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1. Introduction

It is almost a tautology that laboratory measurements give rise to classical stochastic

processes. For example, in quantum optics one usually detects, using a configuration

of photodetectors, the light of a laser which is scattered off a cloud of atoms, and

the resulting photocurrent is a classical stochastic process2,4. It is subsequently

of interest to infer as well as possible the state of the atoms from the observed

photocurrent, which is the purpose of quantum filtering theory. This theory has

been extensively investigated both in the mathematical literature3 (see Ref. 4 for a

recent review) and in the physics literature, where it is known under the name of

quantum trajectory theory or the theory of stochastic master equations11.

In order to implement the quantum filter, however, the underlying quantum

model is presumed to be known. It is not evident, a priori, that good estimates will

be obtained in the presence of modelling errors which are inevitable in practice.

Questions of robustness to modelling errors are particularly subtle on a long time

interval, and have received much attention in the classical nonlinear filtering litera-

ture, see, e.g., Ref. 8 and the references therein. In particular, asymptotic stability

of the filter—the independence of the filter, after a long time interval, of the initial

estimate of the system—has been shown to hold in a wide range of classical nonlin-

ear filtering models, and is the starting point for more general robustness questions.
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The problem of asymptotic stability is related to the consistency of Bayes estimates

and is of significant practical interest as it ensures optimal performance of the fil-

ter, after an initial transient, even under misspecification of the initial condition.

To date, however, no such result is known in quantum filtering theory.

The goal of this paper is to develop a criterion which ensures asymptotic stability

of quantum filters. This observability condition for stability is a natural one: it is

the requirement that no two different initial states of the model give rise to an

observation process with the same law. In the quantum optics example described

above, this means that we must be able to determine precisely the initial state of

the atoms if we have access to the full statistics of the photocurrent over the infinite

time interval. If this is the case, then the filtered estimates of the atomic observables

are insensitive to the initial state of the atoms after a long time interval, provided we

restrict our attention to initial states that satisfy an absolute continuity condition.

The basic method of proof is based on the classical counterpart of this result,

which has recently been developed by the author21. To extend this result to the

quantum setting, it is most natural to work within an abstract quantum filtering

setting which is a little more general than the usual setting in the quantum filter-

ing literature3,4. We set up the problem in section 2 in the context of C∗-algebraic

Markov process theory in the spirit of Accardi, Frigerio and Lewis1. The proof of

the main result can be found in section 3. In section 4 we elaborate on the absolute

continuity condition required by our main result, and provide a simpler sufficient

condition. In the last section 5 we investigate a class of quantum filtering models,

defined through the solution of a Hudson-Parthasarathy type quantum stochastic

differential equation with a finite dimensional initial system, which have important

applications, e.g., in quantum optics. In this setting one may find explicitly com-

putable rank conditions for the model to be observable in terms of the coefficients

of the quantum stochastic differential equation and the observation model.

Finally, let us note that the asymptotic stability of nonlinear filters is not only

of interest by itself, but is also an important ingredient in the development of error

bounds for filters under more general modelling errors or for approximate filters (see,

e.g., Refs. 5, 6 in the classical setting). In that case, however, it is typically necessary

to obtain more quantitative bounds on the rate of stability. Let us also mention that

observability, though sufficient, is not a necessary condition for stability. One could

conjecture that a natural counterpart of the detectability condition in Ref. 21 is

necessary and sufficient for the stability of quantum filters in the finite dimensional

setting of section 5, as it is in the classical case.

2. The quantum filtering model

We will consider quantum filtering theory in the abstract setting of Feller-type

quantum Markov processes in the spirit of Accardi, Frigerio and Lewis1,10. One of

the most important examples in practice is the quantum stochastic flow generated by

a quantum stochastic differential equation with a finite-dimensional initial system;
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this particular setting will be investigated in detail in section 5.

In this section, we introduce the quantum filtering model and fix the notation

for the rest of the paper. Let us begin by defining the basic elements of the model.

• A, the initial system, is a unital C∗-algebra with state space S ⊂ A∗;
• {Pt, t ≥ 0} is a one parameter semigroup of contractive and completely positive

linear maps from A to itself, with P0[X ] = X ∀X ∈ A and Pt[I] = I ∀ t ≥ 0;

• M, the universal algebra, is a Von Neumann algebra;

• {Mt] : t ≥ 0} is a filtration of subalgebras of M such that (
⋃

t≥0 Mt])
′′ = M and

M0] ≃ A∗∗ (i.e., M0] is the enveloping algebra of A);

• {Φρ : ρ ∈ S} is a family of normal states on M such that the conditional expec-

tations Φρ( · |Mt]) : M → Mt] exist for every t ≥ 0 and ρ ∈ S.

Remark 2.1. The requirement that A be unital is not overly restrictive; if A is

not unital, we may always enlarge A by adjoining the identity without essentially

changing the structure of the theory. When A is commutative, this corresponds to

the one-point compactification of the spectrum (Ex. VII.8.5 in Ref. 7).

Before proceeding, we recall for the reader’s convenience the definition of the

conditional expectation in a Von Neumann algebra (see, e.g., Ref. 15).

Definition 2.1 (Conditional expectation). Let A,A0 be Von Neumann alge-

bras, A0 ⊂ A and let Φ be a normal state on A. Suppose there exists a linear map

Φ( · |A0) : A → A0 which satisfies the following properties:

• Φ(I|A0) = I;

• Φ(X∗X |A0) ≥ 0 for all X ∈ A;

• Φ(X∗|A0) = Φ(X |A0)
∗ for all X ∈ A;

• Φ(XY Z|A0) = XΦ(Y |A0)Z for all Y ∈ A and X,Z ∈ A0;

• Φ(Φ(X |A0)) = Φ(X) for all X ∈ A.

Then Φ( · |A0) is a conditional expectation from A onto A0 with respect to Φ.

It is not difficult to prove that any two maps P,Q : A → A0 which satisfy this

definition are Φ-indistinguishable, i.e., Φ(|P (X) − Q(X)|2) = 0 (see, e.g., Thm.

3.16 in Ref. 4). Thus the conditional expectation, if it exists, is essentially unique.

Existence, on the other hand, is not guaranteed in the noncommutative setting.

We now return to our filtering setup. We will presume that there is a family

{jt : t ≥ 0} of ∗-isomorphisms jt : A → Mt] such that the Markov property holds:

Φρ(jt+s(X)|Ms]) = js(Pt[X ]) ∀ t, s ≥ 0, X ∈ A, ρ ∈ S.

Moreover, we presume that j0(A)′′ = M0] and that

Φρ(j0(X)) = ρ(X) ∀X ∈ A, ρ ∈ S,

i.e., the state ρ ∈ S can be interpreted as the initial state of the quantum Markov

process jt. The latter plays the role of the signal process in classical filtering theory.
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Remark 2.2. In order that Φρ(j0(X)) = ρ(X) for all ρ, it is necessary that every

state ρ ∈ S extends to a normal state on M0]. This forces us to work with the

universal representation M0] ≃ A∗∗ as required above, see Thm. 1.17.2 in Ref. 18.

