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Abstract. A well-known family of determinantal inequalities for mixed vol-
umes of convex bodies were derived by Shephard from the Alexandrov-Fenchel
inequality. The classic monograph Geometric Inequalities by Burago and Zal-
galler states a conjecture on the validity of higher-order analogues of Shep-
hard’s inequalities, which is attributed to Fedotov. In this note we disprove
Fedotov’s conjecture by showing that it contradicts the Hodge-Riemann rela-
tions for simple convex polytopes. Along the way, we make some expository
remarks on the linear algebraic and geometric aspects of these inequalities.

1. Introduction

1.1. Let K1, . . . ,Km be convex bodies in Rn and λ1, . . . , λm ą 0. One of the most
basic facts of convex geometry, due to H. Minkowski, is that the volume of convex
bodies is a homogeneous polynomial in the sense that

Volpλ1K1 ` ¨ ¨ ¨ ` λmKmq “

m
ÿ

i1,...,in“1
VpKi1 , . . . ,Kinqλi1 ¨ ¨ ¨λin .

The coefficients VpK1, . . . ,Knq, called mixed volumes, define a large family of nat-
ural geometric parameters of convex bodies, and play a central role in convex ge-
ometry [5, 14]. Mixed volumes are always nonnegative, are symmetric in their
arguments, and are additive and homogeneous in each argument.

The fundamental inequality in the theory of mixed volumes is the following.

Theorem 1.1 (Alexandrov-Fenchel). For convex bodies K,L,C1, . . . , Cn´2 in Rn

VpK,L,C1, . . . , Cn´2q
2 ě VpK,K,C1, . . . , Cn´2qVpL,L,C1, . . . , Cn´2q.

Numerous inequalities in convex geometry may be derived from the Alexandrov-
Fenchel inequality, cf. [5, §20] and [14, §7.4]. The starting point for this note is a
well-known family of determinantal inequalities, due to Shephard [18], that extend
the Alexandrov-Fenchel inequality to more than n bodies.

Theorem 1.2 (Shephard). Given convex bodies K1, . . . ,Km, C1, . . . , Cn´2 in Rn,
define the mˆm symmetric matrix M by setting

Mij :“ VpKi,Kj , C1, . . . , Cn´2q.

Then
p´1qm det M ď 0.
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The special case m “ 2 of Theorem 1.2 is just a reformulation of the Alexandrov-
Fenchel inequality, and Shephard’s inequalities may thus be viewed as a consider-
able generalization of the Alexandrov-Fenchel inequality. However, as is shown by
Shephard (and as we will explain later in this note), the general inequalities may
in fact be deduced from the m “ 2 case by a simple linear algebraic argument. In
the case m “ 3, this result dates back already to Minkowski [12, p. 478].

1.2. The classic monograph Geometric Inequalities by Burago and Zalgaller states
a conjecture on the validity of a higher-order generalization of Theorem 1.2, which
is attributed to Fedotov [5, §20.6]. Let us recall the statement of this conjecture.
In the sequel, we will frequently employ the notation

VpK1rm1s,K2rm2s, . . . ,Krrmrsq :“ VpK1, . . . ,K1
looooomooooon

m1

,K2, . . . ,K2
looooomooooon

m2

, . . . ,Kr, . . . ,Kr
looooomooooon

mr

q

when convex bodies are repeated multiple times in the arguments of a mixed volume.

Conjecture 1.3 (Fedotov). Let k ď n{2, and let K1, . . . ,Km, C1, . . . , Cn´2k be
convex bodies in Rn. Define the mˆm symmetric matrix M by setting

Mij :“ VpKirks,Kjrks, C1, . . . , Cn´2kq.

Then
p´1qm det M ď 0.

If true, this conjecture would entail a considerable generalization of Shephard’s
inequalities. The conjecture is rather appealing, as it is easily verified to be true in
two extreme cases that have a different flavor.

Lemma 1.4. Conjecture 1.3 is valid in the following two cases:
a. When k “ 1 and m is arbitrary.
b. When m “ 2 and k is arbitrary.

Proof. Case a is nothing other than Theorem 1.2. To prove b, it suffices to note
that iterating the Alexandrov-Fenchel inequality yields [14, (7.63)]

VpK1rks,K2rls, C1, . . . , Cn´k´lq
k`l ě

VpK1rk ` ls, C1, . . . , Cn´k´lq
k VpK2rk ` ls, C1, . . . , Cn´k´lq

l

for any k, l ě 1, k ` l ď n. The case k “ l is readily seen to be equivalent to b. �

The main purpose of this note is to explain that Conjecture 1.3 fails when one
goes beyond the special cases of Lemma 1.4. More precisely, we will prove:

Theorem 1.5. For every k ą 1, Conjecture 1.3 is false for some m ą 2.

1.3. In order to explain how we will disprove Conjecture 1.3, it is useful to first
briefly recall some of its history.

Despite the fundamental nature of the Alexandrov-Fenchel inequality, no really
elementary proof of it is known. Alexandrov gave two different (but closely related)
proofs in the 1930s: a combinatorial proof using strongly isomorphic polytopes [2],
and an analytic proof using elliptic operators [3]. Further remarks on its history
and on more modern proofs may be found in [14, 15].

