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Hidden Markov Models

1.1 Markov Processes

Consider an E-valued stochastic process (Xk)k≥0, i.e., each Xk is an E-valued
random variable on a common underlying probability space (Ω,G,P) where
E is some measure space. We think of Xk as the state of a model at time k:
for example, Xk could represent the price of a stock at time k (set E = R+),
the position and momentum of a particle at time k (set E = R3×R3), or the
operating status of an industrial process (set E = {working,defective}). We
will refer to E as the state space of the process (Xk)k≥0.

The process (Xk)k≥0 is said to possess the Markov property if

P(Xk+1 ∈ A|X0, . . . , Xk) = P(Xk+1 ∈ A|Xk) for all A, k.

In words, the Markov property guarantees that the future evolution of the
process depends only on its present state, and not on its past history.

Markov processes are ubiquitous in stochastic modeling, and for good rea-
sons. On the one hand, many models are naturally expected to be Markovian.
For example, the basic laws of physics guarantee that the motion of a particle
in a (small) time step is determined only by its present position and veloc-
ity; it does not matter how it ended up in this situation. On the other hand,
the simple structure of Markov processes allow us to develop powerful mathe-
matical techniques and computational algorithms which would be intractable
without the Markov property. It is therefore very desirable in practice to build
stochastic models which possess the Markov property.

Almost everything we will encounter in this course relies on the Markov
property on some level, and this explains two of the three words in the title of
these notes. In this section we recall some basic facts about Markov processes.

The transition kernel

For a succinct description of the Markov property of a stochastic process we
will need the notion of a transition kernel.
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Definition 1.1. A kernel from a measurable space (E,E) to a measurable
space (F,F) is a map P : E × F → R+ such that

1. for every x ∈ E, the map A 7→ P (x,A) is a measure on F ; and
2. for every A ∈ F, the map x 7→ P (x,A) is measurable.

If P (x, F ) = 1 for every x ∈ E, the kernel P is called a transition kernel.

Let us now rephrase the definition of a Markov process. We will call the
stochastic process (Xk)k≥0 on the state space (E,E) a homogeneous Markov
process if there exists a transition kernel P from E to itself such that

P(Xk+1 ∈ A|X0, . . . , Xk) = P (Xk, A) for all A, k.

Think of P (x,A) as the probability that the process will be in the set A ⊂ E
in the next time step, when it is currently in the state x ∈ E. ‘Homogeneous’
refers to the fact that this probability is the same at every time k.

Example 1.2. Let ξk, k ≥ 1 be an i.i.d. sequence of real-valued random vari-
ables with law µ, and define recursively the E-valued random variables

X0 = z, Xk+1 = f(Xk, ξk+1) (k ≥ 0),

where f : E ×R → E is a measurable function and z ∈ E. Then (Xk)k≥0 is a
homogeneous Markov process on the state space (E,E) with transition kernel

P (x, A) =
∫

IA(f(x, z))µ(dz), x ∈ E, A ∈ E.

Indeed, note that ξk+1 is independent of X0, . . . , Xk, so

P(Xk+1 ∈ A|X0, . . . , Xk) = E(IA(Xk+1)|X0, . . . , Xk)
= E(IA(F (Xk, ξk+1))|X0, . . . , Xk)
= E(IA(F (x, ξk+1))|X0, . . . , Xk)|x=Xk

= E(IA(F (x, ξk+1)))|x=Xk
= P (Xk, A).

That P is indeed a kernel is easily verified (use Fubini’s theorem).

When a Markov process is not homogeneous, we need to introduce a dif-
ferent transition kernel for every time k.

Definition 1.3. A stochastic process (Xk)k≥0 on the state space (E,E) is
called an inhomogeneous Markov process if there exists for every time k ≥ 0
a transition kernel Pk : E × E → [0, 1] such that

P(Xk+1 ∈ A|X0, . . . , Xk) = Pk(Xk, A) for every k ≥ 0, A ∈ E.

If we can choose a single transition kernel P = Pk for all k, then the process
is called a homogeneous Markov process. The probability measure µ on E
defined as µ(A) = P(X0 ∈ A) is called the initial measure of (Xk)k≥0.
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For simplicity we will typically work with homogeneous Markov processes,
though most of the theory that we are about to develop in the following
chapters does not rely on it. When not specified explicitly, we will always
assume a Markov process to be homogeneous.

Remark 1.4. Under an extremely mild technical condition (that E is a Borel
space—this is the case in all our examples), this definition of an inhomoge-
neous Markov process is equivalent to the definition of the Markov property
given at the beginning of the chapter. See, e.g., [Kal02, theorem 6.3].

Finite dimensional distributions

Let (Xk)k≥0 be a Markov process on the state space (E,E) with transition
kernel P and initial measure µ. What can we say about the law of this process?

Lemma 1.5. Let (Xk)k≥0 be a Markov process on E with transition kernel P
and initial measure µ. Then for any bounded measurable f : Ek+1 → R

E(f(X0, . . . , Xk)) =
∫

f(x0, . . . , xk) P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0).

Evidently the initial law and transition kernel completely determine the
finite dimensional distributions, hence the law, of the Markov process (Xk)k≥0.

Proof. It suffices to prove the result for functions of the form f(x0, . . . , xk) =
f0(x0) · · · fk(xk) (use the monotone class theorem). Note that

E(f0(X0) · · · fk(Xk)) = E(f0(X0) · · · fk−1(Xk−1)E(fk(Xk)|X0, . . . , Xk−1))

= E
(

f0(X0) · · · fk−1(Xk−1)
∫

fk(xk) P (Xk−1, dxk)
)

= E
(

f0(X0) · · · fk−2(Xk−2)×

E
(

fk−1(Xk−1)
∫

fk(xk) P (Xk−1, dxk)
∣∣∣∣X0, . . . , Xk−2

))
= E

(
f0(X0) · · · fk−2(Xk−2)×∫

fk−1(xk−1) fk(xk) P (xk−1, dxk) P (Xk−2, dxk−1)
)

· · ·

= E
(

f0(X0)
∫

f1(x1) · · · fk(xk)P (xk−1, dxk) · · ·P (X0, dx1)
)

=
∫

f0(x0) · · · fk(xk) P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0).

The proof is complete. ut
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Let us introduce some common notation. For any bounded measurable
function f : E → R, we define the function Pf : E → R by setting

Pf(x) =
∫

f(z)P (x, dz), x ∈ E.

Note that for a Markov process (Xk)k≥0 with transition kernel P , we have

E(f(Xk+1)|X0, . . . , Xk) = Pf(Xk).

Now define recursively, for n ≥ 1, the functions Pnf = PPn−1f (P 0f = f).
By repeated conditioning, it follows easily that

E(f(Xk+n)|X0, . . . , Xk) = E(E(f(Xk+n)|X0, . . . , Xk+n−1)|X0, . . . , Xk)
= E(Pf(Xk+n−1)|X0, . . . , Xk)
= E(E(Pf(Xk+n−1)|X0, . . . , Xk+n−2)|X0, . . . , Xk)

= E(P 2f(Xk+n−2)|X0, . . . , Xk) (· · · )
= E(Pnf(Xk)|X0, . . . , Xk)
= Pnf(Xk).

Similarly, let ρ be a measure on E. Define the measure ρP on E as

ρP (A) =
∫

P (x,A) ρ(dx), A ∈ E,

and, for n ≥ 1, the measures ρPn = ρPn−1P (ρP 0 = ρ). Then for a Markov
process (Xk)k≥0 with transition kernel P and initial measure µ, lemma 1.5
shows that P(Xk ∈ A) = µP k(A) for all A ∈ E, i.e., µP k is the law of Xk.

Finally, we will frequently use the following fact: for any function f∫
f(x) µP (dx) =

∫
Pf(x) µ(dx),

i.e., the maps µ 7→ µP and f 7→ Pf are dual to each other.

1.2 Hidden Markov Models

In the broadest sense of the word, a hidden Markov model is a Markov process
that is split into two components: an observable component and an unobserv-
able or ‘hidden’ component. That is, a hidden Markov model is a Markov
process (Xk, Yk)k≥0 on the state space E × F , where we presume that we
have a means of observing Yk, but not Xk. Adopting terminology from signal
processing, we will typically refer to the unobserved component Xk as the
signal process and E as the signal state space, while the observed component
Yk is called the observation process and F is the observation state space.
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Hidden Markov models appear in a wide variety of applications. To fix
some ideas one might distinguish between two main classes of applications,
though many applications fall somewhere in between.

On the one hand, hidden Markov models naturally describe a setting where
a stochastic system is observed through noisy measurements. For example, in
communications theory, one might think of Xk as a (random) signal to be
transmitted through a communications channel. As the channel is noisy, the
receiver observes a corrupted version Yk of the original signal, and he might
want to reconstruct as well as is possible the original signal from the noisy
observations. This is the origin of the signal/observation process terminology.

On the other hand, it may be the process Yk which is ultimately of interest,
while the Xk represents the influence on Yk of certain unobservable external
factors. For example, one might think of Yk as the market price of stock, where
Xk is an unobserved economic factor process which influences the fluctuations
of the stock price. We are ultimately interested in modeling the observed stock
price fluctuations, not in the unobservable factor process, but by including the
latter one might well be able to build a model which more faithfully reflects
the statistical properties of the observed stock prices. It should be noted that
even though (Xk, Yk)k≥0 is Markov, typically the observed component (Yk)k≥0

will not be Markov itself. Hidden Markov models can thus be used to model
non-Markov behavior (e.g., of the stock price), while retaining many of the
mathematical and computational advantages of the Markov setting.

This course is an introduction to some of the basic mathematical, statis-
tical and computational methods for hidden Markov models. To set the stage
for the rest of the course, we will describe in the next two sections a num-
ber of representative examples of hidden Markov models in applications taken
from a variety of fields, and we will introduce the basic questions that will be
tackled in the remainder of the course. Before we do this, however, we must
give a precise definition of the class of models which we will be considering.

Definition and elementary properties

The broadest notion of a hidden Markov model, as outlined above, is a little
too general to lead to a fruitful theory. Throughout this course, and in much
of the literature, the term hidden Markov model is used to denote a Markov
process (Xk, Yk)k≥0 with two essential restrictions:

• the signal (Xk)k≥0 is itself a Markov process; and
• the observation Yk is a noisy functional of Xk only (in a sense to be made

precise shortly).

As we will see in the next section, there is a wide variety of applications that
fit within this framework.

Definition 1.6. A stochastic process (Xk, Yk)k≥0 on the product state space
(E×F,E⊗F) is called a hidden Markov model if there exist transition kernels
P : E × E → [0, 1] and Φ : E × F → [0, 1] such that
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E(g(Xk+1, Yk+1)|X0, Y0, . . . , Xk, Yk) =
∫

g(x, y) Φ(x, dy) P (Xk, dx),

and a probability measure µ on E such that

E(g(X0, Y0)) =
∫

g(x, y) Φ(x, dy) µ(dx),

for every bounded measurable function g : E × F → R. In this setting µ
is called the initial measure, P the transition kernel, and Φ the observation
kernel of the hidden Markov model (Xk, Yk)k≥0.

Comparing with definition 1.3, it is immediately clear that (Xk, Yk)k≥0

and (Xk)k≥0 are both (homogeneous) Markov processes. To illustrate the
structure of the observations (Yk)k≥0, we consider a canonical example.

Example 1.7. Let αk, k ≥ 1 and βk, k ≥ 0 be independent i.i.d. sequences of
real-valued random variables with laws α and β, respectively. Define

X0 = z,
Y0 = h(X0, β0),

Xk = f(Xk−1, αk),
Yk = h(Xk, βk) (k ≥ 1),

where f : E×R → E and h : E×R → F are measurable functions and z ∈ E.
Then (Xk, Yk)k≥0 is a hidden Markov model with transition kernel

P (x, A) =
∫

IA(f(x, z))α(dz),

observation kernel
Φ(x, B) =

∫
IB(h(x, z))β(dz),

and initial measure δz. Indeed, as βk+1 is independent of X0,...,k+1 and Y0,...,k,

E(g(Xk+1, Yk+1)|X0, Y0, . . . , Xk, Yk)
= E(g(Xk+1, h(Xk+1, βk+1))|X0, Y0, . . . , Xk, Yk)
= E(E(g(Xk+1, h(Xk+1, βk+1))|X0,...,k+1, Y0,...,k)|X0, Y0, . . . , Xk, Yk)
= E(E(g(x, h(x, βk+1)))|x=Xk+1 |X0, Y0, . . . , Xk, Yk)

= E
(∫

g(Xk+1, y) Φ(Xk+1, dy)
∣∣∣∣X0, Y0, . . . , Xk, Yk

)
=
∫

g(x, y) Φ(x, dy) P (Xk, dx).

The corresponding expression for E(g(X0, Y0)) follows similarly.

In this example, it is immediately clear in which sense Yk is a noisy func-
tional of Xk only: indeed, Yk is a function of Xk and a noise variable βk which
is independent of the noise corrupting the remaining observations Y`, ` 6= k.
If the observation (Yk)k≥0 represents a signal (Xk)k≥0 transmitted through
a noisy communications channel, this basic property corresponds to the idea
that the communications channel is memoryless. A more formal expression of
the elementary properties of our hidden Markov models is given as follows.
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Lemma 1.8. Let (Xk, Yk)k≥0 be a hidden Markov model on (E × F,E ⊗ F)
with transition kernel P , observation kernel Φ, and initial measure µ. Then

1. (Xk, Yk)k≥0 is a Markov process;
2. (Xk)k≥0 is Markov with transition kernel P and initial measure µ; and
3. Y0, . . . , Yk are conditionally independent given X0, . . . , Xk:

P(Y0 ∈ A0, . . . , Yk ∈ Ak|X0, . . . , Xk) = Φ(X0, A0) · · ·Φ(Xk, Ak).

Moreover, the finite dimensional distributions of (Xk, Yk)k≥0 are given by

E(f(X0, Y0, . . . , Xk, Yk)) =
∫

f(x0, y0, . . . , xk, yk)×

Φ(xk, dyk) P (xk−1, dxk) · · ·Φ(x1, dy1) P (x0, dx1)Φ(x0, dy0) µ(dx0).

Proof. This can be read off directly from definition 1.6 and lemma 1.5. ut

Nondegeneracy

In addition to the general requirements of definition 1.6, we will frequently
impose a stronger assumption on the structure of the observations (Yk)k≥0.

Definition 1.9. Let (Xk, Yk)k≥0 be a hidden Markov model on (E×F,E⊗F)
with observation kernel Φ. The model is said to have nondegenerate observa-
tions if the observation kernel is of the form

Φ(x, B) =
∫

IB(z) Υ (x, z) ϕ(dz), x ∈ E, B ∈ F,

where Υ : E × F → ]0,∞[ is a strictly positive measurable function and ϕ is
a probability measure on F . The function Υ is called the observation density.

Let us attempt to explain the relevance of this assumption. Much of this
course is concerned with problems where we try to infer something about
the unobserved process (Xk)k≥0 from observations of the observed process
(Yk)k≥0. We will therefore develop techniques which take as input an obser-
vation time series y0, . . . , yk and which output certain conclusions about the
unobserved process. We would like these techniques to be ‘nondegenerate’ in
the sense that they can be applied even if the input time series y0, . . . , yk does
not precisely match the mathematical model that we have assumed. If this is
not the case, there would be little hope that such techniques could be applied
to real-world data. Without additional assumptions, however, the general def-
inition 1.6 can lead to models where inference becomes problematic. To make
this point, let us consider a particularly extreme example.

Example 1.10. Let E = F = R. Let ρk, k ≥ 0 be an i.i.d. sequence of random
variables whose law ρ is supported on the integers Z, and let ρ′k, k ≥ 0 be
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an i.i.d. sequence of random variables whose law is supported on the positive
integers N. We now define (Xk, Yk)k≥0 recursively as

X0 = Y0 = 0, Xk = Xk−1 + ρk/ρ′k, Yk = Xk (k ≥ 1).

This clearly defines a hidden Markov model in the sense of definition 1.6.
Now suppose that we observe a sequence of observations y0, . . . , yk that

are generated by this model. Then it must be the case that the differences
yn − yn−1 are rational numbers for every n, as this is true with probability
one by construction. However, if in practice the signal Xn is perturbed by
even the slightest amount, then a real-world sample of the observation time
series y0, . . . , yk would no longer satisfy this property. An inference procedure
based on our hidden Markov model would be at a loss as to how to deal with
this observation sequence—after all, according to our model, what we have
observed is technically impossible. We therefore run into trouble, as even the
smallest of modeling errors can give rise to observation time series for which
our inference techniques do not make mathematical sense.

This example is, of course, highly contrived. However, it highlights the fact
that applying definition 1.6 without further assumptions can lead to models
which are problematic to deal with. Indeed, most of the techniques that we
will develop in the following chapters can not be applied to this model.

As it turns out, the nondegeneracy assumption effectively rules out this
problem. The reason is that when the observation kernel Φ satisfies definition
1.9, any property of a finite number of observations Y0, . . . , Yk which holds
with unit probability must do so for every choice of transition kernel P and
initial measure µ (problem 1.4). As a consequence, if y0, . . . , yk is a valid
observation sample path for some model for the signal (Xk)k≥0, then this
observed path is valid for any signal model. This does not mean, of course,
that our inference procedures will not be sensitive to (even small) modeling
errors; however, definition 1.9 guarantees enough nondegeneracy so that our
inference procedures will be at least mathematically well defined.

A typical example which does satisfy the nondegeneracy assumption is:

Example 1.11. Let F = R, and consider an observation model of the form

Yk = h(Xk) + ξk (k ≥ 0),

where h : E → R is measurable and ξk, k ≥ 0 are i.i.d. N(0, 1). Then

Φ(x, B) =
∫

IB(z)
e−(z−h(x))2/2

√
2π

dz,

which certainly satisfies the requirement of definition 1.9.

The above discussion was intended to provide some intuition for the nonde-
generacy assumption. Its mathematical consequences will be obvious, however,
when we start developing the basic theory in the following chapter.
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On our assumptions

Throughout most of this course, we will develop techniques which apply to
hidden Markov models in the sense of definition 1.6 that satisfy the nonde-
generacy assumption of definition 1.9. That is not to say that models in which
some of our assumptions do not hold are not encountered in applications, nor
that such models are necessarily intractable. In many cases more general mod-
els can be treated, either by modifying the techniques which we will develop
here or through other methods that we will not cover.

Fortunately, our assumptions are general enough to cover a wide range
of applications, which can all be treated using a common set of techniques
to be developed in the following chapters. For conceptual, mathematical and
notational simplicity, and as one can only cover so much in one semester, we
will from now on stay within this framework without further apology.

1.3 Examples

To motivate our mathematical definitions, we will now describe briefly some
sample applications taken from various fields. Note that

• all examples are hidden Markov models in the sense of definition 1.6; and
• all examples satisfy the nondegeneracy assumption of definition 1.9.

These examples are not the most sophisticated possible, but they show that
many interesting models fit within our framework. As we progress throughout
the course, you may want to go back on occasion and think about how the
various techniques apply to the examples in this section.

Example 1.12 (Financial time series). The simplest model of financial time
series Sk, such as the market price of stock, is of the Black-Scholes form

Sk = exp(µ− σ2/2 + σ ξk) Sk−1,

where ξk ∼ N(0, 1) are i.i.d., σ ∈ R is the volatility, and µ ∈ R is the rate of
return (indeed, note that E(Sk/Sk−1) = eµ). High volatility means that the
stock prices exhibit large random fluctuations, while high return rate means
that the value of the stock increases rapidly on average.

A simple model of this type can work reasonably well on short time scales,
but on longer time scales real-world stock prices exhibit properties that can
not be reproduced by this model, e.g., stock prices are often observed to have
non-Markovian properties. Intuitively, one might expect that this is the case
because µ and σ depend on various external (economical, political, environ-
mental) factors which are not constant on longer time scales. To incorporate
this idea we can allow the volatility and/or return rates to fluctuate; for this
purpose, we introduce a Markov process Xk (independent of ξk) and set
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Sk = exp(µ(Xk)− σ(Xk)2/2 + σ(Xk) ξk) Sk−1,

where now µ and σ are suitably chosen functions. If we choose as our observa-
tion process the log-returns Yk = log(Sk/Sk−1), then (Xk, Yk)k≥0 is a hidden
Markov model. By tuning the dynamics of Xk appropriately, one can obtain
a stock price model that is more realistic than the Black-Scholes model.

One common choice for Xk is a real-valued recursion of the form

Xk = α(Xk−1) + β(Xk−1) ηk,

where ηk are i.i.d. If µ is constant and only the volatility σ depends on Xk,
this is a typical example of a stochastic volatility model. A different type of
model is obtained if we let Xk be a Markov process on a finite state space.
Each state represents a particular ‘regime’: for example, the demand for a
certain product might be well described as being either low or high, and the
statistics of the resulting price fluctuations depend on which regime we are
presently in. This type of model is called a regime switching model.

Note that typically only stock prices are observable to investors—even if
the economic factor process Xk has some real-world significance (rather than
serving as a mathematical tool to model non-Markov time series), such un-
derlying economic factors are typcially not disclosed to the public. Therefore
any modeling, inference, pricing, or investment decisions must be based on
observations of the price process Sk (equivalently, Yk) only. The purpose of
the theory of hidden Markov models is to provide us with the necessary tools.

Example 1.13 (Bioinformatics). Genetic information is encoded in DNA, a
long polymer found in almost all living systems which consists of a linear
sequence of base pairs A,C,G, T (i.e., genetic code is a very long word in
a four letter alphabet). An impressive effort in molecular biology has led to
the sequencing of an enormous amount of genetic information; for example,
the ordering of base pairs of almost the entire human genome has been doc-
umented by the Human Genome Project. As the genetic code plays a major
role in the inner workings of the living cell, the decoding of this information
ought to lead to significant scientific and medical advances.

However, the interpretation of genetic data is a highly nontrivial task. For
example, one encounters the following problem. The genetic code consists of
coding and non-coding regions. Coding regions directly encode the structure
of proteins, which are produced in the cell by an intricate process which begins
by transcribing the relevant portion of the DNA strand. Non-coding regions,
however, do not directly encode molecular structure, but may serve to regulate
when and how much of the protein will be produced (other ‘junk DNA’ non-
coding regions have no known purpose). In order to interpret the genetic
code, we must therefore first separate out the coding and non-coding regions.
Unfortunately, there is no clear signature for when a coding region starts or
ends, so that typically this identification must be done by statistical methods.
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The use of hidden Markov models has been remarkably successful in ap-
proaching this problem. The simplest approach is as follows. The time param-
eter k represents the position along the DNA strand. The signal process Xk

is a Markov process on E = {0, 1}: the kth base pair is in a coding region if
Xk = 1, and in a non-coding region otherwise. The observation process Yk has
the four-letter state space F = {A,C,G, T}, so that Yk represents the type of
the kth base pair. The transition and observation kernels P,Φ are estimated
from the sequence data. Once this is done, we can run a reverse estimation
procedure to determine which regions of a DNA sequence are coding or non-
coding. This approach is rather naive, yet it already gives surprisingly good
results: evidently coding and non-coding regions a characterized by different
relative frequencies for each of the base pairs. The approach can be improved
by choosing a more sophisticated underlying hidden Markov model.

Example 1.14 (Change detection). A classical problem of sequential analysis
is the detection of an abrupt change in the distribution of a noisy time series.
For example, consider a chemical plant which produces independent batches of
a certain product. Though each batch will have a slightly different concentra-
tion of the desired product, its distribution is such that majority of batches
falls within an acceptable tolerance range (the remaining batches must be
discarded). However, if a problem occurs somewhere in the plant (e.g., the
stirring mechanism gets stuck), then the output distribution changes such
that a larger fraction of the batches must be discarded.

A simple model for this problem is obtained as follows. Let Xk be a {0, 1}-
valued Markov chain. The 0 state denotes that the process is broken, while
1 denotes normal operation; we presume that X0 = 1, and that once the
system breaks it can not fix itself, i.e., P (0, {1}) = 0. The observation Yk

is obtained by specifying the observation kernel Φ, such that Φ(1, · ) is the
distribution of output concentrations under normal operation and Φ(0, · ) is
the output distribution when the process is broken. Ultimately we would like
to detect when the system breaks so that it can be repaired. As we only have
at our disposal the observed output concentrations in the previous batches,
an unusually large number of discarded batches can mean that the process is
broken, but it can also just be a random fluctuation in the output concentra-
tions. There is therefore always a probability of false alarm, which we would
like to minimize as interrupting production for repair is costly. On the other
hand, if we keep observing more and more discarded batches then the prob-
ability of false alarm is very small, but we now obtain a large delay between
the occurence of the fault and its repair. The tradeoff between detection delay
and false alarm probability is characteristic of this type of problem.

Variants of the change detection problem appear in many applications,
including the detection of the onset of a computer network (DoS) attack from
network traffic data, or detecting when an economic bubble bursts from stock
price data. Another variant is the setting where different types of faults can
occur; here the goal is to detect both when the fault occurs and its type.
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Example 1.15 (Communications). We are interested in modeling the trans-
mission of a digital message, i.e., a sequence of {0, 1}-valued random variables
Bk, k ≥ 0 called bits, over a noisy channel. We suppose that the message Bk

can be modelled a Markov process on the state space E = {0, 1}.
What does a bit look like when it is transmitted? A classic channel model

is one where the output bit Yk equals the input bit Bk with some probability
p ∈ ]0, 1[, and is flipped from the input bit with probability 1 − p. To model
this, we introduce another sequence of i.i.d. {0, 1}-valued random variables ξk

with P(ξk = 0) = p. Then the hidden Markov model

Xk = Bk, Yk = (1− ξk) Bk + ξk (1−Bk)

describes the basic binary symmetric channel model. In order to counteract
the corruption of bits, one typically does some encoding before transmitting
the message over the noisy channel. This introduces some redundancy, which
makes it more likely that the message will be decoded correctly on the other
end. Encoding can be added to our hidden Markov model at the expense of
a more complicated signal model. For example, hidden Markov models for
convolutional codes are commonly applied in telecommunications.

In a different setting, you might imagine that the bit Bk is transmitted by
maintaining a voltage Bk over a noisy satellite link. In this case, the corrupting
noise is typically taken to be Gaussian, i.e., we set Yk = α Bk + ξk, where ξk,
k ≥ 0 are now i.i.d. N(µ, σ2) and α ∈ R is a gain coefficient. More realistic,
however, would be to let α fluctuate in time in order to take into account the
varying atmospheric conditions, which we model as a Markov process Wk. Let
ηk, k ≥ 0 be a sequence of i.i.d. random variables, and set

Xk = (Bk,Wk), Wk = f(Wk−1, ηk), Yk = Wk Bk + ξk.

A channel model of this type is called a fading channel.
Ultimately, the goal of the receiver is to infer the original message Bk from

the noisy observations Yk. If we were to transmit a real-valued (analog) signal
Sk through a noisy channel, instead of the digital signal Bk, this becomes a
signal processing task of denoising the corrupted signal.

Example 1.16 (Target tracking). In various applications one is interested in
tracking a moving object using noisy sensor data. Consider an object that is
moving randomly in the plane: its two position components might evolve as

X1
k = X1

k−1 + ξ1
k + α1(Uk), X2

k = X2
k−1 + ξ2

k + α2(Uk),

where α(Uk) is the base velocity of the target (possibly controlled by some
external process Uk), while ξk, k ≥ 1 are i.i.d. and correspond to random
velocity perturbations. By choosing Uk to be, e.g., a finite state Markov pro-
cess, one can model a target which tries to confuse us by randomly switching
its velocity in different preset directions (think of tracking the position of a
fighter jet). The case α = 0 could be used to model a large molecule which is
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moving around diffusively in a thin layer of liquid (single molecule tracking
for biological or polymer dynamics studies).

The noisy observations of the object to be tracked typically take the form

Yk = h(Xk) + ηk,

where ηk, k ≥ 0 are i.i.d. and h is the observation function. The function h
can be quite nonlinear. For example, if we track the location of a jet from
a fixed position on the ground, one might imagine a situation where we can
only observe the direction of the line of sight between the sensor and the jet,
and not the distance between the sensor and the jet. In this setting, called
bearings-only tracking, one would have h(X1

k , X2
k) = arctan(X2

k/X1
k). The

goal is then to track as well as possible the position of the object given any
prior knowledge of its position and the observed sensor data.

There are many variations on this problem in applications such as position-
ing, navigation, robotics, etc. The problem obtains an additional dimension if
we introduce control into the picture: e.g., the sensor might be itself mounted
on another jet plane, and we might want to develop a pursuit strategy so that
our trajectory intersects as closely as possible the trajectory of the other plane
at a fixed time in the future. As our strategy can only depend on the observed
sensor data, it is not surprising that tracking plays an important role.

Example 1.17 (Speech recognition). One of the oldest applications of hidden
Markov models is automatic speech recognition. This approach turns out to be
extremely successful, and almost all modern speech recoginition systems are
based on hidden Markov model techniques. Let us briefly discuss the simplest
type of speech recognition: the problem of isolated word recognition. In this
setting our goal is to determine, on the basis of an audio recording of a human
voice, which of a finite set of allowed words was spoken.

The basic idea is to use maximum likelihood estimation to solve this prob-
lem; in principle this has nothing to do with hidden Markov models. To ac-
count for the variability of human speech, the audio signal corresponding to
each word is modeled as a stochastic process. Denote by Pi the law of the au-
dio signal Y0, . . . , YN corresponding to the ith word, and let us suppose that Pi

is absolutely continuous with respect to some reference measure Q for every i.
Once we are given an actual recorded signal y0, . . . , yN , the most likely spoken
word is given by the maximum likelihood estimate argmaxi

dPi

dQ (y1, . . . , yN ).
The problem is, of course, what model one should use for the laws Pi. It

is here that hidden Markov models enter the picture. The audio signal of a
given word is represented as the observed component Yk of a hidden Markov
model. The unobserved component Xk is a finite state Markov process, where
each state corresponds to a consecutive sound in the word of interest (e.g., for
the word ‘quick’ one could choose E = {k1, w, i, k2}). The idea is that each
sound will give rise to an audio sequence with roughly i.i.d. spectral content,
but that the length of each sound within the word will vary from recording to
recording. Typically (Yk)k≥0 does not represent the raw audio data (which is
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highly oscillatory and not well suited for direct use); instead, the raw audio
is chopped into fixed size frames (∼ 50 ms each), and each Yk represents the
dominant spectral components of the corresponding frame.

Speech recognition now proceeds as follows. First, the system is trained: a
speaker provides voice samples for each allowed word, and these are used to
estimate the transition and observation kernels P and Φ for the corresponding
hidden Markov model. Once the training is complete, speech recognition can
be performed using the maximum likelihood approach. In all cases prepro-
cessing of the raw audio (‘feature analysis’) is first performed to extract the
spectral information that is modeled by the hidden Markov models.

1.4 What Is This Course About?

This is not a course about stochastic modeling; it is our purpose to develop in
the following chapters the basic mathematical and statistical techniques that
are fudamental to the theory of hidden Markov models. Before we embark on
this journey in earnest, let us give a brief overview of coming attractions. The
examples in the previous section will serve as motivation.

Estimation

Suppose that we have somehow managed to obtain a hidden Markov model
(i.e., the kernels P and Φ are given). As only the observations (Yk)k≥0 are
observable in the real world, an important problem is to develop techniques
which estimate the unobserved signal component (Xk)k≥0 on the basis of an
observed trajectory y0, y1, . . . of the observation process.

There are three elementary estimation problems. In the first problem, we
observe a finite number of observations Y0, . . . , YN , and we wish to estimate
the corresponding signal trajectory X1, . . . , XN . To this end, we will show
how to compute the conditional expectations

E(f(Xk)|Y0, . . . , YN ), 0 ≤ k ≤ N,

for any function f . This is called the smoothing problem. For example, one
might apply this method to decode a (digital or analog) message transmitted
through a noisy communication channel, or to segment a DNA strand into
coding and non-coding regions on the basis of a given base pair sequence.

Still fixing the observation sequence Y0, . . . , YN , we sometimes wish to
estimate also the future evolution of the signal

E(f(Xk)|Y0, . . . , YN ), k ≥ N.

This is known as the prediction problem. For example, one might try to apply
this technique to the pursuit problem, where we must decide what action to
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take presently on the basis of the available observations in order to intercept
a moving target at some predetermined future time.

The most common scenario is one where we wish to estimate the present
value of the signal, given all available observations to date. In other words, in
this case the observation sequence is not fixed, but we obtain an new obser-
vation in every time step. The computation of the conditional expectations

E(f(Xk)|Y0, . . . , Yk), k ≥ 0

is called the filtering problem. This is precisely what is of interest, e.g., in the
target tracking problem. In a sense, it turns out that the filtering problem
is particularly fundamental: its solution is a necessary step in many of the
techniques that we will discuss, including smoothing and prediction.