In addition, we must introduce the observations. To this end, we introduce the

n-dimensional observation process {Y k
t : t ≥ 0, k = 1, . . . , n}, where Y k

t is a self-

adjoint operator affiliated to Mt] and Y k
0 = 0. Define Yt] to be the Von Neumann

algebra generated by {Y k
s : 0 ≤ s ≤ t, k = 1, . . . , n}. We presume that

Yt] is commutative, jt(X) ∈ Y′
t] ∀ t ≥ 0, X ∈ A.

The first condition is known as the self-nondemolition property, and ensures that

the process {Yt} can be represented as a classical stochastic process (as is befitting

of laboratory observations). The second condition is the nondemolition property,

and ensures that the conditional expectations πρ
t (X) := Φρ(jt(X)|Yt]) exist for

every X ∈ A and t ≥ 0 (see, e.g., Thm. 3.16 in Ref. 4). The goal of the filtering

problem is to compute these conditional expectations. This problem can be solved

explicitly in specific models, as is known since the work of Belavkin3; see Ref. 4 for

an introduction and review. For the purpose of this paper, however, it will not be

necessary to obtain explicit expressions for the filtered estimates πρ
t (X).

Finally, we introduce the following Feller-type assumption. We presume that for

any choice of t1, . . . , tk > 0 and bounded continuous functions f1, . . . , fk : R → R,

Φρ(f1(Yt1) · · · fk(Ytk
)|M0]) = j0(Z(t1, . . . , tk, f1, . . . , fk))

for some Z(t1, . . . , tk, f1, . . . , fk) ∈ A independent of ρ, and moreover

Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ms]) = js(Z(t1, . . . , tk, f1, . . . , fk))

for every s ≥ 0. The latter assumption ensures, in a sense, that the observation

process is time-homogeneous. An important example of a filtering model in which

these constructions can be implemented is discussed in detail in section 5.

The goal of the remainder of the paper is to study the dependence of the filter

πρ
t (X) := Φρ(jt(X)|Yt]) on the initial state ρ ∈ S as t→ ∞.

Definition 2.2 (Observability). Let Y = (
⋃

t≥0 Yt])
′′. The model is observable

if there do not exist ρ1, ρ2 ∈ S with ρ1 6= ρ2 and Φρ1
(Y ) = Φρ2

(Y ) for every Y ∈ Y.

We will prove the following result.

Theorem 2.1. If the model is observable, then

Φρ1
(|πρ1

t (X) − πρ2

t (X)|) t→∞−−−→ 0 ∀X ∈ A
whenever the laws of the observations under Φρ1

and Φρ2
are absolutely continuous

(i.e., if P is a projection in Y and Φρ2
(P ) = 0, then Φρ1

(P ) = 0).

We can obtain a sufficient condition for the absolute continuity of the observation

laws, as required in theorem 2.1, in terms of the initial states. This is developed

in section 4. In the finite-dimensional setting, discussed in section 5, we will find

explicitly computable conditions for the filtering model to be observable.
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3. Observability and filter stability

The proof of the main result proceeds in two steps. First, we establish that

Φρ1
(|πρ1

t (X) − πρ2

t (X)|) t→∞−−−→ 0

for X of the form Z(t1, . . . , tk, f1, . . . , fk). This holds without any further assump-

tions. Then, we show that the set of all such observables is total in A when the

model is observable. A simple approximation argument then completes the proof.

3.1. Stability of Z(t1, . . . , tk, f1, . . . , fk)

We begin by proving a simple lemma. This result is almost trivial—it is just the

tower property of the conditional expectation—but one should verify that the con-

ditional expectations do in fact exist.

Lemma 3.1. For any ρ ∈ S, s ≥ 0 and t1, . . . , tk, f1, . . . , fk,

πρ
s (Z(t1, . . . , tk, f1, . . . , fk)) = Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk

− Ys)|Ys])

up to Φ-indistinguishability.

Proof. First, note that by the nondemolition assumption

Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ms]) = js(Z(t1, . . . , tk, f1, . . . , fk)) ∈ Y′

s].

Hence the conditional expectation with respect to Ys] exists and

πρ
s (Z(t1, . . . , tk, f1, . . . , fk)) = Φρ(Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk

− Ys)|Ms])|Ys]).

Moreover, the conditional expectation

Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ys])

exists as f1(Ys+t1 −Ys) · · · fk(Ys+tk
−Ys) ∈ Y′

s] (this follows directly as Y is commu-

tative). Finally, note that observables of the form X f1(Ys+t1 −Ys) · · · fk(Ys+tk
−Ys)

with X ∈ Ys] are weak∗ total in Y. Hence the maps Φρ( · |Ys]) : Y → Ys] and

Φρ(Φρ( · |Ms])|Ys]) : Y → Ys] are both well defined. It remains to note that both

these maps satisfy the definition of the conditional expectation.

We can now prove the stability of Z(t1, . . . , tk, f1, . . . , fk). By virtue of the pre-

vious lemma the setting is essentially classical (as all the objects involved live in

the commutative algebra Y), and we will exploit this fact explicitly in the proof.

Proposition 3.1. Suppose that the law of the observations under Φρ1
is absolutely

continuous with respect to the law of the observations under Φρ2
. Then

Φρ1
(|πρ1

t (Z(t1, . . . , tk, f1, . . . , fk)) − πρ2

t (Z(t1, . . . , tk, f1, . . . , fk))|) t→∞−−−→ 0

for any t1, . . . , tk > 0 and bounded continuous functions f1, . . . , fk.
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Proof. We work exclusively on the commutative algebra Y. By the spectral theo-

rem (Prop. 1.18.1 in Ref. 18), there exists a measure space (Ω,F , λ) which admits a

surjective ∗-isomorphism ι : Y → L∞(Ω,F , λ), and every state Φϕ induces a prob-

ability measure Pϕ on Ω such that Φϕ(X) = Eϕ(ι(X)) for all X ∈ Y. Moreover,

there exists a classical stochastic process {yk
t : t ≥ 0, k = 1, . . . , n} on Ω such that

ι(f(Y k1

t1 , . . . , Y
kℓ

tℓ
)) = f(yk1

t1 , . . . , y
kℓ

tℓ
) ∀ bounded measurable f : R

ℓ → R,

and it is straightforward to verify that

ι(Φϕ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ys]))

= Eϕ(f1(ys+t1 − ys) · · · fk(ys+tk
− ys)|Ys)

where Ys = σ{yr : 0 ≤ r ≤ s}. Evidently it suffices to prove that

Eρ1
(|Eρ1

(ξt|Yt) − Eρ2
(ξt|Yt)|) t→∞−−−→ 0

whenever ξs = f1(ys+t1 − ys) · · · fk(ys+tk
− ys) for all s ≥ 0 and ρ1, ρ2 ∈ S which

give rise to absolutely continuous observation laws.

