note that ‖X − C‖22 = ‖X − P(X |C ) + P(X |C ) − C‖22. But by the
definition of the conditional expectation P(C∗(X − P(X |C ))) = 0 for any C ∈ C ;
so ‖X − C‖22 = ‖X − P(X |C )‖22 + ‖P(X |C )− C‖22 ≥ ‖X − P(X |C )‖22. �

Let us now extend the conditional expectation to unbounded observables.

Definition 5.1.4. Let (A ,P) be a quantum probability space and C ⊂ A be a
commutative subalgebra. Let X η C ′ be self-adjoint and suppose that P(|X |) <∞.
Then any observable P(X |C ) η C which satisfies P(P(X |C ) ·̂C) = P(X ·̂C) for all
C ∈ C is called (a version of) the conditional expectation of X given C .

The definition is well posed as CX is commutative, so that the class of self-
adjoint operators S (CX ) forms an algebra under ·̂ and +̂ . Moreover, the condi-
tional expectation exists and is unique up to P-a.s. equivalence; this follows directly
from the classical conditional expectation and the spectral theorem.

The quantum conditional expectation has some elementary properties which
are meaningless in the classical case. The following simple result, which shows how
P( · |C ) transforms under unitary rotations, will be put to good use in the sequel.

Lemma 5.1.5. Let (A ,P) be a quantum probability space, and let C ⊂ A be
a commutative subalgebra. Let U be a unitary operator such that U ∗A U = A ,
and define the rotated state Q(X) = P(U ∗XU) on A . Moreover, let X η C ′ be
self-adjoint with Q(|X |) <∞. Then P(U ∗XU |U∗CU) = U∗Q(X |C )U a.s.

Proof. It suffices to show that U∗Q(X |C )U satisfies the definition of the
conditional expectation. Note that for any C ∈ C

P(U∗Q(X |C )U ·̂U∗CU) = Q(Q(X |C ) ·̂C) = Q(X ·̂C) = P(U∗XU ·̂U∗CU).

The claim follows from a.s. uniqueness of the conditional expectation. �

5.1.2. The Bayes formula. As in chapter 1, the Bayes formula, which re-
lates the conditional expectation with respect to different measures, will play an
important role in the sequel. A simple analog of Lemma 1.1.1 is easy to establish
in the quantum case; the main insight which is needed for this result is that it is
crucial that the “Radon-Nikodym operator” be in the commutant of the algebra on
which we are conditioning. The reader should convince himself that the statement
of the result does not even make sense otherwise!

Lemma 5.1.6. Let (A ,P) be a quantum probability space, and let C ⊂ A be a
commutative subalgebra. Let V ∈ C ′ be such that V ∗V > 0 and P(V ∗V ) = 1. Then
we can define a new normal state by Q(X) = P(V ∗XV ), and

Q(X |C ) =
P(V ∗XV |C )

P(V ∗V |C )
for any X ∈ C

′.

Proof. The fact that Q is a normal state is easily verified. Now let K be an
element of C . Then for any X ∈ C ′, we can write

P(P(V ∗XV |C )K) = P(V ∗XVK) = Q(XK) = Q(Q(X |C )K) =

P(V ∗VQ(X |C )K) = P(P(V ∗VQ(X |C )K|C )) = P(P(V ∗V |C )Q(X |C )K).

Here we have used the definition of the conditional expectation in the first step, the
fact that V is in the commutant of C in the second and fourth steps, and the tower
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and module properties in the third, fifth, and sixth steps. The result now follows
from the definition of the conditional expectation and the positivity of V ∗V . �

Unfortunately, this simple and elegant result will not be sufficient for our pur-
poses. The problem is that all the operators involved must be bounded—the oper-
ator X which is being conditioned but also, more importantly, the change-of-state
operator V . When we develop a quantum analog of the Kallianpur-Striebel formula,
however, we will necessarily encounter an unbounded change-of-state operator V .
It is not clear at this point that for unbounded V , the statement of the Lemma
even makes sense; after all, how can we guarantee that V ∗XV is well defined even
for bounded X? As is so often the case, domain problems rear their ugly head and
we have to find a suitable way to deal with them.

The solution which I have chosen here is based on two ideas.

(1) Rather than developing a full counterpart of Lemma 1.1.1, we concentrate
on the special situation of Corollary 1.1.2. As this is precisely the situation
encountered in filtering theory, this approach is particularly convenient.

(2) In this context, we will extend the result of Lemma B.1.17 to a class of
unbounded operators affiliated to the commutant C ′. When V and X are
required to be of this type, this result absorbs the domain problems.

Throughout this chapter we will concentrate on the case where the initial sys-
tem is finite dimensional, which admits a particularly transparent treatment. We
now proceed to develop the necessary machinery. The generalization to the infinite-
dimensional case, which is purely technical in nature, will appear in [BV07].

Let us presume that we are in the following situation.

• The Hilbert space underlying our problem is of the form H = h1 ⊗ h2,
where h1 is finite dimensional, dim h1 = d, and h2 is separable.

• We consider the quantum probability space (A ,P) with the Von Neumann
algebra A = B(h1)⊗B(h2) and normal state P = ρ1 ⊗ ρ2.

• We consider a commutative subalgebra of the form C = I ⊗ C2.
• We wish to condition observables affiliated to C̃ = B(h1)⊗ C2 ⊂ C ′.

What we are going to do is the following. As we are chiefly interested in the
(noncommutative) Von Neumann algebra C̃ , we are going to build a nice ∗-algebra

N (C̃ ) of unbounded operators that are affiliated to C̃ in a certain sense. We will

then choose some V ∈ N (C̃ ) and define a new state Q(X) = P(V ∗ ·̂X ·̂V ) on the

algebra C̃ only. Finally, we will prove the Bayes formula for this state.

Remark 5.1.7. Note that this situation is the direct quantum analog of the
classical case considered in Corollary 1.1.2 (with the exception of the simplifying
assumption that h1 be finite dimensional, which would correspond to Ω1 being a
finite set; this assumption will be dropped in the next section). Not surprisingly,
the resulting Bayes formula will also have a form very similar to Corollary 1.1.2.

Let us get down to business. As dim h1 = d <∞, there is a natural isomorphism
between B(h1) and the algebra Md(C) of d×d complex matrices, obtained through
an arbitrary choice of orthonormal basis in h1, and the state ρ1 can be represented
in this basis by ρ1(X) = Tr(%X) where % is a d × d density matrix. Hence there
is also a natural isomorphism between A and the algebra Md(B(h2)) of d × d
matrices with B(h2)-valued entries, with the obvious addition, multiplication and
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adjoint operations, and the state P can be expressed as

P(X) = Tr






%







ρ2(X11) · · · ρ2(X1d)
...

. . .
...

ρ2(Xd1) · · · ρ2(Xdd)












, X =







X11 · · · X1d

...
. . .

...
Xd1 · · · Xdd






∈ A .

From this point onwards we will make this identification without further comment,
taking care to identify H with the corresponding Hilbert space of d-dimensional
h2-valued vectors. We will also denote by ρ2(X) ∈Md(C) and ρ1(X) ∈ B(h2) the
obvious “marginals” of the state P, so that P(X) = ρ1(ρ2(X)) = ρ2(ρ1(X)).

Let us now consider the algebra C̃ , which we have explicitly identified with
Md(C2). Recall from Lemma B.1.17 and the subsequent discussion that N (C2),
the set of normal operators affiliated to C2, forms a ∗-algebra under the operations
+̂ and ·̂ . We now introduce the following definition.

Definition 5.1.8. Define the ∗-algebra N (C̃ ) = Md(N (C2)), endowed with
the obvious extensions of the addition +̂ , multiplication ·̂ and adjoint.

It is now straightforward to establish the following: every X ∈ N (C̃ ) defines
a closed, densely defined operator on H, X = X∗ implies that X is self-adjoint,
and the operations +̂ and ·̂ precisely coincide with the closures of the ordinary
operator addition and multiplication in N (C̃ ). Hence N (C̃ ) is a true extension
of N (C2) to a class of noncommuting unbounded operators. In essence we have

done something fairly intuitive: the spectral theorem maps N (C̃ ) to a ∗-algebra

of operator-valued functions by diagonalizing only the commutative part of C̃ .
Our next order of business is to define a new state Q.

Lemma 5.1.9. Let V ∈ N (C̃ ) be such that P(V ∗V ) = 1. Define the functional

Q(X) = ρ2(ρ1(V
∗ ·̂X ·̂V )) for any X ∈ C̃ . Then Q is a normal state on C̃ .

Proof. Linearity is easily verified. Now recall that V ∗V is self-adjoint and
nonnegative as V is closed [Rud73, Thm. 13.13], hence V ∗V = V ∗ ·̂V . Thus
normalization follows immediately. Similarly, V ∗ ·̂X∗X ·̂V = (X ·̂V )∗(X ·̂V ) is
self-adjoint and nonnegative. Hence positivity Q(X∗X) ≥ 0 follows. It remains to
prove that Q defines a normal state.

To this end, let us use the spectral theorem to find a measure space (Ω,G, µ),
a σ-algebra F ⊂ G, a probability measure P and a ∗-isomorphism ι that maps
(C2, ρ2) to (L∞(Ω,F , µ),P). Let x(ω) be the d × d random matrix [x]ij = ι(Xij),
and let f(ω) be the d× d random matrix [f ]ij = ι(Vij). Then we can write

ρ2(ρ1(X)) =

∫

Ω

ρ1(f(ω)∗x(ω)f(ω))P(dω).

The statement that a state ρ on an algebra A is normal is equivalent to the
statement that for every orthogonal family {Pα} of projections in A we have
ρ(
∑

α Pα) =
∑

α ρ(Pα); see [KR97b, Thm. 7.1.12]. It suffices to restrict to count-
able families as H is separable [BR87, sec. 2.5.1]. Hence let {Xn} be a countable

family of orthogonal projections in C̃ ; then for µ-a.e. ω, the corresponding func-
tions xn(ω) must form a family of orthogonal projections in B(h1) for all n. By
normality of ρ1, we have ρ1(f(ω)∗

∑

n xn(ω)f(ω)) =
∑

n ρ1(f(ω)∗xn(ω)f(ω)) for
µ-a.e. ω. The result now follows by monotone convergence. �

We can now extend the Bayes formula to this unbounded case.
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Lemma 5.1.10. Let Q be as in Lemma 5.1.9, and assume that V ∗V > 0. Then

Q(X |C ) = I ⊗ ρ1(V
∗ ·̂X ·̂V )

ρ1(V ∗V )
for any X ∈ C̃ .

Proof. Let K2 ∈ C2, K = I ⊗K2 ∈ C , and let X ∈ C̃ . Then

ρ2(ρ1(V
∗ ·̂X ·̂V ) ·̂K2) = ρ2(ρ1(V

∗ ·̂X ·̂K ·̂V )) = Q(XK) = Q(Q(X |C )K) =

ρ2(ρ1(V
∗ ·̂Q(X |C ) ·̂K ·̂V )) = ρ2(ρ1(V

∗ ·̂V ) ·̂Q(X |C )|C2 ·̂K2).

(Recall that Q(X |C ) ∈ C , so Q(X |C )|C2 makes sense.) Note that this has to hold
for any K2 ∈ C2; hence it follows from a classical argument, e.g., [Wil91, sec. 9.5],
that it must be the case that Q(X |C )|C2 = ρ1(V

∗ ·̂X ·̂V )/ρ1(V
∗ ·̂V ). �

Remark 5.1.11. It is evident that this result is a direct quantum counterpart
of Corollary 1.1.2 in the classical case. Note that P(X |C ) = ρ1(X) defines a version
of the conditional expectation, as is easily verified.

5.2. Quantum filtering: A reference probability approach

5.2.1. The basic model. In this section, we are going to introduce the ba-
sic model that will be used throughout this chapter. Though this is by no means
the most general model, this particular model is widely used and describes a wide
variety of quantum systems. Our methods extend easily to more complicated situ-
ations; hence it is worth choosing a simple model here in order to keep the notation
as simple and transparent as possible.

We work in the following setup. The basic Hilbert space is H = h⊗ Γ, where h

is assumed to be finite dimensional with dim h = d, and Γ is the usual Fock space
(see appendix B for details). Our basic quantum probability space is (A ,P), where
A = B ⊗W (B = B(h), W = B(Γ)) and P = ρ⊗ ϕ. Here ϕ is the usual vacuum
state, and ρ is an arbitrary state on B (the initial state). Let us also introduce the
fundamental filtration At = B ⊗Wt.

To model time evolution in our system, we introduce a QSDE of Hudson-
Parthasarathy type: i.e., we fix some W,L,H ∈ A0 where W is unitary and H is
self-adjoint, and define the unitary process {Ut}t∈R+ as the solution of

dUt =

{

(W − I) dΛt + LdA†
t − L∗W dAt −

1

2
L∗Ldt− iH dt

}

Ut, U0 = I.

Though Ut is formally defined only on the restricted exponential domain h⊗D, we
will conveniently identify Ut with its closure (which is a unitary operator defined
on all of H) whenever this makes sense.

We can now introduce the basic “signal” and observations processes.

(1) Let X ∈ A0 describe some physical property of the initial system at time
t = 0. Then jt(X) = U∗

t XUt is the corresponding observable at time t.

(2) The observation process is given by Yt = U∗
t ZtUt, with Zt = At +A†

t .

Does this make sense? In particular, the process Yt is a little dubious at this point—
it is not obvious that it is commutative (i.e., that the spectral measures of Yt and
Ys commute for all t and s). If this were not the case, then we could never observe
this process in the laboratory. But fortunately we are in luck.
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Lemma 5.2.1. Define Yt = vN{Ys : s ≤ t} and Zt = vN{Zs : s ≤ t}. Then
Ys = U∗

t ZsUt for any t ≥ s. In particular, this implies that Yt is commutative for
any t, as {Zt} is a commutative process and hence Zt is commutative.

Proof. Let E be an arbitrary projection operator in the range of the spectral
measure of Zs. We will show that U∗

t EUt = U∗
sEUs for any t ≥ s. As Ut and E

are bounded, we can use the quantum Itô rules for this purpose without worrying
about domains. Using the quantum Itô formula (Corollary B.2.17), we obtain

jt(E) = js(E) +

∫ t

s

jσ(i[H,E] + L∗EL− 1
2{L

∗LE +EL∗L}) dσ

+

∫ t

s

jσ(W ∗[E,L]) dA†
σ +

∫ t

s

jσ([L∗, E]W ) dAσ +

∫ t

s

jσ(W ∗EW −E) dΛσ.

But by construction E commutes with H , L andW , hence we obtain jt(E) = js(E).
It remains to note that as Ys = U∗

sZsUs, any spectral projection of Ys can be written
in the form U∗

sEUs where E is a spectral projection of Zs. �

Evidently {Yt} is a commutative process, and in particular the spectral theorem
allows us to define a corresponding classical stochastic process yt = ι(Yt) on some
probability space. The process yt describes the statistics of what is measured in
a laboratory experiment. Now suppose we have observed {Ys : s ≤ t}. Based on
our observations, we would like to estimate some physical property of the initial
system at time t (its position, dipole moment, etc.) With this motivation in mind,
we introduce our basic filtering problem.

Define πt(X) = P(jt(X ⊗ I)|Yt) for any X ∈ B. The goal of the
quantum filtering problem is to obtain an explicit expression for
πt(X) in terms of the observations {Ys : s ≤ t}.

At this point we should start worrying again. Recall that the conditional expec-
tation is only well defined if jt(X ⊗ I) ∈ Y ′

t ; after all, if the observable of the
system in which we are interested does not commute with what we have already
observed, we could never design an experiment to test our predictions in the first
place! Fortunately this is never a problem in our model: every system observable
commutes with observations performed in the past.

Lemma 5.2.2. vN{jt(X ⊗ I) : X ∈ B} ⊂ Y ′
t .