Our solutions of the filtering, smoothing and prediction problems will be
recursive in nature. In particular, the solution of the filtering problem is such
that the filtered estimates at time k + 1 can be computed from the filtered
estimates at time k and the new observation Yk only. This is of course a man-
ifestation of the Markov nature of our models, and is computationally very
convenient. In certain cases—particularly when the signal state space E is a
finite set—these recursions can be implemented directly as a computer algo-
rithm. In more complicated cases this will no longer be tractable; however,
we will develop an efficient and computationally tractable Monte Carlo algo-
rithm to approximate the conditional estimates, and we will prove theorems
that quantify the resulting approximation error.

Inference

In the above estimation problems, we presumed that the underlying hidden
Markov model is already known. However, in many applications it is initially
far from clear how to design the transition and observation kernels P and Φ
and the initial measure µ. This is particularly true in applications such as
financial time series models, DNA sequence segmentation and speech recog-
nition, where the design of a hidden Markov model for which the observation
process possesses the desired statistical properties is an important component
of the problem. It is therefore essential to develop statistical inference tech-
niques which allow us to design and calibrate our hidden Markov model to
match observed real-world data.

It should be noted that in this setting we may not have much, if any, a
priori knowledge of the structure of the unobserved process. In particular,
the unobserved process can typically not be observed in real life even for
modeling purposes. This distinguishes what we are trying to achieve from,
e.g., supervised learning problems, where estimators are constructed on the
basis of a training set in which both the observed and unobserved components
are available. In our setting, the only data on which inference may be based are
given time series of the observation process. (Of course, even if the structure
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of the unobserved process is fairly well known, the calibration of parameter
values on the basis of observed time series is often of interest).

In statistical inference problems we will typically consider a parametrized
family of transition and observation kernels P θ, Φθ and initial measures µθ,
where the parameter θ takes values in some class of models θ ∈ Θ. Our goal is
to select a suitable θ? ∈ Θ so that the resulting observation process (Yk)k≥0

reproduces the statistical properties of a given training sequence y1, . . . , yN .
We will approach this problem through maximum likelihood estimation. More-
over, we will develop an iterative algorithm—the EM algorithm—in order to
compute the maximum likelihood estimate in a tractable manner.

When the signal state space E is a finite set, the transition kernel P
is a matrix and the initial measure µ is a vector. In this case it becomes
feasible to estimate the entire signal model P, µ as it is defined by a finite
number of parameters—there is no need to restrict to some subclass Θ (though
the latter might be preferable if the cardinality of E is large). Applying the
EM algorithm in this setting provides an ideal tool for speech recognition or
sequence analysis problems, as no assumptions need to be imposed on the
signal model except that the cardinality of E is fixed at the outset.

Even if we believe that a signal state space of finite cardinality suffices,
however, it may not always be clear what cardinality to choose. For example,
consider the stock price model with regime switching. The stock price dy-
namics might very well be excellently modeled by choosing a finite number of
regimes, but it is often not clear at the outset how many regimes to choose to
obtain a good model. This is known as the model order estimation problem,
and we will develop some techniques to solve it.

Decision

Beside the design and calibration of the hidden Markov model and estima-
tion of the unobserved signal, various applications require us to make certain
decisions in order to achieve a particular objective. For example, in the stock
market model we might wish to decide how to invest our capital in order to
maximize our ultimate wealth; in the pursuit problem, we wish to decide how
to navigate our plane in order to intercept the target; and in the change de-
tection problem, we wish to decide when to interrupt production in order to
make repairs. What all these problems have in common is that we are able to
base our decisions only on the observation process Yk, as we do not have ac-
cess to the unobserved signal Xk. In the language of stochastic control, these
are control problems with partial observations.

It turns out that the filtering problem plays a fundamental role in par-
tially observed decision problems. By reformulating these problems in terms
of the filter, we will find that they can be tackled using standard techniques
from optimal control and optimal stopping theory. Alternatively, sub-optimal
schemes may be much simpler to implement, particularly in complex systems,
and still lead to acceptable (and even near-optimal) performance.
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Problems

1.1. Finite State Markov Chains
Let E be a finite set, e.g., E = {1, . . . , n}. Measures on E and functions
f : E → R can be represented as n-dimensional vectors in an elementary
fashion. Let (Xk)k≥0 be a Markov process with state space E: such a process is
called a (finite state) Markov chain. Show that the definitions and expressions
in section 1.1 reduce to the notion of a Markov chain as you encountered it
in your introduction to stochastic processes course.

1.2. Time Series
There are many standard time series models that are used in the literature.
One common choice is the real-valued AR(p) model defined by the recursion

X̃n =
p∑

k=1

akX̃n−k + εn (n ≥ p)

with the initial condition X̃0 = · · · = X̃p−1 = 0, where ak are real-valued
coefficients and εk are i.i.d. random variables.
(a) An AR(p) process is not Markov. Show that it can nonetheless be rep-
resented as a Markov process by enlarging the state space. (Hint: prove that
the process Xn = (X̃n, . . . , X̃n+p−1), n ≥ 0 is Markov.)
A different time series model, which is popular in econometric applications,
is the nonlinear ARCH(p) model defined as

X̃n = a0 +
p∑

k=1

akZ̃2
n−k, Z̃n =

√
X̃n εn (n ≥ p)

where ak are nonnegative constants and εk are i.i.d. random variables.
(b) Repeat part (a) for the ARCH(p) model.

1.3. DNA Sequence Alignment I ([Kro98])
DNA sequences encode genetic information in four letters A,C, G, T . DNA
code is much more sloppy than human language, however, and the manner in
which the same feature is encoded in different species or individuals can vary
significantly. For example, the following five strings might encode the same
feature: ACAATG, AGAATC, ACACAGC, ACCGATC, TCAATGATC.
To exhibit their common pattern, let us align them (by hand) as follows:

l1 l2 l3 li li li l4 l5 l6
A C A − − − A T G
A G A − − − A T C
A C A C − − A G C
A C C G − − A T C
T C A A T G A T C



18 1 Hidden Markov Models

Evidently the ‘base’ pattern ACAATC varies in two ways: individual pattern
symbols l1–l6 may be mutated in a fraction of the instances, and arbitrary
extra symbols li may be inserted in the middle of the pattern.
(a) Model the above pattern as a hidden Markov model. Hint: as in speech
recognition, use F = {A,C,G, T} and E = {l1, . . . , l6, li, le} where le is
the terminal state P (l6, {le}) = P (le, {le}) = 1. You may assume that
Φ(le, {y}) = 1/4 for all y ∈ F , i.e., the pattern is followed a random sequence
of symbols. Read off the remaining probabilities P (x, {x′}) and Φ(x, {y}).
(b) Suppose we are given a sequence y0, . . . , yk of symbols (yi ∈ F ). Write a
computer program that computes P(Y0 = y0, . . . , Yk = yk).
(c) Given a symbol sequence y0, . . . , yk that is not in our training set, we
can use your program from part (b) to determine whether or not the string
likely matches the pattern. To this end, we will ‘score’ a sequence y0, . . . , yk

by computing the relative likelihood that it comes from our hidden Markov
model versus a random sequence of symbols:

score(y0, . . . , yk) =
P(Y0 = y0, . . . , Yk = yk)

(1/4)k+1
.

Compute the scores of each of our training sequences and experiment with
various mutations and insertions in the ‘base’ sequence. Also try some strings
which are very unlike the ‘base’ sequence.
(d) A high score (at least > 1) in the previous part indicates that the string
matches our pattern. Adapt your computer program to compute also

(x̂0, . . . , x̂k) = argmax
x0,...,xk∈E

P(X0 = x0, . . . , Xk = xk, Y0 = y0, . . . , Yk = yk).

Experiment with the training sequences and with various mutations and in-
sertions in the ‘base’ sequence, and show that your program allows us to
automate the sequence alignment procedure which we previously did by hand
(i.e., inserting the right number of dashes in the table above).

Remark 1.18. The DNA pattern in the previous problem is exceedingly simple.
In realistic sequence alignment problems, both the ‘base’ pattern and the
inserted ‘junk’ regions are typically much longer, and the naive computation
of the relevant quantities becomes computationally expensive. In chapter 3, we
will develop recursive algorithms which allow us to compute these quantities
in a very efficient manner, even for very long sequences.

1.4. Fix signal and observation state spaces E and F , let P and P ′ be two
transition kernels and let µ and µ′ be two initial measures on E. Let Φ be an
observation kernel which satisfies the nondegeneracy assumption (definition
1.9). Prove that a hidden Markov model with initial law µ, transition kernel
P and observation kernel Φ on the one hand, and a hidden Markov model
with initial law µ′, transition kernel P ′ and observation kernel Φ on the other
hand, give rise to observations (Yk)k≤n whose laws are absolutely continuous.
(Beware: in general, the claim is only true on a finite horizon n < ∞.)
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Notes

This course presumes an elementary knowledge of (measure-theoretic) proba-
bility theory. There are very many excellent textbooks on probability. We will
on occasion refer to the wonderful reference book of Kallenberg [Kal02] or to
the textbook by Shiryaev [Shi96] for basic probabilistic facts.

An excellent text on Markov chains in general state spaces is Revuz
[Rev75]. The more recent text of Meyn and Tweedie [MT93], which empha-
sizes various notions of geometric ergodicity and coupling (see chapter 5),
is often cited. An well known introductory text at the undergraduate level
(mostly in a finite state space) is Norris [Nor98].

The theory of hidden Markov models is treated in detail in the recent
monograph by Cappé, Moulines and Rydén [CMR05], while Ephraim and
Merhav [EM02] have written a well known review of the subject with many
references to the literature. Many of the topics that we will encounter in this
course can be found in these references in much greater detail. Elliott, Aggoun
and Moore [EAM95] has a more control-theoretic flavor.

A large number of applications of hidden Markov models can be found in
the literature. The following is by no means a comprehensive list of references;
it can only serve as an entry point. A Google Scholar search will reveal many
more applications in your favorite area of interest.

Some of the earliest and most successful applications are in the field of
speech and handwriting recognition; the tutorial paper by Rabiner [Rab89] has
been very influential in popularizing these ideas. Some applications to commu-
nication and information theory are reviewed in Ephraim and Merhav [EM02]
and in Kailath and Poor [KP98]. Applications to navigation and tracking are
very old, see, e.g., the book by Bucy and Joseph [BJ87]. More recent tracking
applications include navigation by GPS [CDMS97]; see also Bar-Shalom et
al. [BLK01]. Optimal changepoint detection and sequential hypothesis test-
ing are developed by Shiryaev [Shi73], while a general text on changepoint
detection and applications is Basseville and Nikiforov [BN93]. Applications in
bioinformatics are described in the book by Koski [Kos01]. Various statistical
applications are described in MacDonald and Zucchini [MZ97]. Applications
to financial economics are described in Bhar and Hamori [BH04]. Some ap-
plications to mathematical finance can be found in the collection [ME07] and
in [She02, SH04]. Note that financial models are often in continuous time;
hidden Markov models in continuous time is the topic of chapters 10–13.
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Filtering, Smoothing, Prediction

2.1 Conditional Distributions

The purpose of this chapter is to solve (at least in principle) the filtering,
smoothing and prediction problems introduced in section 1.4: given a hidden
Markov model (Xk, Yk)k≥0, we are interested in computing conditional expec-
tations of the form E(f(Xn)|Y0, . . . , Yk) for all functions f . In other words,
we are interested in computing the conditional distributions

P(Xn ∈ · |Y0, . . . , Yk).

Before we turn to this problem in the setting of hidden Markov models, we
recall in this section how conditional distributions may be computed in a
general setting. First, however, we briefly discuss the following question: in
what sense can the conditional distribution be thought of as an estimator?

Conditional distributions and estimation

Let X be a real-valued random variable and let Y be a B-valued random vari-
able on some probability space (Ω,G,P) and state space (B,B). We suppose
that we can observe Y but not X, and we would like to estimate X. In our
hidden Markov model, we could choose, e.g., X = f(Xn) for some n ≥ 0 and
f : E → R, and Y = (Y0, . . . , Yk) for some k ≥ 0.

What does it mean to estimate a random variable X? What we seek is
a function g(Y ) of the observed variables only, such that g(Y ) is close to X
in a certain sense. For example, we can try to find such a function g that
minimizes the mean square estimation error E((X−g′(Y ))2). As it turns out,
this is precisely the conditional expectation.

Lemma 2.1. Suppose that E(X2) < ∞. Then g(Y ) = E(X|Y ) satisfies

g = argmin
g′

E((X − g′(Y ))2).
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Proof. By construction E(X|Y ) is a function of Y , and E((X −E(X|Y ))2) ≤
2E(X2) < ∞. It remains to prove that for any other function g′(Y ) we have

E((X −E(X|Y ))2) ≤ E((X − g′(Y ))2).

Let us write G = E(X|Y ) and G′ = g′(Y ). Note that

E((X −G)2) = E((X −G′ + G′ −G)2)

= E((X −G′)2) + E((G′ −G)2) + 2E((X −G′)(G′ −G))

= E((X −G′)2) + E((G′ −G)2) + 2E(E((X −G′)(G′ −G)|Y ))

= E((X −G′)2)−E((G′ −G)2)

≤ E((X −G′)2).

The proof is complete. ut

By computing the conditional expectation, we therefore find the least mean
square estimate of the unobserved variable X given the observed variable Y .

However, what if we are interested in finding an estimator with a different
error criterion? For example, we might wish to minimize E(|X − g′(Y )|) or,
more generally, E(H(X − g′(Y ))) for some some loss function H. To tackle
this problem, we need the notion of a conditional distribution.

Definition 2.2. Let X be an (E,E)-valued random variable and let Y be a
(B,B)-valued random variable on a probability space (Ω,G,P). A transition
kernel PX|Y : B × E → [0, 1] which satisfies∫

f(x)PX|Y (Y, dx) = E(f(X)|Y )

for every bounded measurable function f : E → R is called the conditional
distribution (or regular conditional probability) of X given Y .

This idea is likely familiar: intuitively PX|Y (y, A) = P(X ∈ A|Y = y).

Remark 2.3. Existence and uniqueness of conditional distributions is guaran-
teed under the mild technical condition that E is a Borel space, as is the
case in all our examples [Kal02, theorem 6.3]. We will shortly see, however,
that the nondegeneracy assumption allows us to construct the conditional
distributions explicitly. We therefore will not need this general fact.

Returning to our estimation problem, we now claim that we can solve the
optimal estimation problem of minimizing E(H(X − g′(Y ))) for some some
loss function H in two steps. First, we compute the conditional distribution
PX|Y . The optimal estimate g(y) is then obtained simply by minimizing the
expected loss with respect to the conditional distribution PX|Y (y, · ).
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Lemma 2.4. Let H : R → [0,∞[ be a given loss function, X be a real-valued
random variable with E(H(X)) < ∞, and Y be a (B,B)-valued random vari-
able. Suppose there is a measurable function g : B → R such that

g(y) = argmin
x̂∈R

∫
H(x− x̂) PX|Y (y, dx) for all y ∈ B′,

where B′ ∈ B satisfies P(Y ∈ B′) = 1. Then g minimizes E(H(X − g′(Y ))).

Proof. Note that by construction∫
H(x− g(Y ))PX|Y (Y, dx) ≤

∫
H(x− g′(Y ))PX|Y (Y, dx) a.s.

for any measurable function g′. Therefore

E(H(X − g(Y ))) = E
[∫

H(x− g(Y ))PX|Y (Y, dx)
]

≤ E
[∫

H(x− g′(Y ))PX|Y (Y, dx)
]

= E(H(X − g′(Y ))).

Setting g′ = 0, we find that E(H(X − g(Y ))) ≤ E(H(X)) < ∞. Therefore g
does indeed minimize E(H(X − g′(Y ))), and the proof is complete. ut

If the loss function H is convex this approach is always successful. A nice
discussion along these lines and many further details can be found in [BH85].

Example 2.5. For the square loss H(x) = x2, we have already seen that the
best estimator of X given Y is the conditional mean mean(PX|Y ) = E(X|Y ).
By lemma 2.4, the best estimator for the deviation loss H(x) = |x| is the
conditional median med(PX|Y ) (note that the latter need not be unique).

Example 2.6. Suppose that the random variable X takes a finite number of
values {x1, . . . , xn}, and choose the loss function

H(x) =
{

0 x = 0,
1 x 6= 0.

In other words, we wish to choose an estimator g in order to maximize the
probability P(X = g′(Y )). Then by lemma 2.4 we should choose

g(y) = xi whenever PX|Y (y, X = xi) = max
j=1,...,n

PX|Y (y, X = xj).

This is called the maximum a posteriori (MAP) estimate of X given Y .

To conclude, we have seen that once the conditional distribution of X
given Y has been computed, the solution of the optimal estimation problem
for any loss function H reduces to a deterministic minimization problem.
We can therefore restrict our attention without any loss of generality to the
computation of the conditional distribution PX|Y .
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The Bayes formula

Given two random variables X and Y , how does one compute the conditional
distribution PX|Y ? This turns out to be particularly straightforward if the
law of Y is nondegenerate (compare with definition 1.9). The following result
is one of the many forms of the Bayes formula.

Theorem 2.7 (Bayes formula). Let X be an (E,E)-valued random variable
and let Y be a (B,B)-valued random variable on a probability space (Ω,G,P).
Suppose that there exists a measurable function γ : E ×B → ]0,∞[, a proba-
bility measure µX on E, and a probability measure µY on B, such that

E(f(X, Y )) =
∫

f(x, y) γ(x, y) µX(dx) µY (dy)

for every bounded measurable function f . Then

PX|Y (y, A) =
∫

IA(x) γ(x, y) µX(dx)∫
γ(x, y) µX(dx)

for all A ∈ E, y ∈ B

is the conditional distribution of X given Y .

Proof. By definition 2.2, we need to verify that for every A ∈ E we have
PX|Y (Y, A) = P(X ∈ A|Y ). Equivalently, using the definition of the condi-
tional expectation, we need to verify that we have E(PX|Y (Y,A) IC(Y )) =
E(IA(X) IC(Y )) for every A ∈ E and C ∈ B. But note that

E(PX|Y (Y, A) IC(Y )) = E
[∫

IA(x′) IC(Y ) γ(x′, Y ) µX(dx′)∫
γ(x′, Y )µX(dx′)

]
=
∫ ∫

IA(x′) IC(y) γ(x′, y) µX(dx′)∫
γ(x′, y) µX(dx′)

γ(x, y) µX(dx) µY (dy)

=
∫

IA(x′) IC(y) γ(x′, y)µX(dx′)µY (dy)

= E(IA(X) IC(Y )).

The proof is complete. ut

2.2 Filtering, Smoothing, and Prediction Recursions

Throughout this section, let (Xk, Yk)k≥0 be a hidden Markov model with
signal state space (E,E), observation state space (F,F), transition kernel P ,
observation kernel Φ, and initial measure µ (definition 1.6). We also presume
that the observations are nondegenerate, i.e., that Φ possesses an observation
density Υ with respect to a reference measure ϕ (definition 1.9).

Our goal is to compute the conditional distributions



2.2 Filtering, Smoothing, and Prediction Recursions 25

πk|n = PXk|Y0,...,Yn
, k, n ≥ 0.

We distinguish between three cases. The goal of the filtering problem is to
compute πk|k for k ≥ 0; for notational simplicity, we define the filtering distri-
butions πk = πk|k. Similarly, the goal of the smoothing problem is to compute
the smoothing distributions πk|n for k < n, while the goal of the prediction
problem is to compute prediction distributions πk|n for k > n. As we will see,
a key feature of our computations is that they can be performed recursively.

Filtering

Using lemma 1.8, we easily find the finite dimensional distributions

E(f(X0, Y0, . . . , Xk, Yk)) =
∫

f(x0, y0, . . . , xk, yk)Υ (x0, y0) · · ·Υ (xk, yk)

× ϕ(dy0) · · ·ϕ(dyk)P (xk−1, dxk) · · ·P (x0, dx1) µ(dx0)

of our hidden Markov model. To compute the filtering distributions, we will
combine this expression with the Bayes formula.

Definition 2.8. For every time k ≥ 0, the unnormalized filtering distribution
σk is the kernel σk : F k+1 × E → R+ defined as

σk(y0, . . . , yk, A) =∫
IA(xk) Υ (x0, y0) · · ·Υ (xk, yk)P (xk−1, dxk) · · ·P (x0, dx1) µ(dx0)

for all y0, . . . , yk ∈ F and A ∈ E.

Note that the kernel σk is not necessarily a transition kernel, i.e., it is typi-
cally the case that σk(y0, . . . , yk, E) 6= 1. However, its normalization coincides
precisely with the filtering distribution πk.

Theorem 2.9 (Unnormalized filtering recursion). The filtering distri-
bution πk can be computed as

πk(y0, . . . , yk, A) =
σk(y0, . . . , yk, A)
σk(y0, . . . , yk, E)

for every A ∈ E and y0, . . . , yk ∈ F . Moreover, the unnormalized filtering
distributions σk can be computed recursively according to

σk(y0, . . . , yk, A) =
∫

IA(x)Υ (x, yk) P (x′, dx) σk−1(y0, . . . , yk−1, dx′)

with the initial condition

σ0(y0, A) =
∫

IA(x) Υ (x, y0) µ(dx).
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Proof. Define the probability measure µY on F k+1 as the product measure

µY (dy0, . . . , dyk) = ϕ(dy0) · · ·ϕ(dyk).

Similarly, we define the probability measure µX on Ek+1 as

µX(dx0, . . . , dxk) = P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0),

and we define the function

γ(x0, . . . , xk, y0, . . . , yk) = Υ (x0, y0) · · ·Υ (xk, yk).

Then by the Bayes formula (theorem 2.7), we have∫
f(x0, . . . , xk) PX0,...,Xk|Y0,...,Yk

(y0, . . . , yk, dx0, . . . , dxk) =∫
f(x0, . . . , xk) γ(x0, . . . , xk, y0, . . . , yk) µX(dx0, . . . , dxk)∫

γ(x0, . . . , xk, y0, . . . , yk) µX(dx0, . . . , dxk)
.

Therefore, the first statement follows from the fact that∫
f(x) πk(y0, . . . , yk, dx) =

∫
f(xk)PXk|Y0,...,Yk

(y0, . . . , yk, dxk)

=
∫

f(xk)PX0,...,Xk|Y0,...,Yk
(y0, . . . , yk, dx0, . . . , dxk)

=
∫

f(xk) γ(x0, . . . , xk, y0, . . . , yk) µX(dx0, . . . , dxk)∫
γ(x0, . . . , xk, y0, . . . , yk) µX(dx0, . . . , dxk)

=
∫

f(xk) σk(y0, . . . , yk, dxk)∫
σk(y0, . . . , yk, dxk)

.

The recursion for σk is easily verified by inspection. ut
Rather than computing σk recursively, and subsequently normalizing to

obtain πk, we may compute the filtering distributions πk directly.

Corollary 2.10 (Filtering recursion). The filtering distributions πk can be
computed recursively according to

πk(y0, . . . , yk, A) =
∫

IA(x) Υ (x, yk) P (x′, dx) πk−1(y0, . . . , yk−1, dx′)∫
Υ (x, yk) P (x′, dx) πk−1(y0, . . . , yk−1, dx′)

with the initial condition

π0(y0, A) =
∫

IA(x) Υ (x, y0) µ(dx)∫
Υ (x, y0) µ(dx)

.

Proof. This follows immediately from the previous theorem. ut
The recursive nature of the filtering problem is computationally very con-

venient: to compute the filtered estimate πk, we only need to know the filtered
estimate in the previous time step πk−1 and the new observation yk obtained
in the present time step. In particular, we do not need to remember the entire
observation history y0, . . . , yk−1 as long as we are interested in the filter only.
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Smoothing

To find the smoothing distributions πk|n (k < n), we once again appeal to
the Bayes formula. We will see that the computation splits into two parts: the
observations Y0, . . . , Yk and Yk+1, . . . , Yn enter the problem in a different way.

Definition 2.11. For every 0 ≤ k < n, the unnormalized smoothing density
βk|n is the function βk|n : E × Fn−k → ]0,∞[ defined as

βk|n(xk, yk+1, . . . , yn) =∫
Υ (xk+1, yk+1) · · ·Υ (xn, yn) P (xn−1, dxn) · · ·P (xk, dxk+1)

for all yk+1, . . . , yn ∈ F and xk ∈ E.

The Bayes formula allows us to prove the following.

Theorem 2.12 (Unnormalized smoothing recursion). The smoothing
distribution πk|n (k < n) can be computed as

πk|n(y0, . . . , yn, A) =

∫
IA(x) βk|n(x, yk+1, . . . , yn)σk(y0, . . . , yk, dx)∫

βk|n(x, yk+1, . . . , yn)σk(y0, . . . , yk, dx)

for every A ∈ E and y0, . . . , yn ∈ F . Moreover, the unnormalized smoothing
densities βk|n can be computed by the backward recursion

βk|n(x, yk+1, . . . , yn) =
∫

βk+1|n(x′, yk+2, . . . , yn) Υ (x′, yk+1)P (x, dx′)

with the terminal condition βn|n = 1.

Proof. Using the same notation as in the proof of theorem 2.9∫
f(x) πk|n(y0, . . . , yn, dx) =

∫
f(xk) PXk|Y0,...,Yn

(y0, . . . , yn, dxk)

=
∫

f(xk)PX0,...,Xn|Y0,...,Yn
(y0, . . . , yn, dx0, . . . , dxn)

=
∫

f(xk) γ(x0, . . . , xn, y0, . . . , yn) µX(dx0, . . . , dxn)∫
γ(x0, . . . , xn, y0, . . . , yn)µX(dx0, . . . , dxn)

=

∫
f(xk) βk|n(xk, yk+1, . . . , yn) σk(y0, . . . , yk, dxk)∫

βk|n(xk, yk+1, . . . , yn) σk(y0, . . . , yk, dxk)
.

The recursion for βk|n is easily verified by inspection. ut

As in the filtering problem, we can also obtain a normalized version of
the backward smoothing recursion. This is sometimes computationally more
conveninent. Note, however, that the filtering distributions appear in the nor-
malized smoothing recursion: in order to use it, we must first make a forward
(in time) pass through the observation data to compute the filtering distribu-
tions, and then a backward pass to compute the smoothing densities. This is
sometimes called the forward-backward algorithm.
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Corollary 2.13 (Smoothing recursion). Define for k < n the function
β̄k|n : E × Fn+1 → ]0,∞[ through the backward recursion

β̄k|n(x, y0, . . . , yn) =

∫
β̄k+1|n(x′, y0, . . . , yn) Υ (x′, yk+1)P (x, dx′)∫

Υ (x′, yk+1) P (x, dx′) πk(y0, . . . , yk, dx)

with terminal condition β̄n|n = 1. Then for any k < n

πk|n(y0, . . . , yn, A) =
∫

IA(x) β̄k|n(x, y0, . . . , yn) πk(y0, . . . , yk, dx)

for every A ∈ E and y0, . . . , yn ∈ F .

Proof. From the unnormalized smoothing recursion, we can read off that

β̄k|n(x, y0, . . . , yn) =∫
β̄k+1|n(x′, y0, . . . , yn)Υ (x′, yk+1) P (x, dx′)∫

β̄k+1|n(x′, y0, . . . , yn)Υ (x′, yk+1) P (x, dx′) πk(y0, . . . , yk, dx)

with β̄n|n = 1. It therefore suffices to prove that for k < n∫
β̄k+1|n(x′, y0, . . . , yn)Υ (x′, yk+1) P (x, dx′) πk(y0, . . . , yk, dx) =∫

Υ (x′, yk+1) P (x, dx′) πk(y0, . . . , yk, dx).

But using the normalized filtering recursion (corollary 2.10), we find∫
β̄k+1|n(x′, y0, . . . , yn) Υ (x′, yk+1) P (x, dx′) πk(y0, . . . , yk, dx)∫

Υ (x′, yk+1)P (x, dx′)πk(y0, . . . , yk, dx)
=∫

β̄k+1|n(x′, y0, . . . , yn) πk+1(y0, . . . , yk+1, dx′) = 1

by construction. This completes the proof. ut

Prediction

Prediction, i.e., the computation of πk|n for k > n, is the simplest of our
estimation problems. The following theorem can be proved using the Bayes
formula, but a direct proof is simple and illuminating.

Theorem 2.14 (Prediction recursion). The prediction distribution πk|n
(k > n) can be computed recursively as

πk|n(y0, . . . , yn, A) =
∫

IA(x)P (x′, dx)πk−1|n(y0, . . . , yn, dx′)

for every A ∈ E and y0, . . . , yn ∈ F , with the initial condition πn|n = πn.
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Proof. By the tower property of the conditional expectation, we have

E(f(Xk)|Y0, . . . , Yn) = E(E(f(Xk)|X0, Y0, . . . , Xn, Yn)|Y0, . . . , Yn)

for k > n. But using the Markov property of the signal, we have

E(f(Xk)|X0, Y0, . . . , Xn, Yn) = P k−nf(Xn).

Therefore E(f(Xk)|Y0, . . . , Yn) = E(P k−nf(Xn)|Y0, . . . , Yn) or, equivalently,∫
f(x) πk|n(y0, . . . , yn, dx) =

∫
P k−nf(x)πn(y0, . . . , yn, dx).

for every bounded measurable function f . The recursion for πk|n can now be
read off directly from this expression. ut

We now make a simple observation: by corollary 2.10, the filter πk+1 can
be naturally expressed in terms of the one step predictor πk+1|k:

πk+1(y0, . . . , yk+1, A) =

∫
IA(x)Υ (x, yk+1) πk+1|k(y0, . . . , yk, dx)∫

Υ (x, yk+1) πk+1|k(y0, . . . , yk, dx)
.

The filter recursion is therefore frequently interpreted as a two step procedure:

πk
prediction−−−−−−−−→ πk+1|k

correction−−−−−−−−→ πk+1.

We will see this idea again in the chapter 4.

2.3 Implementation

In principle, the filtering, smoothing and prediction recursions obtained in the
previous section provide a complete solution to these problems. However, in
practice, these results may not be of immediate use. Indeed, these are recur-
sions for probability measures and functions on the signal state space E: such
objects are typically infinite dimensional, in which case one can not in general
perform these computations on a computer without further approximation.
The question then becomes how to apply these mathematical techniques, ei-
ther exactly or approximately, to real-world problems.

Considering first the problem of approximate implementation, one might
try the standard numerical technique of approximating continuous objects by
their values on a discrete grid. Though this approach is sometimes success-
ful in low dimensional problems, it suffers from the same problem that was
famously formulated by Bellman many decades ago: the curse of dimensional-
ity. The problem is that in the signal state space E = Rp, the computational
complexity of a grid method that achieves a fixed approximation error is typ-
ically of order eβp for some β > 0, i.e., the computational complexity of the
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algorithm grows very rapidly with the state space dimension. Such techniques
are therefore typically intractable in dimensions higher than p = 2 or 3. A
more detailed analysis of this phenomenon can be found in remark 4.6. To
mitigate the problem, we will develop in chapter 4 an approximate filtering
algorithm which uses random sampling rather than gridding to discretize the
problem. This technique is flexible and easily implemented, and it manages
to avoid many (but not all) the problems of grid based algorithms.

Particularly in complex models, approximate implementation of the filter
is the best one can hope for. However, there are two cases where the recursions
obtained in this chapter can be implemented exactly.

The first is the case where the signal state space is a finite set, say E =
{1, . . . , n}, so that measures and functions on E can be represented as n-
dimensional vectors (problem 1.1). This means that the recursions obtained
in this chapter can be expressed in terms matrix multiplication, which is
easily implemented exactly as a computer algorithm. Though this setting is
a special case of our general theory, it plays a particularly important role in
applications: on the one hand there are may applications which can reasonably
be modeled on a finite signal state space (see, e.g., the examples in section
1.3); on the other hand, the estimation theory for this class of models can
be implemented exactly as a computer algorithm, which leads to tractable
and powerful techniques that can be applied successfully to real data. We
will develop this special setting in detail in chapter 3, including several new
techniques that are of specific interest in a finite state space.

The other special case where exact computation is possible is the class of
linear Gaussian state space models where E = Rp, F = Rq, and

Xk = a + AXk−1 + Bξk, Yk = c + CXk + Dηk.

We must assume, moreover, that ξk, k ≥ 1 are i.i.d. N(0, Idp), ηk, k ≥ 0 are
i.i.d. N(0, Idq), and X0 ∼ N(µ0, P0). As the signal state space is continu-
ous, the filtering, smoothing and prediction recursions will in fact be infinite
dimensional. However, what happens in this special case is that as all the
noise is Gaussian and all the operations are linear, every conditional distribu-
tion in this model is also Gaussian (problem 2.5). But the family of Gaussian
distributions on Rp is a finite dimensional subset of the space of all prob-
ability measures on Rp: a Gaussian distribution is completely characterized
by its mean vector and covariance matrix. Therefore the filtering, smoothing
and prediction recursions are really finite dimensional recursions in disguise,
which can again be implemented efficiently as a computer algorithm. For the
filtering problem, this leads to the famous Kalman filter.