In the 1970s, unexpected connections were discovered between the theory of
mixed volumes and algebraic geometry. In particular, a remarkable identity due to
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Bernstein and Kushnirenko [5, Theorem 27.1.2] shows that the number of solutions
z P pCzt0uqn of a generic system of polynomial equations p1pzq “ 0, . . . , pnpzq “ 0
with given monomials coincides with the mixed volume of an associated family of
lattice polytopes in Rn (i.e., polytopes with vertices in Zn).

Motivated by these developments, Fedotov [7] proposed a simple proof of the
Alexandrov-Fenchel inequality using only basic properties of polynomials. Fedotov
further notes that his method even yields the more general Conjecture 1.3, which
is stated in [7] as a theorem. These results were included in the Russian edition
of the monograph of Burago and Zalgaller. Unfortunately, Fedotov’s elementary
approach turns out to contain a serious flaw, which renders his method of proof
invalid. A correct algebraic proof of the Alexandrov-Fenchel inequality was given
by Teissier and Khovanskii using nontrivial machinery, namely a reduction to the
Hodge index theorem of algebraic geometry. The latter proof is included in the
English translation of Burago-Zalgaller [5, §27], but does not settle the validity of
Fedotov’s higher-order analogue of Shephard’s inequalities [5, §20.6].

On the other hand, the algebraic connection yields other higher-order inequali-
ties. The Alexandrov-Fenchel inequality is analogous to a Hodge-Riemann relation
of degree 1 in the cohomology ring of a smooth projective variety [6, 8]. Hodge-
Riemann relations of higher degree give rise to new inequalities in convex geometry.
Such inequalities were first stated by McMullen [11] for strongly isomorphic simple
polytopes as a byproduct of his work on the g-conjecture. Their geometric signifi-
cance was greatly clarified by Timorin [20], whose formulation is readily interpreted
in terms of explicit inequalities for mixed volumes. Very recently, some special cases
were extended also to smooth convex bodies in [9, 1, 10].

The proof of Theorem 1.5 may now be explained as follows. Using the prop-
erties of hyperbolic quadratic forms, we will first reformulate Conjecture 1.3 as a
higher-order Alexandrov-Fenchel inequality. In this equivalent formulation, it will
be evident that this inequality contradicts the Hodge-Riemann relation of degree 2.
Thus the results of McMullen and Timorin imply that Conjecture 1.3 is false. Beside
disproving the conjecture, a more expository aim of this note is to draw attention
to some basic linear algebraic and geometric aspects of the above inequalities (none
of which are really new here) in the context of classical convexity.

Remark. It should be noted that Fedotov’s conjecture as stated in [5, §20.6] is
somewhat more general than Conjecture 1.3: the matrix M considered there is

Mij :“ VpKirks,Kjrls, C1, . . . , Cn´k´lq

for any k, l ě 1 such that k ` l ď n. Lemma 1.4 extends to this setting: the case
k “ l “ 1 and general m reduces to Shephard’s inequalities, while the case m “ 2
and general k, l is obtained by multiplying the inequality [14, (7.63)] used in the
proof of Lemma 1.4 by the same inequality with the roles of k, l reversed. When
k ‰ l, however, the matrix M is not symmetric, and the spectral interpretation of
the conjecture becomes unclear. Given that we show the conjecture fails for general
m already in the symmetric case k “ l, it seems implausible that the nonsymmetric
case k ‰ l has any merit, and we do not consider it further in this note.

1.4. The remainder of this note is organized as follows. In section 2, we recall
some basic properties of hyperbolic quadratic forms that will be used in the sequel.
We also briefly discuss Shephard’s inequalities and clarify their equality cases. In
section 3 we formulate the Hodge-Riemann relations for strongly isomorphic simple
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polytopes, due to McMullen and Timorin, entirely in the language of classical
convexity. Finally, section 4 completes the proof of Theorem 1.5.

While the proof of Theorem 1.5 explains clearly why Fedotov’s conjecture must
fail, the construction is rather indirect. Once the proof has been understood, how-
ever, it is not difficult to engineer an explicit counterexample, which will be done
in section 5. Beside further illustrating the basic construction, this example will
show that we may in fact choose m “ 3 in Theorem 1.5.

We conclude this note by highlighting a puzzling aspect of the Hodge-Riemann
relations: even though their statement makes sense in principle for arbitrary convex
bodies, the Hodge-Riemann relations have only been proved for special classes of
bodies (e.g., strongly isomorphic simple polytopes). In section 6, we will illustrate
by means of a simple example that the Hodge-Riemann relations may fail for general
convex bodies. This highlights the rather unusual nature of the Hodge-Riemann
relations as compared to other inequalities in convex geometry.

2. Linear algebra

The aim of this section is to explain that the connection between the Alexandrov-
Fenchel and Shephard inequalities has nothing to do with convexity, but is rather a
simple linear-algebraic fact. The results of this section are known in various forms,
see, e.g., [4, Theorem 4.4.6], [15, Lemma 2.9], or [16, Lemma 3.1], but we provide
simple self-contained proofs for the variants needed here.