Proof. Note that vN{jt(X ⊗ I) : X ∈ B} = U∗
t A0Ut. The result follows

immediately from Lemma 5.2.1, as A0 clearly commutes with Zt. �

Lemmas 5.2.1 and 5.2.2 are usually called the self-nondemolition and the non-
demolition properties, respectively. Evidently these are crucial for the physical
interpretation of our model, and for the well-posedness of the filtering problem.

Remark 5.2.3. It is important to note that it is almost always untrue that
U∗

s A0Us ⊂ Y ′
t for t ≥ s. Hence filtering makes perfect sense in the quantum case,

but smoothing does not. In some sense this enforces physical causality: once we
have measured the observations up to time t, we can not subsequently travel back
in time to observe some property of the system at an earlier time.

Before we move on to the solution of the filtering problem, let us say a word
or two about the physical significance of our model. A common area of application
for models of this type is in the field of quantum optics, which aims to describe the
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Figure 5.1. Cartoon of the quantum filtering setup in quantum op-
tics. An optical field, described by the field operators At, A†

t , interacts
with a system, e.g., a cloud of atoms. The atom-field interaction is de-
scribed by the unitary Ut. The field is subsequently detected, giving rise
to the observation Yt. Finally, the quantum filter (implemented, e.g.,
on a DSP) estimates atomic observables based on the field observations.

interactions of atomic-optical systems with the electromagnetic vacuum. A typical
experimental setup is depicted in cartoon form in figure 5.1. A cloud of atoms—
usually placed in an atom trap inside a vacuum chamber—is interrogated by probing
it with a laser beam. The scattered light is detected through an optical detection
setup; the observations Yt = U∗

t ZtUt which we have introduced here correspond
to homodyne detection, while the commutative process U ∗

t ΛtUt describes what one
would observe using a photon counter. Having detected the scattered light, we
might want to estimate some property of the atomic cloud—its collective angular
momentum, say. In order to find the optimal estimate (in the L2 sense), this means
we have to solve the filtering problem. The filter is also an important ingredient in
the case where we would like to control some physical property of the atom through
feedback. For an introduction to the physical modelling within our framework see
[VSM05b]. The controlled case is developed in detail in [BV06, BV07].

5.2.2. The Kallianpur-Striebel formula. To solve the filtering problem,
we would like to apply Lemma 5.1.10. In the classical case, this was particularly
convenient as we had defined our probability space with the explicit product struc-
ture D(R+; S)×C(R+; Rp), so that the signal lives on the first component and the
observations live on the second component. In the quantum case we also have a
convenient product structure B ⊗ W , but the product structure is not preserved
by the unitary Ut. Of course, we could define a “rotated” tensor product: there
is a natural isomorphism U∗

t (B ⊗ W )Ut ' U∗
t BUt ⊗ U∗

t W Ut. We have a much
more convenient trick up our sleeve, however: we will apply Lemma 5.1.5 to rotate
the conditional expectation back onto our existing product structure, and then we
will apply Lemma 5.1.10 in this rotated basis. In essence, the idea is that even
though our model is not initially defined with a convenient product structure as in
the classical case, we are free to work in a different basis in which the model does
have this form. Let us work out the details of this procedure.

Recall that we are interested in conditional expectations of the form P(jt(X)|Yt)
withX ∈ A0. Let us fix some time t, and define a new state by Qt(X) = P(U∗

t XUt).
Then we have, using Lemmas 5.2.1 and 5.1.5,

P(jt(X)|Yt) = P(U∗
t XUt|U∗

t ZtUt) = U∗
t Qt(X |Zt)Ut.
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If only it were the case that Ut ∈ B ⊗ Zt, we would now immediately be able
to apply the Bayes formula of Lemma 5.1.10 to Qt(X |Zt). This is most certainly
not the case, though, in any nontrivial situation: after all, this would imply that
U∗

t XUt = X for any X ∈ A0, which means that the initial system does not interact
with the field. If we want to apply the Bayes formula, we need to find a Vt ∈
N (B ⊗Zt) such that P(U∗

t XUt) = P(V ∗
t ·̂X ·̂Vt) for every X ∈ B ⊗Zt. This is

precisely what we are going to do. Note that in the classical case, this step is taken
care of by Girsanov’s theorem. Unfortunately, we do not have such a general result
at our disposal in the noncommutative case.

As a first step in this direction, let us prove the following result. To my knowl-
edge, this idea first appears in a paper by A. S. Holevo [Hol91]. Note that we are
here in the realm of the Hudson-Parthasarathy theory, so the objects in this result
live on the restricted domain h⊗D. In particular, we should not draw premature
conclusions about what the closures of these operators look like.

Lemma 5.2.4. Let C,D, F,G, C̃, F̃ ∈ A0, and let Vt and Ṽt be the solutions of

dVt = {C dΛt +DdA†
t + F dAt +Gdt}Vt,

dṼt = {C̃ dΛt +DdA†
t + F̃ dAt +Gdt}Ṽt, V0 = Ṽ0.

Then Vt v ⊗ Φ = Ṽt v ⊗ Φ for any v ∈ h, where Φ ∈ Γ is the vacuum vector.

Proof. By Theorem B.2.19, Vt and Ṽt are both uniquely defined admissible
adapted processes. Consider the quantity

‖(Vt − Ṽt) v ⊗ Φ‖2 = 〈(Vt − Ṽt) v ⊗ Φ, (Vt − Ṽt) v ⊗ Φ〉.
Using the quantum Itô rule we obtain

‖(Vt − Ṽt) v ⊗ Φ‖2 =

∫ t

0

〈(Vs − Ṽs) v ⊗ Φ, (G+G∗)(Vs − Ṽs) v ⊗ Φ〉 ds

+

∫ t

0

〈D(Vs − Ṽs) v ⊗ Φ, D(Vs − Ṽs) v ⊗ Φ〉 ds.

Note that the last integrand is trivially estimated by

‖D(Vs − Ṽs) v ⊗ Φ‖2 ≤ ‖D‖2 ‖(Vs − Ṽs) v ⊗ Φ‖2.
Similarly, the first integrand can be estimated by

〈(Vs − Ṽs) v ⊗ Φ, (G+G∗)(Vs − Ṽs) v ⊗ Φ〉 ≤ ‖G+G∗‖ ‖(Vs − Ṽs) v ⊗ Φ‖2.
Setting C = ‖D‖2 + ‖G+G∗‖, we obtain

‖(Vt − Ṽt) v ⊗ Φ‖2 ≤ C
∫ t

0

‖(Vs − Ṽs) v ⊗ Φ‖2 ds,

But then by Gronwall’s lemma ‖(Vt− Ṽt) v⊗Φ‖ = 0, and the Lemma is proved. �

Let us take a moment to show where we are going with this. Without loss of
generality, we can restrict to the case where the initial state is defined as ρ(X) =
〈v,Xv〉 for some v ∈ h. Any state ρ on B can be written as a (finite) convex
combination of such vector states, so that once we have established our results for
all vector states we can trivially extend to arbitrary ρ. Now consider the QSDE

dVt =

{

L (dA†
t + dAt)−

1

2
L∗Ldt− iH dt

}

Vt, V0 = I.
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By the previous Lemma, we see that Vt v ⊗ Φ = Ut v ⊗ Φ. Hence we can write

Qt(X) = P(U∗
t XUt) = 〈Ut v ⊗ Φ, X Ut v ⊗ Φ〉 = 〈Vt v ⊗ Φ, X Vt v ⊗ Φ〉.

It is now tempting to bring Vt to the other side of the inner product, i.e., to
write “Qt(X) = P(V ∗

t XVt)”; moreover, the QSDE for Vt is only driven by the
commutative noise Zt and has coefficients in A0, so that it seems almost obvious
that Vt should be affiliated to B⊗Zt in some sense. These are, of course, precisely
the things we need in order to apply the Bayes formula. We are not quite there yet,
however, as these naive manipulations are not, in fact, well justified. Our goal is to
find a suitable Vt ∈ N (B⊗Zt) to replace the restricted operator Vt defined above.
If we can find such an operator, our formal manipulations can be made rigorous.

Because the QSDE for Vt is essentially commutative (it is driven by a single
commutative noise Zt), there is an obvious candidate for its replacement. By ap-
plying the spectral theorem to ZT , we can represent Zt (t ∈ [0, T ]) as a classical
stochastic process zt = ι(Zt) on some probability space, with the corresponding
measure P induced by ϕ under which zt is a Wiener process. We can now con-
struct classical Itô integrals with respect to zt, and pull these back to self-adjoint
operators affiliated to ZT . The question is whether such integrals are extensions of
the operators obtained using the Hudson-Parthasarathy integral when we restrict
the domain of the integrand and integrator to h⊗D, and similarly whether the so-
lutions of the QSDE and the corresponding classical Itô SDE have this property.
Note that for our purposes, it is sufficient to establish that these operators act in
the same way on some domain that contains the vacuum, as we do not particularly
care about the rest of h⊗D. The following Lemma gives the desired result.

Lemma 5.2.5. Let (Ω,G, µ) be the probability space obtained from the spectral
theorem applied to ZT , and let zt = ι(Zt). Let L,H ∈ B be such that H = H ⊗ I,
L = L⊗ I, and define Vt as the solution of the matrix-valued Itô SDE

dVt =

{

L dzt −
1

2
L∗L dt− iH dt

}

Vt, V0 = I.

Then Vt coincides with ι−1(Vt) ∈ N (B ⊗ Zt) at least on a dense subdomain
h⊗D′ ⊂ h⊗D which contains all vectors of the form v ⊗ Φ.

Proof. First, let us recall that there is a unique solution Vt (up to a.s. equiv-
alence), which is adapted and square integrable. This follows from standard results
on Lipschitz stochastic differential equations. Next, recall that we have made a nat-
ural identification of the ∗-algebra N (B⊗Zt) with the ∗-algebra of N (Zt)-valued
matrices. Similarly, we can naturally identify all operators on some domain h⊗D′

with the set of matrices whose matrix elements take values in the set of operators
on D′. In [HP84, sec. 5], it is shown1 that there exists a dense domain D′ ⊂ D

(with Φ ∈ D′) on which any Itô integral of a square integrable adapted process,
when considered as a multiplication operator, coincides with the corresponding
Hudson-Parthasarathy integral. Applying this result to every matrix element of

1 Hudson and Parthasarathy do not use the general spectral theorem, but explicitly diago-
nalize their operators by using the natural isomorphism between the Fock space and the Wiener

space. This particular representation is evidently equivalent to any other representation con-
structed using the spectral theorem. Alternatively, their proofs are easily repeated without using
the Wiener-Fock isomorphism. The corresponding domain D

′ is then constructed by generating
this domain from the vacuum using the convenient set of diagonal Weyl operators.
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Vt, this implies that ι−1(Vt)|h⊗D′ satisfies the same QSDE as does Vt. The result
now follows from the uniqueness of the solution of linear QSDE. �

As our previously defined restricted operator Vt has now outlived its usefulness,
we feel justified in replacing it by its extension ι−1(Vt). So without further apology:

From this point onward we identify Vt with ι−1(Vt).

This is little more than a domain extension. Note that it is not entirely obvious
whether ι−1(Vt) coincides with the closure of our old Vt; we also do not care, as we
are only looking to reproduce its action on the vacuum.

Armed with our promising operator Vt, we can now start making progress.

Lemma 5.2.6. Qt(X) = P(V ∗
t ·̂X ·̂Vt) for all X ∈ B ⊗Zt.

Proof. Let us first prove that P(V ∗
t Vt) = 1. By the classical Itô rule,

d(V∗
t Vt) = V∗

t (L + L∗)Vt dzt, V∗
0V0 = I,

so that P(V ∗
t Vt) = ρ(EP(V∗

t Vt)) = ρ(I) = 1. Hence by Lemma 5.1.9, the functional
P(V ∗

t ·̂X ·̂Vt) defines a normal state on B⊗Zt. We would like to show that this state
coincides with Qt; we can assume without loss of generality that ρ(X) = 〈v,Xv〉
is a vector state. To this end, denote by ψ ∈ L2(Ω,G, µ; h) the vector obtained by
applying the spectral theorem to v ⊗ Φ, by θ ∈ L2(Ω,G, µ; h) the vector obtained
by applying the spectral theorem to Ut v ⊗ Φ, and write X = ι(X). Then

P(V ∗
t ·̂X ·̂Vt) =

∫

Ω

〈ψ(ω),Vt(ω)∗X(ω)Vt(ω)ψ(ω)〉µ(dω)

=

∫

Ω

〈Vt(ω)ψ(ω),X(ω)Vt(ω)ψ(ω)〉µ(dω)

=

∫

Ω

〈θ(ω),X(ω)θ(ω)〉µ(dω) = 〈Ut v ⊗ Φ, XUt v ⊗ Φ〉 = Qt(X).

This completes the proof. �

Lemma 5.2.7. V ∗V > 0.

Proof. It is sufficient to establish that Vt is invertible. But this is standard
(see, e.g., Lemma 3.2.3), so the result follows directly. �

We can now finally apply the Bayes formula. This results in the following,
which is a noncommutative counterpart of the Kallianpur-Striebel formula.

Theorem 5.2.8. πt(X) = U∗
t Qt(X ⊗ I |Zt)Ut, where

Qt(X ⊗ I |Zt) = I ⊗ ρ(V ∗
t ·̂ (X ⊗ I) ·̂Vt)

ρ(V ∗
t Vt)

for all X ∈ B.

Proof. This follows from the preceding results and Lemma 5.1.10. �

Corollary 5.2.9. Let L∞(Ω,F , µ) be the ∗-algebra of random variables ob-
tained by applying the spectral theorem to YT , let P be the measure on F induced
by P, and define the classical observations process yt = ι(Yt) for t ∈ [0, T ]. Fur-
thermore, let V̄t be the solution of the matrix-valued Itô SDE

dV̄t =

{

L dyt −
1

2
L∗L dt− iH dt

}

V̄t, V̄0 = I.
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Define for any X ∈ B the following quantities:

σ̄t(X) = ρ(V̄∗
tXV̄t), π̄t(X) =

σ̄t(X)

σ̄t(I)
.

Then π̄t(X) = ι(πt(X)). Moreover, under the probability measure Q defined by
dP = σ̄T (I) dQ, the observations process {yt}t∈[0,T ] is a Wiener process.

Proof. We begin by noting that the quantum probability spaces (YT ,P) and
(ZT ,Q

T ) are equivalent. To see this, define i : ZT → YT , i(X) = U∗
TXUT . Clearly

i defines a ∗-isomorphism between ZT and YT ; hence in order to extend this to
an equivalence between quantum probability spaces, we only need to pull back the
state P on YT to ZT . But the corresponding state is precisely QT (X) = P(i(X)).

Let ιZ : ZT → L∞(ΩZ ,FZ , µZ) and ιY : YT → L∞(ΩY ,FY , µY ) be the ∗-
isomorphisms obtained by appropriate application of the spectral theorem. We will
define ι : YT → L∞(ΩZ ,FZ , µZ) by ι(X) = ιZ(i−1(X)). Similarly, let us define the
following probability measures on FZ : P(ι(X)) = P(X), Q(ιZ(X)) = P(X). We
are clearly free to use this ι rather than ιY as described in the statement of the
Corollary, as the map i makes everything completely isomorphic.

By construction yt = ι(Yt) has the law of the physical observations process
under P. But note that yt = ι(Yt) = ιZ(Zt) = zt, so that evidently yt is a Wiener
process under Q. Moreover, ι(πt(X)) = ιZ(Qt(X ⊗ I |Zt)), as is easily established
using Lemma 5.2.1, so that we obtain ι(πt(X)) = π̄t(X) from Theorem 5.2.8. It
remains to note that for any functional X of {yt}

EP(X) = QT (ι−1
Z (X)) = P(V ∗

T ·̂ ι−1
Z (X) ·̂VT ) = EQ(ρ(V̄∗

T V̄T )X).

Hence dP/dQ = ρ(V̄∗
T V̄T ) = σ̄T (I), and the proof is complete. �

Proposition 5.2.10. The innovations process z̄t, defined by

z̄t = yt −
∫ t

0

π̄s(L + L∗) ds,

is a Wiener process under the probability measure P.