Linear Gaussian models are ubiquitous in the engineering literature, at
least partly due to their tractability. They exhibit rather special structure
and properties, however, and the techniques which are introduced for general
hidden Markov models are not always the best or most natural methods to deal
with linear systems (this is in contrast to the theory for finite state models,
which bears much resemblance to the general theory of hidden Markov models
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and provides a host of excellent examples for the latter). For this reason,
though they will make an occasional appearance, we will not spend much
time on linear systems in this course. Of course, many of the techniques which
will be discussed in this course can be applied to linear systems; for example,
problem 2.5 below asks you to derive the Kalman filtering recursion from the
general theory in the previous section. For a thorough introduction to linear
estimation theory we refer, however, to the textbook [KSH00].

Remark 2.15. In the linear Gaussian case, what evidently happens is that the
infinite dimensional recursions have finite dimensional invariant sets, so that
the recursion can be represented in finite dimensional form. One might won-
der whether there are other filtering models which have this highly desirable
property. Unfortunately, it turns out that linear Gaussian models are rather
special in this regard: typically finite dimensional invariant sets do not exist
[Saw81]. Though one can construct examples of nonlinear filtering problems
which have a finite-dimensional realization, these are almost always ad-hoc
and appear rarely if ever in applications. In nonlinear continuous models,
exact computations are therefore essentially always hopeless.

However, if the nonlinear model is linear to good approximation, then
applying techniques for linear systems can be successful in practice. A common
ad-hoc approach in engineering is to linearize nonlinear dynamics so that the
Kalman filter can be applied locally; this is known as the extended Kalman
filter. Unfortunately, the performance of this method is often poor, and it is
very difficult to prove anything about it (but see [Pic91]). In any case, as we
are interested in general hidden Markov models, such methods are out of place
in this course and we will not go any further in this direction.

Problems

2.1. Best Linear Estimate
Let X, Y be real-valued random variables with finite mean and variance. Recall
that the conditional expectation E(X|Y ) is the optimal least squares estimate.
(a) Suppose that are are only interested in linear estimates, i.e., we seek an
estimate of X of the form X̂ = aY + b for some (non-random) constants
a, b ∈ R. Assume that Y has nonzero variance var(Y ) > 0. Show that

X̂ = E(X) +
cov(X, Y )

var(Y )
(Y −E(Y ))

minimizes E((X − X̂)2) over the class of all linear estimates. X̂ is called the
best linear estimate of X given Y .
(b) Provide an example where E((X −E(X|Y ))2) < E((X − X̂)2). Evidently
nonlinear estimates do indeed (typically) perform better than linear estimates.
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2.2. Prove that the quantity∫
βk|n(x, yk+1, . . . , yn)σk(y0, . . . , yk, dx),

which appears in the denominator of the expression in theorem 2.12, does not
depend on k (and therefore equals σn(y0, . . . , yn, E)).

2.3. Delayed Observations
Suppose that the observations Yk are defined with one time step delay: Y0 = 0
and Yk = H(Xk−1, ηk) for k ≥ 1. The resulting model is strictly speaking not
a hidden Markov model in the sense of chapter 1 (where Yk = H(Xk, ηk)),
but the resulting theory is almost identical. Modify the filtering, smoothing
and prediction recursions developed in this chapter to this setting.

2.4. Path Estimation
In this problem, we investigate the conditional distribution PX0,...,Xn|Y0,...,Yn

of the entire signal path X0, . . . , Xn given the observations Y0, . . . , Yn.
(a) Show that the signal (Xk)0≤k≤n is a nonhomogeneous Markov process
under the conditional distribution PX0,...,Xn|Y0,...,Yn

(y0, . . . , yn, · ).
(b) The initial measure is obviously π0|n. Give an explicit expression for the
transition kernels of this nonhomogeneous Markov process using theorem 2.12.

2.5. Linear Gaussian Models
If the signal state space E is not finite, the filtering recursion can typically
not be computed in a finite dimensional form. One of the very few exceptions
is the linear Gaussian case. In this setting E = Rp, F = Rq, and

Xk = a + AXk−1 + Bξk, Yk = c + CXk + Dηk,

where A and B are p×p matrices, C is a q×p matrix, D is a q×q matrix, and
a ∈ Rp, c ∈ Rq. Moreover, we assume that ξk, k ≥ 1 are i.i.d. N(0, Idp), that
ηk, k ≥ 0 are i.i.d. N(0, Idq), and that X0 ∼ N(µ0, P0). In order to ensure the
nondegeneracy assumption, we will assume that D is invertible.
(a) Show that the conditional distributions πn|k are Gaussian for every n, k.
(b) Denote by X̂k and P̂k the mean vector and covariance matrix of the
filter conditional distribution πk. Find a recursion for (X̂k, P̂k) in terms of
(X̂k−1, P̂k−1) and Yk using the general filtering recursion in theorem 2.9. You
may use the following matrix identity (assuming all inverses exist):

(Σ−1 + C∗(DD∗)−1C)−1 = Σ −ΣC∗(DD∗ + CΣC∗)−1CΣ.

The recursion for (X̂k, P̂k) is called the Kalman filter.
(c) Find prediction and smoothing counterparts of the recursion in part (b).
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Notes

The contents of this chapter are very well known. The filtering, smoothing
and prediction problems have their origin in the work of Wiener, who was in-
terested in stationary processes. In the more general setting of hidden Markov
models, many of these ideas date back to the seminal work of Stratonovich,
Kalman, Shiryaev, Baum, Petrie and others in the early 1960s.

When the signal state space is not finite and the hidden Markov model
is not of the linear-Gaussian type, the filtering, smoothing and prediction
recursions developed in this chapter can typically only be implemented in
an approximate sense. Many such approximation have been suggested in the
literature. One of the most succesful approximation methods, the Monte Carlo
interacting particle filters, is discussed in chapter 4. What follows is a (highly
incomplete) list of references to various other methods.

• Extended Kalman filters are based on local linearization of the hidden
Markov model, after which the Kalman filter is applied; there are also
other variations on this theme. See, e.g., [Jaz70, BLK01].

• Truncated filters: in certain problems the exact filter is a mixture of a finite
number of simple distributions, but the number of distributions in the
mixture increases in every time step. In this case, the exact filter may be
approximated by ‘culling’ the least likely elements of the mixture in every
time step to obtain a mixture of fixed size. See [BBS88, BLK01, GC03].

• Projection filters: here the exact filtering algorithm is constrained to re-
main in a fixed parametric family of distributions by ‘projecting’ the filter
dynamics. See [BHL99, BP03].

• Markov chain approximation: here a finite grid is fixed in the signal state
space, and the true signal process is approximated by a finite state Markov
chain on this grid. The exact filter is then approximated by the filter
corresponding to this finite state Markov chain. See [KD01]. How to choose
a good grid is an interesting problem in itself; see [PP05].

• Basis function expansions: here the filter distribution is expanded in a
suitable basis, and the number of basis elements is truncated in each time
step. See, e.g., [Jaz70, LMR97].

• Small noise approximations: when the signal to noise ratio of the observa-
tions is very high, certain simple algorithms can be shown to be approxi-
mately optimal. See [Pic86] (and [Pic91] for related results).

Note that some of these papers deal with the continuous time setting.
Though the Kalman filter falls within our framework, the theory of linear

estimation has a lot of special structure and is best studied as a separate topic.
As a starting point, see the textbook by Kailath, Sayed and Hassibi [KSH00].
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Finite State Space

3.1 Finite State Filtering, Smoothing, Prediction

In the previous chapter we worked out the filtering, smoothing and prediction
recursions for a general hidden Markov model. In this chapter we will specialize
and extend these results to an important special case: the setting where the
signal state space E is a finite set. On the one hand, such models appear in
many applications and therefore merit some additional attention; on the other
hand, this setting is particularly convenient as the techniques developed in the
previous chapter are computationally tractable without approximation.

Throughout this chapter, we consider a hidden Markov model (Xk, Yk)k≥0

on the state space E × F , where the signal state space E is a finite set of
cardinality d < ∞. Without loss of generality, we will label the elements of
E as E = {1, . . . , d}. The transition kernel, observation kernel and initial
measure are denoted P , Φ, and µ, as usual. We also presume that the obser-
vations are nondegenerate, i.e., that Φ possesses a positive observation density
Υ : E × F → ]0,∞[ with respect to a reference probability measure ϕ on F .

In the finite state setting, it is convenient to think of functions and mea-
sures as vectors and of kernels as matrices (recall problem 1.1). To see this,
note that a function f : E → R is completely determined by the vector
f = (f(1), . . . , f(d))∗ ∈ Rd (v∗, M∗ denote the transpose of a vector v or
matrix M). Similarly, a measure µ on E is completely determined by the
vector µ = (µ({1}), . . . , µ({d}))∗ ∈ Rd: indeed,∫

f(x)µ(dx) =
d∑

i=1

f(i) µ({i}) = µ∗f = f∗µ for any f : E → R.

The transition kernel P is naturally represented by a matrix P with matrix
elements P ij = P (i, {j}). To see this, note that

Pf(i) =
d∑

j=1

P (i, {j}) f(j) = (Pf)i,
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while

µP ({j}) =
d∑

i=1

µ({i}) P (i, {j}) = (µ∗P )j = (P ∗µ)j .

Finally, we will represent the observation density Υ as follows: for every y ∈ F ,
we define the diagonal matrix Υ (y) with nonzero elements (Υ (y))ii = Υ (i, y).
The convenience of this definition will become evident presently.

With our new vector-matrix notation in hand, we can proceed to reformu-
late the results of the previous chapter. Note that we are doing nothing other
than rewriting these results in a new notation: nonetheless, the vector-matrix
notation leads immediately to a computational algorithm.

Remark 3.1. In the following, we will fix an observation sequence (yk)k≥0;
we can therefore drop the dependence of σk, πk|n, etc., on the observation
sequence, which will considerably simplify our notation. For example: rather
than writing σk(y0, . . . , yk, dx), we will simply write σk(dx).

Let us begin by reformulating the unnormalized filtering recursion. As
with any measure, we can represent the unnormalized filter by a vector σk =
(σk({1}), . . . , σk({d}))∗. Then we immediately read off from theorem 2.9:

σ0 = Υ (y0)µ, σk = Υ (yk)P ∗σk−1 (k ≥ 1).

Denote by 1 ∈ Rd the vector of ones (1, . . . , 1)∗ (i.e., 1 represents the constant
function f(x) = 1). Representing the normalized filter πk as a vector πk, we
then find that πk = σk/1∗σk. However, by corollary 2.10, the normalized
filter can also be computed directly through the normalized recursion

π0 =
Υ (y0)µ

1∗Υ (y0)µ
, πk =

Υ (yk)P ∗πk−1

1∗Υ (yk)P ∗πk−1
(k ≥ 1).

Let us now turn to the smoothing problem. Dropping again the dependence
on the observations, the unnormalized smoothing densities βk|n can be repre-
sented as vectors βk|n = (βk|n(1), . . . , βk|n(d))∗. By theorem 2.12,

βn|n = 1, βk|n = PΥ (yk+1)βk+1|n (k < n).

The smoothing distributions can then be computed in various ways:

πk|n =
diag(βk|n) σk

β∗k|nσk
=

diag(βk|n) πk

β∗k|nπk
=

diag(βk|n) σk

1∗σn
,

where the second equality is trivial and the third equality follows from prob-
lem 2.2. On the other hand, we may also compute the normalized smoothing
densities β̄k|n, represented as vectors β̄k|n, as

β̄n|n = 1, β̄k|n =
PΥ (yk+1)β̄k+1|n

1∗Υ (yk+1)P ∗πk
(k < n),
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Algorithm 3.1: Forward-Backward Algorithm
π0 ← Υ (y0)µ/1∗Υ (y0)µ;
for k=1,. . . ,n do

π̃k ← Υ (yk)P ∗πk−1;
ck ← 1∗π̃k;
πk ← π̃k/ck;

end
β̄n|n ← 1;

for k=1,. . . ,n do
β̄n−k|n ← PΥ (yn−k+1)β̄n−k+1|n/cn−k+1;

πn−k|n ← diag(β̄n−k|n) πn−k;

end

in which case we simply obtain πk|n = diag(β̄k|n) πk. Finally, the vector form
of the prediction recursion follows immediately from theorem 2.14:

πn|n = πn, πk+1|n = P ∗πk|n (k ≥ n).

Each of these recursions can be implemented efficiently on a computer. For
example, an efficient way to compute the filtering and smoothing distributions
is the forward-backward algorithm 3.1 which makes two passes through the
observation data: a forward pass to compute the filtering distributions, and a
backward pass to compute the smoothing densities.

We have obtained various forms of the filtering and smoothing recursions—
both normalized and unnormalized. Which form should we use? For computa-
tional purposes, the normalized recursions are typically preferable. The reason
is that in the unnormalized recursions, the normalization has the tendency to
grow or shrink very rapidly in time. This will get us into big trouble when,
sometimes after only a few time steps, the elements of the unnormalized fil-
tering/smoothing quantities come close to or exceed machine precision. The
normalized recursions keep the various computed quantities in a reasonable
range, so that this problem is generally avoided.

3.2 Transition Counting and Occupation Times

In this section we are going to discuss some new estimation problems in the
the finite state setting. The first problem is that of estimating the occupation
time of each state i = 1, . . . , d, i.e., we wish to estimate the number of times
that the signal was in the state i before time n:

ωi
n(Y0, . . . , Yn) = E(#{` < n : X` = i}|Y0, . . . , Yn).

The second problem that we will consider is estimation of the transition count
between each pair of states (i, j), i.e., we wish to estimate the number of times
that the signal jumped from state i to state j before time n:
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τ ij
n (Y0, . . . , Yn) = E(#{` < n : X` = i and X`+1 = j}|Y0, . . . , Yn).

Though one could come up with similar problems in more general hidden
Markov models, these problems are particularly natural in the finite state set-
ting; solving them is good practice in working with the theory of the previous
chapter. More importantly, however, it turns out that these two quantities
are of central importance in the statistical inference problem of learning the
transition probabilities P from training data, as we will see in chapter 6. We
had therefore better make sure that we are able to compute them.

Forward-Backward approach

Let us begin by considering the expected occupations times ωi
n. To compute

this quantity, let us express the occupation time of state i as follows:

#{` < n : X` = i} =
n−1∑
`=0

Ii(X`).

By the linearity of the conditional expectation, we obtain

ωi
n(Y0, . . . , Yn) =

n−1∑
`=0

P(X` = i|Y0, . . . , Yn) =
n−1∑
`=0

π`|n(Y0, . . . , Yn, {i}).

To compute this quantity, we can therefore simply apply the forward-backward
algorithm 3.1 of the previous section: once πk|n have been computed for k =
0, . . . , n− 1, we obtain directly ωi

n = (π0|n + · · ·+ πn−1|n)i.
The expected transition counts τ ij

n are a little more involved. We begin,
in analogy with our approach to the occupation times, by noting that

#{` < n : X` = i and X`+1 = j} =
n−1∑
`=0

Ii(X`)Ij(X`+1).

We therefore find that

τ ij
n (Y0, . . . , Yn) =

n−1∑
`=0

P(X` = i and X`+1 = j|Y0, . . . , Yn).

In order to compute this quantity, we need to find a way to compute the
bivariate smoothing distributions π`,`+1|n = PX`,X`+1|Y0,...,Yn

.

Theorem 3.2 (Bivariate smoothing recursion). The bivariate smoothing
distributions π`,`+1|n (` ≤ n− 1) can be computed as

π`,`+1|n(A×B) =∫
IA(x`) IB(x`+1) β`+1|n(x`+1) Υ (x`+1, y`+1) P (x`, dx`+1) σ`(dx`)∫

β`+1|n(x`+1)σ`+1(dx`+1)
,
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where we have dropped the dependence on y0, . . . , yn for notational conve-
nience. Moreover, if we define recursively

β̃k|n(x, y0, . . . , yn) =

∫
β̃k+1|n(x′, y0, . . . , yn) Υ (x′, yk+1)P (x, dx′)∫
Υ (x′, yk)P (x, dx′)πk−1(y0, . . . , yk−1, dx)

with the terminal condition

β̃n|n(x, y0, . . . , yn) =
1∫

Υ (x′, yn) P (x, dx′) πn−1(y0, . . . , yn−1, dx)
,

then we can write the bivariate smoothing distribution in normalized form

π`,`+1|n(A×B) =∫
IA(x`) IB(x`+1) β̃`+1|n(x`+1)Υ (x`+1, y`+1) P (x`, dx`+1) π`(dx`).

Proof. Up to you: Problem 3.1. ut

Returning to the finite state setting, let us represent the bivariate smooth-
ing distribution π`,`+1|n as a matrix π`,`+1|n with matrix elements defined as
(π`,`+1|n)ij = π`,`+1|n({i} × {j}). Note that, by construction,

(π`|n)i =
d∑

j=1

(π`,`+1|n)ij = π`,`+1|n1 =
d∑

j=1

(π`−1,`|n)ji = π∗
`−1,`|n1.

Using problem 3.1(b), we may compute the bivariate smoothing distributions
using the forward-backward algorithm 3.1. However, theorem 3.2 suggests that
when we are interested in the bivariate distributions, it is convenient to modify
the algorithm so that it computes the renormalized smoothing densities β̃k|n
rather than the smoothing densities β̄k|n of corollary 2.13. This gives the
Baum-Welch algorithm, which is summarized as algorithm 3.2.

Finally, once we have run the Baum-Welch algorithm, we may evidently
compute immediately the occupation times and transition counts:

ωi
n =

n∑
`=0

(π`|n)i, τ ij
n =

n−1∑
`=0

(π`,`+1|n)ij .

Alternatively, note that ωi
n =

∑d
j=1 τ ij

n , so we need not even compute π`|n.

Recursive approach

The Baum-Welch algorithm is of the forward-backward type: first, a forward
pass is made through the observations to compute the filtering distributions;
then, a backward pass is used to compute the bivariate smoothing distribu-
tions. Once the latter have been obtained, we may compute the transition
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Algorithm 3.2: Baum-Welch Algorithm
c0 ← 1∗Υ (y0)µ;
π0 ← Υ (y0)µ/c0;
for k=1,. . . ,n do

π̃k ← Υ (yk)P ∗πk−1;
ck ← 1∗π̃k;
πk ← π̃k/ck;

end

β̃n|n ← 1/cn;

for k=1,. . . ,n do

β̃n−k|n ← PΥ (yn−k+1)β̃n−k+1|n/cn−k;

πn−k,n−k+1|n ← diag(πn−k)PΥ (yn−k+1)diag(β̃n−k+1|n);
πn−k|n ← πn−k,n−k+1|n1;

end

counts and occupation times by summing the smoothing distributions, as ex-
plained above. Note that the backward pass requires us to store both the entire
observation history y0, . . . , yn and filter history π0, . . . ,πn in memory; this is
usually not a problem in off-line data analysis, but can become prohibitive if
we have very long time series or if the estimation is performed on-line.

We are now going to develop a different method to compute the tran-
sition counts and occupation times which requires only a forward pass and
no backward pass. This can have significant advantages; in particular, we do
not need to store the observation history and filter history in memory, but
instead the estimates are updated recursively in each time step using the new
observation only (as in the filtering recursion). This approach also has some
significant drawbacks, however. A brief discussion of the difference between
the two approaches can be found at the end of the section.

Let us concentrate on the transition counts τ ij
n ; as noted above, we may

obtain the occupation times ωi
n by summing τ ij

n over j. The idea is to introduce
an auxiliary estimator of the following form:

(τ ij
n (Y0, . . . , Yn))r = E(Ir(Xn)#{` < n : X` = i and X`+1 = j}|Y0, . . . , Yn).

Given τ ij
n , we can clearly compute the transition counts as τ ij

n = 1∗τ ij
n . The

key point is that unlike τ ij
n , the auxiliary estimator τ ij

n can be computed
recursively: this eliminates the need for a backward pass.

Theorem 3.3 (Transition count recursion). The auxiliary estimator τ ij
n

(n ≥ 0) can be recursively computed as follows:

τ ij
0 = 0, τ ij

k =
Υ (yk)P ∗τ ij

k−1 + IjΥ (yk)P ∗Iiπk−1

1∗Υ (yk)P ∗πk−1
(k ≥ 1),

where Ii is the diagonal matrix whose single nonzero entry is (Ii)ii = 1, and
0 is the origin in Rd (0i = 0 for i = 1, . . . , d).
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Proof. We begin by writing

Ir(Xk) #{` < k : X` = i and X`+1 = j} = Ir(Xk)
k−1∑
`=0

Ii(X`)Ij(X`+1)

= Ir(Xk)
k−2∑
`=0

Ii(X`)Ij(X`+1) + δjr Ii(Xk−1)Ij(Xk).

It follows directly from theorem 3.2 that

δjr E(Ii(Xk−1)Ij(Xk)|Y0, . . . , Yk) =
(IjΥ (yk)P ∗Iiπk−1)r

1∗Υ (yk)P ∗πk−1
.

It remains to deal with the first term. To this end, we return to the Bayes
formula in the previous chapter, which states that∫

Ir(xk)
k−2∑
`=0

Ii(x`)Ij(x`+1) PX0,...,Xk|Y0,...,Yk
(dx0, . . . , dxk) =

∫
Ir(xk)

∑k−2
`=0 Ii(x`)Ij(x`+1) γk(x0, . . . , xk) µk(dx0, . . . , dxk)∫

γk(x0, . . . , xk) µk(dx0, . . . , dxk)
,

where we have defined the functions γk(x0, . . . , xk) = Υ (x0, y0) · · ·Υ (xk, yk)
and µk(dx0, . . . , dxk) = P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0). Define

Ar(xk−1) =
∫

Ir(xk) Υ (xk, yk) P (xk−1, dxk).

Then we evidently have∫
Ir(xk)

k−2∑
`=0

Ii(x`)Ij(x`+1) PX0,...,Xk|Y0,...,Yk
(dx0, . . . , dxk) =

∫
Ar(xk−1)

k−2∑
`=0

Ii(x`)Ij(x`+1) PX0,...,Xk−1|Y0,...,Yk−1(dx0, . . . , dxk−1)

×
∫

γk−1(x0, . . . , xk−1)µk−1(dx0, . . . , dxk−1)∫
γk(x0, . . . , xk)µk(dx0, . . . , dxk)

=
(Υ (yk)P ∗τ ij

k−1)r

1∗Υ (yk)P ∗πk−1
.

Adding the expressions for the two terms completes the proof. ut
Using this result, we can now obtain a forward algorithm which computes

the transition counts and occuptaion times recursively using only a forward
pass. This algorithm is summarized as algorithm 3.3.

Remark 3.4. Note that from theorem 3.3, we find immediately that the quan-
tity ωi

k =
∑d

j=1 τ ij
k can be computed recursively without computing τ ij

k . As
ωi

k = 1∗ωi
k, we obtain a computationally cheaper forward algorithm for com-

puting the occupation times. However, if the transition counts are computed
anyway, there is clearly no need to perform this extra recursion.
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Algorithm 3.3: Forward Algorithm
π0 ← Υ (y0)µ/1∗Υ (y0)µ;
τ ij

0 ← 0, i, j = 1, . . . , d;
for k=1,. . . ,n do

π̃k ← Υ (yk)P ∗πk−1;
ck ← 1∗π̃k;
πk ← π̃k/ck;
τ ij

k ← (Υ (yk)P ∗τ ij
k−1 + IjΥ (yk)P ∗Iiπk−1)/ck, i, j = 1, . . . , d;

end

τ ij
n ← 1∗τ ij

n , i, j = 1, . . . , d;
ωi

n ←
∑d

j=1 τ ij
n , i = 1, . . . , d;

We now have two approaches to compute the transition counts and oc-
cupation times. Which one is preferable in practice? There is no universal
answer to this question. If enough memory is available to store the observa-
tion and filter history, and if the time horizon n is fixed, the Baum-Welch
algorithm may be computationally cheaper as its cost is of order d3n oper-
ations (each matrix multiplication is of order d3 and there are n time steps;
the fact that there are two passes only contributes a constant factor). In con-
trast, the forward algorithm has a computational cost of order d5n (as there
are of order d2 recursions τ ij

k , i, j = 1, . . . , d being computed simultaneously).
Another advantage of the Baum-Welch algorithm is that it allows us to com-
pute arbitrary smoothed estimates, while the forward algorithm is specific to
the computation of transition counts; the forward algorithm is therefore only
suitable if we are interested exclusively in the latter.

On the other hand, the Baum-Welch algorithm assumes that the time
horizon is fixed. If we wanted to compute τ ij

k for all k = 0, . . . , n using the
Baum-Welch algorithm, we would have to repeat the algorithm for every time
horizon k separately so that the total computational cost is of order d3n2. This
may be prohibitive when n is large, while the forward algorithm (with cost
d5n) may do better in this setting. Another advantage of the forward algorithm
is that its memory requirements do not depend on the time horizon n, unlike
in the Baum-Welch algorithm. Particularly for long time series and for on-line
computation, the forward algorithm may then turn out to be preferable.

3.3 The Viterbi Algorithm

Up to this point, we have discussed how to implement the generic filtering,
smoothing and prediction problems for finite state signals; these techniques
can be applied in a wide variety of applications for various different purposes
(see, e.g., section 1.3). We also discussed two special estimation problems—
transition counting and occupation time estimation—which we will need later
on to solve the important problem of statistical inference (chapter 6).
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In this section, we turn to a more specific type of problem: the estima-
tion, or decoding, of a a finite state signal path x0, . . . , xn from observed data
y0, . . . , yn. Consider, for example, a finite alphabet message that is encoded
and transmitted through a noisy channel; the signal state space E then rep-
resents the signal alphabet, the signal (Xk)0≤k≤n is the message, and the
observation sequence (Yk)0≤k≤n is the encoded and corrupted message as it
is received after transmission through the channel. We would like to infer as
best we can the transmitted message from the observation sequence: i.e., we
are seeking to construct the random variables X̂0, . . . , X̂n, each of which is a
function of the observed sequence X̂k = fk(Y0, . . . , Y0), such that the estimate
(X̂k)0≤k≤n is as close as possible to the true signal (Xk)0≤k≤n. The solution
of this problem depends, however, on what we mean by ‘as close as possible’.

Let us first consider the following problem:

Choose (X̂k)k≤n such that E(#{k ≤ n : Xk = X̂k}) is maximized.

In words, we would like to design the estimate so that as many as possible
individual symbols in the message are decoded correctly. First, note that

#{k ≤ n : Xk = X̂k} =
n∑

k=0

I0(Xk − X̂k).

Therefore, by lemma 2.4, we must choose the functions fk such that

(f0(y0, . . . , yn), . . . , fn(y0, . . . , yn)) =

argmax
(x̂0,...,x̂n)

∫ n∑
k=0

I0(xk − x̂k)PX0,...,Xn|Y0,...,Yn
(y0, . . . , yn, dx0, . . . , dxn).

However, due to the elementary fact that the maximum distributes over a sum
(i.e., maxz0,...,zn

(g0(z0) + · · ·+ gn(zn)) = maxz0 g0(z0) + · · ·+ maxzn
gn(zn)),

we may compute each fk independently:

fk(y0, . . . , yn) = argmax
x̂

∫
I0(x− x̂)PXk|Y0,...,Yn

(y0, . . . , yn, dx)

= argmax
i

πk|n(y0, . . . , yn, {i}) = argmax
i

(πk|n)i.

Evidently the optimal estimate, in the sense of maximum number of correctly
decoded symbols, is obtained by choosing X̂k to be the MAP estimate of Xk

given Y0, . . . , Yn (see example 2.6). Computationally, we already know how
to obtain this estimate: using either the forward-backward algorithm 3.1 or
the Baum-Welch algorithm 3.2 to compute the smoothing distributions πk|n,
the signal estimate is obtained by selecting for each time k the symbol whose
smoothing probability (πk|n)i is maximal.

The above approach to decoding the signal has an important drawback,
however. The problem is most easily illustrated using a trivial example.
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Example 3.5. For simplicity, we consider an example where there are no obser-
vations. The signal state space is E = {0, 1}, and the transition probabilities
are such that P (0, {1}) = P (1, {0}) = 1. We also choose the initial measure
µ({0}) = µ({1}) = 1/2. As there are no observations (e.g., Yk = 0 for all k),
we simply have πk|n({i}) = P(Xk = i) = 1/2 for every i, k, n.

We now seek to estimate the signal. As all individual probabilities are 1/2,
the above discussion shows that any choice of estimate X̂k, k = 0, . . . , n has
the same expected number of correctly decoded symbols. We may therefore
choose an optimal estimator in this sense by setting X̂k = 0 for all k. However,
the signal path Xk = 0 for all k has probability zero, as P (0, {0}) = 0!

Evidently an estimate of the signal path which maximizes the number of
correctly decoded individual symbols need not maximize the probability that
the entire path is decoded without errors; in particularly bad cases the former
technique can even give rise to an estimate which is not actually a valid signal
path. The problem is that by maximizing the probability of each symbol indi-
vidually, we are not necessarily constrained to respect the possible transitions
between adjacent symbols. In problems where the latter is important, it may
be preferable to solve the following alternative estimation problem:

Choose (X̂k)k≤n such that P(Xk = X̂k for all k ≤ n) is maximized.

In general the two estimation problems will have different solutions.
We now consider how to compute the maximum probability path estimate.

The bad news is that as the event {Xk = X̂k for all k ≤ n} can not be written
as a disjoint union of events for each time k individually, we can not use the
above technique to reduce the problem to the forward-backward or Baum-
Welch algorithms. The good news is, however, that we may still compute the
maximum probability path estimate using a recursive algorithm, called the
Viterbi algorithm, which we will develop presently. The Viterbi algorithm is
widely used in communications engineering applications—most likely your cell
phone incorporates it in some form or another.

To compute the maximum probability path estimate we must choose, by
lemma 2.4, the estimate functions fk such that

(f0(y0, . . . , yn), . . . , fn(y0, . . . , yn)) =

argmax
(x̂0,...,x̂n)

∫ n∏
k=0

I0(xk − x̂k)PX0,...,Xn|Y0,...,Yn
(y0, . . . , yn, dx0, . . . , dxn).

Using the Bayes formula, we can evaluate explicitly∫ n∏
k=0

I0(xk − x̂k) PX0,...,Xn|Y0,...,Yn
(y0, . . . , yn, dx0, . . . , dxn) =

Υ (x̂0, y0) · · ·Υ (x̂n, yn)P (x̂n−1, {x̂n}) · · ·P (x̂0, {x̂1}) µ({x̂0})∫
Υ (x0, y0) · · ·Υ (xn, yn) P (xn−1, dxn) · · ·P (x0, dx1) µ(dx0)

.



3.3 The Viterbi Algorithm 45

The denominator does not depend on x̂0, . . . , x̂n, however, so evidently

(f0(y0, . . . , yn), . . . , fn(y0, . . . , yn)) =
argmax
(x̂0,...,x̂n)

Υ (x̂0, y0) · · ·Υ (x̂n, yn) P (x̂n−1, {x̂n}) · · ·P (x̂0, {x̂1}) µ({x̂0}),

or, even more conveniently,

(f0(y0, . . . , yn), . . . , fn(y0, . . . , yn)) =

argmax
(x̂0,...,x̂n)

[
log(µ({x̂0})Υ (x̂0, y0)) +

n∑
k=1

(log P (x̂k−1, {x̂k}) + log Υ (x̂k, yk))

]

(we have used that as log x is increasing, argmaxx f(x) = argmaxx log f(x)).
The idea behind the Viterbi algorithm is to introduce the functions

v`(x̂`) =

max
x̂0,...,x̂`−1

[
log(µ({x̂0})Υ (x̂0, y0)) +

∑̀
k=1

(log P (x̂k−1, {x̂k}) + log Υ (x̂k, yk))

]
.

The key property of these functions is that they can be computed recursively.

Theorem 3.6 (Viterbi recursion). The functions v` satisfy the recursion

v`(x̂`) = max
x̂`−1

{v`−1(x̂`−1) + log P (x̂`−1, {x̂`})}+ log Υ (x̂`, y`)

with the initial condition v0(x̂0) = log(µ({x̂0})Υ (x̂0, y0)). Moreover, the es-
timating functions f`(y0, . . . , yn), ` = 1, . . . , n for the maximum probability
path estimate given Y0, . . . , Yn satisfy the backward recursion

f` = argmax
x̂`

{v`(x̂`) + log P (x̂`, {f`+1})}

with the terminal condition fn = argmaxx̂n
vn(x̂n).