To proceed, note that by our absolute continuity assumption Pρ1
|Y∞

≪ Pρ2
|Y∞

.

We can therefore apply the classical Bayes formula (Lem. 8.6.2 in Ref. 16):

Eρ2
(∆|Yt)Eρ1

(ξt|Yt) = Eρ2
(∆ ξt|Yt) Pρ2

-a.s.,

where ∆ = dPρ1
|Y∞

/dPρ2
|Y∞

(Y∞ =
∨

t≥0 Yt). Thus we find that

Eρ2
(∆|Yt) |Eρ1

(ξt|Yt) − Eρ2
(ξt|Yt)| = |Eρ2

((∆ − Eρ2
(∆|Yt)) ξt|Yt)| Pρ2

-a.s.

Taking the expectation with respect to Pρ2
, we obtain

Eρ1
(|Eρ1

(ξt|Yt) − Eρ2
(ξt|Yt)|) = Eρ2

(|Eρ2
((∆ − Eρ2

(∆|Yt)) ξt|Yt)|).

By Jensen’s inequality

Eρ2
(|Eρ2

((∆ − Eρ2
(∆|Yt)) ξt|Yt)|) ≤ K Eρ2

(|∆ − Eρ2
(∆|Yt)|),

where K = ‖f1‖∞ · · · ‖fk‖∞. But note that ξt is measurable with respect to Y∞, so

by the martingale convergence theorem Eρ2
(∆|Yt) → ∆ in L1(Ω,F ,Pρ2

). Therefore

Eρ1
(|Eρ1

(ξt|Yt) − Eρ2
(ξt|Yt)|) → 0, and the proof is complete.

Corollary 3.1. Denote by O0 ⊂ A the linear span of Z(t1, . . . , tk, f1, . . . , fk) for

all t1, . . . , tk, f1, . . . , fk, and suppose that the law of the observations under Φρ1
is

absolutely continuous with respect to the law of the observations under Φρ2
. Then

Φρ1
(|πρ1

t (Z) − πρ2

t (Z)|) t→∞−−−→ 0 ∀Z ∈ clO0,

where clO0 denotes the (uniform) closure of O0 in A.

Proof. Fix Z ∈ clO0 and a sequence {Zn} ⊂ O0 such that ‖Zn − Z‖ → 0 as

n→ ∞. For every n <∞, we have Φρ1
(|πρ1

t (Zn)− πρ2

t (Zn)|) → 0 as t→ ∞; to see

this, it suffices to use the linearity of the conditional expectation and the fact that
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the triangle inequality holds for | · | when we restrict our attention to a commutative

algebra (i.e., |
∑

i Xi| ≤
∑

i |Xi| provided that the Xi commute with each other and

their adjoints). Reasoning in the same way, we find immediately that

Φρ1
(|πρ1

t (Z) − πρ2

t (Z)|)
≤ Φρ1

(|πρ1

t (Z − Zn)|) + Φρ1
(|πρ1

t (Zn) − πρ2

t (Zn)|) + Φρ1
(|πρ2

t (Zn − Z)|).

The first and the third term on the right are bounded above by ‖Zn − Z‖. Hence

lim sup
t→∞

Φρ1
(|πρ1

t (Z) − πρ2

t (Z)|) ≤ 2 ‖Zn − Z‖.

The result follows by letting n→ ∞.

3.2. Observability and approximation

From the previous corollary, we see that a sufficient condition for the stability of

the filter is that clO0 = A. We will show that this is the case if and only if the

model is observable. In fact, we will prove a more general result, from which this

statement follows. We begin with the following definition.

Definition 3.1 (Observable space). For ρ1, ρ2 ∈ S, we define the equivalence

relation ρ1 ∽ ρ2 whenever Φρ1
(Y ) = Φρ2

(Y ) for every Y ∈ Y. The Banach space

O = {X ∈ A : ρ1(X) = ρ2(X) for all ρ1, ρ2 ∈ S such that ρ1 ∽ ρ2}

is called the observable space of the model.

The following result is key.

Proposition 3.2. O0 is dense in O.

Proof. Suppose that O0 is not dense in O. Then there must be an element X of O
that is not in clO0. By the Hahn-Banach theorem, there exists an element ϕ ∈ A∗

such that ϕ(Z) = 0 for all Z ∈ clO0 and ϕ(X) 6= 0. Then either ϕ(X)+ϕ(X)∗ 6= 0,

or i(ϕ(X) − ϕ(X)∗) 6= 0, so we may assume without loss of generality that ϕ is

real-valued. In particular, we can write ϕ = ϕ1 − ϕ2 where ϕ1, ϕ2 are nonnegative

(e.g., Prop. 1.17.1 in Ref. 18). But note that I ∈ O0, so ϕ1(I) = ϕ2(I). We can

thus define ρ1, ρ2 ∈ S by ρ1 = ϕ1/ϕ1(I) and ρ2 = ϕ2/ϕ2(I), and we find that

ρ1(X) 6= ρ2(X) and ρ1(Z) = ρ2(Z) for all Z ∈ clO0. Now note that for any ρ ∈ S

ρ(Z(t1, . . . , tk, f1, . . . , fk)) = Φρ(f1(Yt1) · · · fk(Ytk
)).

Hence we find that

Φρ1
(f1(Yt1) · · · fk(Ytk

)) = Φρ2
(f1(Yt1) · · · fk(Ytk

))

for all t1, . . . , tk, f1, . . . , fk. As the set of observables of the form f1(Yt1 ) · · · fk(Ytk
)

is weak∗ total in Y, we conclude that Φρ1
(Y ) = Φρ2

(Y ) for all Y ∈ Y. But then

ρ1 ∽ ρ2, which implies ρ1(X) = ρ2(X), and we have a contradiction.
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We immediately find the following corollary.

Corollary 3.2. Suppose that the law of the observations under Φρ1
is absolutely

continuous with respect to the law of the observations under Φρ2
. Then

Φρ1
(|πρ1

t (X) − πρ2

t (X)|) t→∞−−−→ 0 ∀X ∈ O.

Proof. Immediate from corollary 3.1 and clO0 = O.

We may finally complete the proof of theorem 2.1.

Proof. (Theorem 2.1). The model is observable, by definition, if ρ1 ∽ ρ2 implies

ρ1 = ρ2. Clearly this is the case if and only if O = A. The result follows directly.