Proof. Using the Itô rules, it is straightforward to establish that

dσ̄t(I) = σ̄t(L + L∗) dyt = π̄t(L + L∗) σ̄t(I) dyt.

Hence σT (I) defines a Girsanov transformation, and the result follows from the
Girsanov theorem and the fact that {yt} is a Wiener process under Q. �

5.2.3. The quantum filtering equations. Beside being the key result in
the reference probability method, the quantum Kallianpur-Striebel formula has a
convenient side effect: it reduces the quantum filtering problem to the realm of clas-
sical stochastic processes. From this point onward, we will work exclusively within
the framework of Corollary 5.2.9. This means that we will use only the classical Itô
calculus, and the resulting filtering equations will be classical Itô stochastic differ-
ential equations which are driven by the observations process yt. This is entirely
within the spirit of filtering theory; indeed, the filter should, by construction, be
a functional of the observations only! Hence these classical equations provide pre-
cisely what should be implemented as a signal processing device in the applications
of the theory, e.g., in a laboratory setting (cf. figure 5.1).

Let us begin by obtaining the quantum filtering equations, both in unnormal-
ized form (the quantum counterpart of the Zakai equation) and in normalized form
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(the quantum counterpart of the Kushner-Stratonovich equation). Given the results
of the previous section, this is a straightforward exercise.

Proposition 5.2.11. The unnormalized filter σ̄t(X) satisfies

dσ̄t(X) = σ̄t(L(X)) dt + σ̄t(L
∗X +XL) dyt, σ̄0(X) = ρ(X),

while the normalized filter π̄t(X) satisfies the equation

dπ̄t(X) = π̄t(L(X)) dt+ (π̄t(L
∗X +XL)− π̄t(L + L∗) π̄t(X)) dz̄t, π̄0(X) = ρ(X).

Here we have used the Lindblad generator L(X), which is defined as

L(X) = i[H, X ] + L∗XL− 1
2L∗LX − 1

2XL∗L.

Proof. Let X ∈ B. Using the Itô rules, we find that

V̄∗
tXV̄t = X +

∫ t

0

V̄∗
sL(X)V̄s ds+

∫ t

0

V̄∗
s(L

∗X +XL)V̄s dys.

As ρ(X) = Tr[%X ] is just a finite linear combination of matrix elements, we can
trivially pull ρ into the integrals. This gives the unnormalized filter. The normalized
filter is easily found by applying the Itô rule to π̄t(X) = σ̄t(X)/σ̄t(I). �

As in the classical case, the density form of these equations is particularly
convenient, as this gives rise to closed-form recursive equations.

Corollary 5.2.12. Let %t be the (unique) random density matrix that satisfies
π̄t(X) = Tr[%tX ] for all X ∈ B. Then %t satisfies the equation

d%t = L∗(%t) dt+ {L%t + %tL
∗ − Tr[(L + L∗)%t]%t} (dyt − Tr[(L + L∗)%t] dt),

with the initial condition %0 = %. Similarly, define the random nonnegative self-
adjoint matrix ςt by σ̄t(X) = Tr[ςtX ]. Then ςt satisfies the equation

dςt = L∗(ςt) dt+ {Lςt + ςtL
∗} dyt, ς0 = %.

Here we have used the adjoint Lindblad generator L∗(X), which is defined as

L∗(%) = −i[H, %] + L%L∗ − 1
2L∗L%− 1

2%L
∗L.

To be useful, these filtering equations should have unique solutions.

Lemma 5.2.13. The equations for ςt and %t have unique strong solutions.

Proof. The fact that the equation for ςt has a unique solution is standard, as
this is a Lipschitz stochastic differential equation. Moreover, the equation for %t is
locally Lipschitz and hence has a unique solution up to some accessible explosion
time ζ. But it is easily verified using the Itô rules that ςt/Tr[ςt] satisfies the equation
for %t at every time t ∈ [0, T ], and moreover ςt/Tr[ςt] evolves in a compact set. Hence
there can be no accessible explosion, and the claim is established. �

Finally, let us consider the equation for %t as being driven by the innovations
z̄t rather than the observations yt. This gives some additional insight.

Proposition 5.2.14. The following Itô stochastic differential equation has a
unique strong solution which coincides with %t as defined above:

d%t = L∗(%t) dt+ {L%t + %tL
∗ − Tr[(L + L∗)%t]%t} dz̄t, %0 = %.

In particular, this implies that %t is a Feller-Markov process under P and that the
innovations conjecture σ{yt : t ∈ [0, T ]} = σ{z̄t : t ∈ [0, T ]} holds.
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Proof. As the coefficients of the equation are locally Lipschitz continuous,
there is a unique solution up to some explosion time ζ. But as %t defined previously
satisfies this equation, ζ must be infinite and the solutions must coincide. As z̄t

is a Wiener process under P, the Feller-Markov property follows from standard
results. To prove the innovations conjecture, note that it is trivially the case that
σ{yt : t ∈ [0, T ]} ⊃ σ{z̄t : t ∈ [0, T ]}. But σ{yt : t ∈ [0, T ]} ⊂ σ{z̄t : t ∈ [0, T ]}
follows from the current result, as we can reconstruct yt from z̄t in a measurable
fashion by solving the above SDE (see, e.g., [LS01, p. 276]). �

5.2.4. Imperfect detection. The reference probability method developed
above can be adapted to a large number of quantum filtering scenarios. As men-
tioned before, we restrict ourselves in this chapter to the model introduced above
for sake of notational simplicity and of transparent treatment. There is a minor
extension of this model, however, that is readily introduced and that is widely used.
Let us briefly sketch how to incorporate this addition.

In the model which we have been investigating there is no external corrupt-
ing noise—all the noise in the observations originates from the intrinsic quantum
fluctuations in the (electromagnetic) vacuum. This can not be circumvented; in
particular, there is no quantum analog of the “perfect detection case” in classi-
cal systems theory. This highlights the reason that filtering theory is particularly
important in quantum systems theory. On the other hand, there is no particular
reason why there should not be any external corrupting noise in addition to the
intrinsic quantum noise in the system. In fact, any realistic experiment or device
is subject to technical noise, of environmental or of electronic origin. Hence it is
useful to reconsider the above filtering problem, using the same underlying model
but adding some independent corrupting noise to the observations. The goal of this
section is to obtain the corresponding filtering equation.

To model the corrupting noise we simply extend our original Hilbert space by
tensoring on another Fock space: i.e., we consider the Hilbert space h ⊗ Γ ⊗ Γ,
where we denote the fundamental noises on the first copy of the Fock space by At,

A†
t , and Λt, and we denote the fundamental noises on the second copy of the Fock

space by Bt, B
†
t , and Ξt (we will not use the latter). We endow the second copy of

the Fock space with the vacuum, i.e., our state is P = ρ ⊗ ϕ ⊗ ϕ. The interaction
unitary Ut is still defined in the same way as above; in particular, it is of the form
Ut ⊗ I on (h⊗ Γ)⊗ Γ, and the “signal process” is given by jt(X) for X ∈ A0. The
only difference with the previous model is the observations process: we now define

Yt = U∗
t ZtUt + ε(Bt + B†

t ). Recall that under P, the process Bt + B†
t is a Wiener

process independent of U∗
t ZtUt. Hence our new observations implement precisely

the idea described above, where ε is the strength of the external corrupting noise.
To obtain the filtering equations for this case, there is no need to start from

scratch. Let us define Ỹt = U∗
t ZtUt, i.e., these are the observations which we have

been considering previously, and define the corresponding filtration Ỹt. We can now
simply invoke the tower property of the conditional expectation: P(jt(X)|Yt) =

P(P(jt(X)|vN{Yt, Ỹt})|Yt). But by the independence of jt(X), Ỹt and Bs≤t, this

reduces to P(jt(X)|Yt) = P(P(jt(X)|Ỹt)|Yt). The quantity P(jt(X)|Ỹt) obeys the
filtering equation which we have obtained previously; so in order to obtain our new
filtering equation, it suffices to perform some additional classical conditioning.
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Define π̃t(X) = ι(P(jt(X)|Ỹt)). We have obtained the equation for π̃t(X) in
the previous section; unfortunately, this equation is nonlinear, so it is difficult to
apply the tower property. Instead, we will apply the classical Bayes formula:

π̄t(X) = EP(π̃t(X)|Yt) =
EQ(π̃t(X) σ̃t(I)|Yt)

EQ(σ̃t(I)|Yt)
=

EQ(σ̃t(X)|Yt)

EQ(σ̃t(I)|Yt)
.

Here Yt = σ{ys : s ≤ t}, and Q is the measure defined previously under which

ỹt = ι(Ỹt) is a Wiener process. Now recall from the previous section that

dσ̃t(X) = σ̃t(L(X)) dt+ σ̃t(L
∗X +XL) dỹt, σ̃0(X) = ρ(X).

Denote by bt = ι(Bt +B†
t ) the corrupting Wiener process, which is independent of

ỹt and where yt = ỹt + εbt. To complete the argument, notice that if we define

O =
1√

1 + ε2

(

1 ε
ε −1

)

, O

(

ỹt

bt

)

=
1√

1 + ε2

(

yt

y⊥t

)

,

then O is an orthogonal matrix and hence yt and y⊥t are independent Wiener
processes under Q (with quadratic variation (1 + ε2) t). Let us write suggestively

dσ̃t(X) = σ̃t(L(X)) dt +
1

1 + ε2
σ̃t(L

∗X +XL) dyt +
ε

1 + ε2
σ̃t(L

∗X +XL) dy⊥t .

We can now take the conditional expectation of this expression, using standard
results to exchange the order of integration and conditioning [LS01, Ch. 5] (note

that the integrands have moments of all orders; this is easily established, as Ṽt is
the solution of a linear SDE). We thus obtain

dEQ(σ̃t(X)|Yt) = EQ(σ̃t(L(X))|Yt) dt+
1

1 + ε2
EQ(σ̃t(L

∗X +XL)|Yt) dyt.

It is not difficult to see, in fact, that EQ(σ̃t(X)|Yt) = σ̄t(X), so we have obtained
the linear filtering equation for the model considered in this section. Normalization
is straightforward, and we can summarize with the following statement.

Proposition 5.2.15. Let η = (1 + ε2)−1, and define the normalized observa-
tions ȳt =

√
η yt. Then the linear filtering equation for the model considered in this

section is given by the Itô stochastic differential equation

dσ̄t(X) = σ̄t(L(X)) dt+
√
η σ̄t(L

∗X +XL) dȳt, σ̄0(X) = ρ(X),

while the normalized filter π̄t(X) satisfies the equation

dπ̄t(X) = π̄t(L(X)) dt+
√
η (π̄t(L

∗X+XL)−π̄t(L+L∗) π̄t(X)) dz̄t, π̄0(X) = ρ(X).

Here the innovations process z̄t is given by

z̄t = ȳt −
√
η

∫ t

0

π̄s(L + L∗) ds,

and z̄t defines a standard Wiener process under the measure P.

The density form of these equations is trivially established, and the various
existence and uniqueness results follow as in the previous section.
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5.3. A filter stability result

We now turn to the second topic of this chapter: the issue of filter stability
for quantum filters. The problem here is the same as in the classical case. The
optimal filter, which propagates the conditional expectation of system observables
and hence is an optimal estimator in the L2 sense, requires us to initialize the
filtering equation with the true initial state ρ. We would like to show that if a
different initial state ρ′ was used instead to initialize the filter (so that the filtered
estimate is suboptimal), this misspecification is forgotten and the filter becomes
optimal as t → ∞. Nothing is known about this question in the literature to date
beside numerical evidence. Our goal here is to obtain a first result in this direction.

5.3.1. Incorrect initialization and randomization of the initial state.

Let us reflect for a moment on the methods which we have introduced to study
classical filter stability. All of these methods relied rather heavily on a study of a
related smoothing problem. Even if we do not explicitly engage in smoothing, we
would still need to condition on the signal process at an earlier time in order to
even make sense of, e.g., the second representation described in section 2.3.1. In
the quantum setting this is meaningless, as such an expression would violate the
nondemolition condition. If we wish to make use of some of the logic developed in
the classical case, we thus have to find a way to circumvent this problem.2

Let us consider in a little more detail the problem we are facing. We would like
to be able to relate the filters initialized with the initial states ρ and ρ′ under the
same measure. To do this, we need two things: first, we need to be able to obtain a
change-of-measure operator V such that ρ′(X) = ρ(V ∗XV ); and second, we must
make sure that V is in the commutant of the observation algebra. The latter will
never be the case within the model which we have introduced.

We will use a remarkably simple trick to avoid these problems. Let us suppose
that there is a third state ρ̃, so that we can write ρ′ as a convex combination
ρ′ = λ ρ + (1 − λ)ρ̃ with some λ > 0. Then we could generate ρ′ as follows: in
every realization, we flip a coin that has probability λ of coming up heads; if the
coin comes up heads, we produce a system with state ρ, whereas if the coin comes
up tails, we produce a system with state ρ̃. Clearly any observable of the system
(i.e., an observable that has no access to our coin) will have the same expectation
under this randomized state as under ρ′. But we can now produce a whole family of
states by changing the probability of our coin coming up heads, including the state
ρ by letting the probability of heads be one. These classical absolutely continuous
changes of measure commute with all the system observables, and hence provide us
with precisely what we need. We will detail the procedure further below.

Before we apply this idea to the filtering problem, let us take a moment to
investigate the requirement that one of the initial states can be obtained as a

2 In this thesis we have not discussed techniques which are used to obtain asymptotic bounds
on filter stability (e.g., Lyapunov exponents of the filtering equation), which are not based on
smoothing. The majority of these techniques rely on application of the Hilbert projective metric.
In principle this metric can be defined in the setting of the positive cone in any vector lattice

[Liv95], e.g., in the positive cone of the predual of a Von Neumann algebra. However, the explicit
bounds on the Birkhoff contraction coefficient used in the filter stability literature do not appear
to be easily established in the noncommutative case. Nonetheless, such an approach could prove
to be fruitful in the future, using either the Hilbert metric or some other suitable metric.
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a. b. c. d. e.

Figure 5.2. Cartoon illustration of the convex notion of absolute con-
tinuity. Shown are five simplices, each with two highlighted states (thick
dots). The grey line segments contain all convex combinations of the
two states, while the red line segments show the possible extensions.
The five cases correspond to: a. and b. P! Q; c. Q ≺≺ P; d. P ≺≺ Q;
and e. satisfies neither Q ≺≺ P nor P ≺≺ Q.

convex combination. This natural idea provides a surprisingly appealing definition
of absolute continuity for states on a Von Neumann algebra.

Definition 5.3.1. Let P, Q be normal states on a Von Neumann algebra A .
We say that Q is absolutely continuous with respect to P, denoted as Q ≺≺ P, if
there exists a normal state Q′ such that P = λQ + (1 − λ)Q′ for some λ ∈ (0, 1].
We say that P and Q are equivalent, denoted as P ! Q, if Q ≺≺ P and P ≺≺ Q.

The definition is illustrated graphically in figure 5.2. Shown are five convex
sets, which represent the state space of a Von Neumann algebra. Evidently P ≺≺ Q

implies that the line of convex combinations of these two states can be extended
outwards at Q; the extensions are precisely the possible choices for Q′.

The following characterization reduces our definition to a notion which has
been studied in the theory of operator algebras [Sak98, sec. 1.24]. Hence the
Sakai-Radon-Nikodym theorems apply, but we will not use them.

Lemma 5.3.2. Q ≺≺ P iff there is an ε > 0 s.t. P(X) ≥ εQ(X) for all X ≥ 0.

Proof. Suppose that P = λQ + (1 − λ)Q′ for some Q′ and λ ∈ (0, 1]. Then
clearly P ≥ λQ, so we can set ε = λ. Conversely, suppose that there is an ε ∈ (0, 1]
s.t. P ≥ εQ; then any functional Q′ = (P − λQ)/(1 − λ) with λ ∈ (0, ε) defines a
normal state such that P = λQ + (1− λ)Q′. Note that ε > 1 is impossible, as then
1 = P(I) ≥ εQ(I) = ε provides a contradiction. Hence the Lemma is proved. �

The simplices drawn above could represent the space of measures on the prob-
ability space Ω = {1, 2, 3}; from the pictures, it should be evident that the convex
notion of absolute continuity coincides with the classical notion. In fact, this is
generally the case, provided that the Radon-Nikodym derivative is bounded.

