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Abstract— The fundamental connection between the stability
of linear filtering and linear systems theory was already
remarked in Kalman’s seminal 1960 paper. Unfortunately,
the linear theory relies heavily on the investigation of the
explicit Kalman filtering equations, and sheds little light on
the behavior of nonlinear filters. Nonetheless, it is possible to
establish surprisingly general connections between the stability
of nonlinear filters and nonlinear counterparts of basic concepts
in linear systems theory: stability, observability, detectability.
The proofs of these results are probabilistic in nature and
provide significant insight into the mechanisms that give rise to
filter stability. The aim of this paper is to review these recent
results and to discuss some of their applications.

I. INTRODUCTION

A hidden Markov model is defined by a Markov chain
(Xx)k>0, together with an observation process (¥;)x>; which
is conditionally independent given (Xi)i>o with the con-
ditional law of Y; depending on X; only. The dependence
structure of this process is visualized in Figure 1. Think
of (Xx)k>0 as the time evolution of a quantity of interest,
which is not directly observable. Instead, at each time k an
observation Y; is made available to us, which is a noisy
function on the current state X; of the hidden process. A
bivariate stochastic process (X,Y) of this form is perhaps the
quintessential model of a partially observed system, and such
models therefore appear in a wide variety of applications.!

As the process of interest (Xg)i>o is not directly observ-
able, it is a basic problem to estimate it from the observed
data. To this end, we investigate the nonlinear filter

e =PX € - |11,..., Vi,

which is simply the conditional distribution of the hidden
process given the observation history. In principle, computing
the filter solves the problem of estimating the hidden process
optimally (in the mean square sense). On the other hand, even
disregarding computational issues, it should be noted that the
filter depends on our knowledge of the law P, which must be
estimated in practice by some statistical procedure. It is not
at all clear how robust the filter is to model misspecification.
This is particularly worrisome with regard to the initial
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"Note that we will always work in general (Polish) state spaces unless
stated otherwise. Some authors use the term hidden Markov model ex-
clusively for the case where X; (and perhaps Y;) takes values in a finite
state space. However, such a definition is unnecessarily restrictive. Our
setting encompasses a large number of models that appear in the literature
under different names: finite state hidden Markov models, state space
models, linear-Gaussian models, etc. There is also a natural generalization to
continuous time, known as Markov additive processes. Almost every result
in this paper has an equivalent continuous time counterpart, but we restrict
our discussion to the discrete time setting for simplicity.

Fig. 1. The dependence structure of a hidden Markov model.

measure (the law of X;) which cannot be estimated at all
from a single sequence of observations, as it is sampled only
once in generating the time series. Therefore, in order for the
filter to be of any practical use in tracking the hidden process,
it must be robust to substantial misspecification of the initial
measure. To make this more precise, denote by P* the law of
the hidden Markov model with initial measure Xy ~ u, and
denote by 7'[,'15 the filter computed using this measure. The
desired property of the filter can now be stated as follows:
any useful filter will be stable in the sense that

It~ =0
for a large class of measures (i, V) and for a suitable norm
I |l and mode of convergence. Here I am being intentionally
vague, as the details will differ depending on the setting.
From the point of view of nonlinear filtering, the simplest
hidden Markov model is the linear-Gaussian model

Xir1 = AXg+ By 1, (D
Y = CXi + Nk, 2

where A,B,C are matrices of appropriate dimensions and
(&, Mi)i>1 are ii.d. Gaussian random vectors. When in
addition Xy is Gaussian, then the filter m; is a random
Gaussian measure for every k, whose mean and covariance
satisfy the celebrated Kalman filtering equations. Already
in Kalman’s seminal 1960 paper, the filter stability problem
was raised and its solution alluded to [1, Remark (i)]. It
turns out that there is a deep connection beteen stability of
the Kalman filter and linear systems theory: for example, the
Kalman filter is stable when the linear control system

x(k+1) = Ax(k) + Bu(k), (3)
y(k) = Cx(k) @)

is controllable and observable. Unfortunately, the proofs of
such results rely entirely on the fact that the Kalman filter
consists of a linear recursion and a Riccati equation, whose
asymptotics can be studied directly. Such results therefore
shed little light on filter stability in general hidden Markov
models, and seem (to this author) even somewhat mysterious
in the linear-Gaussian case as the proofs are not probabilistic.