Proof. The result can be read off immediately from the definition of the func-
tions v` and from the above expression for the estimating functions f`. ut

The Viterbi algorithm can be implemented directly as a computer al-
gorithm; we have summarized it as algorithm 3.4. Note that the algorithm
consists of a forward pass and a backward pass, which is reminiscent of the
smoothing algorithms earlier in the chapter. However, there is an important
difference: the backward pass in the Viterbi algorithm does not explicitly use
the observation sequence y0, . . . , yk. Therefore the observation history does
not need to be stored in memory (but we do need to store at least all v`(i)).
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Algorithm 3.4: Viterbi Algorithm
v0(i)← log µi + log Υ (i, y0), i = 1, . . . , d;
for k=1,. . . ,n do

bk(i)← argmaxj=1,...,d{vk−1(j) + log P ji}, i = 1, . . . , d;
vk(i)← vk−1(bk(i)) + log P bk(i)i + log Υ (i, yk), i = 1, . . . , d;

end
fn ← argmaxj=1,...,d vn(j);

for k=1,. . . ,n do
fn−k ← bn−k+1(fn−k+1);

end

Remark 3.7. The Viterbi algorithm succeeds in splitting up a global optimiza-
tion problem so that the optimum can be computed recursively: in each step
we maximize over one variable only, rather than maximizing over all n vari-
ables simultaneously. The general underlying idea that allows one to solve
optimization problems in this manner is Bellman’s dynamic programming
principle; the Viterbi algorithm is an excellent example of this principle in
action. We will encounter dynamic programming again repeatedly in chapter
9, where it will be used to solve optimal control problems.

A numerical example

To round off this chapter on a more concrete note, let us briefly work out a
simple example. This example is inspired by a problem in biophysics [MJH06],
though we will make up some parameters for sake of example. A different
example is given as problem 3.5, where you will work through a practical
application in communications theory.

The problem in the present example is the following. Recall that the DNA
molecule—the carrier of genetic information—consists of two strands that are
twisted around one another. In order to regulate the readout of DNA, it is
possible for proteins to bind to various parts of the DNA strand; this can
either suppress or enhance the expression of a gene. To understand this mech-
anism more fully, biophysicists are interested in measuring experimentally the
dynamics of the binding and dissociation of proteins to the DNA molecule.

One way to do this is to attach to each strand of a DNA molecule a
fluorescent dye of a different color: one red and one green, say. We then excite
the red dye with a red laser. If the distance between the two dyes is short,
then some of the energy can be transfered from the red dye to the green
dye, in which case we observe that some green light is emitted. However,
the amount of energy transfer depends strongly on the distance between the
dyes. The trick is that when a protein binds to the DNA molecule, it wedges
itself between the dyes so that their distance is increased. Therefore, when a
protein binds, we expect to see a reduction in the amount of emitted green
light. If another protein binds, we expect to see a further reduction, etc. By
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Fig. 3.1. A typical run of the FRET example. The bottom plot shows the photon
count in each time bin. The top plot shows the true number of bound proteins (blue
circles), the Baum-Welch (red squares) and Viterbi (green diamonds) estimates.

monitoring the green light emitted from the experiment, we can therefore try
to estimate when protein binding or dissociation events occur. This is known
as a FRET (fluorescence resonance energy transfer) experiment.

Using modern technology, one can easily perform FRET experiments at
the single molecule level, so that one can really observe the individual bind-
ing and dissociation events. However, there is only so much signal that can
be obtained from a single molecule; in particular, in each time interval one
only observes a relatively small number of green photons. The observations
in such an experiment are therefore subject to Poissonian photon counting
statistics. Hidden Markov models provide a tool to decode the individual
binding/dissociation events from the noisy photon count data.

For sake of illustration, we make up an example with contrived numerical
parameters. Let us assume that at most three proteins reasonably bind to
DNA at once. The signal process Xk is the number of proteins bound in the
time interval k: it is therefore modeled in the signal state space E = {0, 1, 2, 3}.
For our example, we will presume that

P =


.94 .05 .01 .00
.03 .94 .02 .01
.05 .14 .80 .01
.05 .15 .30 .50

 , µ =


1
0
0
0

 .

For the observations, we presume that Yk is Poisson distributed (as is befitting
for photon counts) with rate parameter 50 − 10 Xk. In particular, F = Z+

and we can define the reference measure and observation density

ϕ({j}) =
e−1

j!
(j ∈ Z+), Υ (x, y) = (50− 10 x)y e−49+10 x.

This is all we need to use the algorithms in this chapter. A typical numerical
trajectory is shown in figure 3.1, together with the Baum-Welch and Viterbi
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estimates of the signal (the transition counts and occupation times can of
course also be computed, if one is interested).

In a real application one obviously does not wish to impose an arbitrary
model as we did here; instead, one would like to infer the various parameters
from experimental data. This problem will be treated in detail in chapter 6.

Problems

3.1. Bivariate Smoothing Distributions
(a) Prove theorem 3.2 for general hidden Markov models.
(b) What is the relation between β̄k|n (corollary 2.13) and β̃k|n?

3.2. Emission Counting
Suppose that E = {1, . . . , d} and F = {1, . . . , d′} are both finite. Construct
a forward-backward as well as a recursive algorithm to compute the emission
counts αij

n (Y0, . . . , Yn) = E(#{` < n : X` = i and Y` = j}|Y0, . . . , Yn).

3.3. Smoothing Functionals
We have seen that transition counts and occupation times can be computed
in a recursive manner. By the previous problem, this is true also for emission
counts. In fact, as is pointed out in [CMR05, section 4.1.2], there is a gen-
eral class of smoothing functionals which can be computed recursively in this
manner. Consider a function tn(X0, . . . , Xn) which is defined iteratively by

tn+1(X0, . . . , Xn+1) = mn(Xn, Xn+1) tn(X0, . . . , Xn) + sn(Xn, Xn+1),

where t0 : E → R and mn, sn : E × E → R are given functions. Show that
E(tn(X0, . . . , Xn)|Y0, . . . , Yn) can be computed recursively in a similar manner
as transition counts, occupation times and emission counts. Show also that
the latter are special cases of this general framework.

3.4. DNA Sequence Alignment II
In problem 1.3 we investigated a technique for DNA sequence recognition
and alignment. In that problem, we approached the required computations by
brute force. In this particularly simple example this approach is still tractable,
but in more realistic settings with longer strings and patterns the computa-
tional complexity becomes prohibitive. Fortunately, we now have the tools to
perform the computations in a very efficient manner.
(a) Prove that the following holds:

score(y0, . . . , yk) = σk(y0, . . . , yk, E) = 1∗σk,

provided that we choose the reference measure ϕ (see definition 1.9) to be the
uniform distribution on F = {A,C, G, T}.
(b) Reimplement the computations in problem 1.3 using the filtering recursion
and the Viterbi algorithm, and verify that everything works as expected.
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Fig. 3.2. A shift-register encoding model of length m and rate n−1.

3.5. Channel Coding and Decoding
In digital communications one is faced with the basic problem if transmitting a
digital message through a noisy channel. The message is modeled as a sequence
Bk, k ≥ 0 of i.i.d. bits (P(Bk = 0) = P(Bk = 1) = 1/2) and the channel
transmits a single bit correctly with probability p ∈ ]0, 1[ and flips the bit
with probability 1− p (see example 1.15). Clearly if we were to transmit each
message bit directly through the channel, we would lose a fraction 1 − p of
our message. This performance is generally unacceptable.

To circumvent the problem, one must introduce some redundancy into the
message to increase the probability of correct decoding after transmission. If
n bits are transmitted through the channel for every message bit, the encoder
is said to have rate n−1. A general encoding architecture is the shift-register
model of length m and rate n−1; this means that when message bit Bk arrives,
n bits Hk = (H1

k , . . . ,Hn
k ) ∈ {0, 1}n are transmitted through the channel

which are computed as a function of the m previous message bits:

Hk = f(Bk, Bk−1, . . . , Bk−m), f : {0, 1}m+1 → {0, 1}n

(see figure 3.2). The function f determines the encoding strategy.
(a) Model the shift-register model as a hidden Markov model. The state Xk

should contain the m+1 bits in the shift register, while the output Yk consists
of the n output bits at time k after transmission through the channel.
A specific example of an encoder is a rate 1/2, length 2 convolutional code.

The function f is defined through H1
k = Bk⊕Bk−2 and H2

k = Bk⊕Bk−1⊕Bk−2

(a parity check function; here ⊕ denotes addition modulo 2).
(b) Implement a computer simulation of the tranmission of a message through
a noisy channel, and use the Viterbi algorithm to reconstruct the message from
the channel output. Experiment with the parameter p and compare the error
frequency obtained with this encoding scheme to the error frequency without
encoding. Note: to implement the Viterbi algorithm we must assume a message
model (i.e., that the message bits are i.i.d.) However, you might find it fun to
experiment with transmitting actual messages (e.g., a text message) through
your simulated model (e.g., by converting it to ASCII code).
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Remark 3.8. A communications device that uses the Viterbi algorithm to de-
code an encoded message is known as a Viterbi decoder. The convolutional
encoding/Viterbi decoding approach is implemented in billions of cell phones.
We have discussed a particularly simple example of a rate 1/2 length 2 code,
but slightly longer convolutional codes are indeed in very widespread use.

Notes

The finite state setting is the simplest (and oldest) one in which the recursions
of the previous chapter can be developed. Nonetheless, a large fraction of the
applications of hidden Markov models falls within this setting. On the one
hand, the finite state setting is both computationally and theoretically much
less demanding than the continuous setting, making it eminently suitable for
implementation. On the other hand, surprisingly many applications can be
modeled at least approximately as finite state processes, particularly in the
area of digital communications. In other applications, regime switching models
are common and can successfully capture the statistics of many time series.

There are many variants of the forward-backward algorithm. The original
forward-backward algorithm is often attributed to Baum et al. [BPSW70],
but a forward-backward type algorithm already appears a decade earlier in
the paper of Stratonovich [Str60] (the use of such an algorithm for parameter
inference is due to Baum et al., however). The recursive transition and occu-
pation count filters are due to Zeitouni and Dembo [ZD88], see also [EAM95].
The Viterbi algorithm is due to Viterbi [Vit67]. A nice discussion of the Viterbi
algorithm together with various applications in communication theory can be
found in the tutorial by Forney [For73].
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Monte Carlo Methods: Interacting Particles

In chapter 2 we completely solved, at least in principle, the filtering problem
for any nondegenerate hidden Markov model. However, we also saw that the
filtering recursion is infinite dimensional, so that we run into formidable com-
putational difficulties when we wish to apply this technique in practice. With
the exception of one special (but important) case—the finite state case of
chapter 3—nonlinear filters typically suffer from the curse of dimensionality.
Therefore simple approximation methods, such as state space discretization,
become rapidly intractable in all but the simplest cases.

There is one approximation method, however, that has turned out to be
very successful—the use of Monte Carlo or random sampling methods to
approximate the filtering recursion. Though such algorithms do not manage
to entirely avoid the curse of dimensionality, they are flexible, easily imple-
mentable and typically lead to good performance even in complicated models.
In this chapter we will introduce the Monte Carlo technique in its basic form
and prove its convergence to the exact filter in the appropriate limit.

Remark 4.1. We will restrict ourselves to Monte Carlo algorithms for filtering;
prediction is trivially incorporated, while Monte Carlo smoothing requires a
little more work. Various Monte Carlo algorithms for smoothing can be found
in the literature, though these may not be recursive in nature; see [CMR05,
ch. 6–8]. A sequential Monte Carlo smoother can be found, e.g., in [DGA00].

4.1 SIS: A Naive Particle Filter

The basic idea behind Monte Carlo approximations is extremely simple, and
can be explained in a few lines. We will develop in this section a naive Monte
Carlo algorithm based on this idea. However, as we will see, the performance of
the naive algorithm is not yet satisfactory, and we will introduce an additional
ingredient in the next section in order to obtain a useful algorithm.
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Let us begin by noting that by definition 2.8, the unnormalized filtering
distribution σk evidently satisfies∫

f(x) σk(y0, . . . , yk, dx) = E(f(Xk) Υ (X0, y0) · · ·Υ (Xk, yk))

for every bounded measurable function f . Now suppose that we have the abil-
ity to simulate the signal process, i.e., to produce i.i.d. samples from the joint
distribution µX of the signal values (X0, . . . , Xk). Then we can approximate
the unnormalized filter σk using the law of large numbers:∫

f(x) σk(y0, . . . , yk, dx) ≈ 1
N

N∑
i=1

f(x(i)
k ) Υ (x(i)

0 , y0) · · ·Υ (x(i)
k , yk),

where x(i) = (x(i)
0 , . . . , x

(i)
k ) ∈ Ek+1, i = 1, . . . , N are i.i.d. samples from the

signal distribution µX . In particular, we can approximate∫
f(x) πk(y0, . . . , yk, dx) ≈

∑N
i=1 f(x(i)

k ) Υ (x(i)
0 , y0) · · ·Υ (x(i)

k , yk)∑N
i=1 Υ (x(i)

0 , y0) · · ·Υ (x(i)
k , yk)

.

The strong law of large numbers immediately guarantees that the right hand
side of the expression converges to the left hand side as we increase the number
of samples N → ∞ for any bounded (or even just integrable) measurable
function f . Thus, for large N , this Monte Carlo approach does indeed give
rise to an approximation of the filtering distribution.

Note that the above expression can be written as∫
f(x) πk(y0, . . . , yk, dx) ≈

N∑
i=1

w
(i)
k f(x(i)

k ),

where we have defined the weights w
(i)
k as

w
(i)
k =

Υ (x(i)
0 , y0) · · ·Υ (x(i)

k , yk)∑N
i=1 Υ (x(i)

0 , y0) · · ·Υ (x(i)
k , yk)

.

These weights w
(i)
k , i = 1, . . . , N are positive and sum to one. They can there-

fore be intepreted as probabilities. Note, in particular, that under the signal
measure µX each sample path i is equally likely by construction (each has
probability 1/N). However, in computing the approximate filter, we reweight
each sample path by the corresponding (observation-dependent) weight. The
observations therefore enter the picture by modifying the relative importance
of each of our simulated sample paths. The Monte Carlo approach can thus
be seen as a variant of importance sampling.

We now make the key observation that the samples x
(i)
k and weights w

(i)
k

can be generated recursively, just like the exact filter can be computed re-
cursively. This idea allows us to turn the importance sampling technique into
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Algorithm 4.1: Sequential Importance Sampling (SIS)

Sample x
(i)
0 , i = 1, . . . , N from the initial distribution µ;

Compute w
(i)
0 = Υ (x

(i)
0 , y0)/

∑N
i=1 Υ (x

(i)
0 , y0), i = 1, . . . , N ;

for k=1,. . . ,n do

Sample x
(i)
k from P (x

(i)
k−1, · ), i = 1, . . . , N ;

Compute w
(i)
k = w

(i)
k−1Υ (x

(i)
k , yk)/

∑N
i=1 w

(i)
k−1Υ (x

(i)
k , yk), i = 1, . . . , N ;

end

Compute approximate filter
∫

f(x) πn(y0, . . . , yn, dx) ≈
∑N

i=1 w
(i)
n f(x

(i)
n );

algorithm 4.1, called sequential importance sampling (SIS) for obvious reasons.
It is a simple exercise to verify by induction that the samples and weights gen-
erated by this algorithm coincide with the above expressions. Moreover, the
SIS algorithm is easily implemented on a computer.

Remark 4.2. Sampling from the conditional distribution P (x, · ) is particularly
efficient when the signal is modeled as a recursion

Xk = F (Xk−1, ξk) (k ≥ 1),

where ξk, k ≥ 1 are i.i.d. random variables whose distribution Ξ can be
efficiently sampled (e.g., Ξ = Unif[0, 1] or Ξ = N(0, 1)). Indeed, in this case
we may sample xk ∼ P (xk−1, · ) simply by sampling ξk ∼ Ξ and computing
xk = F (xk−1, ξk). Similarly, evaluation of the observation density Υ can be
done efficiently when the observation process Yk has a convenient form. For
example, consider the common setting where F = Rp and

Yk = H(Xk) + ηk (k ≥ 0),

where H : E → Rp is a given observation function and ηk, k ≥ 0 are i.i.d. ran-
dom variables whose distribution has density fη with respect to the Lebesgue
measure on Rp. Then we may choose Υ (x, y) = fη(y −H(x)) (problem 4.1).

Unfortunately, the SIS algorithm has some rather severe problems. To see
what goes wrong, consider a simple example where Xk is a symmetric random
walk on the lattice Z3 ⊂ R3 and Yk = Xk + ε ηk, where ηk are i.i.d. N(0, Id)
and ε � 1. As the signal to noise ratio is high, we expect the filter distribution
πk to be sharply concentrated around the true location of the signal Xk = xk.

However, in the SIS algorithm, the samples x
(i)
k are chosen according to

the unconditioned signal distribution µX ; in particular, if we sample from µX

at random, only a small fraction of the samples will be close to any fixed
location xk. What will then happen in the SIS algorithm is that after only a
few iterations all but one of the Monte Carlo samples will be assigned near-
zero weights, so that the effective Monte Carlo approximation consists of only
one sample rather than N samples. As a consequence, the approximation error
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E

(∫ f(x)πk(y0, . . . , yk, dx)−
N∑

i=1

w
(i)
k f(x(i)

k )

)2


will typically grow very rapidly as we increase number of iterations k (while
keeping the number of samples N fixed), thus rendering the algorithm effec-
tively useless. The problem is, of course, that reweighting a finite number of
samples obtained from one distribution to approximate another distribution
does not work well if the two distributions are too far apart. To make the
SIS algorithm effective, we have to change our sampling strategy so that the
distribution of our samples is closer to the filtering distribution πk.

4.2 SIS-R: Interacting Particles

The idea to resolve the problems of the naive SIS algorithm is surprisingly
simple. Recall that the filtering recursion can be seen as a two step procedure:

πk
prediction−−−−−−−−→ πk+1|k

correction−−−−−−−−→ πk+1.

Let us suppose, for the moment, that we have some way of doing the following:

Sample x
(i)
k , i = 1, . . . , N from the filtering distribution πk(y0, . . . , yk, dx).

Proceeding as in the SIS algorithm, we can

Sample x
(i)
k+1|k from P (x(i)

k , · ) for every i = 1, . . . , N.

Then x
(i)
k+1|k, i = 1, . . . , N are clearly i.i.d. samples from the one step predictive

distribution πk+1|k(y0, . . . , yk, dx). Let us now compute the weights

w
(i)
k+1 =

Υ (x(i)
k+1|k, yk+1)∑N

i=1 Υ (x(i)
k+1|k, yk+1)

.

Then, by the filtering recursion and the law of large numbers,∫
f(x) πk+1(y0, . . . , yk+1, dx) ≈

N∑
i=1

w
(i)
k+1 f(x(i)

k+1|k)

for any bounded measurable function f . In particular, we have approximated
the filtering measure by an empirical measure:

πk+1(y0, . . . , yk+1, dx) ≈
N∑

i=1

w
(i)
k+1 δ

x
(i)
k+1|k

(dx).
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Algorithm 4.2: Sequential Importance Sampling/Resampling (SIS-R)

Sample x̃
(i)
0 , i = 1, . . . , N from the initial distribution µ;

Compute w
(i)
0 = Υ (x̃

(i)
0 , y0)/

∑N
i=1 Υ (x̃

(i)
0 , y0), i = 1, . . . , N ;

Sample x
(i)
0 , i = 1, . . . , N from the distribution Prob(x̃

(j)
0 ) = w

(j)
0 ;

for k=1,. . . ,n do

Sample x̃
(i)
k from P (x

(i)
k−1, · ), i = 1, . . . , N ;

Compute w
(i)
k = Υ (x̃

(i)
k , yk)/

∑N
i=1 Υ (x̃

(i)
k , yk), i = 1, . . . , N ;

Sample x
(i)
k , i = 1, . . . , N from the distribution Prob(x̃

(j)
k ) = w

(j)
k ;

end

Compute approximate filter
∫

f(x) πn(y0, . . . , yn, dx) ≈ 1
N

∑N
i=1 f(x

(i)
n );

In the SIS algorithm, we would now apply the prediction step again to x
(i)
k+1|k

and update the weights. However, recall that we started the present iteration
by sampling from the filter πk. As we have now obtained an approximation
of the filtering distribution πk+1, we can begin a new iteration with:

Sample x
(i)
k+1, i = 1, . . . , N from the approximate filter

N∑
i=1

w
(i)
k+1 δ

x
(i)
k+1|k

(dx).

Instead of repeatedly updating the weights as in the SIS algorithm, this resam-
pling step essentially resets all the weights to 1/N at the end of every iteration.
The resulting algorithm, which is called sequential importance sampling with
resampling (SIS-R) or the bootstrap filter, is summarized as algorithm 4.2.

What is actually going when we resample? If a sample has a small weight,
it will be less likely to be selected in the resampling step. Therefore, some of
the samples with small weights will disappear when we resample. On the other
hand, as the number of samples N is fixed, some of the samples with large
weights will be sampled more than once in the resampling step. Resampling
thus has the effect that the samples with low likelihood given the observations
‘die’ while the samples with high likelihood given the observations ‘give birth’
to offspring, thus resolving the basic problem of the naive SIS algorithm. This
idea is characteristic of a class of algorithms called evolutionary or genetic al-
gorithms, which propagate a collection of particles by first applying a mutation
step, where each of the particles moves (‘mutates’) at random, and a selection
step, where the less desirable particles die and more desirable particles give
birth to offspring (‘survival of the fittest’).

Beside its obvious advantages, however, the SIS-R algorithm introduces an
additional difficulty. Recall that in the SIS algorithm, the paths (x(i)

0 , . . . , x
(i)
k )

were independent for different i = 1, . . . , N . Therefore convergence of the ap-
proximate filter to the exact filter as N →∞ was immediate from the law of
large numbers. However, in the SIS-R algorithm, the resampling step kills or
duplicates each sample according the observation weights of all the samples.
Therefore, the different samples are no longer independent, as they ‘interact’
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with each other in the resampling step. Such models are known as interacting
particle systems. The law of large numbers does not apply to dependent sam-
ples, however, and proving convergence as N →∞ now becomes a problem of
its own. We will prove convergence of the SIS-R algorithm in the next section.

Remark 4.3. There are many variants of the basis SIS-R algorithm, which can
lead to improvements in certain settings. For example, standard Monte Carlo
sampling techniques suggest a number of variations on the way sampling or
resampling is performed. Another variation is to not resample in every time
step, but only when the number of samples with negligible weights becomes
too large (this can be computationally advantageous as resampling is expen-
sive). When the signal to noise ratio is very high, the SIS-R algorithm can
suffer from the same problem as the SIS algorithm (in this case the weights
might become negligible after a single time step, in which case resamping does
not help); in this case, some form of regularization might be required to make
the algorithm work. A good entry point in the extensive literature on this
topic is [DDG01]. In this course, we are more than happy to stick with the
basic SIS-R algorithm, which is already surprisingly effective in many cases.

A numerical example

As a simple numerical illustration of the SIS-R method, let us work out a
stochastic volatility model for financial time series in the spirit of example 1.12.
We consider a single stock whose price we observe in discrete time intervals
of length ∆. The price in the kth time step is given by

Sk = exp((r −X2
k/2) ∆ + Xk ηk

√
∆) Sk−1 (k ≥ 0),

where ηk are i.i.d. N(0, 1) random variables and r is the interest rate. The
volatility Xk satisfies the mean-reverting linear model

Xk = Xk−1 − (Xk−1 − u) ∆ + σ ξk

√
∆ (k ≥ 1),

where ξk are i.i.d. N(0, 1) and u, σ are constants. For sake of example, we
have chosen the following parameters: ∆ = 0.01, r = 0.1, u = σ = 0.5,
S−1 = 20, X0 ∼ N(0.5, 0.25). This model is a standard hidden Markov model
if we choose as our observations the log-returns Yk = log(Sk/Sk−1), k ≥ 0.
The SIS-R algorithm is now easily implemented using the approach outlined
in remark 4.2. Indeed, sampling from P (x, · ) is simply a matter of applying
the recursion for Xk, while you may easily verify that we can set

Υ (x, y) = |x|−1 exp(−{y − (r − x2/2) ∆}2/2x2∆).

In figure 4.1, we have plotted a typical trajectory of this model. What is shown
is the absolute volatility |Xk|, as well as its conditional mean and standard
deviation as estimated using the SIS-R algorithm with 500 particles.
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Fig. 4.1. A typical run of the stochastic volatility example. The top plot shows
the true volatility (orange) and the filter conditional mean (blue) computed using
the SIS-R algorithm from the stock prices, which are shown in the bottom plot.
The shaded blue region is the conditional 66% confidence interval computed by the
SIS-R algorithm. The plot on the right shows histograms of the SIS-R samples for
ten time slices. The SIS-R algorithm was run with 500 particles.

Remark 4.4. Note that in figure 4.1, even though the filter occasionally strays a
bit from the true volatility, these little errors correct themselves rather quickly.
This would be true even if we had run the simulation for a much longer time
interval. It is not, however, entirely obvious why this should be the case—
particularly when we make approximations (such as the SIS-R algorithm used
here), one might expect that such little errors would accumulate over time and
eventually ruin our estimates completely on the long run. We will gain some
insight into why this does not happen in the next chapter.

4.3 Convergence of SIS-R

The above discussion strongly suggests that the SIS-R algorithm is a signifi-
cant improvement over the SIS algorithm. Nonetheless, we have yet to show
that the SIS-R algorithm even converges to the exact filter as the number of
samples increases N → ∞; unlike in the SIS algorithm, this is not trivial as
the SIS-R samples are not independent. The purpose of this section is to fill
this gap in our discussion. To be precise, we will prove the following.

Theorem 4.5. Suppose that the following assumption holds:

sup
x∈E

Υ (x, yk) < ∞, k = 1, . . . , n.

Let x
(i)
n , i = 1, . . . , N be the random samples generated by the SIS-R algorithm

for the observation sequence y0, . . . , yn. Then

sup
‖f‖∞≤1

∥∥∥∥∥
∫

f(x)πn(y0, . . . , yn, dx)− 1
N

N∑
i=1

f(x(i)
n )

∥∥∥∥∥
2

≤ Cn√
N

,
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where ‖X‖2 =
√

E(X2) and the constant Cn does not depend on N (but it
does typically depend on n and y0, . . . , yn).

Note in particular that the rate of convergence is of order N−1/2, which is
characteristic of Monte Carlo algorithms in general. The assumption on the
observation density is mild and is satisfied in most cases.

Remark 4.6. Instead of employing a Monte Carlo method, suppose that we
approximate the filter by restricting computations to a fixed grid of spacing
∆. Then the approximation error would typically be of order ∆α for some
α > 0. In particular, as the number of points in a grid of spacing ∆ is of order
N ∼ (1/∆)p where p is the state space dimension, this non-random algorithm
typically has an approximation error of order N−α/p. The fact that the error
converges very slowly for large p is known as the curse of dimensionality. In
contrast, in our Monte Carlo algorithm the filter is still approximated by N
points, but the approximation error is of order N−1/2 where the exponent
does not depend on the state space dimension. The Monte Carlo approach is
therefore often claimed to beat the curse of dimensionality.

However, this claim should be interpreted with a heavy dose of skepti-
cism. Even though the exponent of the error Cn N−1/2 does not depend on
dimension, the constant Cn may well be very large in high dimensional mod-
els. Suppose that Cn ∼ eβp for some β > 0; then in order to achieve a fixed
approximation error ε, we would have to choose a number of samples of order
N ∼ ε−2e2βp, which rapidly becomes intractable in high dimensional models.
Though it is not immediately clear how the constant Cn actually depends on
dimension, numerical and some theoretical evidence strongly suggest that also
Monte Carlo filter approximations perform poorly in high dimensional state
spaces; see [BLB08] and the references therein.

On the other hand, unlike grid methods which can not even be imple-
mented in practice in models whose dimension is higher than 2 or 3, Monte
Carlo filtering algorithms are at least computationally tractable. In a sense
they can be viewed as ‘stochastic grid algorithms’ where the locations of the
grid points adapt automatically to the problem at hand, even if the number of
points required for good approximation may be large. Presently, Monte Carlo
filtering appears to be the only approach that can be applied to a general
class of higher dimensional problems (in the absence of special structure; if
the model is almost linear, some variant of the Kalman filter can be applied).
In practice the technique usually works well in concrete problems once the
number of particles and the details of the algorithm are fine tuned.

In the following, we presume that the observation sequence y0, . . . , yn is
fixed. For notational simplicity, we will not explicitly denote the dependence
of πk on y0, . . . , yk (as we already did for the SIS-R samples and weights).

Let us analyze the steps within one iteration of the SIS-R algorithm. Define
the SIS-R empirical measure in step k as (see algorithm 4.2 for notation)
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π̂k(dx) =
1
N

N∑
i=1

δ
x
(i)
k

(dx).

The SIS-R iteration proceeds as follows:

π̂k−1
prediction−−−−−−−−→ π̂k|k−1

correction−−−−−−−−→ π̂0
k

resampling−−−−−−−−→ π̂k,

where we have defined the empirical measures

π̂k|k−1(dx) =
1
N

N∑
i=1

δ
x̃
(i)
k

(dx), π̂0
k(dx) =

N∑
i=1

w
(i)
k δ

x̃
(i)
k

(dx).

To prove theorem 4.5, we will bound each of these steps. We will need the
following elementary lemma from Monte Carlo theory.

Lemma 4.7. Let x(1), . . . , x(N) be i.i.d. samples from a (possibly random)
probability distribution ν. Then

sup
‖f‖∞≤1

∥∥∥∥∥
∫

f(x) ν(dx)− 1
N

N∑
i=1

f(x(i))

∥∥∥∥∥
2

≤ 1√
N

.

Proof. As x(i), i = 1, . . . , N are independent given ν, we have

E

(∫ f(x) ν(dx)− 1
N

N∑
i=1

f(x(i))

)2
∣∣∣∣∣∣ ν


=

1
N2

N∑
i,j=1

E(f(x(i))f(x(j))|ν)−
(∫

f(x) ν(dx)
)2

=
1
N

∫
f(x)2 ν(dx) +

(
N2 −N

N2
− 1
)(∫

f(x) ν(dx)
)2

=
1
N

(∫
f(x)2 ν(dx)−

(∫
f(x) ν(dx)

)2
)
≤ ‖f‖2∞

N
.

Taking the expectation of this expression, the claim is easily established. ut

We can now proceed to the proof of theorem 4.5.

Proof (Theorem 4.5).
Step 1 (resampling error). From lemma 4.7, we find directly that

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) π̂k(dx)−
∫

f(x) π̂0
k(dx)

∥∥∥∥
2

≤ 1√
N

.

Therefore, the triangle inequality gives
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sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk(dx)−
∫

f(x) π̂k(dx)
∥∥∥∥

2

≤ 1√
N

+ sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk(dx)−
∫

f(x) π̂0
k(dx)

∥∥∥∥
2

.

Step 2 (correction error). By corollary 2.10 and algorithm 4.2

πk(dx) =
Υk(x) πk|k−1(dx)∫
Υk(x) πk|k−1(dx)

, π̂0
k(dx) =

Υk(x) π̂k|k−1(dx)∫
Υk(x) π̂k|k−1(dx)

,

where we have defined Υk(x) = Υ (x, yk). We now obtain some simple esti-
mates; the following string of inequalities should speak for itself.∣∣∣∣∫ f(x) πk(dx)−

∫
f(x) π̂0

k(dx)
∣∣∣∣

=
∣∣∣∣
∫

f(x)Υk(x) πk|k−1(dx)∫
Υk(x) πk|k−1(dx)

−
∫

f(x) Υk(x) π̂k|k−1(dx)∫
Υk(x) π̂k|k−1(dx)

∣∣∣∣
≤
|
∫

f(x)Υk(x) πk|k−1(dx)−
∫

f(x) Υk(x) π̂k|k−1(dx)|∫
Υk(x) πk|k−1(dx)

+
∣∣∣∣
∫

f(x) Υk(x) π̂k|k−1(dx)∫
Υk(x) πk|k−1(dx)

−
∫

f(x) Υk(x) π̂k|k−1(dx)∫
Υk(x) π̂k|k−1(dx)

∣∣∣∣
=
|
∫

f(x) Υk(x) πk|k−1(dx)−
∫

f(x)Υk(x) π̂k|k−1(dx)|∫
Υk(x) πk|k−1(dx)

+
|
∫

f(x) Υk(x) π̂k|k−1(dx)|∫
Υk(x) π̂k|k−1(dx)

|
∫

Υk(x) π̂k|k−1(dx)−
∫

Υk(x) πk|k−1(dx)|∫
Υk(x) πk|k−1(dx)

≤ ‖f‖∞‖Υk‖∞∫
Υk(x) πk|k−1(dx)

∣∣∣∣∫ f1(x) πk|k−1(dx)−
∫

f1(x) π̂k|k−1(dx)
∣∣∣∣

+
‖f‖∞‖Υk‖∞∫

Υk(x) πk|k−1(dx)

∣∣∣∣∫ f2(x) π̂k|k−1(dx)−
∫

f2(x)πk|k−1(dx)
∣∣∣∣ ,

where f1(x) = f(x)Υk(x)/‖fΥk‖∞ and f2(x) = Υk(x)/‖Υk‖∞. But note that
by construction ‖f1‖∞ ≤ 1 and ‖f2‖∞ ≤ 1. We therefore evidently have

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk(dx)−
∫

f(x) π̂0
k(dx)

∥∥∥∥
2

≤ 2 ‖Υk‖∞∫
Υk(x) πk|k−1(dx)

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk|k−1(dx)−
∫

f(x) π̂k|k−1(dx)
∥∥∥∥

2

.