Lemma 5.3.3. Let P, Q be two probability measures on some measurable space
(Ω,F). Then Q ≺≺ P if and only if Q� P with ‖dQ/dP‖∞ <∞.

Proof. We show that Q� P with ‖dQ/dP‖∞ <∞ is necessary and sufficient
for Q ≺≺ P to hold. To show sufficiency, note that for any X ≥ 0 we obtain
EQ(X) = EP(X dQ/dP) ≤ EP(X) ‖dQ/dP‖∞. Hence Q ≺≺ P follows from
Lemma 5.3.2. To show necessity, consider first the case where Q 6� P. Then
clearly Q ≺≺ P can not be true, as there exists some X ≥ 0 such that EP(X) = 0
but EQ(X) > 0. Hence it remains to show that if dQ/dP is unbounded, then
Q ≺≺ P can not hold. To this end, consider the sets Sn = {ω ∈ Ω : dQ/dP ≥ n}.
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Then Q(Sn) = EP(ISn
dQ/dP) ≥ nP(Sn), so by Lemma 5.3.2 Q ≺≺ P can not

hold. The result follows immediately. �

In the noncommutative case, let us characterize absolute continuity for states
on B(h) when h is a finite dimensional Hilbert space. Recall that any such state
can be written uniquely as ρ(X) = Tr[%X ] for some density matrix %.

Lemma 5.3.4. Let ρ, ρ′ be states on B(h), dim h < ∞, which are defined by
the density matrices %, %′. Then ρ ≺≺ ρ′ iff ker% ⊃ ker %′.

Proof. We show that ker % ⊃ ker %′ is necessary and sufficient for ρ ≺≺ ρ′ to
hold. Recall from Lemma 5.3.2 that ρ ≺≺ ρ′ is equivalent to ρ′ ≥ ερ, or alternatively
that %′ ≥ ε%, for some ε > 0. To prove necessity, let v ∈ ker %′ but v 6∈ ker %. Then
〈v, %′v〉 = 0, while 〈v, %v〉 = ‖%1/2v‖2 > 0. But then 〈v, %′v〉 < ε〈v, %v〉 for any
ε > 0, and this contradicts ρ ≺≺ ρ′. It thus remains to show sufficiency. To this
end, let us restrict %, %′ to the subspace h′ = (ker %′)⊥ ⊂ h. It suffices to show that
%′|h′ ≥ ε%|h′ for some ε > 0. But note that %′|h′ has full rank and hence is positive
definite, so there is some ε > 0 such that 〈v, %′v〉 ≥ ε‖v‖2 for all v ∈ h′. But the
eigenvalues of % must be contained in [0, 1], so that 〈v, %v〉 ≤ ‖v‖2 for any v ∈ h′.
Thus we find that 〈v, %′v〉 ≥ ε〈v, %v〉 for all v ∈ h, and the Lemma follows. �

Note in particular the two extremes: any state is absolutely continuous with
respect to a state with density matrix of full rank; whereas no state is absolutely
continuous with respect to a vector state, except that state itself.

We now return to the reason for introducing the notion of absolute continuity.
Here Dn(C) denotes the Von Neumann algebra of n× n diagonal matrices.

Lemma 5.3.5. Let A be a Von Neumann algebra and Q ≺≺ P be normal states
on A . Then there exists a normal state P∼ on A ∼ = D2(C)⊗A , and a nonnegative
Λ ∈ D2(C), such that P∼(I ⊗X) = P(X) and P∼(Λ⊗X) = Q(X) for all X ∈ A .
Moreover, if P ! Q, then Λ can be chosen to be strictly positive.

Proof. Let Q′ and λ ∈ (0, 1] be such that P = λQ + (1 − λ)Q′, let P1 =
diag{1, 0}, P2 = diag{0, 1}, and let ρ1, ρ2 be the states on D2(C) for which P1 and
P2 are the corresponding density matrices. We define P∼ = λ ρ1⊗Q+(1−λ) ρ2⊗Q′,
and set Λ = P1/λ. The statement of the Lemma is now easily verified. In the case
that P ! Q, we can choose another state Q′′ such that P = λQ′ + (1 − λ)Q′′,
Q = λ′Q′ + (1− λ′)Q′′ with λ, λ′ > 0, and repeat the above construction. �

We can now easily obtain the following Bayes-type formula.

Lemma 5.3.6. Let A be a Von Neumann algebra, let Q ! P be normal states
on A , and let C ⊂ A be a commutative subalgebra. Then for any X ∈ C ′

I ⊗ P(X |C ) = P∼(I ⊗X |I ⊗ C ), I ⊗Q(X |C ) =
P∼(Λ⊗X |I ⊗ C )

P∼(Λ⊗ I |I ⊗ C )
.

Proof. The first statement follows from the definition of the conditional ex-
pectation, the second statement follows from Lemma 5.1.6 with V = (Λ)1/2⊗I . �

Using this result, we can now proceed to obtain a noncommutative counter-
part of the second representation described in section 2.3.1; i.e., we can obtain
expressions for differently initialized filters in terms of a single underlying state P∼,
provided the initial states are equivalent in the convex sense. This could provide a
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starting point for further investigation of the filter stability problem. In the next
section, however, we go down a slightly different path.

5.3.2. A generic stability result. The goal of this section is to prove a
simple stability result: a quantum counterpart of [COC99, Thm. 3.1] (see also
[CL06] for a different perspective). We will use a different proof and we even go a
little further than the type of result described in [COC99], but we restrict ourselves
for simplicity to finite-dimensional initial systems, as in the rest of this chapter.

Remark 5.3.7. It should be emphasized that the proof given in [COC99] for
the classical case can be extended also to the quantum case using the machinery
developed above. Rather than repeat this proof here, we give a different proof which
is more direct. However, the original proof of [COC99] is more convenient in the
infinite-dimensional case, as very little regularity is required for their argument.

To obtain some insight on what we are going to prove, recall that the innova-
tions process dz̄t = dyt − π̄t(L + L∗) dt is a Wiener process under P. Hence the
observation process yt has the law of a Wiener process with drift π̄t(L + L∗); the
observable L+L∗ is called the measurement observable. It thus seems plausible that
at least the filtered estimate π̄t(L + L∗) should be fairly easy to obtain, even if the
entire filter is not; intuitively, the observations provide some “direct” information
on the measurement observable, while even naive estimation of other observables
requires us to use our knowledge of the underlying model. (Note that the measure-
ment observable plays a similar role in the quantum case as does the observation
function in the classical case.)

What we will show is that the filtered estimate of the measurement observable
is always stable, regardless of the underlying model, provided that the initial states
are absolutely continuous. This does not guarantee that all filtered estimates are
stable, nor is there a bound on the rate of stability. The resolution of such issues
would necessarily have to take into account the details of the underlying model.
On the other hand, the beauty of this result is its generic applicability—we have
to know absolutely nothing about the underlying model in order for this to hold!

Let us get down to the details. As before, π̄t(X) denotes the filtered estimate
of the system observable X when the initial state is ρ. The measure P is the
measure on the space of observation sample paths corresponding to the initial state
ρ. We also introduce π̄′

t(X), which is obtained by solving the filtering equation
with the misspecified initial state ρ′; in other words, π̄t(X) = ι(P(jt(X ⊗ I)|Yt)),
while π̄′

t(X) = ι(P′(jt(X ⊗ I)|Yt)) where P′ = ρ′ ⊗ ϕ.
The following result is the key step to establish our claim.

Proposition 5.3.8. Suppose that ρ ! ρ′. Then there is some finite constant
C <∞, depending only on ρ and ρ′, such that for any t <∞

EP

[∫ t

0

|π̄s(L + L∗)− π̄′
s(L + L∗)|2 ds

]

≤ C.

Proof. As ρ ! ρ′, there is by Lemma 5.3.5 a state ρ∼ on B∼ = D2(C)⊗B

and a strictly positive Λ ∈ D2(C) s.t. ρ∼(I ⊗X) = ρ(X) and ρ∼(Λ⊗X) = ρ′(X).
This implies also that P ! P′, so that the state P∼ = ρ∼ ⊗ ϕ on A ∼ = B∼ ⊗W

satisfies P∼(I ⊗X) = P(X) and P∼(Λ⊗X) = P′(X) for all I ⊗X ∈ D2(C) ⊗A .
We extend U∼

t = I ⊗ Ut in D2(C) ⊗ A , and define j∼t (X) = U∼∗
t (X ⊗ I)U∼

t for
X ⊗ I ∈ B∼ ⊗W . We also extend Y ∼

t = I ⊗ Yt in D2(C)⊗A .
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To prove the claim, we consider the extended filtering problem of calculating
π̄∼

t (X) = ι(P∼(j∼t (X)|Y ∼
t )). This filtering problem can be interpreted as exactly

our previous filtering problem, only with an enlarged initial system D2(C)⊗B. In
particular, we easily obtain the filtering equation for π̄∼

t (X):

dπ̄∼
t (X) = π̄∼

t (L∼(X)) dt+ (π̄∼
t (L̃∗X +XL̃)− π̄∼

t (L̃ + L̃∗) π̄∼
t (X)) dz̄t,

where π̄∼
0 (X) = ρ∼(X), L̃ = I ⊗ L, H̃ = I ⊗H, and

L∼(X) = i[H̃, X ] + L̃∗XL̃− 1
2 L̃∗L̃X − 1

2XL̃∗L̃.

Then we obtain the following equation:

dπ̄∼
t (Λ⊗ I) = (π̄∼

t (Λ⊗ (L + L∗))− π̄∼
t (I ⊗ (L + L∗)) π̄∼

t (Λ⊗ I)) dz̄t

=

{

π̄∼
t (Λ⊗ (L + L∗))

π̄∼
t (Λ⊗ I) − π̄∼

t (I ⊗ (L + L∗))

}

π̄∼
t (Λ⊗ I) dz̄t.

But by Lemma 5.3.6 we can simplify this to

dπ̄∼
t (Λ⊗ I) = {π̄′

t(L + L∗)− π̄t(L + L∗)} π̄∼
t (Λ⊗ I) dz̄t,

so that evidently it is the case that

π̄∼
t (Λ⊗ I) = exp

[∫ t

0

∆s dz̄s −
1

2

∫ t

0

|∆s|2 ds
]

,

with ∆t = π̄′
t(L + L∗)− π̄t(L + L∗). We obtain immediately

−2EP(log(π̄∼
t (Λ⊗ I))) = EP

[∫ t

0

|π̄′
s(L + L∗)− π̄s(L + L∗)|2 ds

]

.

But as 0 < Λ < ∞, the left-hand side is finite and is bounded by some constant
that only depends on Λ. This establishes the claim. �

We immediately obtain the following weak stability result.

Corollary 5.3.9. Suppose that ρ ! ρ′. Then
∫ ∞

0

EP|π̄s(L + L∗)− π̄′
s(L + L∗)|2 ds <∞.

Remark 5.3.10. Note that we have previously defined the random processes
π̄t(X), π̄′

t(X) on some finite time interval [0, T ]; this is not crucial, but technically
very convenient (see, e.g., Example 1.1.3 for the sort of issues we could run into
otherwise). Fortunately there is no reason to extend these random processes to
the infinite time interval, as we are only interested in expectations of the quantity
|π̄s(L + L∗)− π̄′

s(L + L∗)|2 for fixed finite times s. Hence it suffices, for any fixed s,
to choose T ≥ s in order to calculate EP|π̄s(L + L∗) − π̄′

s(L + L∗)|2. The integral
of these expectations can be taken subsequently, and Corollary 5.3.9 applies.

The remainder of this section is devoted to strengthening the above result to
the statement that EP|π̄s(L + L∗) − π̄′

s(L + L∗)|2 → 0 as t → ∞. This seems
almost obvious from the above result; certainly this quantity can only spend a
finite amount of time outside any neighborhood of zero, but this is not sufficient to
establish the claim. Ostensibly, it could be that EP|π̄s(L + L∗)− π̄′

s(L + L∗)|2 has
a positive limit superior, while still being integrable over the infinite time horizon.
This type of problem is often encountered in the study of stochastic stability theory
[Kus72, DKW01, Van06], where the strong Markov property of the underlying
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dynamics can be used to eliminate this possibility. A simpler technique suffices in
our case, however, as we can establish the following simple result.

Lemma 5.3.11. EP|π̄t(L + L∗)− π̄′
t(L + L∗)|2 is Lipschitz continuous in t.

Proof. This follows immediately by applying the Itô rule to the quantity
|π̄t(L+L∗)− π̄′

t(L+L∗)|2, taking the expectation (so that the integral with respect
to the innovations process vanishes), and noting that the right-hand side is bounded,
i.e., EP|π̄t(L + L∗)− π̄′

t(L + L∗)|2 has bounded time derivative. �

We can now establish the main result of this section.

Theorem 5.3.12. Suppose that ρ ! ρ′. Then

EP|π̄t(L + L∗)− π̄′
t(L + L∗)|2 −→ 0 as t −→ ∞.

Proof. Define Rt = EP|π̄t(L + L∗) − π̄′
t(L + L∗)|2. From Corollary 5.3.9, it

is immediately clear that lim inf t→∞ Rt = 0. We will prove lim supt→∞Rt = 0 by
contradiction. To this end, suppose that lim supt→∞ Rt = k > 0. Then there exist
0 < k′ < k′′ < k such that Rt crosses k′ and k′′ infinitely often. Let t′′ be a time
such that Rt′′ = k′′, and let t′ be the latest time previous to t′′ such that Rt′ = k′.
By Lipschitz continuity of Rt, we find that |Rt′′ − Rt′ | ≤ K|t′′ − t′|, where the
Lipschitz constant K > 0 is independent of t′, t′′. But by construction, this implies
that |t′′ − t′| ≥ K−1|k′′ − k′|. As this happens infinitely often, this means that Rt

must infinitely often spend a time in excess of K−1|k′′ − k′| being larger than k′.
But this would surely contradict Corollary 5.3.9, and the result is established. �

Remark 5.3.13. The results in this section extend trivially to the imperfect
detection case of section 5.2.4, and extensions to the case of multiple channels, etc.,
are similarly straightforward. In the case of an infinite-dimensional initial system
the result is also readily established, though the method of proof used in [COC99]
may be more convenient in this case. In fact, as in the classical case, the quantum
case appears to enjoy a general filter stability principle in the context of diffusive
(homodyne) detection: the filtered estimate of the measurement observable (or
observables in the case of higher multiplicity) is always stable.





APPENDIX A

Elements of the Malliavin Calculus

The goal of this appendix is to recall briefly the main results of the Malliavin
calculus, Skorokhod integrals and anticipative stochastic calculus that are needed
in chapter 3 (and briefly in section 4.3.4). In our application of the theory we
wish to deal with functionals of the observation process (Yt)t∈[0,T ], where T is some
finite time (usually we will calculate integrals from 0 to t, so we can choose any
T > t). Recall that Y is an FY

t -Wiener process under the measure Q; it will thus be
convenient to work always under Q, as this puts us directly in the framework used,
e.g., in [Nua95]. As the theory described below is defined Q-a.s. and as P ∼ Q,
the corresponding properties under P are unambiguously obtained by using (3.11).
We will presume this setup whenever the theory described here is applied.

A.1. The Malliavin derivative: Definition and elementary properties

A smooth random variable F is one of the form f(Y (h1), . . . , Y (hn)), where
Y (h) denotes the Wiener integral of the deterministic function h ∈ L2([0, T ]) with
respect to Y and f is a smooth function which is of polynomial growth together
with all its derivatives. For smooth F the Malliavin derivative DF is defined by

DtF =

n
∑

i=1

∂f

∂xi
(Y (h1), . . . , Y (hn))hi(t).