Remark 3.1. The proof of proposition 3.2 clarifies why it is important to work

in the C∗-algebraic setting, rather than starting off with an initial Von Neumann

algebra. As the state space of a C∗-algebra is dual to the algebra itself, we may

employ the Hahn-Banach theorem as in the proof of proposition 3.2 to characterize

the observable space. For a Von Neumann algebra, however, the space of normal

states is predual to the algebra. To employ the technique used in the proof of

proposition 3.2, we would then have two options: we must either consider non-

normal initial states, or prove density of O0 in O in the weak∗ topology on the

initial Von Neumann algebra. The former is unphysical, while in the latter case

corollary 3.1 can not be employed. It thus appears that the C∗-algebraic setting is

the natural setting in which our results can be developed.

4. Absolute continuity and randomization

In our main result, theorem 2.1, we required that the initial state ρ1, ρ2 ∈ S are such

that the law of the observations under Φρ1
is absolutely continuous with respect to

the law of the observations under Φρ2
. One might expect that a sufficient condition

would be that the initial states are themselves absolutely continuous in a suitable

sense. The goal of this section is to develop this idea.

Before we turn to the filtering model of section 2, let us consider the general

setting where A is any unital C∗-algebra. Given a state ϕ on A, we denote by

(πϕ,Hϕ, ξϕ) the cyclic representation of A induced by ϕ.

Let S ⊂ A∗ denote the state space of A. We endow A∗ with the weak∗ topology,

and recall that this makes S a compact convex set. By a (finite) measure on S we

mean a regular Borel measure on S or, equivalently, an element of C(S)∗ (see p.

232 in Ref. 19). A probability measure is a nonnegative measure with unit mass.

We now recall a basic construction in Choquet theory. Let µ be a probability

measure on S. Then (Lem. IV.6.3 in Ref. 19) there is a unique ρ ∈ S such that

F (ρ) =

∫

S
F (ϕ)µ(dϕ) ∀F ∈ A∗∗.
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The state ρ is called the barycenter of the probability measure µ. The measure µ

can be thought of as a randomization of the state ρ; indeed, we have replaced the

state ρ by a random state, with law µ, which averages to ρ:

ρ(X) =

∫

S
ϕ(X)µ(dϕ) ∀X ∈ A.

The idea is now to seek randomizations which have desirable probabilistic proper-

ties. In particular, we will consider the following notion of absolute continuity.

Definition 4.1 (Absolute continuity). The state ρ1 ∈ S is absolutely continuous

with respect to ρ2 ∈ S, denoted as ρ1 ≪ ρ2, if there exist probability measures µ1, µ2

on S such that ρ1 is the barycenter of µ1, ρ2 is the barycenter of µ2, and µ1 ≪ µ2.

We now show that this natural definition of absolute continuity of ρ1 with respect

to ρ2 is equivalent to the requirement that ρ1 is presque dominée (almost dominated)

by ρ2 in the sense of Dixmier (Ch. I, §4, Ex. 8c in Ref. 9). Radon-Nikodym type

results in this setting have been investigated by Naudts13 and Gudder12.

Proposition 4.1. Let ρ1, ρ2 ∈ S. Then the following are equivalent:

(1) ρ1 ≪ ρ2;

(2) For every sequence {Xn} ⊂ A such that limm,n ρ1((Xm−Xn)∗(Xm−Xn)) = 0,

we have limn ρ1(X
∗
nXn) = 0 whenever limn ρ2(X

∗
nXn) = 0.

(3) There exists a positive self-adjoint operator T on Hρ2
, affiliated to πρ2

(A)′, such

that ρ1(X) = 〈Tξρ2
, πρ2

(X)Tξρ2
〉 for all X ∈ A.

Proof.

(1 ⇒ 2) As ρ1 ≪ ρ2, there are probability measures µ, ν on S with µ≪ ν and

ρ1(X) =

∫

S
ϕ(X)µ(dϕ), ρ2(X) =

∫

S
ϕ(X) ν(dϕ), ∀X ∈ A.

Let {Xn} be such that limm,n ρ1((Xm − Xn)∗(Xm − Xn)) = 0, and define the

random variables Φn : S → [0,∞[ by Φn(ϕ) = ϕ(X∗
nXn). We begin by establishing

that {Φn} is a Cauchy sequence in L1(S, µ). By Lem. 2.4 in Ref. 14

|Φm(ϕ) − Φn(ϕ)| ≤ ϕ((Xm −Xn)∗(Xm −Xn))1/2
[

ϕ(X∗
mXm)1/2 + ϕ(X∗

nXn)1/2
]

.

Therefore, we find using the Cauchy-Schwarz inequality and (a+ b)2 ≤ 2a2 + 2b2

[
∫

S
|Φm − Φn| dµ

]2

≤ 2ρ1(X
∗
mXm +X∗

nXn) ρ1((Xm −Xn)∗(Xm −Xn)).

Thus {Φn} is Cauchy in L1(S, µ) provided that ρ1(X
∗
nXn) converges to a finite

limit. To show this, define ψn ∈ Hρ1
by ψn = πρ1

(Xn)ξρ1
. Then ρ1(X

∗
nXn) = ‖ψn‖2

and ρ1((Xm −Xn)∗(Xm −Xn)) = ‖ψm −ψn‖2. As the latter converges to zero, we

see that {ψn} is a Cauchy sequence in Hρ1
and thus ρ1(X

∗
nXn) has a finite limit.

Now suppose that, in addition, limn ρ2(X
∗
nXn) = 0. Then evidently Φn → 0 in

L1(S, ν), so that in particular Φn → 0 in ν-probability as well as in µ-probability
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(as µ ≪ ν). But as {Φn} is a Cauchy sequence in L1(S, µ), it follows that Φn → 0

in L1(S, µ). Thus limn ρ1(X
∗
nXn) = 0, which is what we set out to prove.

(2 ⇔ 3) See Cor. 2 in Ref. 12.

(3 ⇒ 1) Denote by C the commutative Von Neumann algebra generated by T

(i.e., this is the smallest Von Neumann subalgebra of B(Hρ2
) which contains the

spectral projections of T ). By §3.1 in Ref. 18, there is a unique probability measure

ν on S with barycenter ρ2 and surjective ∗-isomorphism Γ : C → L∞(S, ν) so that

〈ξρ2
, πρ2

(X)V ξρ2
〉 =

∫

S
Γ(V )(ϕ)ϕ(X) ν(dϕ) ∀V ∈ C, X ∈ A.

Now define fn(x) = nx/(n + x) and set Tn = fn(T ). Then Tn ∈ C is a bounded,

self-adjoint operator and, writing the spectral measure of T as ET (dλ), we find that

‖Tnξρ2
− Tξρ2

‖2 =

∫

[0,∞[

|fn(λ) − λ|2 〈ξρ2
, ET (dλ)ξρ2

〉 n→∞−−−−→ 0

by dominated convergence (as |fn(λ)−λ|2 ≤ 2fn(λ)2+2λ2 ≤ 4λ2, and ‖Tξρ2
‖2 <∞

by construction). Consequently, we obtain
∫

S
Γ(T 2

n)(ϕ)ϕ(X) ν(dϕ) = 〈Tnξρ2
, πρ2

(X)Tnξρ2
〉 n→∞−−−−→ ρ1(X).