2.1. Hyperbolic matrices. We begin by giving a spectral interpretation of the
Alexandrov-Fenchel inequality. In the sequel, a matrix M will be called positive if
Mij ą 0 for all i, j. For y P Rm, we write y ě 0 (y ą 0) if yi ě 0 (yi ą 0) for
all i. The linear span of all eigenvectors of a symmetric matrix M with positive
eigenvalues will be called the positive eigenspace of M.

Lemma 2.1. Let M be a symmetric positive matrix. The following are equivalent:
1. The positive eigenspace of M is one-dimensional.
2. xx,Myy2 ě xx,Mxy xy,Myy for all x ě 0 and y ě 0.
3. xx,Myy “ 0 implies xx,Mxy ď 0 for all x and y ě 0, y ‰ 0.

Proof. As M is a positive matrix, the Perron-Frobenius theorem implies that it has
at least one eigenvector v ą 0 with positive eigenvalue.

3ñ1 : Let x K v be any other eigenvector of M. Then xx,Mvy “ 0, so 3 implies
xx,Mxy ď 0. Thus the eigenvalue associated to x must be nonpositive.

1ñ2 : It follows from 1 that M is negative semidefinite on vK. Fix x, y ě 0; we
may assume y ‰ 0 (else the inequality is trivial), so that xy, vy ą 0 and xy,Myy ą 0.
If we define z “ x´ ay with a “ xx, vy{xy, vy, then z P vK, so

0 ě xz,Mzy “ xx,Mxy ´ 2axx,Myy ` a2xy,Myy ě xx,Mxy ´
xx,Myy2

xy,Myy
.

2ñ3 : We first show that 2 remains valid for any x (not just x ě 0). Suppose
first that y ą 0. Then x` by ě 0 when b is chosen sufficiently large, so 2 implies

xx` by,Myy2 ě xx` by,Mpx` byqy xy,Myy.

Expanding both sides of this inequality shows that all terms involving b cancel, so
xx,Myy2 ě xx,Mxy xy,Myy for any x and y ą 0. This conclusion remains valid for
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any y ě 0 by applying the above argument with y Ð y`εv and letting εÑ 0. Now
3 follows immediately once we note that y ě 0, y ‰ 0 implies xy,Myy ą 0. �

In the sequel, a symmetric (but not necessarily positive) matrix that has a one-
dimensional positive eigenspace will be called hyperbolic.

2.2. Shephard’s inequalities. An mˆm hyperbolic matrix M has 1 positive and
m´1 nonpositive eigenvalues. It is therefore immediately obvious that such a matrix
satisfies p´1qm det M ď 0 (as the determinant is the product of the eigenvalues).
Shephard’s inequalities follow directly from this observation.

Proof of Theorem 1.2. Wemay assume without loss of generality that all the convex
bodies have nonempty interior, so that M is a positive matrix (otherwise we may
replace Ki Ð Ki` εB, Ci Ð Ci` εB for any body B with nonempty interior, and
take εÑ 0 in the final inequality.) Condition 2 of Lemma 2.1 is immediate from the
Alexandrov-Fenchel inequality (Theorem 1.1 with K “

ř

i xiKi and L “
ř

i yiKi).
Thus M is hyperbolic by Lemma 2.1, which implies p´1qm det M ď 0. �

While this is only tangentially related to the rest of this note, let us take the
opportunity to clarify the cases of equality in Shephard’s inequalities.

Proposition 2.2. In the setting and notations of Theorem 1.2, we have det M “ 0
if and only if there are linearly independent vectors x, y ą 0 such that K “

ř

i xiKi,
L “

ř

i yiKi yield equality in the Alexandrov-Fenchel inequality of Theorem 1.1.

Proof. We must show det M “ 0 if and only if xx,Myy2 “ xx,Mxy xy,Myy for some
linearly independent x, y ą 0. We may assume M ‰ 0 (else the result is trivial).

Suppose first that det M “ 0. Then there exists z P ker M, z ‰ 0. Choose any
y ą 0 that is linearly independent of z. Evidently xz,Myy2 “ xz,Mzy xy,Myy. But
as this identity is invariant under the replacement z Ð z ` by (as in the proof of
2ñ3 of Lemma 2.1), we may choose x “ z ` by ą 0 for b sufficiently large.

Now suppose xx,Myy2 “ xx,Mxy xy,Myy for linearly independent x, y ą 0. Then
qpvq :“ xx` v,Myy2 ´ xx` v,Mpx` vqy xy,Myy

satisfies qp0q “ 0, and qpvq ě 0 for all v in a neighborhood of 0 by the Alexandrov-
Fenchel inequality. Thus ∇qp0q “ 0, which yields z “ xy,Myyx´xx,Myyy P ker M.
Moreover, z ‰ 0 as x, y are linearly independent. Thus det M “ 0. �

Proposition 2.2 reduces the equality cases of Shephard’s inequalities to those
of the Alexandrov-Fenchel inequality. The characterization of the latter is a long-
standing open problem [14, §7.6], which was recently settled in several important
cases in [17, 16]. This problem remains open in full generality.