The Malliavin derivative D can be shown [Nua95, p. 26] to be closable as an
operator from Lp(Ω,FY

T ,Q) to Lp(Ω,FY
T ,Q;L2([0, T ])) for any p ≥ 1, and we

denote the domain of D in Lp(Ω) by D1,p (for notational convenience we will drop
the measure Q and σ-algebra FY

T throughout this section, where it is understood
that Lp(Ω) denotes Lp(Ω,FY

T ,Q), etc.). In fact, D1,p is simply the closure of the
set of smooth random variables in Lp(Ω) with respect to the norm

‖F‖1,p =
[

EQ|F |p + EQ‖DF‖pL2([0,T ])

]1/p

.

More generally, we consider iterated derivatives D
kF ∈ Lp(Ω;L2([0, T ]k)) defined

by D
k
t1,...,tk

F = Dt1 · · ·Dtk
F . The domain of D

k in Lp(Ω) is denoted by Dk,p, and
coincides with the closure in Lp(Ω) of the smooth random variables with respect to
the norm

‖F‖k,p =



EQ|F |p +

k
∑

j=1

EQ‖DjF‖pL2([0,T ]j)





1/p

.
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The local property of the Malliavin derivative allows us to localize these domains
[Nua95, pp. 44–45]. For F ∈ L2(Ω), suppose there exists a sequence (Ωn, Fn)n≥1

with Ωn ∈ FY
T and Fn ∈ Dk,p, such that Ωn ↗ Ω a.s. and F = Fn a.s. on Ωn. Then

(Ωn, Fn)n≥1 localizes F in Dk,p, and we define DF = DFn on Ωn. The space of

random variables that can be localized in Dk,p is denoted by D
k,p
loc .

The first result we will need is a chain rule for the Malliavin derivative.

Proposition A.1.1. Let ϕ : Rm → R be C1 and F = (F 1, . . . , Fm) be a

random vector with components in D1,2. Then ϕ(F ) ∈ D
1,2
loc and

Dϕ(F ) =

m
∑

i=1

∂ϕ

∂xi
(F )DF i.

If ϕ(F ) ∈ L2(Ω) and Dϕ(F ) ∈ L2(Ω× [0, T ]), then ϕ(F ) ∈ D1,2. These results still
hold if F a.s. takes values in an open domain V ⊂ Rm and ϕ is C1(V ).

The first (local) statement can be found in [NP88, Prop. 2.9]; the second
statement can be proved in the same way as [OK91, Lemma A.1], and the proofs
are easily adapted to the case where F a.s. takes values in some domain.

A useful class of random variables is D∞ = ∩p≥1 ∩k≥1 Dk,p. Then DtF ∈ D∞

for any F ∈ D∞, and the chain rule extends as follows [Nua95, p. 62].

Proposition A.1.2. Let ϕ : Rm → R be a smooth function which is of polyno-
mial growth together with all its derivatives, and let F = (F 1, . . . , Fm) be a random
vector with components in D∞. Then ϕ(F ) ∈ D∞ and the usual chain rule holds.
This implies that D∞ is an algebra, i.e., FG ∈ D∞ for F,G ∈ D∞.

We will also need the following property [Nua95, p. 32].

Lemma A.1.3. For a Borel set A ⊂ [0, T ], denote by FY
A the σ-algebra generated

by the random variables {Y (IB) : B ⊂ A Borel}. Let F ∈ D1,2 be FY
A -measurable.

Then DtF = 0 a.e. in Ω× ([0, T ]\A).

A.2. The Malliavin derivative of a stochastic flow

It is useful to be able to calculate explicitly the Malliavin derivative of the
solution of a stochastic differential equation. Consider

dxt = f(xt) dt+ σ(xt) dYt, x0 ∈ Rm,

where f(x) and σ(x) are smooth functions of x with bounded derivatives of all
orders. It is well known that such equations generate a smooth stochastic flow of
diffeomorphisms xt = ξt(x) [Kun84]. We now have the following result.

Proposition A.2.1. All components of xt belong to D∞ for every t ∈ [0, T ].
We have Drxt = Dξt(x0)Dξr(x0)

−1σ(xr) a.e. r < t, where (Dξt(x))
ij = ∂ξi

t(x)/∂x
j

is the Jacobian matrix of the flow, and Drxt = 0 a.e. r > t.

The first statement is given in [Nua95, Theorem 2.2.2, p. 105], the second on
[Nua95, eq. (2.38), p. 109]. Drxt = 0 a.e. r > t follows from adaptedness.

If f, σ are only C1 with bounded derivative, then above result still holds with
appropriately reduced regularity, see [Nua95, Theorem 2.2.1, p. 102].

Proposition A.2.2. If f, σ ∈ C1 with bounded derivative, then xt ∈ D1,p for
all p ≥ 1 and t ∈ [0, T ]. We have Drxt = Dξt(x0)Dξr(x0)

−1σ(xr) a.e. r < t, where
Dξt(x) is the Jacobian of the flow, and Drxt = 0 a.e. r > t.
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A.3. The Clark-Haussmann-Ocone formula

Let F ∈ D1,2. Then by the usual Itô representation theorem, it is known
that we can write F as the sum of a constant and an Itô integral. The Malliavin
calculus gives an explicit expression for the integrand, and this result is known as
the Clark-Ocone formula, see [Nua95, Prop. 1.3.5, p. 42] or [OK91].

Proposition A.3.1. Let F ∈ D1,2. Then we can write

F = EQ(F ) +

∫ T

0

EQ(DtF |FY
t ) dYt.

In the particular case that F = f(ξt(x)), where ξt(x) is the stochastic flow gen-
erated by a stochastic differential equation, this representation formula becomes
even more explicit by substituting the explicit expression for the Malliavin deriva-
tive of a stochastic flow. This is called the Clark-Haussmann-Ocone formula.

A.4. The Skorokhod integral: Definition and elementary properties

We now consider the Malliavin derivative as a closed operator from L2(Ω) to
L2(Ω× [0, T ]) with domain D1,2. Its Hilbert space adjoint δ = D

∗ is well defined in
the usual sense as a closed operator from L2(Ω× [0, T ]) to L2(Ω), and we denote its
domain by Dom δ. The operator δ is called the Skorokhod integral, and coincides
with the Itô integral on the subspace L2

a(Ω × [0, T ]) ⊂ L2(Ω × [0, T ]) of adapted
square integrable processes [Nua95, Prop. 1.3.4, p. 41].

Lemma A.4.1. L2
a(Ω× [0, T ]) ⊂ Dom δ, and δ|L2

a
coincides with the Itô integral

δ(u) =

∫ T

0

ut dYt, ∀u ∈ L2
a(Ω× [0, T ]).

The Skorokhod integral is thus an extension of the Itô integral to a class of
possibly anticipative integrands. To emphasize this point we will use the same
notation for Skorokhod integrals as for Itô integrals, i.e., we will write

δ(uI[s,t]) =

∫ t

s

ur dYr, uI[s,t] ∈ Dom δ.

The Skorokhod integral has the following properties. First, its expectation vanishes
EQδ(u) = 0 if u ∈ Dom δ. Second, by its definition as the adjoint of D we have

(A.1) EQ(Fδ(u)) = EQ

[

∫ T

0

(DtF )ut dt

]

if u ∈ Dom δ, F ∈ D1,2. We will also use the following result, the proof of which
proceeds in the same way as its one-dimensional counterpart [Nua95, p. 40].

Lemma A.4.2. If u is an n-vector of processes in Dom δ and F is an m × n
matrix of random variables in D1,2 such that EQ

∫ T

0
‖Fut‖2 dt <∞, then

∫ T

0

Fut dYt = F

∫ T

0

ut dYt −
∫ T

0

(DtF )ut dt

in the sense that Fu ∈ Dom δ iff the right-hand side of this expression is in L2(Ω).
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A.5. Anticipative stochastic calculus

As it is difficult to obtain general statements for integrands in Dom δ, it is
useful to single out restricted classes of integrands that are easier to deal with. To
this end, define the space L1,2 = L2([0, T ]; D1,2), i.e., the space of processes u such
that ut ∈ D1,2 and such that the norm

‖u‖1,2 =
[

‖u‖2L2(Ω×[0,T ]) + ‖Du‖2L2(Ω×[0,T ]2)

]1/2

is finite. Similarly, we define Lk,p = Lp([0, T ]; Dk,p) for k ≥ 1, p ≥ 2. Then
Lk,p ⊂ L1,2 ⊂ Dom δ [Nua95, p. 38]. Moreover, the Skorokhod integral satisfies

the local property on L1,2, so that the domains Lk,p can be localized to L
k,p
loc in the

same way as we localized Dk,p to D
k,p
loc [Nua95, pp. 43–45].

We are now in the position to state the Itô change of variables formula for
Skorokhod integral processes. Various versions of the formula can be found in
[NP88, OP89, Nua95]. The extension to processes that a.s. take values in some
domain is straightforward through localization.

Proposition A.5.1. Consider an m-dimensional process of the form

xt = x0 +

∫ t

0

vs ds+

∫ t

0

us dYs,

where we assume that xt has a continuous version and x0 ∈ (D1,4
loc)

m, v ∈ (L1,4
loc)

m,

and u ∈ (L2,4
loc)

m. Let ϕ : Rm → R be a C2 function. Then

ϕ(xt) = ϕ(x0) +

∫ t

0

Dϕ(xs)vs ds+

∫ t

0

Dϕ(xs)us dYs +
1

2

∫ t

0

(D2ϕ(xs)∇sxs, us) ds,

where we write ∇sxs = limε↘0 Ds(xs+ε + xs−ε), Dϕ(xs)us =
∑

i(∂ϕ/∂x
i)(xs)u

i
s,

(D2ϕ(xs)∇sxs, us) =
∑

ij(∂
2ϕ/∂xi∂xj)(xs)u

i
s∇sx

j
s. The result still holds if xs

a.s. takes values in an open domain V ⊂ Rm ∀s ∈ [0, t] and ϕ is C2(V ).



APPENDIX B

Elements of Quantum Probability

The goal of this appendix is to provide a brief introduction to the concepts from
quantum probability that are needed in chapter 5: quantum probability spaces and
the spectral theorem, Fock space quantum noises and the Hudson-Parthasarathy
quantum stochastic calculus. The focus here is on recalling the necessary techni-
cal machinery. Introductions to quantum probability can be found in the papers
[BVJ06b, BVJ06a], or in the lecture notes by H. Maassen [Maa03]. An excel-
lent introduction to quantum stochastic calculus appears in the lecture notes by
R. L. Hudson [Hud03], and extensive developments appear in the books by K.R.
Parthasarathy [Par92], P.-A. Meyer [Mey93], P. Biane [Bia95], and A. M. Cheb-
otarev [Che00]. The necessary background on functional analysis can be found in
the classic textbook by M. Reed and B. Simon [RS72] or in J. B. Conway [Con85],
and an extensive study of operator algebras appears in the textbooks of R. V. Kadi-
son and J.R. Ringrose [KR97a, KR97b], O. Bratteli and D. W. Robinson [BR87],
S. Sakai [Sak98], G. K. Pedersen [Ped79], or M. Takesaki [Tak02].

B.1. Quantum probability

B.1.1. Quantum probability spaces. In the setting of elementary quantum
mechanics, the basic constructions are usually introduced as follows. We begin with
a Hilbert space H. A bounded, self-adjoint operator on H is called an observable,
and plays the role of a bounded, real-valued random variable (we will deal with
unbounded observables later on). A unit trace nonnegative operator ρ (the density
operator) is used to represent the state of the system, and plays the role of a
probability density. In particular, Tr[ρX ] is the expectation of the observable X ,
and Tr[ρIA(X)] is the probability of the event X ∈ A (A is a Borel set on R).

In order to engage in probability theory, we need a little more substance. We
will need the counterparts of σ-algebras and filtrations in the classical theory, and
we will need machinery to transform between the operator picture of observables
and a more traditional probabilistic description of random variables on a certain
measure space. In the next few sections we will introduce the necessary concepts.

Let us first introduce some important notions.

Definition B.1.1. A ∗-algebra is a set A of operators that contains the identity
(I ∈ A ), is closed under linear combinations (X,Y ∈ A , α, β ∈ C ⇒ αX + βY ∈
A ), multiplication (X,Y ∈ A ⇒ XY ∈ A ), and involution (X ∈ A ⇒ X∗ ∈ A ).

Definition B.1.2. Let H be a complex Hilbert space. We denote by B(H) the
∗-algebra of all bounded linear operators on H.

129
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Definition B.1.3. A ∗-subalgebra A of B(H) is said to be monotone if for
any upper bounded increasing net {Aα} ⊂ A with nonnegative elements Aα ≥ 0,
we have supαAα ∈ A . A positive linear functional µ : A → C is said to be normal
if we have µ(supαAα) = supα µ(Aα) for any such net {Aα}.

Definition B.1.4. A Von Neumann algebra (on H) is a ∗-subalgebra A of
B(H) which is monotone. A normal state on A is a normal positive linear functional
P : A → C such that P(I) = 1.

Von Neumann algebras and states play a fundamental role in quantum prob-
ability. A Von Neumann algebra can be thought of as a σ-algebra, except that it
holds observables rather than only events. To get some intuition for this idea, recall
the monotone class theorem in classical real analysis [Pro04, page 7]:

Let M be a ∗-algebra of bounded functions on some set Ω, and
suppose that for any bounded increasing sequence {fn} ⊂ M ,
fn ≥ 0, we have limn→∞ fn ∈ M . Then M is precisely the set
of all bounded σ{M }-measurable functions.

Hence in the classical case, we see that there is a one-to-one correspondence between
σ-algebras and monotone ∗-algebras of bounded random variables. A Von Neumann
algebra is the direct noncommutative analog of this idea; the only difference is that
a Von Neumann algebra can contain elements that do not commute with each other.
In fact, we will see in the next section that if a Von Neumann algebra happens to
be commutative, then it is entirely equivalent to the algebra of bounded functions
on some measure space. This provides the key link between quantum and classical
probability theory and will be of central importance.

The state P plays the role of a probability measure; indeed, if some element
X ∈ A is self-adjoint, then it can be interpreted as an observable and P(X) is
its expectation value. Once again, the classical analogy is clear: any probability
measure P induces a positive linear map on the monotone ∗-algebra M through the
expectation map, and E(1) = 1. Vice versa, any positive linear map on M such that
E(1) = 1 can be used to define a finitely additive measure on σ{M } through P(A) =
E(IA), A ∈ σ{M }. In order to make sure that P is countably additive (and hence a
true probability measure), we have to impose an additional requirement: necessary
and sufficient is the requirement that E satisfies the monotone convergence theorem.
But this corresponds precisely to a normal state on a Von Neumann algebra.

The following definition should not come as a great surprise.

Definition B.1.5. A quantum probability space is a pair (A ,P), where A is
a Von Neumann algebra (on a Hilbert space H) and P is a normal state on A .

Most traditional quantum mechanics takes place on the space (B(H),Tr[ρ · ]).
An important reason to introduce the more abstract notion of a quantum probabil-
ity space is that we are then in the position to keep track of information in terms
of subalgebras, and in particular through filtrations of Von Neumann algebras.

Remark B.1.6. The Hilbert space H is usually dropped in the notation when
we are dealing with algebras. An underlying Hilbert space is always implied, and
such a space is generally fixed at the outset.

Let S ⊂B(H) be any set of operators. Then we denote by vN(S ) the smallest
Von Neumann algebra that contains S , which is called the Von Neumann algebra
generated by S . There is a well-known algebraic characterization of this notion,
see, e.g., [KR97a, Thm. 5.3.1]: a fundamental theorem of Von Neumann states
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that vN(S ) = (S ∪S ∗)′′. Here we have written S ∗ = {X ∈ B(H) : X∗ ∈ S },
and S ′ = {X ∈ B(H) : XS = SX ∀S ∈ S }. S ′ is called the commutant of S .