But note that Γ(T 2
n)(ϕ) is nonnegative, nondecreasing and

∫

S
Γ(T 2

n)(ϕ) ν(dϕ)
n→∞−−−−→ 1,

so by monotone convergence Γ(T 2
n) ր ∆ with ∆ ∈ L1(S, ν). Thus

ρ1(X) =

∫

S
∆(ϕ)ϕ(X) ν(dϕ) ∀X ∈ A

by dominated convergence. We now define dµ = ∆ dν, and µ has barycenter ρ1.

We now return to the filtering setting of section 2. The following result estab-

lishes that absolute continuity of the initial states is indeed a sufficient condition

for absolute continuity of the observation laws. Absolute continuity of the initial

states is often easily verified, e.g., in the finite dimensional setting of section 5.

Proposition 4.2. Suppose that ρ1 ≪ ρ2. Then the law of the observations under

Φρ1
is absolutely continuous with respect to the law of the observations under Φρ2

.

Proof. As in the proof of proposition 3.1, we begin by constructing a measure

space (Ω,F , λ), a surjective ∗-isomorphism ι : Y → L∞(Ω,F , λ), and a family of

probability measures Pϕ on Ω such that Φϕ(X) = Eϕ(ι(X)) for all X ∈ Y.

As ρ1 ≪ ρ2, there exist two probability measures µ1, µ2 such that ρ1 is the

barycenter of µ1, ρ2 is the barycenter of µ2, and µ1 ≪ µ2. We will utilize these

measures to construct randomizations of the classical probability measures Pρ1
and
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Pρ2
. To this end, let B be the Borel σ-algebra on the state space S, and construct

the enlarged probability space (Ω̃, F̃ , P̃2) by setting Ω̃ = Ω× S, F̃ = F × B, and

P̃2(A) =

∫

S

[
∫

Ω

IA(ω, ϕ)Pϕ(dω)

]

µ2(dϕ) ∀A ∈ F̃ .

Moreover, we define dP̃1 = ∆ dP̃2 where ∆(ω, ϕ) = (dµ1/dµ2)(ϕ). Then

∫

Ω̃

F (ω) P̃i(dω, dϕ) =

∫

Ω

F (ω)Pρi
(dω), i = 1, 2,

for all bounded measurable functions F : Ω → R. As by construction P̃1 ≪ P̃2,

clearly the marginals satisfy Pρ1
≪ Pρ2

also. The proof is complete.

5. The finite dimensional case

In this section, we consider a specific class of quantum filtering models which have

important applications in quantum optics (see, e.g., Refs. 2, 4).

Fix p, q ∈ N and let H = Cp ⊗ Γ, where Γ = Γs(L
2(R+) ⊗ Cq) is the symmetric

Fock space of multiplicity q. Thus p is the dimension of the initial system, while q

is the noise dimension. We set A = Mp (the ∗-algebra of p× p complex matrices),

M = B(H) = A⊗B(Γ). Moreover, recalling that the Fock space admits the natural

tensor product structure Γ = Γt] ⊗ Γ[t, we define the filtration of subalgebras

Mt] = {X ⊗ I : X ∈ A⊗ B(Γt])}.

Finally, we define the family of states Φρ = ρ⊗ΦV with ΦV (X) = 〈ξ,Xξ〉, where ξ is

the vacuum vector in Γ. It is not difficult to verify that the conditional expectations

Φρ( · |Mt]) exist in this setting; in fact, they are given explicitly as follows:

Ht] : C
p ⊗ Γt] → C

p ⊗ Γ, Ht]ψ := ψ ⊗ ξ[t, Φρ(X |Mt]) = H∗
t]XHt] ⊗ I,

where ξ[t is the vacuum vector in Γ[t. See, e.g., Ref. 17 for further details.

We now introduce, as usual, the canonical quantum noises Ai(t), A
†
i (t),Λij(t),

i, j = 1, . . . , q on Γ (we will denote their ampliations to H by the same notation),

and consider the Hudson-Parthasarathy quantum stochastic differential equation

dUt =

{

q0
∑

i,j=1

(Sij − δij) dΛij(t) +

q0
∑

i=1

Li dA
†
i (t)

−
q0

∑

i,k=1

L∗
kSki dAi(t) −

1

2

q0
∑

k=1

L∗
kLk dt− iH dt

}

Ut, U0 = I,

where q0 ≤ q and Sij , Li, H ∈ A, H is self-adjoint, and
∑

ij Sij ⊗ eie
∗
j is a unitary

operator in Mp ⊗Mq (ei is the ith basis vector in Cq). Then this equation has a

unique solution {Ut : t ≥ 0} such that Ut is unitary for every t ≥ 0 (Thm. 27.8 in
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Ref. 17). Moreover, if we define jt : A → Mt] by jt(X) = U∗
t (X ⊗ I)Ut, then jt

satisfies the quantum Markov property for the semigroup {Pt : t ≥ 0} generated by

L [X ] = lim
tց0

Pt[X ] −X

t
= i[H,X ] +

q0
∑

k=1

{

L∗
kXLk − 1

2
L∗

kLkX − 1

2
XL∗

kLk

}

,

see Cor. 27.10 in Ref. 17. As by construction Φρ(j0(X)) = ρ(X) for any ρ ∈ S, this

model satisfies the requirements of section 2.

It remains to introduce the observations. For sake of concreteness, we will con-

sider in detail two common observation models: a one-dimensional homodyne de-

tection model and a one-dimensional photon counting model. The generalization of

these results to other observation models and to higher dimensional observations is

straightforward. Before proceeding, however, we prove the following simple lemma.

Lemma 5.1. Let ρ1, ρ2 be states on Mp which are defined by the density matrices

̺1, ̺2 (i.e., ρi(X) = Tr[̺iX ]). Then ρ1 ≪ ρ2 if and only if ker̺1 ⊃ ker ̺2.

Proof. We first prove that ker ̺1 ⊃ ker̺2 implies ρ1 ≪ ρ2. Let us restrict ̺1, ̺2

to the subspace h = (ker ̺2)
⊥. Note that ̺2|h has full rank and hence is positive

definite, so there is some ε ∈ ]0, 1[ such that 〈v, ̺2v〉 ≥ ε‖v‖2 for all v ∈ h. But the

eigenvalues of ̺1 must be contained in [0, 1], so that 〈v, ̺1v〉 ≤ ‖v‖2 for any v ∈ h.

Thus we find that 〈v, ̺2v〉 ≥ ε〈v, ̺1v〉 for all v ∈ h, so evidently ̺2 ≥ ε̺1. But then

̺′1 = (̺2 − ε̺1)/(1 − ε) defines another state ρ′1 on Mp, and the measures µ1 ≪ µ2

where µ1 = δ{ρ1} and µ2 = εδ{ρ1} + (1 − ε)δ{ρ′

1
} have barycenters ρ1 and ρ2.