2.3. A Sylvester criterion. While any hyperbolic mˆm matrix M trivially sat-
isfies p´1qm det M ď 0, the converse implication clearly does not hold: the sign of
the determinant does not determine the number of positive eigenvalues. However,
the implication can be reversed if the determinant condition holds for all principal
submatrices of M. This hyperbolic analogue of the classical Sylvester criterion may
be proved in essentially the same manner.1

In the following, we denote for any m ˆ m symmetric matrix M and subset
I Ď rms by MI :“ pMijqi,jPI the associated principal submatrix.

1The author learned the elementary approach used here from lecture notes of M. Hladík.
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Lemma 2.3. For a symmetric positive mˆm matrix, the following are equivalent:
1. The positive eigenspace of M is one-dimensional.
2. p´1q|I| det MI ď 0 for all I Ď rms.

Proof. To prove 1ñ2, note first that condition 2 of Lemma 2.1 is inherited by all
its principal submatrices MI (as one may restrict to x, y supported on I). The
conclusion therefore follows immediately from Lemma 2.1.

To prove 2ñ1, we argue by induction on m. For m “ 2, it suffices to note
that as M has at least one positive eigenvalue by the Perron-Frobenius theorem,
det M ď 0 implies that its other eigenvalue must be nonpositive.

Now let m ą 2 and assume the result has been proved in dimensions up to m´1.
Then 2 implies that MI is hyperbolic for all I ( rms. By the Perron-Frobenius
theorem, M has an eigenvector v with positive eigenvalue. Now suppose 1 fails,
that is, M is not hyperbolic. Then there must be another eigenvector w K v with
positive eigenvalue. As p´1qm det M ď 0, there must then be a third eigenvector
u K tv, wu with nonnegative eigenvalue. Choose any i P rms such that ui ‰ 0 and
let I “ rmsztiu. Choose a, b P R so that x :“ v ´ au and y :“ w ´ bu satisfy
xi “ yi “ 0. By construction, x, y are linearly independent and xz,Mzy ą 0 for all
z P spantx, yu, z ‰ 0. As x, y are supported on I, this implies MI has a positive
eigenspace of dimension at least two, contradicting the induction hypothesis. �

It follows immediately from Lemma 2.3 that Conjecture 1.3 is equivalent to the
statement that the matrix M is hyperbolic. This observation will form the basis
for the proof of Theorem 1.5 in section 4: we will show that hyperbolicity of M
contradicts the Hodge-Riemann relations for simple convex polytopes.

3. Hodge-Riemann relations

The Hodge-Riemann relations in algebraic geometry give rise to higher order
analogues of the Alexandrov-Fenchel inequality [11, 20]. While these inequalities
are not usually stated in this form in the literature, they may be equivalently
formulated as explicit inequalities between mixed volumes. The aim of this section
is to draw attention to this elementary formulation of the Hodge-Riemann relations
in terms of familiar objects from classical convex geometry.

Recall that a convex polytope in Rn is called simple if it has nonempty interior
and each vertex is contained in exactly n facets. In the following, let us fix an
arbitrary simple polytope Λ in Rn, and denote by PpΛq the collection of polytopes
that are strongly isomorphic to Λ: that is, P P PpΛq if and only if

dimF pP, uq “ dimF pΛ, uq for all u P Sn´1,

where F pP, uq denotes the face of P with normal direction u. For the basic proper-
ties of simple and strongly ismorphic polytopes, the reader is referred to [14, §2.4].
For the purposes of this note, the only significance of these definitions is that they
are needed for the validity of the following theorem (see section 6).

Theorem 3.1 (McMullen-Timorin). Fix n ě 2 and a simple polytope Λ P Rn, and
let m ě 1, k ď n{2, K1, . . . ,Km, L, C1, . . . , Cn´2k P PpΛq, and x P Rm. If

ÿ

i

xi VpKirks,M rk ´ 1s, L, C1, . . . , Cn´2kq “ 0 (3.1)
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holds for every M P PpΛq, then

p´1qk
ÿ

i,j

xixj VpKirks,Kjrks, C1, . . . , Cn´2kq ě 0. (3.2)

Moreover, the statement is nontrivial in the sense that for any n ě 2 and k ď n{2,
there is a simple polytope Λ “ L “ C1 “ ¨ ¨ ¨ “ Cn´2k in Rn, m ě 1, K1, . . . ,Km P

PpΛq, and x P Rm so that (3.1) holds and the inequality in (3.2) is strict.

The case k “ 1 of Theorem 3.1 is nothing other than the Alexandrov-Fenchel
inequality. To see why this is so, assume without loss of generality that L “

ř

i yiKi

for some y ě 0, y ‰ 0 (otherwise let mÐ m` 1 and Km`1 Ð L), and define
Mij “ VpKi,Kj , C1, . . . , Cn´2q.