Step 3 (prediction error). From lemma 4.7, we find directly that

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) π̂k|k−1(dx)−
∫

f(x) π̂k−1P (dx)
∥∥∥∥

2

≤ 1√
N

.
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Therefore, the triangle inequality gives

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk|k−1(dx)−
∫

f(x) π̂k|k−1(dx)
∥∥∥∥

2

≤ 1√
N

+ sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk−1P (dx)−
∫

f(x) π̂k−1P (dx)
∥∥∥∥

2

≤ 1√
N

+ sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk−1(dx)−
∫

f(x) π̂k−1(dx)
∥∥∥∥

2

,

where the latter inequality holds as ‖Pf‖∞ ≤ ‖f‖∞ for all functions f .
Step 4 (putting it all together). Collecting our estimates, we have

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk(dx)−
∫

f(x) π̂k(dx)
∥∥∥∥

2

≤ 1 + Dk√
N

+ Dk sup
‖f‖∞≤1

∥∥∥∥∫ f(x)πk−1(dx)−
∫

f(x) π̂k−1(dx)
∥∥∥∥

2

,

where we have defined

Dk =
2 ‖Υk‖∞∫

Υk(x) πk|k−1(dx)
, k ≥ 1.

Iterating this bound, we obtain

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πn(dx)−
∫

f(x) π̂n(dx)
∥∥∥∥

2

≤ 1√
N

n∑
k=0

(1 + Dk)
n∏

`=k+1

D`,

provided that we can obtain a bound on the initial step of the form

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) π0(dx)−
∫

f(x) π̂0(dx)
∥∥∥∥

2

≤ 1 + D0√
N

.

But it is easily established (problem 4.2), following the same approach as our
previous estimates, that this is the case with the constant

D0 =
2 ‖Υ0‖∞∫
Υ0(x) µ(dx)

,

where µ is the initial measure. The proof is complete. ut

Problems

4.1. Consider the observation model Yk = H(Xk) + ηk on the observation
state space F = Rp, where H : E → Rp is measurable and ηk, k ≥ 0 are i.i.d.
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random variables whose law possesses a positive density fη : Rp → ]0,∞[ with
respect to the Lebesgue measure on Rp. Show that this observation model is
nondegenerate in the sense of definition 1.9, and argue that we may choose
Υ (x, y) = fη(y−H(x)) in the filtering/smoothing recursions even though the
Lebesgue measure is not a probability measure.

4.2. Prove the following missing estimate in the proof of theorem 4.5:

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) π0(dx)−
∫

f(x) π̂0(dx)
∥∥∥∥

2

≤ 1√
N

(
1 +

2 ‖Υ0‖∞∫
Υ0(x) µ(dx)

)
,

where the notation is the same as in the proof of theorem 4.5.

4.3. A Performance Comparison
In this problem, we will investigate numerically how the SIS and SIS-R al-
gorithms compare to the exact filter. Consider the linear-Gaussian hidden
Markov model with real-valued signal and observations

Xk = 0.9 Xk−1 + ξk, Yk = Xk + ηk,

where ξk and ηk are N(0, 1). Compute the conditional mean and variance
(a) using the exact filtering equation (problem 2.5);
(b) using the SIS algorithm; and
(c) using the SIS-R algorithm.
How do the approximation errors of the SIS and SIS-R algorithms behave as
a function of time and of particle number? Experiment with various particle
numbers and time horizons, and draw your conclusions.

4.4. Monte Carlo Path Estimation
Our particle filters only approximate the filtering distribution πk. There are
various applications where one must approximate the smoother as well (e.g.,
to implement the EM algorithm in chapter 6). More generally, one can try to
approximate the entire conditional path distribution PX0,...,Xn|Y0,...,Yn

:∫
f(x0, . . . , xn)PX0,...,Xn|Y0,...,Yn

(dx0, . . . , dxn) ≈
N∑

i=1

w(i)
n f(x(n,i)

0 , . . . , x(n,i)
n )

for suitable weights w
(i)
n and paths x

(n,i)
k (note that we have suppressed the

dependence of PX0,...,Xn|Y0,...,Yn
on y0, . . . , yn for notational simplicity). The

smoothing distributions can be obtained as marginals of this distribution.
(a) Modify the SIS algorithm to compute the path distributions.
(b) Prove the following recursion for the exact path distributions:∫

f(x0, . . . , xn) PX0,...,Xn|Y0,...,Yn
(dx0, . . . , dxn) =∫

f(x0,...,n) Υ (xn, yn)P (xn−1, dxn) PX0,...,n−1|Y0,...,n−1(dx0, . . . , dxn−1)∫
Υ (xn, yn) P (xn−1, dxn)PX0,...,n−1|Y0,...,n−1(dx0, . . . , dxn−1)
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for all bounded measurable functions f .
(c) Using this identity, propose a variant of the SIS-R algorithm to approxi-
mate the conditional path distributions PX0,...,Xn|Y0,...,Yn

.
(d) Implement your proposed SIS and SIS-R smoothers together with the ex-
act smoother (problem 2.5) for the linear-Gaussian example in the previous
problem and investigate their performance numerically.

4.5. Credit Derivative Pricing
Suppose that the value of a firm is modeled by the recursion

Xk = (1 + ξk)Xk−1, ξk ∼ N(µ, σ2), X0 > 0

(typically µ, σ2 � 1). We are also given a threshold K > 0 such that the firm
goes bankrupt if its value drops below the threshold. The bankruptcy time of
the firm is given by τ = min{k ≥ 0 : Xk ≤ K}.

To finance its operations, the firm issues a zero-coupon bond with maturity
N . This means that the firm agrees to pay the bond holder $1 at time N .
However, if the firm goes bankrupt before time N , the bond holder will not
get paid. The payoff of the bond is therefore Iτ>N . Our question is how to
price this bond: if a holder of such a bond wishes to sell the bond on the
market at time k < N , what price should he ask?

In practice, the value of the firm is not directly observable to investors.
Instead, an investor must rely on profit reports and other news issued period-
ically by the firm in order to form an estimate of the firm’s actual value. This
news is typically not entirely accurate. In a simple model, we could assume
that the information obtained by the investor at time k is of the form

Yk = Xk + ηk, ηk ∼ N(0, σ̄2),

i.e., the investor knows the firm’s value up to some ‘noise’ in the reporting. It
can be shown [DL01] that the fair market price Sk of the bond at time k < N
is given by (assuming that we are modeling under a risk-neutral measure)

Sk = Iτ>k rk−N P(τ > N |τ > k, Y0, . . . , Yk),

where r is the single period risk-free interest rate (i.e., on your bank account).
(a) Develop a SIS-R type algorithm to compute the bond price at time k.
Hint: add a ‘coffin’ point to the signal and observation state spaces E = F =
R ∪ {∂}, and construct new signal and observation processes

X̃k =
{

Xk for k < τ,
∂ otherwise, Ỹk =

{
Yk for k < τ,
∂ otherwise.

Show that (X̃k, Ỹk)k≥0 defines a hidden Markov model and express the price
in terms of a prediction problem for this extended hidden Markov model.
(b) Write a computer program that implements your algorithm and plot the
bond price as a function of time and maturity. For your simulation, you may
choose model parameters that seem reasonable to you.
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Remark 4.8. There is a close connection between credit risk models with in-
complete information and nonlinear filtering. See [DL01, CC08] and the con-
tribution of R. Frey and W. Runggaldier in [CR09] for further details.

Notes

Variants of the SIS algorithm have been known for a long time [Han70]. As
Monte Carlo algorithms are computationally expensive, there appears to have
been little interest in such methods until major improvements in computer
technology made them practically applicable. The idea of adding a resampling
step to the SIS algorithm is due to Gordon, Salmond and Smith [GSS93], who
referred to the algorithm as the ‘bootstrap algorithm’ rather than SIS-R. The
first convergence proof of SIS-R is due to Del Moral [Del98a].

Much information on Monte Carlo particle filters can be found in the
collection [DDG01]. The convergence proof given here was inspired by the
treatment in Crisan and Doucet [CD02]. Some mathematical analysis of the
behavior of particle filters in high dimensional state spaces can be found in
the recent work of Bickel, Li and Bengtsson [BLB08]. Various approaches to
Monte Carlo smoothing can be found in [CMR05] and in [DGA00].
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Filter Stability and Uniform Convergence

5.1 Orientation

In the previous chapter, we showed that the SIS-R algorithm converges to the
exact filter as we let the number of particles N go to infinity:

sup
‖f‖∞≤1

∥∥∥∥∥
∫

f(x)πn(y0, . . . , yn, dx)− 1
N

N∑
i=1

f(x(i)
n )

∥∥∥∥∥
2

≤ Cn√
N

.

This means that for a fixed time n, we can obtain an arbitrarily good approx-
imation to the exact filter by choosing N sufficiently large.

However, in many applications one might not necessarily be interested in
the filter at any particular fixed time n, but we need to have good estimates
available at an arbitrary time. For example, in target tracking problems, the
aim is to continually track the location of the target. We can do this, for ex-
ample, by running the SIS-R algorithm where we compute the approximate
filter π̂k in every time step k. Our error bound, however, does not guarantee
that this approach will be successful. In particular, if the constants Ck grow
rapidly in time, then the SIS-R algorithm may degenerate very rapidly so
that we ‘lose lock’ on the target. A closer look at the proof of theorem 4.5
should make us particularly worried: the constants Ck obtained in the proof
are bounded from below by 2k, which suggests behavior that is entirely unac-
ceptable in tracking applications. Instead, we need to have good performance
at an arbitrary time for sufficiently large N :

sup
n≥0

sup
‖f‖∞≤1

∥∥∥∥∥
∫

f(x) πn(y0, . . . , yn, dx)− 1
N

N∑
i=1

f(x(i)
n )

∥∥∥∥∥
2

≤ C√
N

.

In other words, would like to show that π̂k converges to πk uniformly in time
as N →∞. This certainly does not follow from theorem 4.5; in fact, one might
be led to think that uniform convergence does not hold. It is therefore quite
surprising that in many cases (see, e.g., the numerical example in the previous
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chapter), numerical simulations strongly suggest that the SIS-R algorithm
does converge uniformly in time. That the algorithm works so much better
in practice than we would expect is exciting news, but it also means that we
are missing something fundamental in our analysis. One of the goals of the
present chapter is to gain some understanding of this phenomenon.

The reason that the constants Ck grow exponentially is that the error
bound in the proof of theorem 4.5 was obtained by bounding the error incurred
in one step of the algorithm. When this single time step bound is iterated,
we obtain a bound on the error incurred in k steps of the algorithm. In this
approach, however, the error incurred in each step accumulates over time,
which causes the constant Ck to grow. In order to prove uniform convergence,
we have to show that this accumulation of errors does not actually happen.

Filter stability

The new ingredient that is going to help us is a separate topic in itself: the
stability property of the filter. Let us forget for the moment about the ap-
proximate filter, and consider the exact filtering recursion of corollary 2.10. In
order to implement the filter, we need to know the initial measure µ and the
transition and observation kernels P and Φ. Unlike the kernels, however, which
can be estimated very efficiently using the statistical techniques in chapter 6
(provided that we are given a sufficiently long observation time series), the
initial measure is often difficult to estimate. For example, in many cases the
noise driving the signal dynamics will cause the signal itself to ‘forget’ its
initial condition (the signal is ergodic), so that even an infinite time series of
observations can not be used to estimate the initial measure exactly.

One might worry that our inability to estimate the initial measure would
mean that filtering becomes useless in real-world problems: using the wrong
initial measure in the filtering recursion could have disastrous results. Fortu-
nately, it turns out that this is much less of a problem that one might think.
Rather than hurt us, ergodicity of the signal actually helps us here: if the sig-
nal itself already forgets its initial condition, then it seems highly likely that
this is also true for the filtering distributions. On the other hand, an additional
effect helps us in the filtering problem even when the signal is not ergodic: as
we are obtaining more and more information from the observations as time
increases, it seems likely that this information will eventually supersede the
initial measure, which represents our best guess of the location of the signal
before any observations were actually made.

For these reasons, it is often the case that as time k increases the filter de-
pends less and less on the choice of the initial measure. Mathematically, what
happens is that if one performs the filter recursion (corollary 2.10) with the
same observations, transition and observation kernels, but with two different
initial measures, then the two resulting filters converge toward one another as
k →∞. In this case, the filter is said to be stable.
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Stability of the filter means in particular that we may use the ‘wrong’ initial
measure without obtaining unreliable estimates—an important practical issue.
However, beside its intrinsic interest, it turns out that the stability property of
the filter plays a central role in statistical inference (chapter 7) and in uniform
convergence of filter approximations (this chapter). For these reasons, it is of
significant interest to characterize the stability properties of filtering models.
We will develop one particular approach in the next section; further comments
can be found in the notes at the end of the chapter.

Uniform convergence and stability

How does filter stability help us to establish uniform convergence of the SIS-R
algorithm? Intuitively, the stability property implies that the filter is insen-
sitive to approximation errors made a long time ago. For this reason, the
approximation error can not accumulate: though we make an approximation
error in every iteration of the algorithm, the errors made in the previous
iterations are progressively ‘forgotten’ by the filter as time increases.

Let us show how to make this idea precise. We denote by Fk the kth
iteration of the exact filtering recursion:

Fkν(A) =
∫

IA(x)Υ (x, yk) P (x′, dx) ν(dx′)∫
Υ (x, yk) P (x′, dx) ν(dx′)

.

In particular, note that πk = Fkπk−1 by construction. We can now split the
discrepancy between the exact and approximate filter at time k into two parts:

πk − π̂k =

propagation of error︷ ︸︸ ︷
Fkπk−1 − Fkπ̂k−1 +

one step error︷ ︸︸ ︷
Fkπ̂k−1 − π̂k .

The first term represents the contribution to the error at time k from the
error incurred in the previous iterations, while the second term represents the
error incurred in time step k by applying the SIS-R algorithm rather than the
exact filter. Splitting up the first term in exactly the same manner, we can
write the error at time k as a sum of propagated one step errors:

πk − π̂k =
k−1∑
`=0

(Fk · · ·F`+1 F`π̂`−1 − Fk · · ·F`+1 π̂`) + Fkπ̂k−1 − π̂k

(where F0π̂−1 = π0). Now suppose we can establish an estimate of the form

‖Fk · · ·F`+1ν − Fk · · ·F`+1ν
′‖ ≤ C0 e−γ(k−`) ‖ν − ν′‖

for some C0, γ > 0, i.e., we suppose that the filter is exponentially stable (we
will work below with the norm ‖ν − ν′‖ = sup ‖

∫
f dν −

∫
f dν′‖2). Then

‖πk − π̂k‖ ≤ C0

k∑
`=0

e−γ(k−`) ‖F`π̂`−1 − π̂`‖.
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Evidently, exponential stability of the filter causes the errors incurred in each
time step to be suppressed by a geometric factor. Therefore if the one step
errors are uniformly bounded, the total error can now be estimated uniformly
in time—which is precisely what we set out to do!

In the remainder of the chapter we will make these ideas precise under cer-
tain (strong) technical assumptions. In section 5.2, we first prove exponential
stability of the filter. Then, in section 5.3, we develop the above argument in
detail and prove uniform convergence of the SIS-R algorithm.

Remark 5.1. The purpose of this chapter is to give a flavor of the stability and
uniform approximation properties of filtering problems; an extensive treat-
ment is outside our scope. We therefore develop our results in the simplest
possible setting. The assumptions that we must impose to make this work are
very strong, and there are many applications in which they are not satisfied
(some further discussion can be found below). Proving either filter stability
or uniform convergence in a general setting is a challenging problem, and to
date many open problems remain in this direction.

5.2 Filter Stability: A Contraction Estimate

In this section we are going to prove exponential filter stability under a certain
ergodicity assumption on the signal process, called the mixing condition. This
condition causes the signal itself to forget its initial measure at an geometric
rate, and we will show that the filter inherits this property. Note that the sec-
ond effect described above—that the information gain from the observations
can lead to filter stability—does not enter in our analysis. The stability rate
which we will prove is an upper bound obtained from the ergodicity of the
signal only, and in practice the filter may converge much faster.

Kernels and contraction

Before we can prove filter stability, we need to introduce a simple idea from
the ergodic theory of Markov processes.

Lemma 5.2 (Contraction). Let ν, ν′ be (possibly random) probability mea-
sures on (E,E) and let K : E×E → [0, 1] be a transition kernel. Suppose that
the following minorization condition holds: there is a fixed probability measure
ρ and 0 < ε < 1 such that K(x,A) ≥ ε ρ(A) for all x ∈ E, A ∈ E. Then

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) νK(dx)−
∫

f(x) ν′K(dx)
∥∥∥∥

2

≤ (1− ε) sup
‖f‖∞≤1

∥∥∥∥∫ f(x) ν(dx)−
∫

f(x) ν′(dx)
∥∥∥∥

2

.
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Proof. Define K̃(x,A) = (1 − ε)−1{K(x,A) − ε ρ(A)} for all x ∈ E, A ∈ E.
Then the minorization condition guarantees that K̃ is a transition kernel, and
we clearly have νK − ν′K = (1− ε) {νK̃ − ν′K̃}. Therefore

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) νK(dx)−
∫

f(x) ν′K(dx)
∥∥∥∥

2

= (1− ε) sup
‖f‖∞≤1

∥∥∥∥∫ K̃f(x) ν(dx)−
∫

K̃f(x) ν′(dx)
∥∥∥∥

2

.

The result follows immediately as ‖K̃f‖∞ ≤ ‖f‖∞ for any function f . ut

Lemma 5.2 shows that under the minorization condition, the map ν 7→ νK
is a strict contraction. This has an immediate application to the ergodicity of
Markov processes. Let (Xk)k≥0 be a Markov process with transition kernel P
and initial measure µ, and let (X ′

k)k≥0 be a Markov process with the same
transition kernel P but with different initial measure µ′. Note that

E(f(Xk)) =
∫

f(x)µP k(dx), E(f(X ′
k)) =

∫
f(x)µ′P k(dx).

Thus if P satisfies the minorization condition, lemma 5.2 shows that

sup
‖f‖∞≤1

|E(f(Xk))−E(f(X ′
k))| ≤ (1− ε)k sup

‖f‖∞≤1

|E(f(X0))−E(f(X ′
0))|.

In particular, we find that the Markov process is geometrically ergodic: the
difference between the laws of the Markov process started at two different
initial measures decays geometrically in time.

The minorization condition in lemma 5.2 is a special case of the well known
Doeblin condition for ergodicity. It has an interesting probabilistic interpreta-
tion. If the transition kernel P satisfies the condition in lemma 5.2, then we
can write P (x, A) = ε ρ(A) + (1− ε) P ′(x,A), where P ′ is another transition
kernel. The corresponding Markov process can then be generated as follows:

1. In every time step, flip a coin with Prob(heads) = ε.
2. If the coin comes up tails, choose the next time step according to the

transition probability P ′.
3. If the coin comes up heads, choose the next time step independently from

the present location by sampling from the probability distribution ρ.

Once the coin comes up heads, the Markov process ‘resets’ to the fixed dis-
tribution ρ and the initial condition is forgotten. This idea can be used to
provide a probabilistic proof of geometric ergodicity; see problem 5.1.

Exponential stability of the filter

We now consider our usual hidden Markov model (Xk, Yk)k≥0. To prove filter
stability, we would like to apply the above contraction technique to the filtering
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recursion, i.e., we would like to show that ‖Fkν − Fkν′‖ ≤ (1 − ε) ‖ν − ν′‖.
However, we immediately run into a problem: the filter time step Fk can not
be expressed as a kernel, as Fkν is a nonlinear function of ν.

On the other hand, each iteration of the smoothing recursion is linear. In
particular, define for every k ≤ n the transition kernel Kk|n as

Kk|n(x, A) =

∫
IA(x′) βk|n(x′, yk+1, . . . , yn)Υ (x′, yk) P (x, dx′)∫

βk|n(x′, yk+1, . . . , yn) Υ (x′, yk) P (x, dx′)
.

From theorem 2.12 (see also problem 2.2), we can read off that

πk+1|n(y0, . . . , yn, A) =
∫

IA(x′) Kk|n(x, dx′) πk|n(y0, . . . , yn, dx),

i.e., πk|n = πk−1|nKk|n. That the smoothing recursion can be expressed in
this form is no coincidence, see problem 2.4. This observation turns out to be
the key to our problem: lemma 5.2 can be applied to the kernels Kk|n.

Lemma 5.3 (Minorization of the smoother). Suppose that the transition
kernel P satisfies the following mixing condition: there exists a probability
measure ρ and a constant 0 < ε < 1 such that

ε ρ(A) ≤ P (x,A) ≤ ε−1 ρ(A) for all x ∈ E, A ∈ E.

Then for every k ≤ n, the smoothing kernel Kk|n satisfies the minorization
condition Kk|n(x, A) ≥ ε2 ρk|n(A) for some probability measure ρk|n.

Proof. By the mixing condition, we have

Kk|n(x, A) ≥ ε2

∫
IA(x) βk|n(x, yk+1, . . . , yn) Υ (x, yk) ρ(dx)∫

βk|n(x, yk+1, . . . , yn) Υ (x, yk) ρ(dx)
= ε2 ρk|n(A).

The proof is complete. ut

We can now prove stability of the filter.

Theorem 5.4 (Filter stability). Suppose that the transition kernel P sat-
isfies the mixing condition in lemma 5.3. Then for any two (possibly random)
probability measures ν and ν′ on E, we have for k ≥ `

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) Fk · · ·F`+1ν(dx)−
∫

f(x) Fk · · ·F`+1ν
′(dx)

∥∥∥∥
2

≤ ε−2 (1− ε2)k−` sup
‖f‖∞≤1

∥∥∥∥∫ f(x) ν(dx)−
∫

f(x) ν′(dx)
∥∥∥∥

2

.
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Proof. From theorem 2.12, we can read off that

Fk · · ·F`+1ν = ν`|kK`+1|k · · ·Kk|k

for any probability measure ν, where we have defined

ν`|k(A) =

∫
IA(x)β`|k(x, y`+1, . . . , yk) ν(dx)∫

β`|k(x, y`+1, . . . , yk) ν(dx)
.

Therefore, by lemmas 5.2 and 5.3, we have

sup
‖f‖∞≤1

∥∥∥∥∫ f(x)Fk · · ·F`+1ν(dx)−
∫

f(x) Fk · · ·F`+1ν
′(dx)

∥∥∥∥
2

≤ (1− ε2)k−` sup
‖f‖∞≤1

∥∥∥∥∫ f(x) ν`|k(dx)−
∫

f(x) ν′`|k(dx)
∥∥∥∥

2

≤ (1− ε2)k−` supx∈E β`|k(x)
infx∈E β`|k(x)

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) ν(dx)−
∫

f(x) ν′(dx)
∥∥∥∥

2

,

where the last estimate was obtained in the same manner as step 2 in the
proof of theorem 4.5. But by the mixing condition we can bound β`|k above
and below as ε C0 ≤ β`|k(x, y`+1, . . . , yk) ≤ ε−1 C0, where

C0 =
∫

Υ (x`+1, y`+1) · · ·Υ (xk, yk) P (xk−1, dxk) · · ·P (x`+1, dx`+2) ρ(dx`+1)

(cf. definition 2.11). The proof is easily completed. ut

5.3 Uniform Convergence of SIS-R

In this section, we will complete our story by proving that the SIS-R algorithm
converges uniformly to the exact filter as the number of particles increases
N →∞. We will do this under the following assumption.

Assumption 5.5 (Mixing) The transition kernel P is mixing, i.e., there
exists a probability measure ρ and a constant 0 < ε < 1 such that

ε ρ(A) ≤ P (x, A) ≤ ε−1 ρ(A) for all x ∈ E, A ∈ E.

Moreover, the observation density Υ is bounded from above and below, i.e.,
there is a constant 0 < κ < 1 such that

κ ≤ Υ (x, y) ≤ κ−1 for all x ∈ E, y ∈ F.

Note that the condition on the observation density is very similar to the
mixing condition on the signal transition kernel when it is expressed in terms



72 5 Filter Stability and Uniform Convergence

of the observation kernel Φ. Some comments about this assumption, which is
rather strong, can be found at the end of the section.

As you might expect, we have already done most of the work to complete
the proof of uniform convergence: filter stability has been established, and we
already know how to bound the one step errors as in the proof of theorem 4.5.

Theorem 5.6. Suppose assumption 5.5 holds. Let x
(i)
n (i = 1, . . . , N , n ≥ 0)

be generated by the SIS-R algorithm for the observations (yk)k≥0. Then

sup
n≥0

sup
‖f‖∞≤1

∥∥∥∥∥
∫

f(x) πn(y0, . . . , yn, dx)− 1
N

N∑
i=1

f(x(i)
n )

∥∥∥∥∥
2

≤ C√
N

,

where the constant C depends neither on N nor on (yk)k≥0.

Proof. As noted in the introduction, we may write

πk − π̂k =
k−1∑
`=0

(Fk · · ·F`+1 F`π̂`−1 − Fk · · ·F`+1 π̂`) + Fkπ̂k−1 − π̂k

(where we use the notation F0π̂−1 = π0). Therefore

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk(dx)−
∫

f(x) π̂k(dx)
∥∥∥∥

2

≤
k∑

`=0

ε−2(1− ε2)k−` sup
‖f‖∞≤1

∥∥∥∥∫ f(x) F`π̂`−1(dx)−
∫

f(x) π̂`(dx)
∥∥∥∥

2

,

where we have used theorem 5.4. But following exactly the same steps as in
the proof of theorem 4.5, we find that

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) F`π̂`−1(dx)−
∫

f(x) π̂`(dx)
∥∥∥∥

2

≤ 1 + 2κ−2

√
N

,

where we have filled in the bounds on Υ in assumption 5.5. This gives

sup
‖f‖∞≤1

∥∥∥∥∫ f(x) πk(dx)−
∫

f(x) π̂k(dx)
∥∥∥∥

2

≤ 1 + 2κ−2

√
N

1− (1− ε2)1+k

ε4
.

We now complete the proof by taking the supremum over k. ut

Some comments on Assumption 5.5

Assumption 5.5 is quite restrictive in practice, particularly the lower bounds
on P and Υ (the upper bounds are usually not difficult to satisfy). We have
already seen that the lower bound in the mixing condition implies that the
signal process can be generated by a procedure which, in each time step, resets
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the process with probability ε by drawing from a fixed probability distribution
ρ. Similarly, it is easy to see that the same interpretation holds for the lower
bound on the observation density: in each time step, the observation is drawn
with probability κ from the reference measure ϕ, i.e., independently from
the signal, and with probability 1 − κ from the shifted observation kernel
Φ′(x, dy) = (1− κ)−1{Φ(x, dy)− κ ϕ(dy)}.

In both cases, the conclusion is evident: assumption 5.5 implies that the
signal dynamics and the observations are very noisy. However, even this state-
ment should be interpreted with some care. When the signal state space E is
compact, for example, a signal that satisfies the mixing condition can be ob-
tained by discretizing in time a uniformly elliptic diffusion (see [AZ97]). This
conforms to the intuition of ‘noisy dynamics’. However, when E is noncompact
even uniform ellipticity does not suffice. Some intuition can be obtained by
considering a simple example (problem 5.3); it appears that in order to satisfy
assumption 5.5 in a noncompact setting, one typically needs noise with heavy
tails. Many (if not most) reasonable models, both in the compact and in the
noncompact setting, do not satisfy the required conditions.

This certainly does not mean that the phenomena introduced in this chap-
ter do not appear in more general models. In fact, both filter stability and
uniform approximation is observed numerically in a wide variety of models
which are not even close to satisfying assumption 5.5, and various mathemat-
ical approaches have been introduced to investigate these problems. There is
an important distinction with our results, however. Note that the bounds in
theorems 5.4 and 5.6 do not depend on the observation path (yk)k≥0: under
the assumption 5.5 we obtain stability and approximation results uniformly
in the observations. With a rare exception, this is no longer true when as-
sumption 5.5 is not satisfied. The lack of uniformity brings with it formidable
technical complications, which are beyond the scope of this course.

Problems

5.1. Geometric Ergodicity and Coupling
Let K be a transition kernel on (E,E) such that the minorization condition
holds: K(x, A) ≥ ε ρ(A) for all A ∈ E, where 0 < ε < 1 and ρ is some
probability measure. We are going to give a probabilistic proof of geometric
ergodicity (see section 5.2) of the Markov chain with transition kernel K.
(a) Show that K ′(x,A) = (1− ε)−1{K(x,A)− ε ρ(A)} is a transition kernel.
(b) Let (Xk, X̃k, ξk)k≥0 be a sequence of random variables on some underlying
probability space such that the following hold:

1. ξk are i.i.d. with P(ξk = 0) = ε and P(ξk = 1) = 1− ε.
2. Xk is a Markov chain with transition kernel K and initial measure µ.
3. X̃k is a Markov chain with transition kernel K ′ and initial measure µ̃.
4. (ξk)k≥0, (Xk)k≥0 and (X̃k)k≥0 are independent of each other.



74 5 Filter Stability and Uniform Convergence

Now define the following sequence of random variables:

Zk =
{

X̃k if ξ` = 1 for all ` ≤ k;
Xk otherwise.

Show that Zk is Markov with transition kernel K and initial measure µ̃.
(c) Show that there exists a random time τ < ∞ a.s. such that P(Xk =
Zk for all k ≥ τ) = 1. The random variable τ is called the coupling time and
the Markov chains Xk and Zk are said to be (successfully) coupled.
(d) Show that the following coupling inequality holds:

sup
‖f‖∞≤1

|E(f(Xk))−E(f(Zk))| ≤ 2P(Xk 6= Zk) ≤ 2P(k < τ).

Now use this estimate to conclude geometric ergodicity of our Markov chain.

5.2. A Weaker Mixing Condition
(a) Suppose that in assumption 5.5 the mixing condition on the transition
kernel is replaced by: there exists an m ∈ N such that

ε ρ(A) ≤ Pm(x,A) ≤ ε−1 ρ(A) for all x ∈ E, A ∈ E.

Show that theorem 5.6 still holds under this weaker condition. (Hint: you can
no longer show that K`+1|n satisfies the minorization condition; however, you
can establish minorization for kernels of the form K`+1|n · · ·K`+m|n.)
(b) Suppose that the signal and observation state spaces are both finite. Use
the technique in (a) to prove that the filter is exponentially stable whenever
the signal is an ergodic Markov chain and the observations satisfy the nonde-
generacy condition (definition 1.9). Hint: when a finite state Markov chain is
ergodic, there is an integer k > 0 such that (P k)ij > 0 for all i, j.

5.3. Mixing Is Hard To Do (in a noncompact space)
Consider a hidden Markov model on E × F = R× R where

Xk = F (Xk−1) + ξk,

where F : R → R is a bounded function. Show that the corresponding transi-
tion kernel does not satisfy the mixing condition if ξk are i.i.d. N(0, 1), unless
F (x) is independent of x. On the other hand, show that the mixing condition
is satisfied if ξk are i.i.d. exponentially distributed ξk ∼ 1

2e−|x|dx. Draw the
corresponding conclusions for the existence of upper and lower bounds for the
observation density when the observation model is of the form

Yk = H(Xk) + ηk,

where H : R → R is bounded and ηk are i.i.d. Gaussian or exponential.
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5.4. Observability ([CL06])
In the chapter, we have shown that filter stability can be inherited from er-
godicity of the signal—in words, if the signal forgets its initial condition, then
so does the filter. However, one might expect that the filter can be stable
even when the signal is not ergodic. After all, if the observations are ‘good
enough’ one would expect that the information obtained from the observa-
tions eventually obsoletes the information contained in the initial measure. In
this problem, we will develop a simple result along these lines.
(a) Suppose Pµ is the law of a hidden Markov model with transition and ob-
servation kernels P and Φ and initial measure µ. Denote by Pν the law with
the same kernels but different initial measure ν. Prove that

dPµ

dPν
=

dµ

dν
(X0) whenever µ � ν.

(b) Suppose that µ � ν. Prove that for all bounded measurable f

Eν
(dµ

dν
(X0)

∣∣∣Y0, . . . , Yk

)
Eµ(f(Yk+1)|Y0, . . . , Yk)

= Eν
(
Eν
(dµ

dν
(X0)

∣∣∣Y0, . . . , Yk+1

)
f(Yk+1)

∣∣∣Y0, . . . , Yk

)
.