It remains to prove that ρ1 ≪ ρ2 implies ker ̺1 ⊃ ker̺2. To this end, suppose

there is a v ∈ ker ̺2 such that v 6∈ ker̺1. Then ρ2(vv
∗) = 〈v, ̺2v〉 = 0 while

ρ1(vv
∗) = 〈v, ̺1v〉 = ‖(̺1)

1/2v‖2 > 0, contradicting ρ1 ≪ ρ2 by proposition 4.1.

Note that by proposition 4.2, this lemma makes the absolute continuity condition

on the observation laws easy to verify explicitly in the finite-dimensional setting.

In particular, the condition always holds if ̺2 has full rank. This is very convenient

in practice: it means that if the model is observable, we can always obtain the

correct filtered estimates as t → ∞ even when the true initial state of the system

is completely unknown by choosing an initial state for the filter of full rank.

5.1. Homodyne detection

For homodyne detection, we consider the observations

Yt = U∗
t {

√
η (A1(t) +A†

1(t)) +
√

1 − η (Aq(t) +A†
q(t))}Ut, η ∈ ]0, 1], q0 < q;

here η is the detection efficiency, and the qth quadrature plays the role of an indepen-

dent corrupting noise (we allow q0 = q if η = 1). The operators Yt are self-adjointa

aThe field quadrature Ai(t)+A
†
i
(t) should be interpreted as the Stone generator of the appropriate

Weyl operator17. This defines the correct domain for these operators on which they are self-adjoint.
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and affiliated to Mt]. Before we can proceed, we must verify that the nondemolition

and self-nondemolition properties hold, as well as the Feller property of section 2.

Lemma 5.2. Denote by Zt] the Von Neumann algebra generated by

{Zs :=
√
η (A1(s) +A†

1(s)) +
√

1 − η (Aq(s) +A†
q(s)) : s ≤ t}.

Then U∗
T Zt]UT = U∗

t Zt]Ut = Yt] for every 0 ≤ t ≤ T .

Proof. Denote by Us,t (s ≤ t) the solution of the Hudson-Parthasarathy equation

for Ut with the initial condition Us = I. Then it is not difficult to verify that

Us,tUr,s = Ur,t for r ≤ s ≤ t, and that Us,t acts as the identity on Γs] (Thm. 2.3 in

Ref. 2). Thus Us,t ∈ (Zs])
′, so that U∗

T Zt]UT = U∗
t U

∗
t,T Zt]Ut,TUt = U∗

t Zt]Ut. Finally,

note that any spectral projection P of Ys (with s ≤ t) can be written as U∗
sQUs

where Q is a spectral projection of Zs, so that P = U∗
t QUt also. But the set of all

such Q generate Zt] and the set of all such P generate Yt], so U∗
t Zt]Ut = Yt].

Corollary 5.1. The self-nondemolition and nondemolition properties hold:

Yt] is commutative, jt(X) ∈ Y′
t] ∀ t ≥ 0, X ∈ A.

Proof. As Zt] is a commutative algebra and Yt] = U∗
t Zt]Ut, evidently Yt] is com-

mutative also. To prove the nondemolition property, fix X ∈ A and P ∈ Yt]. Then

[jt(X), P ] = [U∗
t (X ⊗ I)Ut, U

∗
t QUt] = U∗

t [X ⊗ I,Q]Ut = 0, as [M0],Zt]] = 0.

Remark 5.1. By virtue of the nondemolition and self-nondemolition properties,

the filtering problem is well-posed. In this setting, one can compute the filter ex-

plicitly as the solution of the following stochastic differential equation:

dπρ
t (X) = πρ

t (L [X ]) dt+
√
η {πρ

t (L∗
1X +XL1) − πρ

t (L1 + L∗
1)π

ρ
t (X)} dW ρ

t ,

where dW
ρ

t = dYt −
√
η πρ

t (L1 + L∗
1) dt and πρ

0(X) = ρ(X), see, e.g., sec. 5.2.4 in

Ref. 20. However, we do not need this representation of the filter in this paper.

We must still demonstrate the remaining requirement of section 2.

Lemma 5.3. For any t1, . . . , tk > 0 and bounded continuous f1, . . . , fk : R → R,

Φρ(f1(Yt1) · · · fk(Ytk
)|M0]) = j0(Z(t1, . . . , tk, f1, . . . , fk))

for some Z(t1, . . . , tk, f1, . . . , fk) ∈ A independent of ρ, and moreover

Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ms]) = js(Z(t1, . . . , tk, f1, . . . , fk))

for every s ≥ 0.

Proof. The first assertion is trivial in the current setting, as the conditional ex-

pectation Φρ( · |M0]) does not depend on ρ and any element of M0] can be written

as j0(X) = X ⊗ I for some X ∈ A. To prove the second assertion, note that

f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys) = U∗

T f1(Zs+t1 − Zs) · · · fk(Zs+tk
− Zs)UT ,
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where T is chosen to be greater than max{s+tℓ : ℓ = 1, . . . , k}. But as Us, U
∗
s ∈ Ms],

we find by the module property of the conditional expectation

Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ms])

= U∗
s Φρ(U

∗
s,T f1(Zs+t1 − Zs) · · · fk(Zs+tk

− Zs)Us,T |Ms])Us.

Now note that for any pair of exponential vectors e(f), e(g) ∈ Γ and v, w ∈ Cp

〈v ⊗ e(f), U∗
s,Tf1(Zs+t1 − Zs) · · · fk(Zs+tk

− Zs)Us,T w ⊗ e(g)〉
= 〈v ⊗ e(θsf), U∗

T−sf1(Zt1) · · · fk(Ztk
)UT−s w ⊗ e(θsg)〉 〈e(fs]), e(gs])〉

= 〈v ⊗ e(θsf), f1(Yt1) · · · fk(Ytk
) w ⊗ e(θsg)〉 〈e(fs]), e(gs])〉,

where θsf(t) = f(s+ t) and fs] is the restriction of f to [0, s]. Hence

〈v ⊗ e(f),Φρ(U
∗
s,T f1(Zs+t1 − Zs) · · · fk(Zs+tk

− Zs)Us,T |Ms]) w ⊗ e(g)〉
= 〈v ⊗ e(fs]) ⊗ ξ[s, U

∗
s,Tf1(Zs+t1 − Zs)

· · · fk(Zs+tk
− Zs)Us,T w ⊗ e(gs]) ⊗ ξ[s〉 〈e(f[s), e(g[s)〉

= 〈v ⊗ ξ, f1(Yt1) · · · fk(Ytk
) w ⊗ ξ〉 〈e(fs]), e(gs])〉 〈e(f[s), e(g[s)〉

= 〈v ⊗ ξ, f1(Yt1) · · · fk(Ytk
) w ⊗ ξ〉 〈e(f), e(g)〉

= 〈v ⊗ e(f),Φρ(f1(Yt1) · · · fk(Ytk
)|M0]) w ⊗ e(g)〉.