In the nonlinear case, the filter stability property takes on
added significance. First, in almost any case of practical in-
terest, the nonlinear filter is a truly infinite dimensional object
(a random probability measure) which does not admit a finite
dimensional sufficient statistic as is the case for the linear-
Gaussian model. This means that substantial computational
effort is involved in the approximate implementation of the
nonlinear filter. If the filter is not stable, so that reliable
estimates cannot be obtained, there is no point in putting
in the effort. This point was raised in the 1968 book of
Bucy and Joseph, who distinguish between local theory (the
problem of obtaining explicit equations for m;) and global
theory (stability and asymptotic properties of 7):

“In the case of nonlinear filtering, much remains
to be done, for as yet only a local theory of
filtering has been established, and [...] the prob-
lem of synthesis of the filter is unexplored. In
fact, because the relevant regularity conditions are
not sufficiently well understood, even approximate
synthesis techniques are fraught with difficulties.
For example, suppose a non-linear model is not
observable, then it is rather wasteful to perform
the computations necessary to determine the condi-
tional distribution, because any estimate, including
the optimal one, will perform poorly. Hence, it
is critical for applications to develop effective
sufficient conditions for observability.” [2, Ch. XI]

Second, it turns out that the filtering stability property is
not only of intrinsic interest, but is a key technical tool in
establishing other properties of the nonlinear filter which
hold over the infinite time horizon. For example, using
filter stability, one can establish time-uniform robustness
results for much more general misspecifications of the law
of the process, as well as time-uniform approximations of
the filter by numerical algorithms. Another example is the
characterization of vanishing stationary estimation error for
nonlinear filters in the high SNR regime, which was resolved
for the Kalman filter by Kwakernaak and Sivan [3].

The goal of this paper is to review a collection of recent
results which establish, in a surprisingly general setting,
connections between the stability of nonlinear filters and
systems theory. The discussion is heavily biased towards
problems I have worked on, and I make no attempt to do
justice to the breadth of the literature on filter stability,
which is reviewed in detail in [4]. The work in this area
has been largely dominated by beautiful quantitative results,
which however necessarily require strong assumptions on the
model. Instead, we aim to impose minimal assumptions and
to elucidate qualitatively the fundamental mechanisms that
give rise to filter stability. As one might expect, the resulting
theory has a distinct systems-theoretic flavor.

The remainder of this paper is organized as follows. In
section II, we revisit the linear-Gaussian case and some
additional examples in order to develop an intuition for the
filter stability problem. Section III is concerned with the
case where the hidden process is itself stable (i.e., ergodic).

Sections IV and V introduce general notions of observability,
controllability, and detectability, and establish their relevance
to the filter stability problem. Finally, in section VI we briefly
discuss two representative applications of these results.

II. EXAMPLES AND INTUITION
A. The Kalman filter

Despite that the stability theory for the Kalman filter does
not extend to the nonlinear setting, we can use it to gain some
intuition about the stability property. We begin by reviewing
some notions from linear systems theory.

Definition II.1. The linear control system (3)—(4) is called
asymptotically stable if ||x(k) —x'(k)|| — 0 as k — o for any
x,x' (and any control u(k)), where x(k) and x’(k) satisfy the
recursion (3) with initial conditions x(0) = x and x'(0) = x'.

Definition ILI.2. The linear control system (3)—(4) is called
observable if there exist no x # x' such that the initial
conditions x(0) = x and x(0) = x’ give rise to the same
observation sequence (y(k));>; (for any control u(k)).

Definition II.3. The linear control system (3)—(4) is called
detectable if for any x,x’, one of the following holds:
1) either x(0) = x and x(0) = x’ give rise to distinct
observation sequences (y(k))g>1; or
2) |lx(k) —x'(k)|| — O as k — oo, where x(k) and x'(k) are
defined as in Definition IL.1.

Definition II.4. The linear control system (3)—(4) is called
controllable if for any x,x’, there exists n > 1 and a control
(u(k))r<n such that x(0) = x and x(n) = x'.

Definition IL.5. The linear control system (3)—(4) is called
stabilizable if for any x,x’, one of the following holds:
1) either there exists n > 1 and a control (u(k))i<, such
that x(0) = x and x(n) =x; or
2) |lx(k)—x'(k)|| — 0 as k — oo, where x(k) and x'(k) are
defined as in Definition II.1.

We can now formulate a standard result on stability of the
Kalman filter; see, e.g., [5] (in continuous time).

Theorem I1.6. Suppose that the linear control system (3)—
(4) is detectable and stabilizable. Then the Kalman filter
associated to the hidden Markov model (1)—(2) is stable
in the sense that E|my —mj|| — 0 and ||Z —X;|| — 0 as
k — oo for any mg,m(, o, X, Here my and ¥y are the mean
and covariance of the random Gaussian measure 77:,’(l with
p~ N(mo,Xo), and m; X, are defined similarly.