Hint: review the proof of the Bayes formula (theorem 2.7).
(c) Using part (b) prove the following: whenever µ � ν

Eµ(|Eµ(f(Yk+1)|Y0, . . . , Yk)−Eν(f(Yk+1)|Y0, . . . , Yk)|) k→∞−−−−→ 0

for all bounded measurable f . Conclude that

Eµ(|Eµ(Φf(Xk+1)|Y0, . . . , Yk)−Eν(Φf(Xk+1)|Y0, . . . , Yk)|) k→∞−−−−→ 0

for all bounded measurable f , where Φf(x) =
∫

f(y) Φ(x, dy).
(d) Suppose that E = {1, . . . , d} and F = {1, . . . , d′}. Denote by Φ the matrix
with elements Φij = Φ(i, {j}). Show that if Φ is invertible, then

Eµ(‖πµ
k+1|k − πν

k+1|k‖1)
k→∞−−−−→ 0,

where we have denoted the predictor as (πµ
k+1|k)i = Pµ(Xk+1 = i|Y0, . . . , Yk)

and ‖ · ‖1 denotes the `1-norm of a vector.
(e) Suppose that Φ is invertible and that Φij > 0 for all i, j. Using the filtering
recursion to express the filter πµ

k+1 in terms of the predictor πµ
k+1|k, show that

in fact Eµ(‖πµ
k − πν

k‖1) → 0 as k →∞ whenever µ � ν.

Remark 5.7. Note that we have now proved filter stability in this simple setting
making only an ‘observability’ assumption on the observations: we have made
no assumptions on the signal! These ideas have some very general ramifications
for the stability of nonlinear filters, see [van08b, van08d, van08a].
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Notes

In a pioneering paper on filter stability, Ocone and Pardoux [OP96] established
that nonlinear filters are stable under very general assumptions, provided only
that the signal process is ergodic. However, their approach relies crucially on a
result of Kunita [Kun71] whose proof was subsequently discovered to contain
a serious gap [BCL04, Bud03]. This gap is largely resolved in [van08c], where
additional results can be found on stability in the case of ergodic signals. In
such a general setting, however, no rate of convergence can be given.

Atar and Zeitouni [AZ97] were the first to establish exponential stability
of nonlinear filters under the strong mixing assumption (early ideas in this
direction are in Delyon and Zeitouni [DZ91]). Del Moral and Guionnet [DG01]
obtained similar results using a different method, which gives rise to cleaner
bounds (which are suitable for application to particle filters). Our treatment
of filter stability is loosely based on the approach of Del Moral and Guionnet
(see [DG01, lemma 2.3]). Many authors have investigated filter stability under
weaker assumptions than the mixing condition. Let us mention, e.g., Chigan-
sky and Liptser [CL04], Le Gland and Oudjane [LO03], and Kleptsyna and
Veretennikov [KV08]. An extensive overview of filter stability results can be
found in [CR09]. Various questions in filter stability remain open; for example,
it appears to be unknown whether geometrically ergodic signals always yield
exponential stability of the filter (under mild conditions on the observations).

A standard reference on geometric ergodicity is Meyn and Tweedie [MT93].
For a nice discussion on minorization and coupling, see Rosenthal [Ros95].

The use of filter stability to prove uniform convergence of the SIS-R al-
gorithm is due to Del Moral and Guionnet [DG01]. Our approach is loosely
inspired by Le Gland and Oudjane [LO04]. The book by Del Moral [Del04]
contains much further information on this topic. An entirely different approach
(which still relies on filter stability, however) can be found in Budhiraja and
Kushner [BK01]. It should be noted that unlike in the SIS-R algorithm, the
approximation error in the SIS algorithm can generally not be controlled uni-
formly in time [Del98b]. This is a mathematical hint that the SIS-R algorithm
should indeed perform better than the SIS algorithm on longer time scales.
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Statistical Inference: Methods

6.1 Maximum Likelihood and Bayesian Inference

In the previous chapters, we have discussed in detail how the unobserved signal
process Xk can be estimated from an observed sample path of the observation
process Yk. In order to obtain such estimates, however, we presumed that
the underlying hidden Markov model was completely known. In the present
chapter, we start our investigation of the case where one or more of the basic
building blocks of the hidden Markov model—the transition kernel P , the
observation kernel Φ, and the initial measure µ—are not known precisely. Our
goal is to select, or ‘learn,’ a suitable underlying hidden Markov model from
a long ‘training’ sample path of the observation process. It should be evident
that this statistical inference problem is of great practical importance.

To formalize this problem, we will follow the standard statistical practice
of introducing a family of candidate models for consideration. To this end, let
(Θ,H) be a measurable space, called the parameter space. For each θ ∈ Θ, we
introduce a separate transition kernel P θ, observation kernel Φθ, and initial
measure µθ. The law of the hidden Markov model (Xk, Yk)k≥0 defined by
P θ, Φθ, µθ will be denoted as Pθ. Our goal is now to select, on the basis of
an observed sequence y0, . . . , yn, a parameter estimate θ̂ ∈ Θ such that the
observation statistics are well described by the law Pθ̂. The hidden Markov
model defined by P θ̂, Φθ̂, µθ̂ could then be used, for example, to apply the
techniques developed in the previous chapters.

What makes for a ‘good’ parameter estimate θ̂? Note that the estimator
depends, by definition, on the observed training data θ̂ = θ̂n(y0, . . . , yn). We
would like to guarantee that the estimate θ̂n is close to the ‘true’ value of θ for
large n, regardless of what the ‘true’ parameter happens to be. To be precise,
we would like to show that θ̂n → θ in Pθ-probability (or Pθ-a.s.) for every
θ ∈ Θ. When this is the case, the estimator is called consistent : this ensures
that if the observations are generated by the hidden Markov model with the
true parameter value θ? ∈ Θ, then the parameter estimate is guaranteed to be
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close to θ? provided that we are given a sufficient amount of training data. In
this chapter we will develop a class of estimators for hidden Markov models
and show how they can be implemented in practice; the issue of consistency
of these methods will be mostly tackled in the next chapter.

Remark 6.1. The dependence of P θ, Φθ, µθ,Pθ on θ should always be measur-
able; e.g., we should really think of P θ as a kernel P : Θ×E×E → [0, 1] rather
than a family of kernels P θ : E × E → [0, 1]. We will take this for granted.

There are two common approaches for constructing parameter estimates:
the Bayesian approach and the maximum likelihood approach. In hidden
Markov models, maximum likelihood estimation and has proven to be very
successful and can be implemented much more efficiently than Bayesian esti-
mation. Apart from a brief discussion of Bayesian estimation in this section,
we will mostly concentrate on the maximum likelihood approach.

Bayesian approach

Let λ be a probability measure on (Θ,H). Suppose we choose a parameter θ?

at random from the distribution λ, and then generate observations Y0, . . . , Yk

using the hidden Markov model Pθ?

. Then θ? and (Xk, Yk)0≤k≤n are jointly
distributed according to the distribution Pλ on Θ × (E × F )n defined as

Eλ(f(θ?, X0, . . . , Xn, Y0, . . . , Yn)) =∫
f(θ, x0, . . . , xn, y0, . . . , yn)Pθ(dx0, . . . , dxn, dy0, . . . , dyn)λ(dθ).

We can now estimate the value of θ? using the estimation techniques intro-
duced in section 2.1. For example, to obtain an estimate θ̂n(Y0, . . . , Yn) which
minimizes the mean square error Eλ(‖θ̂n − θ?‖2) (assume that Θ ⊂ Rd for
this to make sense), we would choose θ̂n = Eλ(θ?|Y0, . . . , Yn). This is called
the Bayesian parameter estimator with prior distribution λ.

By introducing the prior λ, we have turned the statistical inference prob-
lem into a standard estimation problem. However, our estimator will certainly
depend on λ. In practice, it is rarely the case that the parameter is actually
chosen from a probability distribution; typically we presume that there is a
fixed (non-random) but unknown parameter value θ? which generates the ob-
servations. This does not mean that we can not use a Bayesian estimator, but
the choice of prior is rather subjective as it has no inherent significance. Choos-
ing a suitable prior is a bit of an art which we will not go into. Ultimately,
the Bayesian estimator should be justified by proving that it is consistent for
a suitable choice of prior. We forgo a detailed discussion.

Remark 6.2. One way to eliminate the subjectivity of the prior is to compute
the minimax estimator θ̂n(Y0, . . . , Yn) which minimizes supλ Eλ(‖θ̂n − θ?‖2).
In other words, the minimax estimator is the Bayesian estimator where the



6.1 Maximum Likelihood and Bayesian Inference 79

prior is chosen according to the ‘worst case’ scenario. The minimax estimator
is generally very difficult to compute in practice, however.

Given a prior distribution, how would we compute the Bayesian estimate?
At least conceptually, this turns out to be extremely straightforward. Let us
define the Θ×E-valued stochastic process X̃k = (X̃1

k , X̃2
k) by setting X̃1

k = θ?,
X̃2

k = Xk for all k ≥ 0. Then it is a simple exercise to show that (X̃k, Yk)k≥0

is an ordinary hidden Markov model under the Bayesian measure Pλ with the
enlarged signal state space Θ×E (problem 6.1). The idea of enlarging the state
space to include the parameter is called state augmentation. It should be clear
that the Bayesian estimator θ̂k can now be computed using the filter π̃k for
the augmented model. We have already discussed various filtering algorithms
in the previous chapters, and these apply also in this setting.

However, this also highlights the practical difficulties of Bayesian estima-
tion. The computational effort needed to compute the filter to reasonable
accuracy increases rapidly (typically exponentially) with the dimension of the
state space. In many applications, the signal state space has moderate dimen-
sion, so that applying the filter for the signal itself is no problem. However, the
parameter space may be much larger than the signal state space—a typical
example is the case where the signal state space E = {1, . . . , d} is a finite set,
but the parameter space Θ consists of all elements of the transition probabil-
ity matrix P . Here filtering of the signal can be done exactly at little cost,
but Bayesian estimation requires us to run a filter on a d(d− 1)-dimensional
parameter space: a very expensive problem.

There are, of course, situations where Bayesian estimation can be practi-
cal, e.g., when the parameter space happens to be low dimensional or in the
special case where the Kalman filter can be applied. If the parameter space is
not low dimensional then computing the Bayesian estimator through filtering
is typically intractable; however, there are other methods, such as Markov
Chain Monte Carlo (MCMC), which are specifically designed to sample from
probability distributions in high dimensional spaces. For an entry point to the
literature on this topic, see [CMR05, chapter 13].

Maximum likelihood approach

The most common alternative to Bayesian estimation is maximum likelihood
estimation. The idea behind this approach is most easily explained in the case
where the observation state space is a finite set F = {1, . . . , d′}. Let us briefly
discuss the idea in this setting; we then return to the general case.

Suppose that we observe a training sequence y0, . . . , yn; in this setting
there is only a finite number of possible sequences of a fixed length n, as each
yk can only take a finite number of values. Given a fixed parameter θ ∈ Θ, the
probability that the hidden Markov model defined by θ generated the observed
sequence can be evaluated as Pθ(Y0 = y0, . . . , Yn = yn). The idea behind
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maximum likelihood estimation is now simple: we select the parameter θ which
gives the highest probability of generating the actually observed training data

θ̂n(y0, . . . , yn) = argmax
θ∈Θ

Pθ(Y0 = y0, . . . , Yn = yn).

The estimate θ̂n can therefore be interpreted as the parameter value under
which the training data was most likely to be generated.

When F is not a finite set, the probabilities Pθ(Y0 = y0, . . . , Yn = yn) will
typically be zero. However, the idea can still be implemented if we consider the
probability density of the observations rather than the probability itself. In
this general setting, we assume that the probability measure Pθ|Y0,...,Yn is ab-
solutely continuous with respect to some fixed probability measure Q|Y0,...,Yn

for every θ ∈ Θ. The maximum likelihood estimate is then defined as

θ̂n(y0, . . . , yn) = argmax
θ∈Θ

dPθ|Y0,...,Yn

dQ|Y0,...,Yn

(y0, . . . , yn).

Note that the estimate does not depend on the choice of Q, as the latter does
not depend on θ. The discrete case above follows as a special case.

The maximum likelihood approach seems intuitively plausible. However,
it is certainly not entirely obvious (a) that it gives a good estimator; and (b)
that it can be computed efficiently in practice. The latter question is the topic
of this chapter, while we will tackle the first problem in the next chapter.

Before we can consider any of these problems, however, we need to ask a
basic question: what does the likelihood dPθ|Y0,...,Yn

/dQ|Y0,...,Yn
look like in

a hidden Markov model? As it turns out, this is a familiar quantity indeed.

Definition 6.3. From now on, we suppose that Φθ(x, dy) has a strictly posi-
tive density Υ θ(x, y) for every θ ∈ Θ with respect to a fixed measure ϕ(dy). We
denote by πθ

k, πθ
k|n, σθ

k, etc., the conditional measures computed as in chapter
2 for the transition kernel P θ, observation density Υ θ, and initial measure µθ.

Proposition 6.4. Define Q|Y0,...,Yn
(dy0, . . . , dyn) = ϕ(dy0) · · ·ϕ(dyn). Then

Lθ
n :=

dPθ|Y0,...,Yn

dQ|Y0,...,Yn

(y0, . . . , yn) = σθ
n(y0, . . . , yn, E)

= σθ
0(y0, E)

n∏
k=1

∫
Υ θ(x, yk) P θ(x′, dx) πθ

k−1(y0, . . . , yk−1, dx′).

Proof. It suffices to note that by the definition of σθ
n

Eθ(f(Y0, . . . , Yn)) =
∫

f(y0, . . . , yn)Υ θ(x0, y0) · · ·Υ θ(xn, yn)

× P θ(xn−1, dxn) · · ·P θ(x0, dx1)µθ(dx0)ϕ(dy0) · · ·ϕ(dyn)

=
∫

f(y0, . . . , yn) σθ
n(y0, . . . , yn, E)ϕ(dy0) · · ·ϕ(dyn)
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for every bounded measurable function f . ut

For a fixed value of θ, the likelihood Lθ
n is evidently easily computed using

the filtering recursion; for example, in algorithm 3.2 the likelihood is simply
c0 · · · cn. In order to compute the maximum likelihood estimate, however, we
must compute the filter not for a fixed value of θ, but simultaneously for all
θ. At first sight, this appears just as difficult as Bayesian estimation.

However, most algorithms for finding the maximum of a function f(θ) do
not require us to evaluate this function a priori at every point θ. Instead, these
algorithms typically search for a maximum by starting from an initial guess
for θ and iteratively moving this guess in the direction in which the function
increases (think, e.g., of steepest descent or Newton-type methods). If we are
lucky, such an algorithm converges in a relatively small number of steps, so
that we need to run the filter only for a small number of values of θ. In the
next section, we will discuss a particular iterative method of this type that
is specifically designed for maximum likelihood estimation. The downside of
such methods is that they are typically guaranteed to converge only to a local
maximum of the likelihood, which is not necessarily a global maximum.

To date, this appears to be the state of affairs: the (global) maximum
likelihood estimate can be proved to be consistent under suitable assumptions
on the model, but to compute the estimate efficiently we can typically only
guarantee that a local maximum is found. In practice, this seems to work very
well; on the theoretical side, much has been but much also remains to be done.

A particularly simple setting: hypothesis testing

Before we move on to more complicated cases, we discuss a particularly simple
setting: the case where the parameter space Θ = {1, . . . , p} is a finite set. This
is known as the hypothesis testing problem: we are given p different model
possibilities (hypotheses), and our goal is to decide on the basis of observations
which of the hypotheses holds true. Though this is not the typical setting of
parameter estimation, such problems do appear in applications—for example,
the word recognition problem in speech recognition (see example 1.17).

Because there are only finitely many possibilities, the maximum likelihood
hypothesis can easily be found. All we need to do is to compute p filters for
the observed sequence, one for each parameter value. This can be done using
either the exact filtering algorithm if E is finite or using the SIS-R algorithm
otherwise (moreover, the computations are easily parallelized as the filters are
computed independently). Once the filters are computed, we choose as our
estimate the hypothesis with the largest likelihood. However, in this setting
Bayesian estimation is also tractable—and gives essentially the same answer!

Proposition 6.5. Let λ be a Bayesian prior. Then the conditional distribu-
tion of the parameter θ? under the Bayesian measure Pλ is given by

Eλ(f(θ?)|Y0, . . . , Yn) =
∫

f(θ) σθ
n(Y0, . . . , Yn, E) λ(dθ)∫

σθ
n(Y0, . . . , Yn, E)λ(dθ)

.
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In particular, provided that λ({i}) > 0 for all i = 1, . . . , p, the maximum
likelihood parameter estimate coincides with the Bayesian MAP estimate as
then Pλ(θ? = i|Y0, . . . , Yn) ∝ σi

n(Y0, . . . , Yn, E) for all i = 1, . . . , p.

Proof. Problem 6.3. ut

This simple setting is exceptional in that consistency can be studied with-
out heroics. So why wait until the next chapter? Though the following result
and proof are deceptively simple, and we will need to develop different tools
to deal with a more general setting, it should nonetheless give some insightful
motivation for the statistical inference methodology.

Theorem 6.6. When Θ is a finite set, the following are equivalent.

1. Maximum likelihood estimation is consistent: θ̂n → θ Pθ-a.s. for all θ ∈ Θ;
2. Pθ|(Yk)k≥0 and Pθ′ |(Yk)k≥0 are mutually singular for all θ, θ′ ∈ Θ, θ 6= θ′.

Recall that probability measures P,Q on a measurable space (Ω,G) are
called mutually singular if there is S ∈ G such that P(S) = 1 and Q(S) = 0.

Proof. Suppose that the maximum likelihood estimator is consistent. Then
we find that Pθ(limn→∞ θ̂n = θ) = 1 and Pθ′(limn→∞ θ̂n = θ) = 0 whenever
θ 6= θ′. As by construction θ̂n is a function of the observations only, this
implies that Pθ|(Yk)k≥0 and Pθ′ |(Yk)k≥0 are mutually singular for θ 6= θ′.

Now for the converse. The idea is to show that there exists a perfect
estimator: i.e., there exists a random variable θ̂0, which is a function of the
observations only, such that θ̂0 = θ Pθ-a.s. for every θ ∈ Θ. We claim that if
there exists such a perfect estimator, then the maximum likelihood estimate
must be consistent. Let us first show why this is true, and then complete the
proof by showing the existence of a perfect estimator.

Let λ be a Bayesian prior as in proposition 6.5. Then

Pλ(θ? = θ|Y0, . . . , Yn) n→∞−−−−→ Pλ(θ? = θ|(Yk)k≥0)

by the martingale convergence theorem, and as Θ is a finite set we evidently
have limn→∞ θ̂n = argmaxθ∈Θ Pλ(θ? = θ|(Yk)k≥0). By example 2.6, we find
that θ̂ = limn→∞ θ̂n is the estimator that minimizes the cost Pλ(θ̂ 6= θ?).
But if θ̂0 is a perfect estimator, then clearly Pλ(θ̂0 6= θ?) = 0. Therefore,
we evidently have θ̂ = θ̂0 Pλ-a.s. You can easily convince yourself that as
λ({θ}) > 0 for every θ ∈ Θ by assumption, this means that θ̂ = θ Pθ-a.s. for
every θ ∈ Θ, i.e., the maximum likelihood estimator is consistent.

It remains to prove the existence of a perfect estimator. We will construct
such an estimator under the assumption that Pθ|(Yk)k≥0 and Pθ′ |(Yk)k≥0 are
mutually singular for θ 6= θ′, thus completing the proof. For every θ 6= θ′, let
Sθ,θ′ ∈ σ{Yk : k ≥ 0} be a set such that Pθ(Sθ,θ′) = 1 and Pθ′(Sθ,θ′) = 0.
Define Sθ =

⋂
θ′∈Θ Sθ,θ′ ; then for every θ, we have Pθ(Sθ) = 1 and Pθ′(Sθ) =

0 when θ′ 6= θ. Define the random variable θ̂0(ω) = θ for ω ∈ Sθ; then by
construction θ̂0 is a function of the observations only and θ̂0 = θ Pθ-a.s. for
every θ ∈ Θ. Therefore θ̂0 is a perfect estimator. ut
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The second condition in this theorem—an identifiability condition—is nec-
essary for any estimator to be consistent. Though the rather naive approach
and conditions of this theorem do not extend to the case where the parameter
space Θ is uncountable, we will see this idea return in the next chapter.

6.2 The EM Algorithm

When the parameter space is not finite, it is very difficult to compute the
exact maximum likelihood estimate. We therefore need algorithms to search
for the maximum likelihood parameter. In principle one can employ almost
any algorithm for finding a maximum of a function (see problem 6.8). The goal
of this section is to develop a particular algorithm that is specific to maximum
likelihood estimation—the EM (expectation-maximization) algorithm—which
is widely used in statistical inference problems in hidden Markov models.

EM assumptions

The EM algorithm does not apply to the parameter estimation problem in its
most general form; we need to make some assumptions about the nature of
the parameter dependence. When these assumptions do not hold, parameter
estimation typically becomes a much more difficult problem. Fortunately, it
turns out that these assumptions hold in a variety of important examples.

Assumption 6.7 (EM assumptions) There exists a fixed transition kernel
P on E, and probability measures µ on E and ϕ on F , such that P θ, Φθ, µθ

have densities which have the form of exponential families:

P θ(x, dx′) = pθ(x, x′) P (x, dx′) = exp
(∑dp

`=1c`(θ) p`(x, x′)
)

P (x, dx′),

Φθ(x, dy) = Υ θ(x, y)ϕ(dy) = exp
(∑dΥ

`=1γ`(θ) Υ`(x, y)
)

ϕ(dy),

µθ(dx) = uθ(x) µ(dx) = exp
(∑du

`=1q`(θ) u`(x)
)

µ(dx).

(Necessarily
∫

pθ(x, x′)P (x, dx′) =
∫

Υ θ(x, y)ϕ(dy) =
∫

uθ(x)µ(dx) = 1.)

Let us give some typical examples.

Example 6.8 (Finite state space). Suppose that E = {1, . . . , d}, so that we can
represent the kernel P θ as a matrix P θ. Suppose also that (P θ)ij > 0 for all
θ ∈ Θ. Then P θ satisfies the corresponding EM assumption.

Indeed, let us choose P (x, dx′) to be the transition kernel whose transition
probability matrix P is given by (P )ij = 1/d for all i, j. Then

P θ(i, {j}) = exp
(∑d

k,`=1 log((P θ)k`d) Ik(i) I`(j)
)

P (i, {j}).
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Therefore we may set ck`(θ) = log((P θ)k`d) and pk`(i, j) = Ik(i) I`(j).
Note that a minor modification allows us to treat the case where for each

i, j either (P θ)ij > 0 for all θ ∈ Θ or (P θ)ij = 0 for all θ ∈ Θ (choose a
suitable reference kernel P ). Also, in a similar fashion, we find that Φθ always
satisfies the EM assumption if E and F are both finite sets (provided, as
always, that Υ θ is strictly positive for every θ ∈ Θ).

Example 6.9 (Gaussian observations). Let us suppose that E = {1, . . . , d} is a
finite set and that F = R. We assume that Φθ(i, dy) is a Gaussian distribution
for every i = 1, . . . , d and θ ∈ Θ. Then Φθ satisfies the EM assumption.

Indeed, let ϕ(dy) = e−y2/2dy/
√

2π and denote by mi(θ) and vi(θ), respec-
tively, the mean and variance of the Gaussian distribution Φθ(i, dy). Then

Φθ(i, dy) = exp
(

1
2

y2 − (y −mi(θ))2

2vi(θ)
− log(

√
vi(θ))

)
ϕ(dy)

= exp
(∑3

k=1

∑d
`=1γk`(θ) Υk`(i, y)

)
ϕ(dy),

where Υ1`(i, y) = I`(i) y2, Υ2`(i, y) = I`(i) y, Υ3`(i, y) = I`(i), and

γ1`(θ) =
1− v`(θ)−1

2
, γ2`(θ) =

m`(θ)
v`(θ)

, γ3`(θ) = −m`(θ)2

2v`(θ)
− log(

√
v`(θ)).

Along similar lines, we can establish that the EM assumption is satisfied for
Φθ if E = Rp, F = Rq, and the observations satisfy Yk = C(θ)Xk + D(θ)ηk

where ηk ∼ N(0, Id) and D(θ) is an invertble matrix for every θ.

The EM algorithm

Recall that the maximum likelihood estimate is defined by the expression θ̂n =
argmaxθ dPθ|Y0,...,Yn

/dQ|Y0,...,Yn
for any reference measure Q. In particular,

we may choose Q = Pθ′ for an arbitrary θ′ ∈ Θ, so we can write

θ̂n(y0, . . . , yn) = argmax
θ∈Θ

log
(

dPθ|Y0,...,Yn

dPθ′ |Y0,...,Yn

(y0, . . . , yn)
)

.

Here we have used the fact that the logarithm is an increasing function.
Now recall that (if this is unfamiliar, do problem 6.2)

log
(

dPθ|Y0,...,Yn

dPθ′ |Y0,...,Yn

)
= log

(
Eθ′

[
dPθ

dPθ′

∣∣∣∣Y0, . . . , Yn

])
.

The maximum of this expression with respect to θ is typically very difficult
to compute. However, consider instead the quantity

Qn(θ, θ′) = Eθ′
[
log
(

dPθ

dPθ′

)∣∣∣∣Y0, . . . , Yn

]
.
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The key point is that the maximum of this quantity with respect to θ is easy
to compute when the EM assumptions hold. Indeed, under assumption 6.7,

log
(

dPθ

dPθ′
(x0, . . . , xn, y0, . . . , yn)

)
=

n∑
k=0

dΥ∑
`=1

{γ`(θ)− γ`(θ′)}Υ`(xk, yk)

+
n∑

k=1

dp∑
`=1

{c`(θ)− c`(θ′)} p`(xk−1, xk) +
du∑
`=1

{q`(θ)− q`(θ′)}u`(x0),

so that we obtain

Qn(θ, θ′) =
n∑

k=0

dΥ∑
`=1

{γ`(θ)− γ`(θ′)}
∫

Υ`(x, yk) πθ′

k|n(dx)

+
n∑

k=1

dp∑
`=1

{c`(θ)− c`(θ′)}
∫

p`(x, x′) πθ′

k−1,k|n(dx, dx′)

+
du∑
`=1

{q`(θ)− q`(θ′)}
∫

u`(x) πθ′

0|n(dx).

Therefore, the computation of argmaxθ∈Θ Qn(θ, θ′) can be accomplished in
two steps. First, we compute the univariate and bivariate smoothing distribu-
tions πθ′

k|n and πθ′

k−1,k (see theorem 3.2). This can be done efficiently using, e.g.,
the Baum-Welch algorithm 3.2 or a variant of the SIS-R algorithm that com-
putes smoothing distributions. Then, we solve the deterministic optimization
problem of maximizing the above expression with respect to θ: this is much
simpler than the original problem, as the θ-dependence has been separated
out from the computation of the conditional expectation. This is the essence of
the EM-algorithm: we first perform the E-step (computation of the smoothing
distributions), followed by the M-step (maximizing the deterministic expres-
sion for Qn). In many examples, the M-step can in fact be done analytically,
so that maximizing Qn(θ, θ′) reduces to the smoothing problem only.

At this point calls of protest should be heard. How on earth do we jus-
tify exchanging the logarithm and expectation, as we did in order to define
Qn(θ, θ′)? Indeed, the parameter θ that maximizes Qn(θ, θ′) is not the max-
imum likelihood estimate. Remarkably, however, the follows does hold: the
likelihood of the maximizer θ can be no smaller than the likelihood of θ′!

Lemma 6.10 (EM lemma). If θ = argmaxθ0∈Θ Q(θ0, θ
′), then Lθ

n ≥ Lθ′

n ,
i.e., the likelihood of θ′ can never exceed the likelihood of θ.

Proof. Note that

log Lθ
n − log Lθ′

n = log
(
Eθ′

[
dPθ

dPθ′

∣∣∣∣Y0, . . . , Yn

])
≥ Qn(θ, θ′)

by Jensen’s inequality. But as Qn(θ′, θ′) = 0, we must have Qn(θ, θ′) ≥ 0. ut
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What this simple lemma suggests is that if we start from some candi-
date parameter estimate θ′, then computing a new estimate by maximizing
Qn(θ, θ′) is guaranteed to improve on our initial estimate. This suggests the
following iterative algorithm. We start with an arbitrary candidate parameter
θ̂
(0)
n ∈ Θ. We then construct the sequence of estimates

θ̂(j)
n = argmax

θ∈Θ
Qn(θ, θ̂(j−1)

n ), j ≥ 1

by iterating the E- and M-steps above. This is called the EM algorithm. The
likelihood of the sequence of EM estimates θ̂

(j)
n will steadily increase as j

increases, and we hope that the sequence will converge to the maximum like-
lihood estimate. In practice, this is difficult to prove; what one can prove is
that, under mild conditions, the sequence θ̂

(j)
n converges to a local maximum

of the likelihood function Lθ
n. This is briefly sketched in the next chapter.

EM algorithm for a class of hidden Markov models

Let us show the EM algorithm at work in an important class of concrete
hidden Markov models. We consider a finite signal state space E = {1, . . . , d}
and a real valued observation state space F = R, where the observations take
the form Yk = m(Xk)+

√
v(Xk) ηk with ηk ∼ N(0, 1). We wish to estimate all

the transition probabilities P ij of the signal, all initial probabilities µi of the
signal, and the observation functions m and v (which we interpret as vectors
mi = m(i) and vi = v(i) as usual). We therefore introduce the parameter
space Θ = Σd×∆d×Rd×Rd

+, where Σd is the space of d×d stochastic matrices
with strictly positive entries, ∆d is the space of d-dimensional probability
vectors with strictly positive entries, and Rd

+ is the space of d-dimensional
vectors with strictly positive entries; we wish to estimate (P ,µ,m,v) ∈ Θ.

What we are going to do is solve the M-step in the EM algorithm explicitly.
To this end, let us first plug in the expressions in examples 6.8 and 6.9 into
the general expression for Qn(θ, θ′) above. This gives the following:

Qn(θ, θ′) = −
n∑

k=0

d∑
`=1

[
(yk −m`)2

2v`
+ log(

√
v`)
]

(πθ′

k|n)`

+
n∑

k=1

d∑
`,`′=1

log(P ``′) (πθ′

k−1,k|n)``′ +
d∑

`=1

log(µ`) (πθ′

0|n)`

− a term that is independent of θ,

where we have written θ = (P ,µ,m,v). We can now maximize this expression
explicitly by taking derivatives with respect to the parameters and setting
these to zero (do not forget to take into account the constraints

∑
`′ P ``′ = 1

and
∑

` µ` = 1, e.g., by substituting P `d by 1−
∑

`′<d P ``′ , and similarly for
µd, before computing the maximum). We leave these routine computations to
you (problem 6.4), and jump straight to the result.
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Algorithm 6.1: Concrete EM Algorithm/Proposition 6.11
`← 0;
repeat

(P , µ, m, v)← θ̂
(`)
n ;

Run the Baum-Welch algorithm 3.2;
P̂ ij ←

∑n
k=1(πk−1,k|n)ij/

∑n
k=1(πk−1|n)i, i, j = 1, . . . , d;

µ̂i ← (π0|n)i, i = 1, . . . , d;
m̂i ←

∑n
k=0 yk (πk|n)i/

∑n
k=0(πk|n)i, i = 1, . . . , d;

v̂i ←
∑n

k=0(yk − m̂i)
2 (πk|n)i/

∑n
k=0(πk|n)i, i = 1, . . . , d;

θ̂
(`+1)
n ← (P̂ , µ̂, m̂, v̂);

`← ` + 1;
until parameter estimates converge ;

Proposition 6.11. We have (P ,µ,m,v) = argmaxθ∈Θ Qn(θ, θ′) where

P ij =

∑n
k=1(π

θ′

k−1,k|n)ij∑n
k=1(π

θ′

k−1|n)i
, µi = (πθ′

0|n)i,

mi =

∑n
k=0 yk (πθ′

k|n)i∑n
k=0(π

θ′

k|n)i
, vi =

∑n
k=0(yk −mi)2 (πθ′

k|n)i∑n
k=0(π

θ′

k|n)i
.

In particular, note that P ij = τ ij;θ′

n /ωi;θ′

n , where τn and ωn are the transition
counts and occupation times as defined in section 3.2.

The entire EM algorithm is summarized as algorithm 6.1.
It is interesting to note that the EM iteration has a remarkably intuitive

interpretation. For example, the improved estimate of the transition proba-
bility from state i to state j is precisely the best estimate—given our present
best guess of the parameter values—of the relative frequency of the transitions
from i to j. This might be a natural guess for a good estimate, but now we
know that this is always guaranteed to improve the likelihood. The estimates
for the remaining parameters possess equally intuitive interpretations.

Remark 6.12. We have included estimation of the initial measure µ in our
discussion. However, unlike the remaining parameters which affect the dy-
namics of the model in every time step, the initial measure is only sampled
once in a single realization of the model. Therefore, the maximum likelihood
estimate of µ obtained from a single observation time series is not particularly
meaningful—it is an estimate of X0 rather than of the law of X0. Estimation
of the initial measure can therefore usually be omitted with little loss.