The reader is invited to skip the remainder of this section, moving on to section
B.1.2 where we introduce the spectral theorem. The goal of the following discussion
is to justify the definition of a Von Neumann algebra used above. The reader who is
familiar with operator algebras will not have failed to notice that my definition is a
little unusual; indeed, I have not been able to find it in the literature. Nonetheless,
it is quite easily established to be equivalent to the usual approach, where a Von
Neumann algebra is defined to be a ∗-algebra that is closed in the strong operator
topology (easily, that is, once we use a highly nontrivial result of R. V. Kadison). I
find the definition above much more appealing from a probabilistic point of view,
particularly considering the deep connection with the monotone class theorem.

Let us show that our definition reduces to the usual one. We need the following.

Lemma B.1.7 (R. V. Kadison [Kad56]). Let A be a ∗-subalgebra of B(H) that
is closed under the uniform topology, and assume moreover that any upper bounded
increasing net {Aα} of positive elements in A converges strongly to an element
A ∈ A . Then A is closed in the strong operator topology.

The following result can be found, e.g., in [Mey93, page 247].

Lemma B.1.8. Let {Aα} be an upper bounded increasing net of positive elements
in B(H). Then the strong limit of Aα and the least upper bound supαAα coincide.

The following argument follows closely the equivalent classical result, which can
be used as a step in the proof of the monotone class theorem (see, e.g., [Fit05]).

Lemma B.1.9. Let A ⊂ B(H) be a monotone ∗-algebra in the sense defined
above. Then A is closed in the uniform topology.

Proof. As the uniform topology on B(H) is induced by the norm ‖ · ‖ (i.e., it
is a metric topology), it is sufficient to consider sequences rather than nets—in par-
ticular, A is closed iff every uniformly convergent sequence {Xn} ⊂ A has its limit
in A . Note that it suffices to prove this claim for sequences of self-adjoint opera-
tors Yn. After all, suppose there exists a uniformly convergent sequence {Xn} ⊂ A

whose limit point X 6∈ A . Setting Yn = Xn +X∗
n ∈ A , we see that

‖X +X∗ − Yn‖ ≤ ‖X −Xn‖+ ‖X∗ −X∗
n‖ = 2‖X −Xn‖ → 0,

so Yn → X +X∗. Similarly, Zn = i(Xn −X∗
n) ∈ A converges to i(X −X∗). But

A is a ∗-algebra, so X 6∈ A implies that either X +X∗ or i(X −X∗) cannot lie in
A . But then either {Yn} or {Zn} is a uniformly convergent sequence of self-adjoint
elements of A whose limit is not in A . Hence if we require that this can not be
the case, this guarantees that A is closed in the uniform topology.

Let {Yn} ⊂ A be a uniformly convergent sequence of self-adjoint operators, and
denote its limit point by Y . We will prove that necessarily Y ∈ A by constructing
a nondecreasing sequence {Y ′

n} ⊂ A of nonnegative operators that converges to
Y + cI , where c ∈ R is a constant. The monotonicity assumption then guarantees
that Y ∈ A , and the statement of the Lemma follows. To construct Y ′

n, let us
assume that ‖Yn+1 − Yn‖ ≤ 2−n for every n. If this is not the case, we can always
choose a subsequence of {Yn} that does have this property and proceed with this
subsequence. Now define Y ′

n = Yn + (1− 2−n+1 + maxk ‖Yk‖)I . Evidently Y ′
n ∈ A

and Y ′
n ≥ 0. Moreover, we find that for any vector v ∈ H

〈v, (Y ′
n+1−Y ′

n)v〉 = 〈v, (Yn+1−Yn)v〉+ 2−n‖v‖2 ≥ (−‖Yn+1−Yn‖+ 2−n)‖v‖2 ≥ 0,
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so Y ′
n+1 ≥ Y ′

n. Finally, Y ′
n → Y + (1 + maxk ‖Yk‖)I , and the result follows. �

We can now conclude what we are trying to show.

Lemma B.1.10. Let A ⊂B(H) be a ∗-algebra. The following are equivalent:

(1) A is closed under the strong operator topology;
(2) A is monotone.

Proof. Both directions follow immediately from the preceding Lemmas. �

Finally, note that the definition which we have used for a normal state is also
equivalent to the usual one: this is well known, see [Mey93, pp. 247–248].

Remark B.1.11. If the underlying Hilbert space H is separable, then the defi-
nitions of a monotone ∗-algebra and of a normal state simplify significantly: in this
case, it is sufficient to consider monotone increasing sequences rather than nets.
See [Ped79, sec. 4.5.5] or [Thi03] for further details.

B.1.2. The spectral theorem. Classical probability spaces can be intro-
duced as a special case of quantum probability spaces. To see this, consider the
probability space (Ω,F ,P). The Banach space A = L∞(Ω,F ,P) is clearly a mono-
tone ∗-algebra. To interpret it as a Von Neumann algebra, however, we need to
introduce an underlying Hilbert space on which these functions act as operators. To
this end, let us set H = L2(Ω,F ,P), and we define the action of A on H by point-
wise multiplication: i.e., we define (Xψ)(ω) = X(ω)ψ(ω) for all X ∈ A , ψ ∈ H.
Then A is a Von Neumann algebra on the Hilbert space H. Similarly, P defines
a normal state on A through the expectation map E, and we have constructed
a quantum probability space (A ,E) which is completely equivalent to a classical
probability model (up to null sets).

Remark B.1.12. We will always denote by L∞ the space of bounded measur-
able complex functions (up to a.s. equivalence), and similarly we will take L2 to
be a complex Hilbert space. This means that in the classical case we will trivially
deal with complex random variables. Note that real random variables correspond
precisely to self-adjoint elements in the algebra (i.e., these are the observables).

To get some intuition, consider the case where Ω is an n-point set, n < ∞.
Then H ' Cn, and A above is represented as the set of diagonal n × n matrices.
The defining characteristic of A is that it is commutative; indeed, the fact that the
corresponding matrices are diagonal is only visible in one particular choice of basis
(the canonical basis of Cn). It is an elementary fact of linear algebra that for any
commutative Von Neumann algebra of n×n matrices, we can choose a basis in Cn

such that all these matrices are simultaneously diagonalized in that basis. Hence
any commutative Von Neumann algebra looks like a classical probability space,
provided that we look at it in the appropriate basis. Our goal is to extend this idea
to the infinite-dimensional case.

We state the following Theorem for separable Hilbert spaces; we will always
use only separable spaces, so this is not a restriction. The spectral theory can also
be developed for nonseparable spaces, see, e.g., [Sak98, Prop. 1.18.1].

Theorem B.1.13. Let H be separable, and let A be a commutative Von Neu-
mann algebra on H. Then there exists a finite measure space (Ω,G, µ), a uni-
tary operator U : H → L2(Ω,G, µ), and a σ-algebra F ⊂ G, such that UA U ∗ =
L∞(Ω,F , µ), where the latter acts on L2(Ω,G, µ) by pointwise multiplication.
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Outline of proof. We will not prove this deep result here; however, let us
give an indication how it can be obtained from standard functional analytic results.

It is possible to establish the following: if H is separable and A is commutative,
then there exists a single self-adjoint element A ∈ A such that A = vN(A). This
was already established by J. Von Neumann [Von29, Thm. 10], see also [Tak02,
Thm. III.1.21]. By a well-known form of the spectral theorem of functional anal-
ysis [RS72, page 227], there exists a finite measure space (Ω,G, µ), a bounded
measurable function a on Ω, and a unitary map U : H → L2(Ω,G, µ), such that
(UAU∗ψ)(ω) = a(ω)ψ(ω) for any ψ ∈ L2(Ω,G, µ).

Now define C = {f(A) : f Borel}, and note that C is clearly a Von Neumann
algebra and C contains A. Hence A ⊂ C . Furthermore, if we introduce F = σ{a},
then we can define a bijection ι : C → L∞(Ω,F , µ) by ι : X 7→ UXU∗; moreover ι is
a ∗-isomorphism (i.e., it preserves the ∗-algebraic structure) and is order preserving.
We now argue that C = A . If this were not the case, then A would be a Von
Neumann algebra that is strictly contained in C , so that M = ι(A ) would be a
monotone class that is strictly contained in L∞(Ω,F , µ). But a ∈M so σ{M } = F ,
and the monotone class theorem gives the desired contradiction. �

The objects defined in this Theorem are not entirely obvious: the σ-algebra G
and the measure µ will not play a physical role at the end of the day (they carry
no probabilistic content). The reason we need these objects is analytic in nature.
It is necessary to use G rather than F so that the Hilbert space L2(Ω,G, µ) will be
“large enough” to construct the unitary U : H→ L2(Ω,G, µ).

The measure µ also has a different task. Recall that L∞ only defines functions
up to a.s. equivalence. The role of µ is to define which elements of G are null sets.
Note that our state P (which did not play a role in the above Theorem) could well
be defined in such a way that P(P ) = 0 for some projection P ∈ A ; this would
mean that ι(P ) is an indicator function of a set of physical probability zero. If
we have used the measure induced by P to define the L∞ space, then the function
ι(P ) would belong to the same equivalence class of L∞ as the zero function. This
would prohibit ι from being an isomorphism. This cannot happen in the current
setting (ι(P ) must have finite µ-expectation for any projector P ∈ A ), but nothing
prohibits us from defining a new measure P � µ on (Ω,F) which coincides with
the physical state P. This is precisely what we will do.

Corollary B.1.14. Let (A ,P) be a commutative quantum probability space
(on a separable Hilbert space H), i.e., A is a commutative Von Neumann algebra.
Then there exists a measure space (Ω,F , µ), a probability measure P � µ, and a
∗-isomorphism ι : A → L∞(Ω,F , µ), such that P(X) = EP(ι(X)) for all X ∈ A .

The proof of this statement, which we will generally refer to as the spectral
theorem, is evident from the discussions above. This is a key theorem in quantum
probability, which establishes the equivalence between commutative quantum prob-
ability spaces and classical probability spaces. The spectral theorem is also central
to the interpretation of quantum mechanics. Typically, quantum mechanical mod-
els will admit many observables that do not commute (the standard example being
the position and momentum of a free particle). In any single realization of an ex-
periment we can only choose to measure a commuting set S of observables; these
generate a commutative Von Neumann algebra vN(S ), and the spectral theorem
furnishes a full-blown probabilistic interpretation.
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In a different realization we may choose to measure a different set of commuting
observables (by using a different measurement apparatus), and we have to reapply
the spectral theorem in order to make predictions within the new setup. We can
never measure two noncommuting observables in the same realization, so that there
is never any need to represent them simultaneously as random variables on some
classical probability space (which the spectral theorem can not do). Noncommuting
observables are called incompatible, and their joint statistics are undefined.

Remark B.1.15. When using the spectral theorem in practice, there can be
a lot of switching back and forth between commutative subalgebras of some larger
noncommutative quantum probability space and the corresponding classical proba-
bility models. We will often be a little sloppy in applying the theorem, and simply
use the magic symbol ι without being careful to specify which commutative algebra
the spectral theorem is being applied to. In most cases this is immediately clear
from the context; in particular, if we apply ι to several commuting observables or
sets of observables, and then proceed to manipulate the corresponding classical ob-
jects simultaneously, it is understood that the spectral theorem is being applied to
a larger commutative algebra that contains all the relevant objects. The significant
improvement in readability justifies this little flexibility of notation.

B.1.3. Unbounded observables. Up to this point we have only worked with
bounded operators. It would be extremely nice if we could keep it this way—
unbounded operators are a pain in the neck, and bring with them a host of un-
pleasant domain problems. The extension to unbounded operators is necessary,
unfortunately, as we will routinely encounter unbounded observables in physical
models. Let us thus briefly introduce some of the necessary concepts.

Recall that an unbounded operator X can not be defined on the entire Hilbert
space; at best, it can be defined on some dense linear set D(X) ⊂ H, i.e., X :
D(X) → H. D(X) is called the domain of X . When we define an unbounded
operator we should specify its domain; the same operator may have very different
properties if its domain is changed. An operator X is called closed if the set
{(ψ,Xψ) : ψ ∈ D(X)} ⊂ H × H is closed (in the norm topology). X is called
closable if it can be made closed by enlarging its domain, and the closure of a
closable operator is obtained by choosing the smallest such extension of its domain.
The adjoint X∗ of a densely defined operator X is defined by 〈Xψ, φ〉 = 〈ψ,X∗φ〉
∀ψ ∈ D(X) for those φ ∈ H for which this definition makes sense, and the set of
all such φ is taken to be the domain D(X∗). X is called self-adjoint if X = X∗

(by which we mean D(X) = D(X∗), and Xψ = X∗ψ for all ψ ∈ D(X)). X is
called essentially self-adjoint if it is closable and its closure is self-adjoint. All these
definitions are standard, see [RS72, Ch. VIII] for this and much more.

The notion of self-adjointness is extremely important: it is only to self-adjoint
operators, in the very strict sense described above, that the spectral theorem can
be applied. A particular representation of the spectral theorem will be useful to
us. This states that for any self-adjoint operator X , there exists a spectral measure
EX on R (i.e., for any Borel set A, EX(A) is a projection operator; EX (∅) = 0,
EX(R) = I ; for a countable sequence of disjoint sets An with union A, EX(A) =

s-limk→∞

∑k
n=1EX (Ak); and EX (A1)EX(A2) = EX(A1 ∩A2)), such that

X =

∫

R

λEX (dλ), meaning that 〈ψ,Xψ〉 =
∫

R

λ 〈ψ,EX (dλ)ψ〉 ∀ψ ∈ D(X).
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The latter integral is meant in the Lebesgue sense, and D(X) actually coincides
with the set of ψ ∈ H for which the integral of λ2 with respect to 〈ψ,EX(·)ψ〉
is finite. The spectral measure EX has an important probabilistic interpretation:
ι(EX (A)) = {ι(X) ∈ A}, i.e., the projector EX (A) corresponds to the event X ∈ A,
and P(EX(A)) is the probability that measurement of X will return a value in A.
Note that we should extend the state P to self-adjoint operators as follows:

P(X) =

∫

R

λP(EX (dλ)) in the Lebesgue sense;

after all, P(EX (·)) is evidently a probability measure on R (the law of X).
Let us now consider unbounded observables in the setting of quantum probabil-

ity spaces. Our Von Neumann algebra A only holds bounded elements; we would
like to introduce a notion that parallels the idea of a random variable being measur-
able with respect to a σ-algebra. The following definition is completely natural in
this context, and indeed reduces to the notion of measurability if A = L∞(Ω,F ,P).

Definition B.1.16. A (not necessarily bounded) self-adjoint operatorX is said
to be affiliated to a Von Neumann algebra A , denoted by X ηA , if its spectral
measure EX satisfies EX(A) ∈ A for any Borel set A of R.

That is, X is affiliated to A if the corresponding events are in A . We mention
that this probabilistic definition is equivalent to a more algebraic definition that is
usually preferred by operator algebraists; see [Mey93, page 245].

We can now define the Von Neumann algebra generated by a self-adjoint ele-
ment X : we set vN(X) = vN{EX(A) : A Borel set}. This definition coincides with
the usual definition for bounded X , and it is trivially the case that X η vN(X).

Suppose that X η C , where C is a commutative Von Neumann algebra. Then
we can apply the spectral theorem to C to get a ∗-isomorphism ι with some classical
probability space. We would like to extend ι also to affiliated observables; that is, we
would like to define ι(X) as an unbounded random variable on the aforementioned
probability space. This is not difficult to do, as it can be shown that the unitary
transformation U of Theorem B.1.3 also diagonalizes affiliated X . Indeed, this
follows from standard functional analysis arguments [RS72, Ch. VIII], once we
note that X η C implies that X = f(C), where f is an unbounded function and
C = vN(C) (the existence of such a C was discussed in the proof of Theorem B.1.3).

The real unpleasantness of unbounded operators emerges when we try to sum
or multiply them. Consider two self-adjoint operators X and Y . It is not at all
clear that X + Y is self-adjoint or even well defined, let alone that XY or Y X
are well defined. The domains of these operators may not even be dense; at the
very least, it is unlikely that these operators would still be closed. In fact, it is
very difficult in general to manipulate unbounded operators, and intricate domain
problems crop up in unexpected places. This is perhaps understandable when we
try to manipulate noncommuting operators—when X and Y do not commute (i.e.,
their spectral measures do not commute), the sum or products of X and Y do not
necessarily have a useful physical interpretation. On the other hand, when X and
Y commute we can represent them simultaneously as classical random variables
ι(X), ι(Y ) on some probability space, where we can meaningfully add and multiply
at will. Hence, somehow, the domain problems should “work out” in this case.