The result now follows as the exponential vectors are total in Γ.

We have now completed verifying that all the requirements of section 2 are met,

and thus theorem 2.1 applies. The remainder of this section is devoted to the fol-

lowing problem: can one determine directly whether the model is observable on the

basis of the coefficients Sij , Li, H? We will find that this is indeed the case, and we

will give an explicit algorithm to test observability. Most of the work consists of the

computation of the characteristic function of the finite-dimensional distributions of

the observation process; we employ for this purpose a technique used by Barchielli2.

Lemma 5.4. For any 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, we define

Υt1,...,tk
(λ1, . . . , λk) = Φρ(e

P

k

ℓ=1
{iλℓ(Yt

ℓ
−Yt

ℓ
−1)+ 1

2
λ2

ℓ
(tℓ−tℓ−1)}|M0]).

Then we can write

Υt1,...,tk
(λ1, . . . , λk) = e(L+iλ1

√
η K )t1 · · · e(L +iλk

√
η K )(tk−tk−1)I,

where K [X ] = L∗
1X +XL1.

Proof. Let κ : [0,∞[ → R be locally bounded and measurable and define

Ξt(κ) = U∗
t exp

(

i

∫ t

0

κ(s) dZs +
1

2

∫ t

0

κ(s)2 ds

)

Ut.
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Using the quantum Itô rules, we find that

dΞt(κ) = iκ(t)
√
η Ξt(κ)

q0
∑

k=1

{jt(S1k) dAk(t) + jt(S
∗
1k) dA†

k(t)}

+ iκ(t)
√
η jt(L1 + L∗

1) Ξt(κ) dt+ iκ(t)
√

1 − η Ξt(κ) (dAq(t) + dA†
q(t)).

Similarly, we find that

djt(X) = jt(L [X ]) dt+

q0
∑

i,j,k=1

(S∗
kiXSkj − δijX) dΛij(t)

+

q0
∑

i,k=1

{

jt(S
∗
ki[X,Lk]) dA†

i (t) + jt([L
∗
k, X ]Ski) dAi(t)

}

.

Using the quantum Itô rules once more and retaining only the time integrals,

jt(X)Ξt(κ) = X +

∫ t

0

{js(L [X ]) + iκ(s)
√
η js(K [X ])}Ξs(κ) ds+ martingales.

Thus evidently, if we define Υt(κ,X) = Φρ(jt(X)Ξt(κ)|M0]), then

d

dt
Υt(κ,X) = Υt(κ,L [X ] + iκ(t)

√
ηK [X ]).

The result now follows directly by setting

κ(s) = λ1I[0,t1[(s) + λ2I[t1,t2[(s) + · · · + λkI[tk−1,tk[(s),

then solving the equation for Υt(κ,X) with X = I.

Proposition 5.1. The observable space O can be characterized as

O = span{L c1K d1L c2 · · ·L ckK dkI : k, ci, di ≥ 0}.

In particular, O is the smallest linear subspace of A that contains I and is invariant

under the action of L and K . The model is observable if and only if dimO = p2.

Proof. First, we claim that O coincides with the linear span of Υt1,...,tk
(λ1, . . . , λk)

for all t1, . . . , tk, λ1, . . . , λk. To see this, note that the characteristic func-

tion of the joint distribution of Yt1 , . . . , Ytk
under the state Φρ is precisely

ρ(Υt1,...,tk
(λ1, . . . , λk)) (up to a constant factor). As the finite dimensional distri-

butions determine the law of the observations, we have ρ1 ∽ ρ2 if and only if

ρ1(Υt1,...,tk
(λ1, . . . , λk)) = ρ2(Υt1,...,tk

(λ1, . . . , λk)) ∀ t1, . . . , tk, λ1, . . . , λk.

Thus evidently every element of the linear span of Υt1,...,tk
(λ1, . . . , λk) is in O.

Conversely, suppose that X ∈ O is not in the linear span of Υt1,...,tk
(λ1, . . . , λk);

then there must exist an Y ∈Mp such that Tr[Y ∗X ] 6= 0, but Tr[Y ∗Z] = 0 for all Z

in the linear span of Υt1,...,tk
(λ1, . . . , λk). But writing Y as α(̺a − ̺b)+ iβ(̺c − ̺d)

with α, β ∈ R and ̺a, . . . , ̺d density matrices corresponding to states ρa, . . . , ρd,
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we find that either ρa(X) 6= ρb(X), or ρc(X) 6= ρd(X), while nonetheless ρa ∽ ρb

and ρc ∽ ρd. We thus have a contradiction, and the claim is established.

We now claim that the linear span of Υt1,...,tk
(λ1, . . . , λk) coincides with the lin-

ear span of L c1K d1 · · ·L ckK dkI. First, note that any element of the latter form

can be obtained from Υt1,...,tk
(λ1, . . . , λk) by taking derivatives with respect to ti

and λi. This means, in particular, that any element of the latter form is in the closure

of the linear span of Υt1,...,tk
(λ1, . . . , λk). But we are working in finite dimensions,

so the linear span is already closed. It remains to show that any Υt1,...,tk
(λ1, . . . , λk)

is in the linear span of elements of the form L c1K d1 · · ·L ckK dkI. This is an im-

mediate consequence of the Cayley-Hamilton theorem, and the claim is established.

Finally, we must show that O is the smallest linear subspace of A that contains

I and is invariant under the action of L and K . Note that O is clearly invariant

under L and K and contains I, so the smallest linear subspace such that this

holds is contained in O. Conversely, any element of O can be generated by applying

L and K to I finitely many times and taking finitely many linear combinations,

and the smallest subspace must contain at least these elements. This establishes

the claim. Note that the model is observable if and only if O = A, which is clearly

equivalent to dimO = p2. The proof is complete.

Using this characterization of O we can construct and explicit algorithm for

verifying observability. To this end, we define the linear spaces Zn ⊂ A by

Z0 = span{I}, Zn = span{Zn−1, L [Zn−1], K [Zn−1]}, n ≥ 1.

Clearly every element of O will be in Zn for some finite n. Moreover, if Zn = Zn+1

for some n = m, then it is true for all n > m, and in particular Zm = O. But this

will always be the case for some finite n: after all, the linear spaces Zn grow with n,

but dimZn can not exceed p2. Hence this construction is guaranteed to yield O in a

finite number of steps. To implement the procedure as a computational algorithm,

one could start with {I} in the first step, then apply the Gram-Schmidt procedure

at every iteration n to obtain a basis for Zn.