A simple numerical illustration is shown in figure 6.1. The observations
were generated from a model on E = {1, 2} with true parameters

P ? =
[

.85 .15

.05 .95

]
, µ? =

[
.3
.7

]
, m? =

[
1
2

]
, v? =

[
.5
.2

]
.
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Fig. 6.1. EM algorithm applied to observation time series y0, . . . , yn obtained from
the numerical example in section 6.2, for various data lengths n. Shown are the EM
estimates of P 11 (top, red), P 22 (top, blue), m1 (middle, red), m2 (middle, blue), v1

(bottom, red), and v2 (bottom, blue), as a function of the number of EM iterations.
The dotted lines show the true parameter values of each of these quantities.

The EM algorithm was run using the initial guesses

P̂
(0)

=
[

.5 .5

.5 .5

]
, µ̂(0) =

[
.5
.5

]
, m̂(0) =

[
1
0

]
, v̂(0) =

[
1
1

]
.

We see that the EM estimates do indeed converge after a few iterations of the
algorithm; moreover, as the length of the observation sequence increases, the
EM estimates converge to the true parameter values. The latter suggests that
the maximum likelihood estimates are indeed consistent. An interesting thing
to note, however, is that the EM estimates have changed the order of the states
in E as compared to the model which we used to generate the observations.
This is no problem, of course, as changing the order of the points in E just
gives a different representation of the same hidden Markov model.

6.3 Model Order Estimation

In the previous sections, we have tacitly assumed that the signal and obser-
vation state spaces E and F are fixed at the outset. In order for any form of
estimation to make sense, we must indeed fix F—after all, we are trying to
estimate on the basis of a given observation sequence y0, . . . , yn which takes
values in F . However, it is certainly possible to consider statistical inference
problems where different Eθ are chosen for different parameter values θ ∈ Θ.
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Table 6.1. Order dependence of EM estimates in the numerical example of sec. 6.3

d = 2 d = 3 d = 4

n−1 log LθEM
n = −.6371 n−1 log LθEM

n = −.2047 n−1 log LθEM
n = −.2041

P EM =

[
.73 .27
.04 .96

]
P EM =

 .69 .17 .14
.05 .90 .05
.06 .15 .79

 P EM =


.69 .06 .10 .15
.05 .36 .56 .03
.04 .29 .60 .07
.06 .06 .09 .79


mEM =

[
−.031 2.5

]
mEM =

[
.0049 2.0 4.0

]
mEM =

[
.0015 1.9 2.0 4.0

]
vEM =

[
.20 1.1

]
vEM =

[
.22 .20 .20

]
vEM =

[
.22 .23 .18 .20

]

A setting of particular interest is one where the signal state space E is a
finite set of unknown cardinality. This problem appears in various applications.
For example, suppose we want to model stock prices using a regime switching
model, i.e., where the return and volatility vary according to a finite state
Markov process (see example 1.12). It is typically not clear, a priori, how
many regimes one should choose in order to faithfully reproduce the observed
stock price fluctuations. The number of regimes, called the model order, must
then be estimated along with the other model parameters.

In principle one would expect that the maximum likelihood approach
would work equally well in this case. A promising procedure is the follow-
ing: for each model order d = 1, . . . , D (recall E = {1, . . . , d}), we can use the
EM algorithm as in the previous section to obtain the (hopefully) maximum
likelihood estimate. We therefore obtain a candidate hidden Markov model
with parameter θd for every d = 1, . . . , D. For each of these candidate models,
we can compute the observation likelihood Lθd

n from the constants ck in the
Baum-Welch algorithm. The hope is then that if we choose D sufficiently large
then L?

n(d) := Lθd
n would attain a maximum for some d < D, in which case

the maximum likelihood value of d is clearly the model order of choice.
However, this does not quite work out the way one would think. The prob-

lem is that a d-state Markov process can always be represented as a d+1-state
Markov process by duplicating one of the states. You can therefore easily con-
vince yourself that for any hidden Markov model of order d, there is a hidden
Markov model of order d + 1 whose observation law is precisely the same.
Therefore, the maximum likelihood L?

n(d) of order d is always nondecreasing
in d! In particular, a ‘maximum likelihood’ model order does not exist. To
illustrate this phenomenon, table 6.1 shows the results of a numerical ex-
ample where an observation time series y0, . . . , y5000 was generated from the
following hidden Markov model with three signal states:

P ? =

 .70 .15 .15
.05 .90 .05
.05 .15 .80

 , µ? =

1/3
1/3
1/3

 , m? =

0
2
4

 , v? =

 .2
.2
.2

 .
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As you can see, the likelihood of the order d = 2 is significantly smaller than
the likelihood of the (true) order d = 3, while the likelihood of the order
d = 4 is essentially equal to the likelihood of the true order. Inspection of the
parameter estimates for d = 4 shows that the middle state of the true model
has been duplicated as the two middle states of the estimated d = 4 model,
with very little effect on the observation statistics.

Our new-found intuition about the model order estimation problem sug-
gests the following heuristic approach. First, we compute the maximum like-
lihood function L?

n(d) for every model order d = 1, . . . , D as described above.
When plotted as a function of d, the likelihood should steadily increase for
orders below the true model order d < d?, while the likelihood should be
roughly constant for orders greater than the true model order d ≥ d?. The
model order estimate is therefore found by looking for the ‘corner’ in the plot
of the likelihood function L?

n(d). This is indeed the essence of a successful
model order estimation technique, but this formulation is not very precise
mathematically (how is the ‘corner’ defined?) In particular, we need to be
more precise if we wish to prove, e.g., consistency of the estimator.

A way to make this idea precise is to define the model order estimate
d̂n(y0, . . . , yn) as a penalized maximum likelihood estimator: we set

d̂n = argmax
d≥0

{L?
n(d)− κ(n, d)},

where κ(n, d) is a given penalty function which is strictly increasing in d for
every n. The idea is to try to choose κ(n, d) so that it grows less fast with
increasing d than does the likelihood L?

n(d) below the true model order d < d?.
As the likelihood levels off after d > d?, but the penalty κ(n, d) keeps growing,
the penalized likelihood L?

n(d)−κ(n, d) will then have a maximum around the
true model order d ≈ d?. In essence, the choice of penalty function formalizes
how we determine the location of the corner of the likelihood function. The
theoretical question is now, of course, how we must choose the penalty function
κ(n, d) in order to ensure that the model order estimate is consistent d̂n → d?

as n →∞. A full development of this idea is quite beyond our scope, but we
will sketch some of the necessary ingredients in the next chapter.

Numerical example: General Electric stock prices

We finish this chapter with a brief illustration of the various estimation tech-
niques on real-world data. What we will attempt to do is to fit a regime
switching model to historical prices for General Electric Company (NYSE:GE)
stock. For our example, we have used the daily closing prices of GE stock in
the period of January 1978–December 2007 as a training series. The price data
can be obtained free of charge from Google Finance (finance.google.com).

Denote by Sk the closing price of GE stock on the kth consecutive trading
day since January 3rd, 1978. For the observations of our regime switching
model, we choose the sequence of log returns:
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Fig. 6.2. Estimation of regime switching for the daily closing prices of General Elec-
tric Company (NYSE:GE) stock in the period January 1978–December 2007. The
top plot shows the scaled log-likelihood as a function of model order. The ‘corner’
of the plot is about d ≈ 3. The bottom plots show the observation sequence Yk (i.e.,
the log returns) and the stock price Sk, respectively. The shading corresponds to the
MAP smoothing estimate of the regime for the d = 3 model: dark shading is regime
3 (high volatility, negative returns), light shading is regime 2 (medium volatility,
high returns), and no shading is regime 1 (low volatility, low returns).

Yk = log
[
Sk+1

Sk

]
, k ≥ 0.

We model the observation sequence as a regime switching model

Yk = m(Xk) +
√

v(Xk) ηk, k ≥ 0,

where ηk is an i.i.d. sequence of N(0, 1) random variables and Xk is a finite
state signal process which represents the regime. Note that in the notation
of example 1.12, The volatility is given by σ(Xk) =

√
v(Xk) and the returns

are given by µ(Xk) = m(Xk) + v(Xk)/2. To be estimated are the number of
regimes, the transition probabilities and the functions m and v.

It is of course not clear, a priori, whether real world stock prices are indeed
well represented as a regime switching model. We nonetheless try to estimate
the model order as described in this section by computing the likelihood func-
tion L?

n(d), and look for the signature of a finite model order: the leveling
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off of the likelihood function. To this end, we run the EM algorithm for each
model order; as we do not expect the regimes to switch on a daily basis, we
choose for every model order an initial guess of P which is close to the identity
matrix, and run the EM algorithm for 50 iterations. The likelihood function
obtained in this manner is shown as the top plot in figure 6.2. Lo and behold,
the plot does indeed level off—it looks like d ≈ 3 is the corner of the plot.
This suggests that a regime switching model of order 3 should form a good
description of the statistics of GE prices.

As a by-product of order estimation, we already have an estimate for the
order 3 regime switching model. We find the following model parameters:

P =

 .9901 .0099 .0000
.0097 .9838 .0065
.0000 .0368 .9632

 , µ =

 .9990
.0010
.0000

 ,

m =

 .3833
.8961
−1.392

 10−3, v =

 .0984
.2518
1.028

 10−3.

Note that the three regimes have interesting interpretations. The first is a
low return, low volatility regime: a low risk investment. The second is a high
return, high volatility regime: a riskier but potentially more rewarding in-
vestment. The third regime is one of even higher volatility but negative (!)
returns: the signature of a market crash? The bottom plots of figure 6.2 show
the smoothed MAP estimates of the regime as a function of time. It is inter-
esting to note that the stock market crash of 1987, as well as two periods of
sharp decline after 2001, are estimated as being in the third regime.

Problems

6.1. Bayesian State Augmentation
What are the transition and observation kernels and the initial measure of the
augmented hidden Markov model (X̃k, Yk)k≥0 under the Bayesian measure
Pλ? (See section 6.1 for the relevant definitions).

6.2. Let P,Q be probability measures on (Ω,G) such that P is absolutely
continuous with respect to Q, and let G′ ⊂ G be a sub-σ-field. Show that

dP|G′
dQ|G′

= EQ

[
dP
dQ

∣∣∣∣G′ ] .

In particular, P|G′ is also absolutely continuous with respect to Q|G′ .

6.3. Prove proposition 6.5.

6.4. Complete the proof of proposition 6.11.
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6.5. Multiple Training Sequences
In our discussion of maximum likelihood estimation, we have presumed that
statistical inference is to be performed on the basis of a single observation
sequence. However, in many applications one might have multiple indepen-
dent observation sequences available from the same hidden Markov model.
For example, in speech recognition, the training set consists of multiple inde-
pendent speech samples of the same word or phrase. The training sequences
are independent but may have different lengths.
(a) Explain how maximum likelihood estimation works in this setting.
(b) Adapt the EM algorithm to cover this setting.

6.6. The EM Algorithm: Finite Signal and Observation State Spaces
Suppose that E = {1, . . . , d} and F = {1, . . . , d′} are both finite sets.
(a) Work out the details of the EM algorithm for estimating all the transition,
observation and initial probabilities P (i, {j}), Φ(i, {j}), µ({i}).
(b) Give a probabilistic interpretation of the EM estimates in terms of the
quantities discussed in chapter 3 (recall in particular problem 3.2).

6.7. The EM Algorithm: Linear-Gaussian Models
Develop the EM algorithm in the linear-Gaussian setting of problem 2.5. To
be estimated are the matrices A,B,C, D, P0 and the vectors a, c, µ0,

6.8. Gradient Based Optimization
We have discussed how to find a (local) maximum of the likelihood ln(θ) =
log Lθ

n using the EM algorithm. However, one can in principle apply any nu-
merical algorithm for finding the maximum of a function. Typically such al-
gorithms require one to evaluate the derivatives of the objective function. For
example, the method of steepest descent has us compute iteratively

θ̂(j+1)
n = θ̂(j)

n + γj ∇ln(θ̂(j)
n ),

where γi are nonnegative constants. For a suitable choice of γi, the estimates
θ̂
(j)
n are known to converge to a stationary point of ln(θ). An alternative that

does not require us to find suitable constants γi (a nontrivial task) is to apply
the Newton-Raphson root finding algorithm to ∇ln:

θ̂(j+1)
n = θ̂(j)

n −∇2ln(θ̂(j)
n )−1∇ln(θ̂(j)

n ).

Here θ̂
(j)
n will converge to a zero of ∇ln, i.e., to a stationary point of the like-

lihood (typically a local maximum, hopefully the global maximum).
(a) For the model of proposition 6.11, compute the first derivatives of ln(θ)
with respect to the model parameters θ. Do the expressions look familiar?
(b) Choose a simple example of a hidden Markov model. Simulate an observa-
tion sequence and implement the EM and the Newton-Raphson algorithms to
re-estimate the parameters. Compare the performance of the two algorithms.
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Remark 6.13. Gradient-based algorithms often converge much faster than the
EM algorithm. However, they are more complicated to implement than the
EM algorithm and may also be less stable numerically. Moreover, unlike in
the EM algorithm, the likelihood is not guaranteed to be nondecreasing with
successive iterations of a gradient-based algorithm. Both algorithms are of
interest and there is no universal answer to which one is better: this depends
on the setting and on the available computational resources.

6.9. Model Order Estimation
(a) Choose a one-state, two-state and three-state hidden Markov model and
simulate an observation time series from each. Now run the model order esti-
mation procedure on each of these time series, and show that you are led to
select the correct model order in every case.
(b) Estimate the number of regimes in the stock prices of your favorite com-
pany. Financial time series can be obtained, e.g., from Google Finance.

Notes

The method of maximum likelihood estimation was pioneered by Fisher in
the early 20th century. A modern introduction, chiefly in the most common
setting with i.i.d. observations, can be found in [van98, van00, IH81]. The case
where the observations are generated by a hidden Markov model is made much
more difficult by the fact that the observations are not independent. Maximum
likelihood estimation in hidden Markov models was first investigated by Baum
and Petrie [BP66] for finite signal and observation states spaces.

The EM algorithm for hidden Markov models dates back to Baum, Petrie,
Soules and Weiss [BPSW70]. The method uses no special features of hidden
Markov models; indeed, it turns out to be a special instance of the general
algorithm for maximum likelihood estimation introduced independently by
Dempster, Laird and Rubin [DLR77], who coined the term EM algorithm.
Other approaches for computing maximum likelihood estimates in hidden
Markov models, including the use of Monte Carlo filters when the signal state
space is not finite, are reviewed in [CMR05].

Model order estimation in hidden Markov models dates back to Finesso
[Fin90]. It is related to the model selection problem in statistics, see [CH08] for
an introduction. In practice it is often both mathematically and computation-
ally easier to estimate the model order through a ‘quasi-likelihood’ approach,
as initially suggested by Rydén [Ryd95], rather than computing the full max-
imum likelihood estimate for every model order. See the notes at the end of
the next chapter for further references on this topic. Other methods beside
penalized (quasi-)likelihood methods have also been suggested for estimating
the model order. For example, Celeux and Durand [CD08] utilize a cross-
validation technique, while Cvitanić, Rozovskii and Zaliapin [CRZ06] employ
a method that is specifically designed for continuous time observations.
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Statistical Inference: Consistency

In the previous chapter, we introduced various maximum likelihood based
methods for statistical inference. The purpose of this chapter is to give a flavor
of the theoretical underpinnings of these methods. This is a challenging topic
and, as in our discussion of filter stability in chapter 5, an extensive treatment
is beyond our scope. We therefore mainly focus on proving consistency of the
maximum likelihood estimator, and we will not hesitate to impose very strong
conditions in order to reduce the proofs to the simplest possible setting. Many
of our assumptions can be weakened, for which we refer to the references given
in the notes at the end of the chapter. In addition, some more advanced topics
beyond consistency are briefly sketched (without proofs) in section 7.3.

7.1 Consistency of the Maximum Likelihood Estimate

Recall that the maximum likelihood estimate is defined as θ̂n = argmaxθ Lθ
n,

and our goal is to prove consistency: θ̂n → θ? as n →∞ Pθ?

-a.s.
We have already completed a successful trial run in the hypothesis testing

setting (theorem 6.6). Though the proof of this theorem can not be adapted to
more general models, the basic approach will provide the necessary inspiration.
The main idea of the proof of theorem 6.6 can be abstracted as follows:

1. Show that Ln(θ) := Lθ
n/Cn converges Pθ?

-a.s. as n →∞ to some limiting
random variable L(θ) for every θ ∈ Θ, where Cn is a suitable normalizing
process which does not depend on θ.

2. Show that L(θ) Pθ?

-a.s. has a unique maximum at θ = θ?.
3. Conclude that θ̂n = argmaxθ∈Θ Ln(θ) → argmaxθ∈Θ L(θ) = θ? Pθ?

-a.s.

In theorem 6.6 the process Cn was chosen such that Ln(θ) is the Bayesian
conditional probability of the parameter θ at time n for a suitable prior, and
the identifiability requirement established that L(θ) has a unique maximum
at θ = θ?. The third step is trivial in the hypothesis testing problem, as in
this setting the parameter space Θ is a finite set.
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When Θ is not finite, however, the third step is far from obvious: the fact
that Ln(θ) → L(θ) for every θ ∈ Θ does not in general guarantee that the
maximum of Ln (the maximum likelihood estimate) converges to the maxi-
mum of L (the true parameter), which defeats the purpose of proving that
Ln → L in the first place. This is illustrated in the following example.

Example 7.1. Consider the functions

f(x) = e−x2
, fn(x) = e−x2

+ 2 e−(nx−n+
√

n)2 , x ∈ [−1, 1].

Then fn(x) → f(x) as n →∞ for all x ∈ [−1, 1]. However, argmaxx fn(x) → 1
as n →∞, while argmaxx f(x) = 0. Thus fn → f pointwise, but the maximum
of fn does not converge to the maximum of f .

Evidently, Ln(θ) → L(θ) for every θ is not enough. However, as the follow-
ing elementary calculus lemma shows, our problems are resolved if we replace
pointwise convergence by uniform convergence supθ |Ln(θ)− L(θ)| → 0.

Lemma 7.2. Suppose Θ is compact. Let Ln : Θ → R be a sequence of con-
tinuous functions that converges uniformly to a function L : Θ → R. Then

argmax
θ∈Θ

Ln(θ) → argmax
θ∈Θ

L(θ) as n →∞.

Proof. As a continuous function on a compact space attains its maximum, we
can find a (not necessarily unique) θn ∈ argmaxθ∈Θ Ln(θ) for all n. Then

0 ≤ sup
θ∈Θ

L(θ)− L(θn) = sup
θ∈Θ

{L(θ)− Ln(θ) + Ln(θ)} − L(θn)

≤ sup
θ∈Θ

{L(θ)− Ln(θ)}+ sup
θ∈Θ

Ln(θ)− L(θn)

= sup
θ∈Θ

{L(θ)− Ln(θ)}+ Ln(θn)− L(θn) ≤ 2 sup
θ∈Θ

|L(θ)− Ln(θ)| n→∞−−−−→ 0.

Suppose that θn does not converge to the set of maxima of L(θ). Then there
exists by compactness a subsequence {θ′m} ⊂ {θn} which converges to θ′ 6∈
argmaxθ∈Θ L(θ). But L(θ) is continuous (as Ln → L uniformly and each Ln

is continuous), so L(θ′m) → L(θ′) < supθ∈Θ L(θ). This is a contradiction. ut

With our new insight, the outline of a consistency proof now looks as
follows: (i) define Ln(θ) so that it converges uniformly to a limit L(θ); and
(ii) prove that L(θ) Pθ?

-a.s. has a unique maximum at θ = θ?. It is here,
however, that the real difficulties of the general setting enter the picture:
uniform convergence is not so easy to achieve. For example, when Θ is a
continuous space, the Bayesian normalization used in the hypothesis testing
problem can not lead to uniform convergence. Indeed, in this case Ln(θ) is the
Bayesian density of the parameter θ with respect to the prior distribution λ
(proposition 6.5). If the estimator is consistent, then the Bayesian conditional
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distribution of the parameter should converge to a point mass at θ?; therefore
the density Ln(θ) should converge to a nonzero value only if θ = θ?, so that
the convergence Ln(θ) → L(θ) can certainly not be uniform in θ.

We have thus arrived at the key difficulty of proving consistency in the
general setting: we must find a replacement for the quantity Ln(θ) which
converges uniformly to a limit. Remarkably, the appropriate notion comes
from an unexpected source: the classical Shannon-McMillan-Breiman (SMB)
theorem in information theory. For the version of this theorem that is suitable
for our purposes, we require the following (see definition 6.3 for notation).

Assumption 7.3 The following hold.

1. Θ is a compact subset of Rp.
2. There is a 0 < ε < 1 and a family of probability measures ρθ such that

ε ρθ(A) ≤ P θ(x, A) ≤ ε−1 ρθ(A) for all x ∈ E, A ∈ E, θ ∈ Θ.

3. There is a constant 0 < κ < 1 such that

κ ≤ Υ θ(x, y) ≤ κ−1 for all x ∈ E, y ∈ F, θ ∈ Θ.

4. P θ and Υ θ are Lipschitz: for some c1, c2 > 0

sup
x∈E

sup
A∈E

|P θ(x,A)− P θ′(x, A)| ≤ c1 ‖θ − θ′‖,

sup
x∈E

sup
y∈F

|Υ θ(x, y)− Υ θ′(x, y)| ≤ c2 ‖θ − θ′‖.

5. The initial measures µθ are stationary:

µθ(A) =
∫

µθ(dx) P θ(x,A) for all A ∈ E, θ ∈ Θ.

Remark 7.4. The stationarity assumption on µθ is natural, but all our results
hold also without this assumption. See problem 7.2.

Proposition 7.5 (Uniform SMB). Define `n(θ) = n−1 log Lθ
n, and suppose

assumption 7.3 holds. Then `n(θ) is continuous and `(θ) = limn→∞ `n(θ)
exists Pθ?

-a.s. for every θ ∈ Θ. Moreover, `n → ` uniformly Pθ?

-a.s.

Before we prove this result, let us complete the proof of consistency.

Theorem 7.6 (Consistency). Suppose that assumption 7.3 holds and that
the following identifiability condition holds true:

`(θ) has a unique maximum at θ = θ? Pθ?

-a.s.

Then the maximum likelihood estimate is consistent.

Proof. Note that the maximum likelihood estimate can be written as θ̂n =
argmaxθ∈Θ `n(θ). The result follows from proposition 7.5 and lemma 7.2. ut

In the next section we will investigate further the identifiability condition
in theorem 7.6 and discuss how one might go about verifying it. The remainder
of this section is devoted to the proof of proposition 7.5.
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A law of large numbers

The basis for our proof is the following representation:

`n(θ) =
1
n

n∑
k=0

log
[∫

Υ θ(x, Yk) πθ
k|k−1(Y0, . . . , Yk−1, dx)

]
:=

1
n

n∑
k=0

Dθ
k,

where we have used the convention πθ
0|−1(dx) = µθ(dx). This expression can

be read off directly from proposition 6.4.
Apparently the quantity `n(θ) can be written as a time average of the

random variables Dθ
k. Limit theorems for time averages of random variables

are called laws of large numbers (LLN). For independent random variables, for
example, we encountered a type of LLN as lemma 4.7. The random variables
Dθ

k are not independent, so we will use the following LLN instead.

Lemma 7.7 (LLN). Let (Zk)k≥0 be a sequence of random variables such that
|E(Zk|Z0, . . . , Z`)| ≤ C ρk−` a.s. for all 0 ≤ ` ≤ k and some constants C > 0,
0 < ρ < 1. Then Sn := n−1

∑n
k=0 Zk → 0 a.s. as n →∞.

Proof. We first prove mean square convergence. To this end, note that

E(S2
n) =

1
n2

n∑
k=0

E(Z2
k) +

2
n2

n∑
k=0

k−1∑
`=0

E(ZkZ`).

But E(Z2
k) ≤ C2 and |E(ZkZ`)| = |E(E(Zk|Z0, . . . , Z`)Z`)| ≤ C2 ρk−`, so

it is easily established that E(S2
n) ≤ K/n for some K < ∞. In particular,

E(S2
n) → 0. We now strengthen to a.s. convergence. For any α > 1 and ε > 0,

∞∑
k=1

P(|Sαk | > ε) ≤
∞∑

k=1

E(S2
αk)

ε2
≤ K

ε2

∞∑
k=1

α−k < ∞.

By the Borel-Cantelli lemma, we find that Sαk → 0 a.s. as k → ∞ for any
α > 1. For any integer n, denote by kα

+(n) the smallest integer such that
n ≤ αkα

+(n) and by kα
−(n) the largest integer such that αkα

−(n) < n. Then

αkα
−(n)

αkα
+(n)

1
αkα

−(n)

α
kα
−(n)∑

`=0

(Z`+C) ≤ 1
n

n∑
`=0

(Z`+C) ≤ αkα
+(n)

αkα
−(n)

1
αkα

+(n)

α
kα
+(n)∑

`=0

(Z`+C),

where we have used that Z` + C ≥ 0 a.s. But for n large enough we must
evidently have kα

+(n) = kα
−(n) + 1, so that we obtain

Cα−1 ≤ lim inf
n→∞

1
n

n∑
`=0

(Z` + C) ≤ lim sup
n→∞

1
n

n∑
`=0

(Z` + C) ≤ Cα a.s.

As α > 1 was arbitrary, we find that Sn → 0 a.s. ut
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The proof of proposition 7.5 proceeds in three steps. First, we show that

`(θ) := lim
k→∞

Eθ∗(Dθ
k) exists for every θ ∈ Θ.

Second, we will show that there exist C > 0 and 0 < ρ < 1 such that

|Eθ?

(Dθ
k −Eθ?

(Dθ
k) |X0, . . . , X`, Y0, . . . , Y`)| ≤ C ρk−`

for all 0 ≤ ` ≤ k. The law of large numbers then guarantees that

`n(θ) =
1
n

n∑
k=0

{Dθ
k −Eθ?

(Dθ
k)}+

1
n

n∑
k=0

Eθ?

(Dθ
k) n→∞−−−−→ `(θ) Pθ?

-a.s.

for every θ ∈ Θ. Finally, in the third step we will show that this convergence
is in fact uniform in θ, thus completing the proof.

Two key consequences of filter stability

From the definition of Dθ
k, it is evident that the long time properties of `n(θ)

are intimately related with the long time properties of the prediction filter
πθ

k|k−1. It should therefore come as no surprise that the filter stability the-
ory from chapter 5 makes an appearance; indeed, assumption 7.3 was chiefly
designed to make this possible (compare with assumption 5.5).

The techniques from chapter 5 will be used in the form of two key lemmas,
which we will prove first. The first lemma shows that the quantity Dθ

k, which
depends on the observations Y0, . . . , Yk, can be approximated uniformly by a
function of a fixed number of observations Yk−`, . . . , Yk only.

Lemma 7.8 (Finite memory approximation). Define for 0 < ` < k

Dθ
k,` := log

[∫
Υ θ(x, Yk) πθ

`|`−1(Yk−`, . . . , Yk−1, dx)
]

.

If assumption 7.3 holds, then |Dθ
k,` −Dθ

k| ≤ 2 κ−2 ε−2(1− ε2)`.

Proof. By assumption Υ θ(x, y) ∈ [κ, κ−1] for some 0 < κ < 1. Using the
inequality | log(x)− log(x′)| ≤ κ−1|x− x′| for all x, x′ ∈ [κ, κ−1], we estimate

|Dθ
k,` −Dθ

k| ≤ κ−1

∣∣∣∣∫ Υ̃ θ(x, Yk)πθ
`−1(Yk−`, . . . , Yk−1, dx)

−
∫

Υ̃ θ(x, Yk) πθ
k−1(Y0, . . . , Yk−1, dx)

∣∣∣∣ ,
where we have defined Υ̃ θ(x, y) =

∫
Υ θ(x′, y) P θ(x, dx′). But note that

πθ
k−1(Y0, . . . , Yk−1, dx) = Fθ

k−1 · · ·Fθ
k−`π

θ
k−`−1(dx),

πθ
`−1(Yk−`, . . . , Yk−1, dx) = Fθ

k−1 · · ·Fθ
k−`µ

θ(dx),

where Fθ
n are the filter recursion map as defined in chapter 5. Taking into

account |Υ̃ (x, y)| ≤ κ−1, the proof is completed by invoking theorem 5.4. ut
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The second lemma shows that θ 7→ Dθ
k is Lipschitz continuous uniformly

in k. This is, of course, similar to the uniform approximation theorem 5.6.

Lemma 7.9 (Equicontinuity). Suppose that assumption 7.3 holds. Then
there is a K < ∞ such that |Dθ

k −Dθ′

k | ≤ K‖θ − θ′‖ for all k ≥ 1.

Proof. It is easily established as in the proof of lemma 7.8 that

|Dθ
k −Dθ′

k | ≤ κ−2 sup
‖f‖∞≤1

∣∣∣∣∫ f(x) πθ
k−1(dx)−

∫
f(x) πθ′

k−1(dx)
∣∣∣∣ .

But note that for every ` ≥ 0, probabilty measure µ and θ, θ′ ∈ Θ

sup
‖f‖∞≤1

∣∣∣∣∫ f(x)Fθ
`µ(dx)−

∫
f(x) Fθ′

` µ(dx)
∣∣∣∣

≤

∣∣∣∣∣ Υ̃ θ(x, y)∫
Υ̃ θ(x, y) µ(dx)

− Υ̃ θ′(x, y)∫
Υ̃ θ′(x, y) µ(dx)

∣∣∣∣∣
≤ |Υ̃ θ(x, y)− Υ̃ θ′(x, y)|∫

Υ̃ θ(x, y) µ(dx)
+

Υ̃ θ′(x, y)
∫
|Υ̃ θ′(x, y)−

∫
Υ̃ θ(x, y)|µ(dx)∫

Υ̃ θ(x, y) µ(dx)
∫

Υ̃ θ′(x, y) µ(dx)

≤ (κ−1 + κ−3) sup
x,y

|Υ̃ θ′(x, y)− Υ̃ θ(x, y)|

≤ (κ−1 + κ−3){c2 + κ−1c1}‖θ − θ′‖,

where c1 and c2 are defined in assumption 7.3. Moreover, using lemma 5.2

sup
‖f‖∞≤1

∣∣∣∣∫ f(x)µθ(dx)−
∫

f(x) µθ′(dx)
∣∣∣∣

= sup
‖f‖∞≤1

∣∣∣∣∫ f(x) P θ(x′, dx)µθ(dx′)−
∫

f(x) P θ′(x′, dx) µθ′(dx′)
∣∣∣∣

≤ c1‖θ − θ′‖+ (1− ε) sup
‖f‖∞≤1

∣∣∣∣∫ f(x) µθ(dx)−
∫

f(x) µθ′(dx)
∣∣∣∣ ,

so sup‖f‖∞≤1 |
∫

fdµθ−
∫

fdµθ′ | ≤ ε−1c1‖θ−θ′‖. The proof is now completed
by following the same argument as in the proof of theorem 5.6. ut

Proof of proposition 7.5

Step 1 (convergence of Eθ?

(`n(θ))). Define ∆` := Eθ?

(Dθ
` ). As we assume

that µθ?

is stationary, (Yk)k≥0 is a stationary stochastic process under Pθ?

.
Therefore ∆` = Eθ?

(Dθ
k,`) for any 0 < ` < k, and we can estimate

|∆m+n −∆m| = |Eθ?

(Dθ
m+n)−Eθ?

(Dθ
m+n,m)| ≤ 2 κ−2 ε−2(1− ε2)m

by lemma 7.8. Thus evidently supn≥0 |∆m+n − ∆m| → 0 as m → ∞, i.e.,
∆k is a Cauchy sequence and is therefore convergent. By Cesàro’s theorem
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(problem 7.1), Eθ?

(`n(θ)) = n−1(∆0 + · · ·+ ∆n) converges also.

Step 2 (convergence of `n(θ)). We have shown that `(θ) := limn→∞Eθ?

(`n(θ))
exists for every θ ∈ Θ. We aim to show that in fact `n(θ) → `(θ) Pθ?

-a.s. for
every θ ∈ Θ. By the LLN, this follows if we can show that

|Eθ?

(Dθ
k|X0, . . . , X`, Y0, . . . , Y`)−Eθ?

(Dθ
k)| ≤ C ρk−`

for all 0 ≤ ` ≤ k and some constants C > 0, 0 < ρ < 1.
To this end, note that Dθ

k+n,n−1 = fn(Yk+1, · · · , Yk+n) for fixed n > 1 and
all k ≥ 0. By the hidden Markov property (definition 1.6), there is a function
gn such that Eθ?

(Dθ
`+n,n−1|X0, . . . , X`, Y0, . . . , Y`) = gn(X`) for all ` ≥ 0. We

claim that for any n > 1 and `,m ≥ 0 the following estimate holds:

|Eθ?

(Dθ
`+m+n,n−1|X0, . . . , X`, Y0, . . . , Y`)−Eθ?

(Dθ
`+m+n,n−1)| ≤ 2κ−1(1−ε)m.