Then the statement of Theorem 3.1 for k “ 1 may be formulated as
xx,Myy “ 0 implies xx,Mxy ď 0

for any x and y ě 0, y ‰ 0. Thus by Lemma 2.1, the inequality of Theorem 3.1 in the
case k “ 1 is equivalent to the Alexandrov-Fenchel inequality for convex bodies in
PpΛq. As any collection of convex bodies can be approximated by simple strongly
isomorphic polytopes [14, Theorem 2.4.15], the general case of the Alexandrov-
Fenchel inequality is further equivalent to this special case.

For k ą 1, the statement of Theorem 3.1 may be viewed as an analogue of the
Alexandrov-Fenchel inequality for Mij “ VpKirks,Kjrks, C1, . . . , Cn´2kq. Thus the
Hodge-Riemann relations are reminiscent of Conjecture 1.3, but their formulation
is considerably more subtle. In section 4, we will show that the Hodge-Riemann
relations in fact contradict Conjecture 1.3, disproving the latter.

The aim of the rest of this section is to convince the reader that the statement
of Theorem 3.1 given here in terms of mixed volumes is equivalent to the statement
of the Hodge-Riemann relations as given in [20]. The reader who is primarily
interested in Theorem 1.5 may safely jump ahead to section 4.

To explain the formulation of [20], we must first introduce some additional no-
tation. Let u1, . . . , uN P S

n´1 be the normal directions of the facets of Λ. For any
P P PpΛq, we denote by hP P RN its support vector

phP qi :“ sup
yPP
xy, uiy.

Then there is a homogenous polynomial V : RN Ñ R of degree n, called the volume
polynomial, so that VolpP q “ V phP q for every P P PpΛq [14, §5.2]. Moreover, as
PpΛq is closed under addition [14, §2.4], it follows immediately from the definition
of mixed volumes that we have for any P1, . . . , Pn P PpΛq

VpP1, . . . , Pnq “
1
n!DhP1

¨ ¨ ¨DhPnV,

where Dh denotes the directional derivative in direction h. In this notation, the
Hodge-Riemann relations are formulated in [20, p. 385] as follows:

Theorem 3.2. Let k ď n{2, L,C1, . . . , Cn´2k P PpΛq, and let α “
ř

|I|“k αID
I be

a homogeneous differential operator of order k with constant coefficients. If
αDhLDhC1

¨ ¨ ¨DhCn´2k
V “ 0, (3.3)

then
p´1qkα2DhC1

¨ ¨ ¨DhCn´2k
V ě 0. (3.4)
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Moreover, equality is attained if and only if αV “ 0.

To write Theorem 3.2 in terms of mixed volumes, we need the following.

Lemma 3.3. For any homogeneous differential operator α “
ř

|I|“k αID
I , there

exist m ě 1, K1, . . . ,Km P PpΛq, and x P Rm so that α “
ř

i xipDhKi q
k.

Proof. We first recall that for any z P RN , hΛ ` εz is the support vector of some
polytope K P PpΛq for sufficiently small ε (as Λ is simple, cf. [14, Lemma 2.4.13]).
We may therefore write z “ hL ´ hL1 where L “ ε´1K and L1 “ ε´1Λ.

Now denote by e1, . . . , eN the standard coordinate basis of RN . By the above
observation, we may write ei “ hLi ´hL1

i
for Li, L1i P PpΛq. We can therefore write

α “
ÿ

i1ď¨¨¨ďik

αi1,...,ikpDhLi1
´DhL1

i1
q ¨ ¨ ¨ pDhLik

´DhL1
ik

q.

By expanding the product, we may evidently express α as a linear combination of
differential operators of the form DhRi1

¨ ¨ ¨DhRik
with Ri P PpΛq. But as

DhRi1
¨ ¨ ¨DhRik

“
1
k!

ÿ

δPt0,1uk
p´1qk`δ1`¨¨¨`δkpDhδ1Ri1`¨¨¨`δkRik

qk

by the polarization formula [5, p. 137], the proof is readily concluded. �

We are now ready to show that the Hodge-Riemann relations expressed by Theo-
rems 3.1 and 3.2 are equivalent. First, note that αDhLDhC1

¨ ¨ ¨DhCn´2k
V in (3.3) is

a homogeneous polynomial of degree k´1. Thus (3.3) is equivalent to the statement
that βαDhLDhC1

¨ ¨ ¨DhCn´2k
V “ 0 for every homogeneous differential operator β

of order k´ 1. By Lemma 3.3, the statement of Theorem 3.2 (without the equality
case) may be equivalently formulated as follows: if

αpDhM q
k´1DhLDhC1

¨ ¨ ¨DhCn´2k
V “ 0

for all M P PpΛq, then

p´1qkα2DhC1
¨ ¨ ¨DhCn´2k

V ě 0.

That (3.3)–(3.4) imply (3.1)–(3.2) follows immediately by choosing the differential
operator α “

ř

i xipDhKi q
k. Conversely, that (3.1)–(3.2) imply (3.3)–(3.4) follows

as any α can be expressed as α “
ř

i xipDhKi q
k by Lemma 3.3.