5.2. Photon counting

In the photon counting case, we consider the observations

Yt = U∗
t {ηΛ11(t) + (1 − η) Λqq(t) +

√

η(1 − η) (Λ1q(t) + Λq1(t))}Ut,

where η ∈ ]0, 1] is again the detection efficiency and q0 < q. Once again Yt is self-

adjoint and affiliated to Mt], and we must verify the various properties of section

2. The proofs of these properties are identical, however, to the homodyne case, so

there is no need to repeat them. We only collect here the required facts.

Lemma 5.5. Denote by Nt] the Von Neumann algebra generated by

{Ns := ηΛ11(s) + (1 − η) Λqq(s) +
√

η(1 − η) (Λ1q(s) + Λq1(s)) : s ≤ t}.
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Then U∗
T Nt]UT = U∗

t Nt]Ut = Yt] for every 0 ≤ t ≤ T . In particular, the self-

nondemolition and nondemolition properties hold:

Yt] is commutative, jt(X) ∈ Y′
t] ∀ t ≥ 0, X ∈ A.

Moreover, for any t1, . . . , tk > 0 and bounded continuous f1, . . . , fk : R → R,

Φρ(f1(Yt1) · · · fk(Ytk
)|M0]) = j0(Z(t1, . . . , tk, f1, . . . , fk))

for some Z(t1, . . . , tk, f1, . . . , fk) ∈ A independent of ρ, and moreover

Φρ(f1(Ys+t1 − Ys) · · · fk(Ys+tk
− Ys)|Ms]) = js(Z(t1, . . . , tk, f1, . . . , fk))

for every s ≥ 0.

Proof. The proofs of these facts are identical to the proofs of lemma 5.2, corollary

5.1, and lemma 5.3, and are thus omitted here.

Remark 5.2. Also in this setting one can compute the filter explicitly as the

solution of a stochastic differential equation driven by the observations:

dπρ
t (X) = πρ

t (L [X ]) dt+

[

πρ
t (L∗

1XL1)

πρ
t (L∗

1L1)
− πρ

t (X)

]

(dYt − η πρ
t (L∗

1L1) dt),

where πρ
0(X) = ρ(X). We will not need this representation of the filter in this paper.

To proceed, we must adapt lemma 5.4 to the current setting.

Lemma 5.6. For any 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, we define

Υt1,...,tk
(λ1, . . . , λk) = Φρ(e

P

k

ℓ=1
{iλℓ(Yt

ℓ
−Yt

ℓ
−1)}|M0]).

Then we can write

Υt1,...,tk
(λ1, . . . , λk) = e(L +(eiλ1−1)ηJ )t1 · · · e(L +(eiλ

k−1)ηJ )(tk−tk−1)I,

where J [X ] = L∗
1XL1.

Proof. Let κ : [0,∞[ → R be locally bounded and measurable and define

Ξt(κ) = U∗
t exp

(

i

∫ t

0

κ(s) dNs

)

Ut.
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Using the quantum Itô rules, we find that

dΞt(κ) = η (eiκ(t) − 1)Ξt(κ)

q0
∑

i,j=1

jt(S
∗
1iS1j) dΛij(t)

+ (1 − η) (eiκ(t) − 1)Ξt(κ) dΛqq(t)

+
√

η(1 − η) (eiκ(t) − 1)Ξt(κ)

q0
∑

i=1

{jt(S∗
1i) dΛiq(t) + jt(S1i) dΛqi(t)}

+ η (eiκ(t) − 1)Ξt(κ)

q0
∑

i=1

{jt(S∗
1iL1) dA

†
i (t) + jt(L

∗
1S1i) dAi(t)}

+
√

η(1 − η) (eiκ(t) − 1)Ξt(κ)

q0
∑

i=1

{jt(L∗
1) dAq(t) + jt(L1) dA

†
q(t)}

+ η (eiκ(t) − 1)Ξt(κ) jt(L
∗
1L1) dt.

Using the quantum Itô rules once more and retaining only the time integrals,

jt(X)Ξt(κ) = X +

∫ t

0

{js(L [X ]) + (eiκ(s) − 1)η js(J [X ])}Ξs(κ) ds+ martingales.

Thus evidently, if we define Υt(κ,X) = Φρ(jt(X)Ξt(κ)|M0]), then

d

dt
Υt(κ,X) = Υt(κ,L [X ] + (eiκ(t) − 1)ηJ [X ]).

The result now follows directly by setting

κ(s) = λ1I[0,t1[(s) + λ2I[t1,t2[(s) + · · · + λkI[tk−1,tk[(s),

then solving the equation for Υt(κ,X) with X = I.

The following result now follows precisely as before.

Proposition 5.2. The observable space O can be characterized as

O = span{L c1J d1L c2 · · ·L ckJ dkI : k, ci, di ≥ 0}.
In particular, O is the smallest linear subspace of A that contains I and is invariant

under the action of L and J . The model is observable if and only if dimO = p2.

Proof. The proof is identical to that of proposition 5.1.

5.3. Some remarks

In this section, we have obtained precise characterizations of when a homodyne

detection or photon counting model is observable (when the initial system is fi-

nite dimensional). This yields a simple algorithm to test observability, from which

stability of the filter follows directly due to theorem 2.1. Even in the absence of

observability, however, one can say something about the stability of certain observ-

ables using corollary 3.2. The simplest such result is the following.
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Corollary 5.2. For the homodyne detection model (resp. photon counting model),

the observable M = L1 + L∗
1 (resp. L∗

1L1) is always stable in the sense that

Φρ1
(|πρ1

t (M) − πρ2

t (M)|) t→∞−−−→ 0

whenever the law of the observations under Φρ1
is absolutely continuous with respect

to the law of the observations under Φρ2
.

Proof. This is immediate from corollary 3.2 and the fact thatM = L1+L
∗
1 = K [I]

(resp. M = L∗
1L1 = J [I]) is clearly in O.

In the physics literature, the observable M in this corollary is sometimes called

the measurement observable. The fact that the measurement observable is always

stable regardless of any other properties of the model was established for the ho-

modyne detection case in §5.3.2 of Ref. 20 using a different method.

We conclude this section with an example that highlights the importance of the

absolute continuity of the observations in our results.

Example 5.1. We consider the homodyne detection model, and let us choose q0 =

1, S11 = I, H = 0, and L1 = F/2 with F = diag{1, 2, . . . , p}. By the previous

corollary, the measurement observable M = F is stable in the sense that

Φρ1
(|πρ1

t (F ) − πρ2

t (F )|) t→∞−−−→ 0

whenever the observations are absolutely continuous as required by theorem 2.1.

It is easily verified, however, that any state ρ with density matrix of the form

̺ = diag{0, . . . , 0, 1, 0, . . . , 0} is a fixed point for the filtering equation in remark

5.1. Hence Φρ1
(|πρ1

t (F ) − πρ2

t (F )|) 6→ 0 when ρ1, ρ2 are two different states of this

form. Evidently the absolute continuity requirement is essential. We refer to Ref. 21

for a discussion of the connection between the weakening of the absolute continuity

requirement and the notion of controllability in the classical setting.
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