Things do indeed work out, but we have to take some care; see [KR97a, pp.
351–356]. Let A be a commutative Von Neumann algebra, and let X and Y be
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self-adjoint operators affiliated to A . It turns out that X + Y is neither closed
nor self-adjoint, but it is essentially self-adjoint. In particular, if we introduce the
operation +̂ to mean X +̂Y = X + Y (X is the closure of X), then X +̂Y is self-
adjoint for any pair of self-adjoint operators X,Y ηA . Similarly XY is essentially
self-adjoint, and if we define X ·̂Y = XY , then X ·̂Y defines a self-adjoint operator.
Let us summarize these statements as follows.

Lemma B.1.17. Let A be a commutative Von Neumann algebra. Then the
set S (A ) of self-adjoint operators X ηA forms a real algebra under the addition
+̂ and the multiplication ·̂. Moreover, the ∗-isomorphism ι : A → L∞(Ω,F , µ),
obtained by applying the spectral theorem to A , extends to an isomorphism between
S (A ) and the set of µ-a.s. finite F-measurable random variables on Ω.

This result can be extended to a slightly larger class of unbounded operators.
A closed, but not necessarily self-adjoint, operatorX is said to be normal if X +̂X∗

and i(X∗ −̂X) are self-adjoint and commute with each other. A normal operator
X is said to be affiliated to A if X +̂X∗ and i(X∗ −̂X) are affiliated to A , and
the set of all normal operators affiliated to a commutative algebra A is denoted by
N (A ). The previous Lemma now extends as follows: if A is commutative, then
ι : A → L∞(Ω,F , µ) extends to a ∗-isomorphism between N (A ) and the set of µ-
a.s. finite F-measurable complex random variables on Ω (up to µ-a.s. equivalence).

To recap: we can add and multiply any bounded operators at will, and we can
essentially add and multiply commuting unbounded operators at will. In any other
case, utmost care should be exercised.

B.2. Quantum noise

B.2.1. Fock space and the fundamental processes. In the following sec-
tions we are going to introduce a quantum probability model that is widely used in
physics, in particular in quantum optics, for modelling the interaction of quantum
systems (e.g., atoms, semiconductor quantum dots, optical cavities) with quantum
fields (e.g., the electromagnetic field). The model is Markov in a certain sense
(which we will not emphasize), and admits a reasonable stochastic calculus which
is comparable to the Itô calculus (though much less powerful, as we will see). We
begin in this section by introducing the field part of the picture, and the corre-
sponding quantum noises.

A basic building block in the theory is the (symmetric) Fock space over H1

Γ(H1) = C⊕
∞
⊕

n=1

H1
�n.

Here H1 is called the single-particle Hilbert space, and � denotes the symmetrized
tensor product. Note that Γ(H1) is a separable Hilbert space if H1 is separable; we
will always use only separable single-particle spaces.

The operation Γ(·) behaves much like an exponential map for Hilbert spaces;
in particular, there is the following natural isomorphism:1

Γ(H1 ⊕ H
′
1) ' Γ(H1)⊗ Γ(H′

1).

1 This (unitary) isomorphism is constructed in such a way that the exponential vectors
defined below have the same property; see, e.g., [Par92, Prop. 19.6] for details.
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In our application of the theory we will mainly use the spaces Γ[s,t] = Γ(L2([s, t])),
where we write Γt] = Γ[0,t], Γ[t = Γ[t,∞), and Γ = Γ[0. Then we have

Γ ' Γs] ⊗ Γ[s,t] ⊗ Γ[t.

This property is called the continuous tensor product structure of the Fock space.
We note that there is a natural isomorphism between Γ and L2(W,µ), where (W,µ)
is the canonical Wiener space, through Wiener chaos expansion. There is also a
natural isomorphism between Γ and L2(P, µ), where (P, µ) is the probability space
of a canonical Poisson process. We will not use these isomorphisms, but we will
shortly see that Wiener and Poisson processes emerge naturally within this model.

A particularly useful set of vectors in Γ(H1) is the set of exponential vectors.
For any f ∈ H1, we define the exponential vector e(f) ∈ Γ(H1) by

e(f) = 1⊕
∞
⊕

n=1

f⊗n

√
n!
.

Evidently, we have the following relation:

〈e(g), e(f)〉Γ(H1) = exp(〈g, f〉H1).

(In the future, we will refrain from labeling the inner product when no confusion can
occur.) Denote by E(H1) = span{e(f) : f ∈ H1} the linear span of all exponential
vectors (and set E = E(L2(R+)), E[s,t] = E(L2([s, t])), etc.) Then E(H1) forms a
dense linear manifold in Γ(H1), and is called the exponential domain.

Exponential vectors have an important property: they respect the continuous
tensor product structure of the Fock space. In particular,

e(f ⊕ g) = e(f)⊗ e(g) in Γ(H1 ⊕ H
′
1) ' Γ(H1)⊗ Γ(H′

1).

For f ∈ L2(R+), we will denote its restriction to L2([s, t]) by f[s,t], and fs], f[t are
defined similarly. Then e(f) ∈ Γ satisfies e(f) = e(fs])⊗ e(f[s,t])⊗ e(f[t).

We are now going to define some observables. To do this, we need to have a way
of generating self-adjoint operators. This is usually not a trivial task, considering
the domain problems involved. The technique which we will use is the definition
of self-adjoint operators through Stone’s theorem [RS72, Thm. VIII.8]: if Ut is a
strongly continuous one-parameter unitary group on a Hilbert space H, then there
is a unique self-adjoint operator A on H, called the infinitesimal generator of Ut,
such that Ut = exp(itA). Unitary operators are bounded and are thus much easier
to deal with; subsequently Stone’s theorem takes care of the immediate domain
issues in the definition of the self-adjoint operator A.

First, consider the “translation group” on H1. This group can be lifted to the
level of Γ(H1) by introducing the Weyl operator

W (g) e(f) = exp

(

−〈g, f〉 − 1

2
‖g‖2

)

e(f + g), f, g ∈ H1.

The prefactor ensures that W (g) is an isometry. We have only specified the action
of W (g) on the exponential domain E(H1), but as W (g) is an isometry it can
be uniquely extended to a unitary operator on the entire Fock space Γ(H1). The
notation W (g) denotes this unitary operator. Note that we have the Weyl relation

W (f)W (g) = exp(−i Im〈f, g〉)W (f + g), f, g ∈ H1.
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Hence evidently W (tf), t ∈ R forms a one-parameter unitary group. Strong conti-
nuity follows from the fact that 〈ψ,W (tf)φ〉 is a measurable function of t for any
ψ, φ ∈ Γ(H1) (this is easily verified for ψ, φ ∈ E(H1), and follows for general ψ, φ by
taking limits), together with [RS72, Thm. VIII.9]. Hence by Stone’s theorem, there
exists for any f ∈ H1 a self-adjoint operator B(f) such that W (tf) = exp(itB(f)).
Note that clearly B(f) and B(g) commute (i.e., their spectral measures commute)
if and only if 〈f, g〉 is real, as then W (f) and W (g) commute.

A different way to generate a one-parameter unitary group on Γ(H1) is by lifting
a one-parameter unitary group on H1. Define

Γ(U) e(f) = e(Uf), f ∈ H1, U ∈ B(H1).

Γ(U) is called the second quantization of U . Now let Ut be a one-parameter strongly
continuous unitary group on H1 with infinitesimal generator A; then Γ(Ut) defines
a one-parameter strongly continuous unitary group on Γ(H1) (once its domain is
extended from E(H1) to all of Γ(H1)). Hence by Stone’s theorem, there exists a
self-adjoint operator Λ(A) such that Γ(Ut) = exp(itΛ(A)).

Having generated a bunch of abstract nonsense, let us turn to the probabilistic
side of things. Let us begin by introducing some notation.

Definition B.2.1. The field quantum probability space (W , ϕ) is defined by
W = B(Γ) and ϕ(X) = 〈Φ, XΦ〉, where Φ = e(0) is called the vacuum vector and
ϕ is called the vacuum state.

Definition B.2.2. We denote by W[s,t] = B(Γ[s,t]), Wt] = W[0,t], and W[t =
W[t,∞), so that W = Ws]⊗W[s,t]⊗W[t. A stochastic process is a family of self-adjoint
operators {Xt}t∈R+ . A stochastic process is called adapted if Xt ηWt for every t,
where the filtration Wt is defined as Wt = vN{X ⊗ I : X ∈ Wt]} ⊂ W .

Definition B.2.3. A classical or commutative stochastic process is an adapted
process {Xt}t∈R+ such that vN{Xt : t ∈ R+} is a commutative Von Neumann
algebra. Such a process generates a filtration Xt = vN{Xs : 0 ≤ s ≤ t} ⊂ Wt.

A commutative process Xt becomes a stochastic process in the classical sense
xt = ι(Xt) when the spectral theorem is applied to the Von Neumann algebra gen-
erated by {Xt}t∈R+ . Applying the spectral theorem to the filtration of subalgebras,
ι(Xt) = L∞(Ft), gives rise to the classical filtration Ft generated by xt.

Let us now investigate some interesting stochastic processes in (W , ϕ).

Definition B.2.4. Define the following commutative stochastic processes: the
quadratures Qt = B(iI[0,t]), Pt = B(−I[0,t]), and the gauge process Λt = Λ(M[0,t]),

where M[0,t] : L2(R+) → L2(R+) is defined by M[0,t]f = I[0,t]f . Define also the

annihilation process At = (Qt + iPt)/2 and the creation process A†
t = (Qt− iPt)/2.

The operators At, A
†
t and Λt (or Qt, Pt and Λt) are called the fundamental noises.

The fact that Qt, Pt and Λt are adapted and commutative is easily verified.
Beware, however, that these processes do not commute with each other.

Remark B.2.5. At and A†
t are not self-adjoint; we use these chiefly for historical

reasons (quantum stochastic calculus is defined in terms of At and A†
t , rather than

Qt and Pt). It can be shown that At, A
†
t and Λt can all be restricted to an invariant

domain, which includes the exponential domain E as a subset, such that At + A†
t ,

i(A†
t −At) and Λt are essentially self-adjoint on that domain.

We can finally give a concrete probabilistic result.
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Lemma B.2.6. ι(Qt) and ι(Pt) both define a Wiener process in the vacuum
state ϕ (but not on the same probability space, as Qt and Pt do not commute).

Proof. Let us prove this for Qt; the proof for Pt is identical. It suffices to
prove that qt = ι(Qt) has independent increments, and that qt − qs is a Gaussian
random variable with mean zero and variance t−s, under the state P obtained from
ϕ through the spectral theorem. To this end, let us calculate the joint characteristic
function of two nonoverlapping increments qt − qs and qv − qu, u ≤ v ≤ s ≤ t:

ξ(α, β) = P(eiα(qt−qs)+iβ(qv−qu)) = 〈Φ,W (iαI[s,t] + iβI[u,v]) Φ〉

= exp

(

−1

2
‖αI[s,t] + βI[u,v]‖2

)

= exp

(

−1

2
α2(t− s)− 1

2
β2(v − u)

)

.

Hence qt−qs and qv−qu are independent (as the characteristic function factorizes),
qt − qs is Gaussian distributed with mean zero and variance t − s, and qv − qu is
Gaussian distributed with mean zero and variance v − u. �

Remark B.2.7. Technically a Wiener process should have continuous sample
paths. In the current context this does not make any sense: it easy to break
continuity of the sample paths by changing ι(Xt), for each t, only on a set of measure
zero. Such properties are discarded when we consider a classical stochastic process
as a map t → L0(Ω,F , µ) (where L0 is the set of a.s. finite random variables, up
to a.s. equivalence). Hence in the quantum setting, we should generally consider
stochastic processes up to modification. Of course, we are always free to choose
a continuous modification of these Wiener processes (by the Kolmogorov-Čentsov
theorem) after the spectral theorem has been applied.

The process ι(Λt) defines a rather boring process under the vacuum state: it
is a.s. zero (this follows immediately from Γ(U) Φ = Φ). This process is more

interesting in a coherent state ϕf (X) = e−‖f‖2 〈e(f), Xe(f)〉, where Λt can be
shown to be a Poisson process with time-dependent intensity |f(t)|2 by proceeding
in the same way as in the previous proof. In quantum optics, Qt and Pt can
be observed by using a homodyne detector to measure the vacuum (Qt and Pt

correspond to orthogonal quadratures of the field), while Λt can be observed using
a photon counter. In this thesis we are chiefly interested in the former type of
detection, though photodetection is easily treated using the same techniques.

B.2.2. Quantum stochastic calculus on the exponential domain. We
have seen that there are at least three interesting processes in our field probability
space—the Wiener processes Qt, Pt and the Poisson process Λt. It is now natural to
ask, following the classical case, whether we can build stochastic integrals based on
these processes, which would in turn allow us to develop a whole class of interesting
processes through stochastic differential equations. The motivation for this stems
from the fact that we would like to model physical systems that interact with
the field—i.e., we need to introduce Schrödinger equations which are driven by
the noises Qt, Pt and Λt. As these noises are singular, these quantum stochastic
Schrödinger equations must be defined as quantum stochastic differential equations
(QSDEs). In this section we will develop the corresponding integration theory,
chiefly following [Hud03, HP84]. Section B.2.3 is devoted to QSDEs.

The difficulty in defining quantum stochastic integrals stems from the unbound-

edness of the fundamental noises At, A
†
t and Λt (we switch to using At and A†

t for
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historical reasons). As we will see, it is not difficult to construct stochastic integrals
for simple processes, provided that they are adapted. However, we are faced at this
point with the problem of extending the integral to general adapted integrands
through a suitable limiting procedure. Taking limits of unbounded operators is a
touchy business—how can such a limit be meaningfully defined when the various
terms in the sequence may have different domains? Can we guarantee that the limit
operator is even well defined on a suitable domain, let alone that it is closable or
even self-adjoint? A general discussion of these questions appears, e.g., in [RS72,
sec. VIII.7]. We are going to be faced with even more unpleasant problems, as a
useful theory of stochastic integrals should provide a stochastic calculus that allows
us to manipulate such integrals. It is clear that any quantum stochastic calculus is
going to be riddled with domain problems.

To resolve these issues and develop a viable stochastic calculus, R. L. Hudson
and K. R. Parthasarathy [HP84] adopted a very simple policy: they simply fix
a nice domain of exponential vectors, and define all the operators involved (inte-
grands, integrators, integrals) only on this domain. This allows one to take strong
limits on this fixed domain; i.e., if {An} is a sequence of operators on a fixed domain
D, and A is an operator on the same domain, then we say that An → A strongly on
D if ‖(An − A)ψ‖ → 0 for all ψ ∈ D. The theory now becomes fairly transparent.
On the other hand, important information is lost in this process. For example,
suppose we would like to generate a commutative stochastic process as the solution
of a QSDE. Using the Hudson-Parthasarathy theory, we can at most obtain opera-
tors that are symmetric with respect to the domain D; it is almost always unclear,
however, whether or not such operators are actually essentially self-adjoint. Hence
we can hardly expect to be able to apply the spectral theorem directly to processes
obtained from the Hudson-Parthasarathy theory.

It would thus appear that the Hudson-Parthasarathy theory is not very useful;
what is the point in defining operators on a fixed domain, if this prohibits us from
interpreting them as observables? Things are not as bad as they seem, however. It
is very well possible to obtain processes from the Hudson-Parthasarathy theory that
are bounded. If an operator is bounded on the dense domain D, then it is uniquely
extended to a bounded operator on all of Γ. There are no domain problems for such
operators, and the Hudson-Parthasarathy theory is very successful in defining and
manipulating these processes. In particular, we are mainly interested in using the
Hudson-Parthasarathy theory to define quantum stochastic Schrödinger equations,
whose solutions are unitary and hence necessarily bounded. Hence the theory we
are about to present is extremely useful, but should be handled with care.