It remains to check that the Hodge-Riemann relations are nontrivial. This is
certainly not obvious at first sight: the condition (3.1) is a very strong one (as it
must hold for any M P PpΛq), and it is not clear a priori that it can be satisfied in
any nontrivial situation. To show this is the case, consider the special case where
L “ C1 “ ¨ ¨ ¨ “ Cn´2k “ Λ, and define the spaces

Pk :“ tα : αpDhΛq
n´2k`1V “ 0u, I :“ tα : αV “ 0u.

The remarkable combinatorial theory underlying the Hodge-Riemann relations en-
ables us to compute [20, Corollary 5.3.4]

dimpPk{Iq “ hk ´ hk´1,

where ph1, . . . , hnq is the so-called h-vector of Λ. To show the Hodge-Riemann
relations are nontrivial, it suffices to construct a simple polytope Λ in Rn whose h-
vector satisfies hk ą hk´1 for k ď n{2, as by Theorem 3.2 this ensures the existence
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of α so that (3.3) holds and the inequality in (3.4) is strict (by Lemma 3.3, this
implies the corresponding statement of Theorem 3.1 for some m,K1, . . . ,Km, x).
But such an example is easily identified: e.g., we may choose Λ to be the unit cube
in Rn, whose h-vector is given by hk “

`

n
k

˘

by the computations in [20, p. 387]
(note that Λ “ r0, 1sˆ ¨ ¨ ¨ˆ r0, 1s and use the product formula for H-polynomials).

4. Proof of Theorem 1.5

We first consider the special case that k “ 2.

Proof of Theorem 1.5 for k “ 2. Fix any n ě 4 and let k “ 2. By the second part
of Theorem 3.1, we may choose a simple polytope Λ “ L “ C1 “ ¨ ¨ ¨ “ Cn´4 in
Rn, m ě 1, polytopes K1, . . . ,Km P PpΛq, and x P Rm so that (3.1) holds and the
inequality in (3.2) is strict. In the following, we will denote Km`1 :“ Λ.

Now define the pm` 1q ˆ pm` 1q matrix
Mij :“ VpKir2s,Kjr2s,Λrn´ 4sq,

and let y “ em`1. Then (3.1) with M “ Λ implies
xx,Myy “ 0,

while the strict inequality in (3.2) may be written as
xx,Mxy ą 0.

Note that M is a positive matrix, as all bodies in PpΛq are full-dimensional. Thus
M is not hyperbolic by Lemma 2.1. In particular, by Lemma 2.3, there exists
I Ď rm` 1s so that p´1q|I| det MI ą 0. The latter contradicts Conjecture 1.3. �

Informally, the above proof works as follows. By Lemma 2.3, Fedotov’s Conjec-
ture 1.3 is equivalent to the statement that the matrix M is hyperbolic. However,
when k “ 2, the Hodge-Riemann relation (3.2) yields an inequality in the opposite
direction from the one that holds for hyperbolic matrices by Lemma 2.1. Thus the
Hodge-Riemann relation contradicts Fedotov’s conjecture.

Precisely the same argument works whenever k ě 2 is even. Curiously, however,
the argument fails when k is odd, as then (3.2) and hyperbolicity yield inequalities
in the same direction. To prove Theorem 1.5 for arbitrary k, we will use a different
argument: rather than applying the Hodge-Riemann relation of degree k, we will
instead reduce the problem for any k ą 2 back to the case k “ 2.

Proof of Theorem 1.5 for general k. Fix any n ě 6 and 2 ă k ď n{2. Choose Λ,
m, K1, . . . ,Km`1, x, y, and M as in the proof of the k “ 2 case. Note first that

Mij :“ VpKir2s,Kjr2s,Λrn´ 4sq
“ VpKir2s,Λrk ´ 2s,Kjr2s,Λrk ´ 2s,Λrn´ 2ksq

“
1

pk!q2
ÿ

δ,εPt0,1uk
p´1qk`δ1`¨¨¨`δkp´1qk`ε1`¨¨¨`εkVpKiδrks,Kjεrks,Λrn´ 2ksq

by the polarization formula [5, p. 137], where
Kiδ :“ pδ1 ` δ2qKi ` pδ3 ` ¨ ¨ ¨ ` δkqΛ.

Define the pm` 1qp2k ´ 1q ˆ pm` 1qp2k ´ 1q positive matrix

M̃iδ,jε :“ VpKiδrks,Kjεrks,Λrn´ 2ksq



10 RAMON VAN HANDEL

for i, j P rm` 1s, δ, ε P t0, 1ukzp0, . . . , 0q, and define x̃, ỹ P Rpm`1qp2k´1q as

x̃iδ “
p´1qk`δ1`¨¨¨`δkxi

k! , ỹiδ “ 1i“m`11δ“p1,0,...,0q.