Indeed, this follows from lemma 5.2, the Markov property of Xk, and the
tower property of the conditional expectation. Therefore by lemma 7.8

|Eθ?

(Dθ
`+m+n|X0, . . . , X`, Y0, . . . , Y`)−Eθ?

(Dθ
`+m+n)|

≤ 2 κ−1 (1− ε)m + 4 κ−2 ε−2(1− ε2)n−1.

Substituting m = n− 2 and m = n− 1, respectively, we can estimate

|Eθ?

(Dθ
`+k|X0, . . . , X`, Y0, . . . , Y`)−Eθ?

(Dθ
`+k)| ≤ C0 (1− ε2)k/2−1

for all k ≥ 2, where C0 = 2 κ−1 + 4κ−2 ε−2. The condition of the LLN is now
easily verified by setting ρ =

√
1− ε2 and choosing C sufficiently large.

Step 3 (uniform convergence of `n(θ)). By lemma 7.9, `n(θ) is Lipschitz
continuous for every n. As `n(θ) → `(θ) Pθ?

-a.s. for every θ ∈ Θ, evidently
`(θ) is Lipschitz continuous also with the same Lipschitz constant.

As Θ is compact, it can be covered by a finite number of balls of radius
δ for any given δ > 0. Thus there exists for every δ > 0 a finite collection of
points Θδ ⊂ Θ, #Θδ < ∞ such that every θ ∈ Θ is within distance δ from
one of the points in Θδ. By lemma 7.9 we can estimate

sup
θ∈Θ

|`n(θ)− `(θ)| ≤ 2δ + max
θ∈Θδ

|`n(θ)− `(θ)|.

As `n → ` pointwise and Θδ is a finite set,

lim sup
n→∞

sup
θ∈Θ

|`n(θ)− `(θ)| ≤ 2δ Pθ?

-a.s.

But δ > 0 was arbitrary, so `n → ` uniformly. ut
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7.2 Identifiability

Our main consistency theorem 7.6 states that the maximum likelihood esti-
mate is consistent provided that the the model is identifiable in the sense that
`(θ) has a unique maximum at θ = θ? Pθ?

-a.s. This requirement should seem
rather mysterious: why would one expect this to be the case? And even so,
how does one verify this in practice? The purpose of this section is to reduce
the abstract identifiability condition to a much more intuitive statement, and
to show how the condition might be verified.

Our treatment of identifiability is based on the following observation. Note
that `(θ) = limn→∞Eθ?

(`n(θ)) Pθ?

-a.s., as was established in the proof of
proposition 7.5. We therefore have Pθ?

-a.s.

`(θ?)−`(θ) = lim
n→∞

1
n

Eθ?

(
log
[
Lθ?

n

Lθ
n

])
= lim

n→∞

1
n

Eθ?

(
log
[
dPθ? |Y0,...,Yn

dPθ|Y0,...,Yn

])
.

The quantity on the right is a familiar quantity in information theory.

Definition 7.10. For any two probability measures P and Q, the quantity

D(P||Q) =

{
EP

(
log
[

dP
dQ

])
if P � Q,

∞ otherwise,

is called the relative entropy (or Kullback-Leibler divergence) between P,Q.

As we will shortly see, the relative entropy can be seen as a measure of
distance between probability measures. Evidently the quantity

`(θ?)− `(θ) = lim
n→∞

1
n

D(Pθ?

|Y0,...,Yn
||Pθ|Y0,...,Yn

) Pθ?

-a.s.

represents the rate of growth of the relative entropy distance between the laws
of the observation process over an increasing time horizon. This quantity is
therefore known as the relative entropy rate between the laws of the obser-
vations (Yk)k≥0 under Pθ?

and Pθ. To establish identifiability, our aim is to
show that `(θ?) − `(θ) > 0 for θ 6= θ?: this is equivalent to the statement
that `(θ) has a unique maximum at θ = θ?. To this end, we will need some
elementary properties of the relative entropy.

Lemma 7.11. For any probability measures P and Q, the following hold.

1. D(P||Q) ≥ 0 and D(P||P) = 0.
2. If supn≥0 D(P|Y0,...,Yn

||Q|Y0,...,Yn
) < ∞, then P|(Yk)k≥0 � Q|(Yk)k≥0 .

Remark 7.12. D(P||Q) can be seen as a measure of distance between proba-
bility measures in the sense that it is nonnegative and vanishes only if P = Q.
Note, however, that it is not a true distance in the mathematical sense, as it
is not symmetric in P and Q and does not satisfy the triangle inequality.
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Proof. That D(P||P) = 0 is trivial. To prove that D(P||Q) ≥ 0, it suffices to
assume P � Q. As f(x) = x log x is convex, Jensen’s inequality gives

D(P||Q) = EQ

(
f

(
dP
dQ

))
≥ f

(
EQ

(
dP
dQ

))
= f(1) = 0.

Now define the function f+(x) = x log+ x (log+ x = max(log x, 0)), and note
that |f+(x)− f(x)| ≤ exp(−1) for all x. Therefore

sup
n≥0

EQ

(
f+

(
dP|Y0,...,Yn

dQ|Y0,...,Yn

))
≤ exp(−1)+sup

n≥0
D(P|Y0,...,Yn ||Q|Y0,...,Yn).

It is a well known fact in measure-theoretic probability that the finiteness of
the left hand side implies P|(Yk)k≥0 � Q|(Yk)k≥0 ; e.g., [Shi96, page 527]. ut

We are now armed to prove our key identifiability theorem.

Theorem 7.13 (Identifiability). If assumption 7.3 holds, then Pθ?

-a.s.

1. `(θ) ≤ `(θ?) for all θ ∈ Θ; and
2. `(θ) = `(θ?) if and only if Pθ|(Yk)k≥0 = Pθ? |(Yk)k≥0 .

In particular, if every θ ∈ Θ gives rise to a distinct law of the observations
Pθ|(Yk)k≥0 , then θ? is the unique maximum of `(θ) Pθ?

-a.s.

Proof. As relative entropy is nonnegative, it is immediate that the relative
entropy rate `(θ?)− `(θ) is nonnegative. This establishes the first claim.

We now turn to the second claim. Note that by the definition of the rel-
ative entropy rate and the property D(P||P) = 0 of the relative entropy,
Pθ? |(Yk)k≥0 = Pθ|(Yk)k≥0 clearly implies that `(θ?) = `(θ). The converse state-
ment is much less trivial, and we will prove it in two steps. In the first step,
we will show that `(θ?) = `(θ) implies that Pθ? |(Yk)k≥0 � Pθ|(Yk)k≥0 . In the
second step, we will prove that the latter implies Pθ? |(Yk)k≥0 = Pθ|(Yk)k≥0 .

Step 1. Suppose that `(θ?) = `(θ). Then

|Eθ?

(Dθ?

n −Dθ
n)| = |Eθ?

(Dθ?

n −Dθ
n)− `(θ?) + `(θ)|

≤ |Eθ?

(Dθ?

n )− `(θ?)|+ |Eθ?

(Dθ
n)− `(θ)| ≤ 4κ−2ε−2(1− ε2)n,

where the latter estimate was established in the first step of the proof of
proposition 7.5. Defining K = 4κ−2ε−2

∑∞
k=0(1− ε2)k < ∞, we can write

D(Pθ?

|Y0,...,Yn
||Pθ|Y0,...,Yn

) =
n∑

k=0

Eθ?

(Dθ?

k −Dθ
k) ≤ 4κ−2ε−2

n∑
k=0

(1−ε2)k < K

for all n ≥ 0. That Pθ? |(Yk)k≥0 � Pθ|(Yk)k≥0 follows from lemma 7.11.
Step 2. We now suppose that Pθ? |(Yk)k≥0 6= Pθ|(Yk)k≥0 . We will show that

under this assumption the laws of (Yk)k≥0 under Pθ?

and Pθ are mutually
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singular. This implies, conversely, that if the laws of the observations are
absolutely continuous, then they must in fact be equal.

When the laws of the observations under Pθ?

and Pθ are not equal, there
exists an n < ∞ and a bounded function f such that Eθ?

(f(Y1, . . . , Yn)) 6=
Eθ(f(Y1, . . . , Yn)). Define Zk = f(Yk+1, . . . , Yk+n), and note that by station-
arity Eθ′(Zk) = Eθ′(f(Y1, . . . , Yn)) for all k and θ′. Moreover, we can establish
as in the second step of the proof of proposition 7.5 that for every θ′ ∈ Θ

|Eθ′(Zk|Z0, . . . , Z`)−Eθ′(Zk)| ≤ C ρk−`

for some C > 0, 0 < ρ < 1. Therefore, by the LLN,

1
r

r∑
k=0

Zk
n→∞−−−−→ Eθ′(f(Y1, . . . , Yn)) Pθ′ -a.s.

for every θ′ ∈ Θ. In particular, the event { 1
r

∑r
k=0 Zk → Eθ?

(f(Y1, . . . , Yn))}
has unit probability under Pθ?

and zero probability under Pθ. Thus evidently
the laws of (Yk)k≥0 under Pθ?

and Pθ are mutually singular. ut

Evidently the identifiability condition of theorem 7.6 is much more natural
than would initially seem: indeed, it is the weakest possible type of assump-
tion, as obviously no inference procedure can distinguish between two models
which give rise to the same observations (of course, assumption 7.3 can be
weakened significantly). Note that identifiability in our setting is in fact the
same condition as in the hypothesis testing problem of theorem 6.6, once we
note that under assumption 7.3 two distinct observation laws are automati-
cally mutually singular—this is precisely the second step in the above proof.

In fact, the above theorem allows us to stengthen theorem 7.6 somewhat.
The proof of the following is an immediate extension of theorem 7.6.

Corollary 7.14 (Consistency). Suppose that assumption 7.3 holds, and let
θ̂n be a sequence of maximum likelihood estimates. Then θ̂n converges Pθ?

-a.s.
to the set of parameters which give rise to the same observation law as θ?.

To wrap up our discussion, let us give an example.

Example 7.15. Let the signal state space E = {1, . . . , d} be finite, and suppose
that the observations are real-valued and take the form Yk = h(Xk) + σξk

where ξk are i.i.d. N(0, 1) and σ > 0. The parameter space Θ consists of
all transition probabilities P ij of the signal, the noise variance σ, and all
observation values hi = h(i) which we presume to be distinct hi 6= hj for
i 6= j. We have seen various examples of this type of model in chapter 6. Note,
however, that this example does not satisfy the strong assumption 7.3 that we
have made throughout this chapter. An example of a model that does satisfy
our assumptions is given as problem 7.3 below.
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We would like to investigate when two distinct parameters θ, θ′ ∈ Θ give
rise to the same observation law. First, note that under any Pθ, the charac-
teristic function of Yk can be written as

Eθ(eiλYk) = Eθ(eiλσξk)Eθ(eiλh(Xk)) = e−σ2λ2/2
d∑

i=1

Pθ(Xk = i) eiλhi ,

i.e., a Gaussian envelope times a purely oscillatory term. Note that σ can be
uniquely determined from the law of Yk—it is the unique σ > 0 such that
eσ2λ2/2 Eθ(eiλYk) neither converges to zero nor diverges as λ →∞. Therefore,
if the laws of the observations under Pθ and Pθ′ are the same, then σ = σ′.

Using the same technique, we can investigate the multivariate laws:

Eθ(ei{λ0Y0+···+λnYn}) = Eθ(ei{λ0h(X0)+···+λnh(Xn)}) e−σ2{λ2
0+···+λ2

n}/2.

As σ can be determined uniquely from the observation law, we find that if the
laws of the observations under Pθ and Pθ′ are the same, then the law of the
process h(Xk) under Pθ and of the process h′(Xk) under Pθ′ are the same.
But as we have assumed that the observation values are distinct, it must be
the case that (P ,h) and (P ′,h′) coincide up to a permutation of the points
in E. Indeed, if we exchange the transition probabilities of two points in the
signal state space, then the law of the observations does not change provided
that we also exchange the corresponding observation values.

We therefore conclude that the model in this example is identifiable up to
a permutation of the points in the signal state space. A result along the lines
of corollary 7.14 (provided that the assumption 7.3 is weakened) would then
imply that the maximum likelihood estimate converges to some permutation
of the true model. We have indeed already seen precisely this in practice—see
figure 6.1 in the previous chapter. Alternatively, one could force the model to
be completely identifiable, for example, by restricting Θ to the subset where
the observation values are ordered · · · < hi < hi+1 < · · · .

7.3 Advanced Topics

In the previous sections, we have developed consistency of the maximum likeli-
hood estimate in the simplest possible setting. Even under our strong assump-
tions, the necessary theory is quite involved. More advanced topics beyond
consistency complicate matters even further, and a full treatment is definitely
beyond our scope. Nonetheless it is useful to give a flavor of some advanced
topics—asymptotic normality, consistency of model order estimation, and lo-
cal convergence of the EM algorithm—without going into the full details. In
this section, we will briefly sketch how one could go about developing these
topics. We will mostly outline or skip the proofs, and we refer to the references
given in the notes at the end of the chapter for a full development.
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Asymptotic Normality

We have shown that, under suitable assumptions, the maximum likelihood
estimate is consistent. This means that for large times n, the parameter es-
timate θ̂n is close to the true parameter value θ?. However, consistency does
not tell us how close the estimate is to the true parameter value at a given
time n, so that in practice (where n is always finite) it is not entirely clear
how reliable the estimate actually is. In many applications it is important to
obtain not only a parameter estimate, but also a corresponding confidence
interval which gives an indication as to how well we can trust the estimate.

Let us briefly recall how confidence intervals are obtained in the simplest
statistical setting. Let µθ be a family of probability distributions on R with
finite mean mθ and variance V θ, and suppose that we observe a sequence
X1, X2, . . . of i.i.d. random variables with distribution µθ. Then

m̂n =
1
n

n∑
k=1

Xk
n→∞−−−−→ mθ Pθ-a.s.

for every θ by the law of large numbers. In particular, m̂n is a consistent
estimator of the mean mθ. We would now like to estimate how close m̂n

actually is to mθ. Note that by the central limit theorem

√
n{m̂n −mθ} =

1√
n

n∑
k=1

{Xk −mθ} n→∞−−−−−−−→
Pθ−weakly

N(0, V θ).

Therefore, for large n, the estimate m̂n is approximately distributed as a
Gaussian random variable with mean mθ and variance V θ/n. The quantiles
of this Gaussian distribution then define the corresponding asymptotic con-
fidence intervals; for example, the standard 95% confidence interval is given
by m̂n ≈ mθ ± 1.96

√
V θ/n. In practice V θ is not known (as it requires us

to know the unknown parameter θ), so that V θ is replaced by any consistent
estimator of V θ such as the empirical variance.

In order to extend this idea to maximum likelihood estimation, we would
have to prove that for some (co)variance matrix Σ (which may depend on θ?)

√
n{θ̂n − θ?} n→∞−−−−−−−−→

Pθ?−weakly
N(0, Σ).

When this is the case, the maximum likelihood estimate is said to be asymp-
totically normal, and confidence intervals can be obtained along the same lines
as in the i.i.d. case as described above.

There is a standard trick that is used to prove asymptotic normality of
maximum likelihood estimates. The idea is that the first derivatives of a
smooth function must vanish at its maximum. Let us presume that regularity
conditions have been imposed so that `n(θ) is sufficiently smooth. Then

0 = ∇`n(θ̂n) = ∇`n(θ?) +∇2`n(θ?){θ̂n − θ?}+ Rn(θ̂n, θ?),
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where we have Taylor expanded the likelihood gradient ∇`n to first order
around θ?. In particular, we find that

√
n{θ̂n − θ?} = −(∇2`n(θ?))−1{∇`n(θ?) + Rn(θ̂n, θ?)}

√
n.

To establish asymptotic normality, it then suffices to prove the following:

−∇2`n(θ?) n→∞−−−−−−→
Pθ?−a.s.

J(θ?),
√

n∇`n(θ?) n→∞−−−−−−−−→
Pθ?−weakly

N(0, J(θ?)),

and Rn(θ̂n, θ?)
√

n → 0, in order to establish asymptotic normality with covari-
ance matrix Σ = J(θ?)−1 (in order to compute confidence intervals in practice
one may now replace the unknown quantity J(θ?) by the computable quan-
tity −∇2`n(θ̂n)). This procedure is reminiscent of the proof of the Cramér-Rao
bound, and it turns out that the matrix J(θ?) can indeed be interpreted as
the Fisher information matrix in this setting.

Proving convergence of the derivatives of the likelihood has much in com-
mon with our proof of consistency. Indeed, the basic approach is mostly the
same, except that we must supplement our law of large numbers for depen-
dent random variables (lemma 7.7) with a suitable central limit theorem for
dependent random variables. As is to be expected the details of the proof are
messy, and we will not go into the matter any further here.

Remark 7.16. An alternative technique for obtaining confidence intervals,
which does not require asymptotic normality and may in fact give more precise
results, is the parametric bootstrap method (see problem 7.4). The bootstrap
can be computationally intensive to compute, however.

Model Order Estimation

We now turn to the model order estimation discussed in the previous chapter.
Recall that in this case the signal state space Ed = {1, . . . , d} is a finite set,
but the model order d is not known in advance. In this case the parameter
space is Θ =

⋃
d≥0 Θd, where Θd is the parameter set for the models with

fixed order d (i.e., a point in Θd consists of all possible transition probabilities
and observation parameters for a hidden Markov model of order d).

Recall that if θ? ∈ Θd? is the true model parameter, then there exists for
every d > d? a parameter θ ∈ Θd which gives rise to the same observation law.
The model order estimation problem is therefore inherently non-identifiable.
A consistent estimator would be guaranteed to converge to a model parameter
with the correct observation law, but this parameter might well be of a much
larger model order than is necessary to describe the observed training data.
Our goal is therefore to find an estimator θ̂n which is not only consistent, but
also gives rise (as n →∞) to a parameter estimate with the smallest possible
order. In other words, we would like to estimate the smallest integer d such
that the observation law can be described by a hidden Markov model of order
d—we will refer to this quantity as the true model order d?.



108 7 Statistical Inference: Consistency

Let us define `?
n(d) = maxθ∈Θd

`n(θ). The maximizer θ̂n(d) in this expres-
sion is the maximum likelihood estimate of order d. Because there exists for
every d′ > d a θ′ ∈ Θd′ with the same observation law as θ̂n(d), and hence
with the same likelihood, the likelihood function `?

n(d) is nondecreasing with
increasing model order d. Moreover, assuming that the maximum likelihood
estimates are consistent, it will be the case that limn→∞ `?

n(d) := `?(d) satis-
fies `?(d) = `?(d?) for all d > d?. In other words, for large n, the likelihood
function `?

n(d) is increasing for d < d? and is flat for d ≥ d?.
How to estimate d?? As discussed in the previous chapter, a promising idea

is to define the order estimate d̂n as a penalized maximum likelihood estimate

d̂n = argmax
d≥0

{`?
n(d)− ζ(n) ι(d)},

where the penalty functions ζ and ι are to be chosen such that d̂n → d? Pθ?

-
a.s. We are now going to argue how this can be done, albeit—with apologies
to the reader—with a lot of handwaving and imprecision.

The essential idea is to require the following three conditions:

1. ι(d) is a strictly increasing function.
2. ζ(n) → 0 as n →∞.
3. {`?

n(d?)− `?
n(d)}/ζ(n) → 0 as n →∞ Pθ?

-a.s. for d ≥ d?.

Let us show the relevance of these conditions. First, note that

`?
n(d)− ζ(n) ι(d) n→∞−−−−→ `?(d).

As the latter is flat for d ≥ d? but is increasing for d < d?, the order estimate
will satisfy d̂n ≥ d? for large enough n. In other words, as n →∞, the order
estimate will not underestimate the true model order. On the other hand,

{`?
n(d?)− ζ(n) ι(d?)} − {`?

n(d)− ζ(n) ι(d)}
ζ(n)

n→∞−−−−→ ι(d)− ι(d?)

for d > d?. As ι is strictly increasing, the right hand side is strictly positive,
so that evidently for large n we have d̂n ≤ d?. In other words, as n → ∞,
the order estimate will not overestimate the true model order. This can only
imply that d̂n → d? as n →∞, which is precisely what we want to show.

Remark 7.17. Note that without further assumptions these claims only work
if we impose and upper bound on d: otherwise we have to prove that the
convergence statements hold uniformly in d, as was of essence in lemma 7.2.

The main difficulty is now to choose ζ(n) such that the third condition
above holds. Note that as `?(d) = `?(d?) for d > d?, we have `?

n(d?)−`?
n(d) → 0

as n →∞ for d > d?. In essence, we would like to show that ζ(n) converges to
zero at a slower rate than `?

n(d?) − `?
n(d). We must therefore try to estimate

the latter rate. Heuristic arguments based on the law of iterated logarithm
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lead one to expect that this rate is of order O(log log n/n), in which case
one could choose something like ζ(n) = log n/n. In some particular cases
this argument can be made rigorous, though a detailed development of the
necessary technicalities is quite intricate and is most certainly beyond our
scope. It also appears that a completely satisfactory general result has yet to
be obtained. The reader is referred to the notes at the end of the chapter.

Convergence of the EM Algorithm

To compute maximum likelihood estimates in practice, we have introduced the
EM algorithm in the previous chapter. We have seen that each EM iteration
increases the likelihood, but this does not guarantee that repeated iteration
of the EM algorithm will cause the parameter estimate to converge to the
global maximum of the likelihood. Indeed, this is generally not guaranteed;
the EM algorithm may even converge to different limits depending on which
initial guess was used for the parameter value.

In this section, we will sketch a simple argument that shows that the EM
algorithm converges to a critical point of the likelihood (i.e., a point where all
the first derivatives of the likelihood vanish) under certain conditions. As the
likelihood typically has several local maxima, this implies that the algorithm
generally converges to a local maximum. There does not appear to be a simple
way to guarantee that this local maximum is actually a global maximum. In
practice, one might try to run the algorithm several times started at different
initial guesses, and choose the run which leads to the largest likelihood.

Define the map T : Θ → Θ as T (θ) = argmaxθ0∈Θ Qn(θ0, θ), where Qn is
the defining quantity of the EM algorithm. Then the EM algorithm consists
of computing iteratively θ̂j = T (θ̂j−1) from some initial guess θ̂0 ∈ Θ.

Proposition 7.18 (Local EM convergence). Assume the following:

1. Θ is an open subset of Rp.
2. Qn(θ′, θ) and Lθ′

n are continuously differentiable w.r.t. θ′ for every θ.
3. Qn(θ′, θ) is strictly concave in θ′ for every θ.
4. Qn(θ0, θ) attains its maximum at a unique point θ0 = T (θ) for every θ.
5. The map T is continuous.

Define θ̂j recursively as θ̂j = T (θ̂j−1) given an arbitrary initial guess θ̂0 ∈ Θ.
Then every convergent subsequence of {θ̂j} converges to a critical point of Lθ

n.

Proof. Let jk ↗ ∞ be a sequence such that θ̂jk → θ̂∞ as k → ∞. As T
is continuous, we find that θ̂jk+1 = T (θ̂jk) → T (θ̂∞). In particular, as the
likelihood is continuous and is nondecreasing with respect to T (lemma 6.10),

Lθ̂jk

n ≤ Lθ̂jk+1

n ≤ Lθ̂jk+1

n
j→∞−−−→ Lθ̂∞

n ≤ LT (θ̂∞)
n ≤ Lθ̂∞

n .

Therefore Lθ̂∞

n = LT (θ̂∞)
n . We claim that this implies that θ̂∞ = T (θ̂∞).



110 7 Statistical Inference: Consistency

Indeed, suppose that T (θ) 6= θ. As Qn(θ′, θ) is strictly concave, it has a
unique global maximum at θ′ = T (θ). Therefore Qn(T (θ), θ) > Qn(θ, θ) = 0,
and LT (θ)

n > Lθ
n by lemma 6.10. Conversely, LT (θ)

n = Lθ
n must imply T (θ) = θ.

It remains to show that every fixed point of the map T is a criti-
cal point of the likelihood. Note that as Qn(θ′, θ) is continuously differ-
entiable, its derivatives with respect to θ′ must vanish at the maximum
θ′ = T (θ). In particular, if T (θ) = θ, then ∇θ′Qn(θ′, θ)|θ′=θ = 0. We claim
that ∇θ′Qn(θ′, θ)|θ′=θ = ∇ log Lθ

n. Indeed, for fixed θ ∈ Θ, the function
f(θ′) := log Lθ′

n −log Lθ
n−Qn(θ′, θ) is continuously differentiable, f(θ′) ≥ 0 for

all θ′ by lemma 6.10, and f(θ) = 0. Therefore θ′ = θ is a minimum of f(θ′),
and as Θ is an open set and f is continuously differentiable this implies that
0 = ∇f(θ) = ∇ log Lθ

n −∇θ′Qn(θ′, θ)|θ′=θ. This establishes the claim. ut

The assumptions of this simple result are far from the weakest possible,
but the statement is fairly representative of the type of convergence that can
be established for the EM algorithm. The assumptions are not difficult to
verify for a slightly simplified form of the the model of proposition 6.11 where
the observation variance v is presumed to be known and fixed (problem 7.5).

Problems

7.1. Cesàro’s theorem
Prove Cesàro’s theorem: if xn is a sequence of real numbers that converges
xn → x as n →∞, then n−1

∑n
k=0 xk → x as n →∞ also.

7.2. Relaxing Stationarity
The mixing assumption on P θ (the second item in assumption 7.3) guaran-
tees that there exists for every θ ∈ Θ a unique stationary measure µ̃θ. The
assumption that µθ = µ̃θ for all θ ∈ Θ is therefore natural: one might well
expect the hidden Markov model to start off in steady state. On the other
hand, the proof of proposition 7.5 requires only minor modifications in order
to eliminate the stationarity assumption entirely.
(a) Prove that the mixing assumption on P θ (the second item in assumption
7.3) implies that there is a unique stationary measure µ̃θ for every θ ∈ Θ.
(Hint: use lemma 5.2 and the Banach fixed point theorem.)
(b) Show that µ(P θ)k → µ̃θ as k →∞ for every initial measure µ and θ ∈ Θ.
(c) Modify the proof of proposition 7.5 to show that the result already holds
when the last item in assumption 7.3 is replaced by the following assumption:
supA∈E |µθ(A)− µθ′(A)| ≤ c3‖θ − θ′‖ for all θ, θ′ ∈ Θ.

7.3. Identifiability: Finite Signal and Observation State Spaces
Suppose that the signal and observation state spaces E = {1, . . . , d} and
F = {1, . . . , d′} are both finite. Give a simple sufficient condition in this
setting for the hidden Markov model to be identifiable.
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Remark 7.19. In the setting of problem 7.3 identifiability has been character-
ized completely: see Ito, Amari and Kobayashi [IAK92]. This necessary and
sufficient condition is algebraic in nature and quite complicated. A simple
sufficient condition is easily obtained, however.

7.4. Confidence Intervals
In this problem, you are going to investigate numerically two methods for
obtaining confidence intervals for maximum likelihood estimates. To keep
things simple, let us consider a model with a one-dimensional parameter
space Θ = [0, 1]. The signal state space is E = {0, 1} with initial measure
µ({0}) = µ({1}) = 1/2 and transition probabilities

P (0, {0}) = P (1, {1}) = θ, P (0, {1}) = P (1, {0}) = 1− θ (θ ∈ Θ).

The observation state space is F = R with Yk = Xk + ηk, ηk ∼ N(0, 1).
Throughout this problem, let us fix a true parameter value θ? and a reason-
ably large time horizon n. Before we compute confidence intervals on the basis
of observed data, let us simulate the exact distribution of the maximum like-
lihood estimate as a benchmark. Note that in reality this distribution is not
computable: after all, θ? is really an unknown parameter.
(a) Simulate a large number of observation sample paths Y0, . . . , Yn under the
true model parameter θ?, and compute the maximum likelihood estimate θ̂n

for each path. Plot a histogram of the distribution of
√

n{θ̂n − θ?}.
Now simulate a single sample path Y0, . . . , Yn of the observations under the
true model parameter θ?. In the following parts we will obtain approximate
confidence intervals on the basis of this observed path only.
(b) Asymptotic normality suggests that for large n, the quantity

√
n{θ̂n−θ?}

is approximately distributed as a Gaussian with zero mean and variance
−(d2`n(θ)/dθ2)−1|θ=θ̂n

. Obtain an expression for this quantity and compute
it for the observed path. Plot the resulting Gaussian distribution and compare
with the histogram obtained in part (a).
A different method to obtain approximate confidence intervals is the paramet-
ric bootstrap. This works as follows. First, compute the maximum likelihood
estimate θ̂n on the basis of the observations. Next, repeat part (a) of this
problem under the assumption that θ̂n is the true model parameter value.
Note that this procedure does not depend on the actual parameter value θ?.
As θ̂n is close to θ? for large n, the parametric bootstrap distribution should
be close to the actual distribution of

√
n{θ̂n − θ?} for large n.

(c) Compute the parametric bootstrap distribution given our observed path.
Compare with the exact and approximate distributions in parts (a) and (b).

7.5. Convergence of the EM Algorithm
Verify that the assumptions in proposition 7.18 for convergence of the EM
algorithm are satisfied for a simplified form of the the model of proposition
6.11 where the observation variance v is known and fixed.
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Notes

The first proof of consistency and asymptotic normality of the maximum
likelihood estimator for hidden Markov models was given by Baum and Petrie
[BP66] for the case where the signal and observation state spaces are both
finite. Remarkably, it took almost three decades for this result to be extended
to more general models. Leroux [Ler92] was the first to prove consistency
for a finite signal state space but general observation state space. Bickel,
Ritov and Rydén [BRR98] subsequently proved asymptotic normality in this
setting. Meanwhile, Mevel [Mev97] developed a different approach based on
the ergodic properties of the filter. For the case where the signal state space is
not finite, Jensen and Petersen [JP99], Douc and Mathias [DM01], and Douc,
Moulines and Rydén [DMR04] prove consistency and asymptotic normality
under slightly weaker conditions than we have imposed in this chapter.

Our proof of consistency is close in spirit, but does not follow directly any
of the above references. The LLN used in our proof is extremely primitive; we
could have easily used the standard ergodic theorems of Birkhoff or Kingman
(see, e.g., [Kal02]), but the proofs of these results are much more complicated.
The proof of our LLN utilizes a simple device due to Etemadi [Ete81] to
strengthen the trivial mean square convergence to almost sure convergence.
Our proof of identifiability appears to be new.

The basic approach to proving consistency and asymptotic normality out-
lined in this chapter, and used in the above references, is essentially the ‘clas-
sical’ approach (see [van98]) for the analysis of maximum likelihood estimates.
A modern approach uses empirical process theory to establish uniform laws
of large numbers and uniform central limit theorems for the likelihood. Such
methods do not require a compact parameter space, but instead impose en-
tropic bounds on the complexity of the model class [van00]. It remains an open
problem to adapt this much more general approach to hidden Markov models:
the fact that hidden Markov model observations are not i.i.d. complicates the
application of empirical process theory. Another open problem is to weaken
the strong mixing condition on the signal in the case of a general signal state
space. The general setting is not yet entirely understood; in particular, at
present the known results for a finite state space are more general than can
be obtained by applying the general theory.

The analysis of the model order estimation problem requires us to study
the rate of convergence of the likelihood function. Some results in this direction
can be found, e.g., in Mevel and Finesso [MF04] and in Gerencsér and Molnár-
Sáksa [GMS03]. These results do not appear to be sufficiently strong to prove
consistency of penalized likelihood methods. In the setting where the signal
and observation state spaces are finite, Gassiat and Boucheron [GB03] prove
consistency of a penalized likelihood method for model order estimation using
a particular penalty. This result and previous results following initial work
of Finesso [Fin90] are reviewed in [CMR05, chapter 15]. Recent results in a
setting where the observation state space is not finite can be found in [CGG08].
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Using the full likelihood functions for model order selection is often overkill,
however. It is often sufficient to consider ‘quasi-likelihood’ type functions, as
suggested by Rydén [Ryd95]. The idea is that when the signal state space
is finite, the marginal law of a single observation Yk is a finite mixture of
observation densities. One can then use estimators of the form

d̂n = argmax
d≥0

{
sup
θ∈Θd

1
n

n∑
k=0

log gθ(Yk)− κ(n, d)

}
,

where gθ is a suitable class of functions and κ(n, d) is a suitable penalty func-
tion, to estimate the number of elements in the mixture, without relying on
the full joint likelihood of all the observations. This approach is both mathe-
matically and computationally simpler than a full-blown penalized likelihood
method. See, e.g., Gassiat [Gas02] and Poskitt and Zhang [PZ05].

Our proof of convergence of the EM algorithm is from [BPSW70].
The parametric bootstrap is a classical technique in statistics to obtain

confidence intervals for estimators by simulation (see, e.g., [van98]). In the
hidden Markov model setting, see [MZ97].

Some results about consistency of Bayes estimates, under similar condi-
tions as we have imposed in this chapter, can be found in Papavasiliou [Pap06].
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