As we are generally interested in coupling a quantum system to the field, let
us introduce the full model now (previously we only considered the field).

Definition B.2.8. Let h denote the initial system Hilbert space, set B = B(h),
and let ρ be a state on B (the initial state). The standard quantum probability
space for use in quantum stochastic analysis is defined as (A ,P), where A = B⊗W

is a Von Neumann algebra on H = h⊗ Γ, and P = ρ⊗ ϕ.

The terminology “initial system” will be clarified in section B.2.3.
Let us now introduce a suitable domain of exponential vectors.

Definition B.2.9. The restricted exponential domain is defined by D = {e(f) :
f ∈ L2(R+) ∩ L∞,loc(R+)} ⊂ E, i.e., D is the set of e(f) with locally bounded f .
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D is a dense domain in Γ, and we will define the Hudson-Parthasarathy theory
exclusively on the dense domain h⊗D (⊗ denotes the algebraic tensor product).
The reason for using D rather than E is the difficulty in defining integrals with
respect to Λt for arbitrary ψ ∈ E; a heuristic explanation can be sought in the fact
that under the state ϕf with f 6∈ L∞,loc(R+), the intensity of the Poisson process
Λt blows up at a finite time. This could make it difficult to control the integrals.

Definition B.2.10. An operator X on h⊗Γ is called allowable if D(X) = h⊗D

and D(X∗) ⊃ D(X). For an allowable operator X , the operator X† is defined as
the restriction of X∗ to h⊗D.

Note that, as mentioned before, X = X† does not imply that X is essentially
self-adjoint. However, allowable operators admit at least a little regularity.

Lemma B.2.11. Any allowable X is closable, X† is allowable, and X†† = X.

Proof. The fact that X is closable follows from the fact that X∗ has a dense
domain, and moreover this means that (X∗)∗ = X (see [RS72, Thm. VIII.1]). But
X† ⊂ X∗ (X∗ is an extension of X†), so (X†)∗ ⊃ (X∗)∗ ⊃ X . �

Definition B.2.12. An admissible process is a family {Xt}t∈R+ of allowable
operators. An admissible process is called adapted if there exists an operatorXt] on

h⊗Dt] such that Xt ψ⊗e(f) = (Xt] ψ⊗e(ft]))⊗e(f[t) for any ψ ∈ h, f ∈ L2∩L∞,loc.

Note that the fundamental noises At, A
†
t , and Λt are admissible adapted pro-

cesses once we restrict their domains to h⊗D, and that it is indeed the case that

A†
t = (At)

†. We note also that if Mt is one of the fundamental noises, then the in-
crements Mt−Ms are adapted to the future, i.e., there exists an operator ∆M[s on
D[s such that (Mt−Ms)ψ⊗ e(f) = ψ⊗ e(fs])⊗∆M[s e(f[s). This important prop-
erty makes it easy to define stochastic integrals with respect to simple integrands.
In particular, note that if Xs is admissible and adapted, then Xs (Mt −Ms) is an
allowable operator—there are no domain problems in the operator multiplication,
as Xs (Mt −Ms) = Xs] ⊗∆M[s is just a tensor product in disguise.

Definition B.2.13. An admissible process Xt is called simple if there exists
an increasing sequence tn ↗∞ with t0 = 0, such that Xt =

∑∞
n=0Xtn

I[tn,tn+1)(t).
If Xt is an adapted simple process and Mt is a fundamental noise, we define

∫ t

0

Xt dMt =

∞
∑

n=0

Xtn
(Mtn+1∧t −Mtn∧t) on the domain h⊗D.

We are now faced with extending this integral to a more general class of pro-
cesses. Classically, the Itô isometry allows us to extend the Itô integral by taking
limits in L2. In the quantum case, something similar happens, only the Itô isometry
is replaced by a suitable estimate of the following form [HP84, Cor. 1]: defining

It =

∫ t

0

(Es dΛs + Fs dAs +Gs dA
†
s +Hs ds),

we can estimate for any ψ ⊗ e(f) ∈ h⊗D

‖It ψ ⊗ e(f)‖2 ≤ C(t, f)×
∫ t

0

(‖Es ψ ⊗ e(f)‖2 + ‖Fs ψ ⊗ e(f)‖2 + ‖Gs ψ ⊗ e(f)‖2 + ‖Hs ψ ⊗ e(f)‖2) ds,



142 B. ELEMENTS OF QUANTUM PROBABILITY

where C(t, f) < ∞ and (Es, Fs, Gs, Hs) are admissible adapted simple processes.
It is now evident how to define the stochastic integral for more general processes.

Definition B.2.14. Let (Es, Fs, Gs, Hs) be admissible adapted processes such
that there exists a sequence (En

s , F
n
s , G

n
s , H

n
s ) of simple processes where

∫ t

0

(‖(Es −En
s )ψ ⊗ e(f)‖2 + ‖(Fs − Fn

s )ψ ⊗ e(f)‖2

+ ‖(Gs −Gn
s )ψ ⊗ e(f)‖2 + ‖(Hs −Hn

s )ψ ⊗ e(f)‖2) ds n→∞−−−−→ 0

for any ψ⊗e(f) ∈ h⊗D. Then (Es, Fs, Gs, Hs) is said to be quantum stochastically
integrable, and the quantum Itô integral It of this quadruple is uniquely defined as
the strong limit of the corresponding simple integrals on the domain h⊗D.

An admissible adapted process Xt is called square-integrable if for any t <∞
∫ t

0

‖Xs ψ ⊗ e(f)‖2 ds <∞ for all ψ ⊗ e(f) ∈ h⊗D.

By [HP84, Prop. 3.2], any square-integrable process is stochastically integrable.
Let us list some simple properties of the quantum Itô integral. First, It is an

admissible, adapted process. Moreover, It is easily shown to be strongly continu-
ous in t on its domain; hence It is square-integrable, and in particular It is itself
quantum stochastically integrable. Moreover, if (Et, Ft, Gt, Ht) are stochastically

integrable, then (E†
t , F

†
t , G

†
t , H

†
t ) are also stochastically integrable and

I†t =

∫ t

0

(E†
s dΛs + F †

s dA
†
s +G†

s dAs +H†
s ds).

We conclude this section with two key Theorems in the Hudson-Parthasarathy
theory. The first gives the matrix elements of the quantum Itô integral. The
second is the quantum Itô formula—in disguise.

Theorem B.2.15. Let ψ ⊗ e(f), φ⊗ e(g) ∈ h⊗D, and let It be as above. Then

〈ψ ⊗ e(f), It φ⊗ e(g)〉 =
∫ t

0

〈ψ ⊗ e(f), {f(s)∗Esg(s) + Fsg(s) + f(s)∗Gs +Hs}φ⊗ e(g)〉 ds.

Theorem B.2.16. Let ψ ⊗ e(f), φ ⊗ e(g) ∈ h⊗D, let It be the quantum Itô
integral of the quantum stochastically integrable quadruple (Et, Ft, Gt, Ht), and let
I ′t the quantum Itô integral of the integrable quadruple (E ′

t, F
′
t , G

′
t, H

′
t). Then

〈I ′t ψ⊗e(f), It φ⊗ e(g)〉 =
∫ t

0

〈I ′t ψ ⊗ e(f), {f(s)∗Esg(s) + Fsg(s) + f(s)∗Gs +Hs}φ⊗ e(g)〉 ds

+

∫ t

0

〈{g(s)∗E′
sf(s) + F ′

sf(s) + g(s)∗G′
s +H ′

s}ψ ⊗ e(f), It φ⊗ e(g)〉 ds

+

∫ t

0

〈{E′
sf(s) +G′

s}ψ ⊗ e(f), {Esg(s) +Gs}φ⊗ e(g)〉 ds.

To see that this is indeed a quantum Itô rule, let us pretend that the products
(I ′t)

†It, (I ′t)
†Et, (E′

t)
†Gt, etc., are well defined. Then we can proceed to bring

all the operators from the left-hand sides of the inner products to the right-hand
sides. Using Theorem B.2.15 it is now easy to see that (I ′t)

†It is again a quantum
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Itô integral with coefficients that can be read off from the expression in Theorem
B.2.16. In particular, the first line of that expression is precisely (I ′t)

† dIt, the
second line is d(I ′t)

† It, and the third line is the Itô correction term d(I ′t)
† dIt.

Of course, the fact of the matter is that it is usually not so easy to establish
that all these products are well defined—after all, this requires It to map h ⊗ D

into itself, which is rarely the case. The cleverness of Theorem B.2.16 is that
it allows us to retain a quantum stochastic calculus, even though true operator
multiplication is usually difficult to establish. Nonetheless, these results are most
useful in precisely those cases where we can establish a “true” Itô rule in the sense
of operator multiplication (by extending, if necessary, the domain of the leftmost
operator). The following corollary is extremely useful, and has an obvious proof.

Corollary B.2.17. For a pair of bounded allowable operators X and Y , define
the multiplication X · Y = XY . Let

dIt = Et dΛt + Ft dAt +Gt dA
†
t +Ht dt,

dI ′t = E′
t dΛt + F ′

t dAt +G′
t dA

†
t +H ′

t dt.

Assume additionally that It, Et, Ft, Gt, Ht, I
′
t, E

′
t, F

′
t , G

′
t, H

′
t are all bounded pro-

cesses in the sense that sups≤t ‖Is‖ <∞ for all t <∞, etc. Then

d(It · I ′t) = It · dI ′t + dIt · I ′t + dIt · dI ′t,

where the correction term dIt · dI ′t is evaluated according to the quantum Itô table

dI \ dI ′ dAt dΛt dA∗
t dt

dAt 0 dAt dt 0
dΛt 0 dΛt dA∗

t 0
dA∗

t 0 0 0 0
dt 0 0 0 0

The notation which we have used here should be obvious, but for concreteness
let us be a little more precise: It · dI ′t contains terms such as It · F ′

t dAt; dIt · I ′t
contains terms such as Ft · I ′t dAt; and dIt · dI ′t contains terms such as Ft ·G′

t dt.

Remark B.2.18. We have only considered the case of a Fock space with single
multiplicity Γ = Γ(L2(R+)). When the field has multiple degrees of freedom, this is
usually introduced by considering the Fock space Γ(L2(R+)⊗C), where C is called
the “color space” and dim C is the number of degrees of freedom of the field. The
theory here is much the same: one can introduce an orthonormal basis in C, and
for every basis element one obtains an independent copy of the fundamental noises.
Now, however, there are additional fundamental noises (the exchange operators)
which can scatter excitations between the different degrees of freedom. In practice
very little changes in the theory as we have presented it, both conceptually and
technically; however, the large number of degrees of freedom does bring with it a
significant notational burden (though this is somewhat alleviated by the elegant
Evans notation). The reader is referred to [Par92, Mey93] for further details. For
notational simplicity and optimal clarity I have decided to stick with the simple
Fock space Γ for the purposes of this thesis. The reader should keep in mind,
however, that everything we will do extends almost trivially to the general case.
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B.2.3. Quantum stochastic differential equations. To complete our dis-
cussion of the Hudson-Parthasarathy theory, we will briefly discuss quantum sto-
chastic differential equations. We will only discuss linear equations of this type,
and these are indeed the most useful. Let us first give a general existence and
uniqueness result, see, e.g., [Mey93, page 173-175].

Theorem B.2.19. Consider the quantum stochastic differential equation

Vt = I +

∫ t

0

{L1 dΛs + L2 dAs + L3 dA
∗
s + L4 ds}Vs,

where L1, . . . , L4 are fixed bounded operators of the form L⊗I on h⊗Γ. Then there
exists a unique admissible adapted process Vt that solves this equation.

This result admits a straightforward proof through Picard iteration; see also
[HP84, sec. 7] for such a proof. Note that Hudson and Parthasarathy use the left
form of the equation, i.e., where Vs is placed on the left of the Li rather than on
the right. This is essentially equivalent to the right equation, however, as it simply

corresponds to solving the equation for V †
t in our notation.

We can now use the method of quantum stochastic differential equations to
model the time evolution of a quantum system in interaction with the field. Hith-
erto we have been dealing purely with quantum probability; it is useful at this point
to recall some quantum mechanics. Quantum mechanics is the theory that models
the dynamics of physical systems within the framework of quantum probability.
The observables in the theory are defined as self-adjoint operators on some quan-
tum probability space. To model how these random variables evolve in time, one
introduces a two-parameter unitary group Us,t. In particular, Us,t is a unitary
transformation that defines an automorphism of the quantum probability space,
and Ur,tUs,r = Us,t for all 0 ≤ s ≤ r ≤ t. The fact that the time evolution is an au-
tomorphism of the algebra emphasizes the idea that the algebra defines a physical
model of a “closed system”; no information is lost from the system, and hence the
time evolution is always reversible. This is a physical idea, not a probabilistic one;
we will not dwell on its implications and accept it as physical fact.

Remark B.2.20. In the time-homogeneous case treated in most quantum me-
chanics textbooks, a one-parameter unitary group Ut suffices to describe the time
evolution. Here, however, we will be defining time evolutions that are driven in
some sense by the fundamental quantum noises, and we are thus necessarily in the
time-nonhomogeneous case. Note that this situation parallels closely the classical
theory of stochastic flows generated by stochastic differential equations.

How does the time evolution work? Suppose that we have somehow defined the
time evolution Us,t. If a certain physical quantity is described by the observable
X at time s, then this quantity will be described by the time evolved observable
U∗

s,tXUs,t at time t. (The fact that the observable corresponding to the same
physical quantity changes with time should be compared to the classical case where,
e.g., the position of a particle can be described by a stochastic process; the same
physical quantity is now described by a different random variable at every time t.)
We can now understand the reason for the terminology “initial system” and “initial
state” for the algebra B and state ρ, which we have adjoined to the field probability
space (W , ϕ) for the purpose of quantum stochastic calculus. The observables
affiliated to B describe the physical quantities associated with the quantum system
at the initial time t = 0; similarly, ρ gives their expectations at that time. After
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some time t, the system will have interacted with the field and the associated
observables will thus have evolved out of the initial algebra.

We are going to generate time evolutions by solving a particular quantum
stochastic differential equation. First, we should figure out how to ensure that the
solution Vt of the QSDE introduced above is in fact unitary (more precisely, that
its closure is unitary). Necessary conditions are easily obtained by assuming that

Vt is unitary, then calculating V †
t · Vt and Vt · V †

t using the quantum Itô rules and
requiring that the coefficients vanish (as V ∗

t Vt = VtV
∗
t = I for a unitary operator).

In fact these conditions are also sufficient; see [HP84, Thm. 7.1].

Theorem B.2.21. The unique solution of the QSDE of Theorem B.2.19 extends
to a unitary process if and only if it is of the form

dUt =

{

(W − I) dΛt + LdA†
t − L∗W dAt −

1

2
L∗Ldt− iH dt

}

Ut, U0 = I,

where W,L,H are bounded operators of the form X ⊗ I on h ⊗ Γ, W is unitary,
and H is self-adjoint. This QSDE is called the Hudson-Parthasarathy equation.

We have now almost constructed a suitable Us,t. Indeed, if we define

dUs,t =

{

(W − I) dΛt + LdA†
t − L∗W dAt −

1

2
L∗Ldt− iH dt

}

Us,t, Us,s = I,

then it is not difficult to verify that Us,t satisfies the desired group property. Beside
the fact that this evidently defines an acceptable physical model, the Hudson-
Parthasarathy equation is known to be an extremely good model for real physical
phenomena, particularly in quantum optics [GZ04].

Finally, it should be mentioned that we have only scratched the surface of
the theory of quantum stochastic differential equations (and quantum stochastic
analysis in general). The current model is quite general already, and will suffice
for our purposes. Particularly interesting, from the author’s point of view, is the
extension of these models to incorporate feedback controls. This leads to the notion
of controlled quantum flows [BV06] and more generally to controlled quantum
Markov processes, a general study of which still remains to be performed.
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[Dos77] H. Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst.
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