Then
xx̃, M̃ỹy “ xx,Myy “ 0, xx̃, M̃x̃y “ xx,Mxy ą 0,

so M̃ cannot be hyperbolic. The latter contradicts Conjecture 1.3 for the given
value of k as in the proof of the case k “ 2. �

5. An explicit example

The proof of Theorem 1.5 shows that counterexamples to Fedotov’s conjecture
are prevalent: any simple polytope Λ whose Hodge-Riemann relation of degree 2
is nontrivial (that is, whose h-vector satisfies h2 ą h1, cf. section 3) gives rise
to a counterexample to Conjecture 1.3 with C1 “ ¨ ¨ ¨ “ Cn´2k “ Λ and some
K1, . . . ,Km strongly isomorphic to Λ. However, the construction itself is rather
indirect. The aim of this section is to illustrate the construction by means of a
simple explicit example in the case that Λ is the unit cube.

Let Λ “ r0, e1s ` ¨ ¨ ¨ ` r0, ens be the unit cube in Rn. Then any M P PpΛq is a
parallelepiped of the form M “Ma ` v for some a1, . . . , an ą 0 and v P Rn, where

Ma :“ a1r0, e1s ` ¨ ¨ ¨ ` anr0, ens.
By translation-invariance of mixed volumes, it suffices to consider v “ 0. We can
compute mixed volumes of parallelepipeds using that

n! Vpr0, ei1s, . . . , r0, einsq “ 1i1‰¨¨¨‰in
by [14, (5.77)], so that by additivity of mixed volumes

n! VpMap1q , . . . ,Mapnqq “
ÿ

i1‰¨¨¨‰in

a
p1q
i1
¨ ¨ ¨ a

pnq
in
.

Using this simple expression, it is not difficult to generate explicit examples.
For example, for the case n “ 4, k “ 2, let us define

K1 :“ r0, e1s ` r0, e2s,

K2 :“ r0, e3s ` r0, e4s,

K3 :“ r0, e1s ` ¨ ¨ ¨ ` r0, e4s “ Λ.
Then it is readily verified by means of the above formula that

3 VpK1r2s,M,Λq ` 3 VpK2r2s,M,Λq ´ VpK3r2s,M,Λq “ 0
for all M P PpΛq, that is, (3.1) holds with x1 “ x2 “ 3 and x3 “ ´1. (This is most
easily seen by using Λ “ K1 `K2 and VpK1r3s,Mq “ VpK2r3s,Mq “ 0 for all M .)
On the other hand, we compute

ÿ

i,j

xixj VpKir2s,Kjr2sq “ 18 VpK1r2s,K2r2sq ´ 6 VpK1r2s,K3r2sq

´ 6 VpK2r2s,K3r2sq ` VpK3r2s,K3r2sq “ 2,

so that (3.2) holds with strict inequality. It therefore follows from the argument in
the proof of Theorem 1.5 that Conjecture 1.3 must fail for n “ 4, k “ 2, m “ 3
when K1,K2,K3 are chosen as above. The author is indebted to the anonymous
referee of this note for suggesting this example.
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Remark 5.1. Technically speaking the above example does not verify the assump-
tions of Theorem 3.1, as K1,K2 have empty interior and are therefore not strongly
isomorphic to Λ. However, the example remains valid if we replace K1,K2, x3 by
K 11 “ K1 ` εK2, K 12 “ K2 ` εK1, and x13 “ ´1´ 4ε´ ε2 for any ε ą 0.

Of course, given any explicit example, one can readily verify directly that Con-
jecture 1.3 fails without any reference to the Hodge-Riemann relations. However,
this obscures the fundamental reason for the failure of Fedotov’s conjecture which
was essential for the discovery of such counterexamples. On the other hand, the
above explicit example provides additional information beyond our main result as
stated in Theorem 1.5: it shows that Fedotov’s conjecture fails already when k “ 2
and m “ 3, that is, in the smallest case that is not covered by Lemma 1.4. The
example is readily modified to extend this conclusion to any k.

Lemma 5.2. For every k ě 2 and n ě 2k, Conjecture 1.3 fails for m “ 3.

Proof. Define the following bodies:
K1 “ r0, e1s ` ¨ ¨ ¨ ` r0, eks,
K2 “ r0, ek`1s ` ¨ ¨ ¨ ` r0, e2ks,

K3 “ r0, e1s ` ¨ ¨ ¨ ` r0, e2ks,

C1, . . . , Cn´2k “ r0, e2k`1s ` ¨ ¨ ¨ ` r0, ens.

Then we can compute Mij :“ VpKirks,Kjrks, C1, . . . , Cn´2kq explicitly as

M “

»

–

0 a a
a 0 a
a a b

fi

fl , a “
pk!q2pn´ 2kq!

n! , b “
p2kq!pn´ 2kq!

n! .

Therefore

det M “ a2p2a´ bq “ pk!q4ppn´ 2kq!q3

pn!q3 p2pk!q2 ´ p2kq!q ă 0

whenever k ě 2, contradicting Conjecture 1.3. �

Remark 5.3. The explicit expression for n! VpMap1q , . . . ,Mapnqq given above is noth-
ing other than the permanent of the matrix whose columns are ap1q, . . . , apnq. It is
well known [5, §25.4] that the permanent of a matrix is not only a special case of
mixed volumes, but also of mixed discriminants (the linear-algebraic analogue of
mixed volumes). The above example therefore shows that the analogue of Fedo-
tov’s conjecture for mixed discriminants is also invalid. This should not come as
a surprise, as mixed discriminants also satisfy Hodge-Riemann relations [19] and
thus the arguments behind Theorem 1.5 extend to this situation.

6. Hodge-Riemann relations fail for general convex bodies

Beside the disproof of Fedotov’s conjecture, an expository aim of this note has
been to highlight that the Hodge-Riemann relations of McMullen and Timorin may
be interpreted entirely in terms of familiar objects from classical convex geometry:
they provide inequalities between mixed volumes that generalize the Alexandrov-
Fenchel inequality. From the viewpoint of classical convexity, however, the formu-
lation of Theorem 3.1 exhibits a puzzling aspect. In principle, the statements of the
relations (3.1) and (3.2) make sense when Ki, Ci,M,L are arbitrary convex bodies,
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but the statement of Theorem 3.1 requires these bodies to be strongly isomorphic
simple polytopes. It is not immediately clear why the latter is important: most
classical inequalities in convex geometry are either valid for arbitrary convex bodies,
or involve geometric quantities that do not make sense in the absence of regularity
conditions (such as uniform bounds on the principal curvatures).

We have shown in section 3 that the Hodge-Riemann relation of degree k “ 1 is
equivalent to the Alexandrov-Fenchel inequality for strongly isomorphic polytopes.
The inequality then extends readily to arbitrary convex bodies by approximation.
This is possible because for k “ 1 the relations (3.1) and (3.2) can be combined into
a single inequality by Lemma 2.1, and this inequality is preserved by taking limits.
However, a natural analogue of Lemma 2.1 does not hold for k ě 2. It is therefore
unclear how to apply an approximation argument, as the equality (3.1) need not be
stable under approximation (that is, if (3.1) holds for a given collection of convex
bodies, they might not be approximated by simple strongly isomorphic polytopes
in such a way that (3.1) remains valid for the approximations).

We will presently show by means of a simple example that the Hodge-Riemann
relation of degree k “ 2 can in fact fail for general convex bodies.

Example 6.1. Let B be the Euclidean unit ball in R4, and let L “ convtB, xu for
some x R B, that is, L is a cap body of B. It is a classical fact, which dates back
essentially to Minkowski, that [14, Theorem 7.6.17]

VpL,L,B,Lq “ VpB,L,B,Lq “ VpB,B,B,Lq ą VpB,B,B,Bq.

In particular, this gives rise to a nontrivial equality case of the Alexandrov-Fenchel
inequality of Theorem 1.1 with n “ 4, K “ C1 “ B, C2 “ L. The latter implies

VpM,B,B,Lq “ VpM,L,B,Lq

for all convex bodies M , cf. [14, Theorem 7.4.3] or [17, Lemma 3.12].
We will now use these observations to construct a counterexample to the Hodge-

Riemann relation of degree k “ 2 for general convex bodies. Define

K1 :“ B, K2 :“ L, K3 :“ B ` L.

Then

3 VpK1r2s,M,Lq ` VpK2r2s,M,Lq ´ VpK3r2s,M,Lq “

2 VpM,B,B,Lq ´ 2 VpM,L,B,Lq “ 0

for all convex bodiesM ; that is, (3.1) is satisfied with x1 “ 3, x2 “ 1, and x3 “ ´1.
On the other hand, we can compute

ÿ

i,j

xixj VpKir2s,Kjr2sq “ 4 VpB,B,B,Bq ´ 4 VpL,B,B,Bq ă 0,

contradicting the validity of (3.2).

Remark 6.2. There is nothing special about the particular choice of the Euclidean
ball in this example: the conclusion remains valid whenB is replaced by an arbitrary
convex body K and L is a cap body of K as defined in [14, p. 87]. For example, we
may take L to be the unit cube in R4 and K to be the same cube with one of its
corners sliced off. The latter variant of the example shows that the Hodge-Riemann
relations can fail for polytopes that are not strongly isomorphic.
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The above example suggests that the validity of Hodge-Riemann relations of
degree k ě 2 is related to the study of the equality cases of the Alexandrov-Fenchel
inequality: indeed, the assumption (3.1) is reminiscent of the equality condition of
the Alexandrov-Fenchel inequality (cf. [14, Theorem 7.4.2]), which is precisely what
was used to construct the above counterexample. Even though the Alexandrov-
Fenchel inequality is stable under approximation, this cannot be used to study its
nontrivial equality cases as the latter are destroyed by approximation [13, 16, 17].
The above example shows that for Hodge-Riemann relations of degree k ě 2, this
instability is manifested even by the inequality itself.

On the other hand, it is expected that the validity of Hodge-Riemann relations
should extend to “ample” families of convex bodies other than simple strongly
isomorphic polytopes. In particular, one may conjecture that the statement of
Theorem 3.1 remains valid if the class PpΛq is replaced by the class C8` of convex
bodies whose boundaries are smooth and have strictly positive curvature. Some
initial progress in this direction may be found in the recent papers [9, 1, 10].
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