One can make various improvements to this theorem
by considering non-Gaussian initial measures or different
notions of convergence (see [5]). The key point for us,
however, is that stability is guaranteed by the systems-
theoretic properties of detectability and stabilizability. Let
us cite one more result [6], which shows that stabilizability
is not of essence if we are willing to slightly restrict the class
of initial measures. This will help us understand the distinct
roles of detectability and stabilizability in Theorem IL.6.



Theorem I1.7. Suppose that the linear control system (3)—(4)
is detectable. Then the Kalman filter associated to the hidden
Markov model (1)—(2) is stable in the sense of Theorem I1.6
for any mo,mj, and Lo > 0, Xf > 0.

B. Some intuition

Theorems I1.6 and I1.7 suggest that detectability is the key
property that yields stability of the Kalman filter. The de-
tectability property interpolates between two extreme cases:
if the model is either asymptotically stable or observable, it is
detectable. Each of these cases has an intuitive interpretation.

o The filter stability property states that the optimal es-
timate of the hidden process given the observations
“forgets” the initial measure over a long time horizon.
On the other hand, the asymptotic stability property
states that the hidden process itself “forgets” its initial
condition over a long time horizon. If the hidden process
does not depend on the initial measure, then (intuitively)
neither should its optimal estimate, so filter stability
should follow from asymptotic stability.

o The observability property states that the observations
as so “informative” that they essentially reveal the initial
condition of the hidden process. Even if we misspecify
the initial measure, the information contained in the ob-
servations will eventually obsolete the prior information
contained in the initial measure. Therefore, (intuitively)
the optimal estimate of the hidden process given the
observations should not depend on the initial measure,
so filter stability should follow from observability.

The detectability property can now be understood as the
synthesis of these two mechanisms: roughly speaking, a
detectable model is a model that can be split into an
asymptotically stable part and an observable part.

Of course, the above discussion is merely a fanciful
interpretation of the precise result obtained by studying the
Kalman filtering equations. The challenge we now face is to
turn these naive and somewhat vague intuitions into rigorous
mathematics, in the setting of general hidden Markov mod-
els. The proofs of the Kalman filter results are of essentially
no use here, so we must start from scratch.

We will tackle our goal piece by piece. In section III, we
will consider the case where the hidden process forgets its
initial condition. In section IV, we will consider the case of
informative observations. This will give natural counterparts
of the asymptotic stability and observability properties for
general hidden Markov models. We will also address further
the role of controllability and stabilizability. Finally, in
section V we generalize the notion of detectability. Here,
however, a general result is still out of reach, but we can
obtain a complete characterization in the important special
case where the hidden process takes values in a finite set.

C. A counterexample

To highlight the fact that the intuition developed in the
previous section should not be taken for granted, let us briefly
discuss a vexing example which has appeared in various
guises in the literature (e.g., [7]). Let the hidden process be

a finite state Markov chain in the state space E = {0,1,2,3}
with transition probability matrix

1—p p 0 0
| 0 1=p p 0
P= 0 0 I-p p

p 0 0 1—p

for some p > 0. We define the observations process as
the nonrandom function ¥; = 1y 3,(Xy). This is a perfectly
respectable hidden Markov model. At each time, the hidden
process jumps to the next state (modulo 4) with probability
p, and stays put otherwise. The observations tell us precisely
whether we are in one of the subsets {0,2} or {1,3}, but we
cannot distinguish what state we are in within each set.

It is a straightforward exercise to compute explicitly the
behavior of the nonlinear filter 7 (i) = PH[X, = i|Y1,...,Y].
Let us therefore simply describe the conclusion. Suppose it
is revealed that ¥; = 0. Then we know that X; € {0,2}, so
the filter ﬂf will put some mass a on the point O and the
remaining mass b = 1 —a on the point 2. From this point
onwards, the observations process (Yi)i>1 reveals exactly
when the hidden process transitions to the next state, but no
further information is revealed that will help us distinguish
between the points 0,2 (or 1,3, depending on the value of
the current observation). Thus 7'c,£l is obtained from ﬂ{l by
rotating the distribution at those times when the observation
process reveals a jump has occured. The following table
illustrates this behavior along one potential observation path.

k 1 2 3 4 5 6 7 8 9
Yi 0o 01 00 O 1 1 O
m0)|a a 0 b b b 0 0 a
w10 0 a 0 0 0 b b 0
m2)|b b 0 a a a 0 0 b
m(3)|0 0 b 00 0 a a O

If we change the initial measure from U to v, we obtain
exactly the same result but with different constants a, b. It is
therefore immediately clear that ||7; — x| is positive and
constant, so the filter is not stable. On the other hand, the
hidden process (Xi)r>o is asymptotically stable in a very
strong sense: it is uniformly geometrically ergodic, i.e.,

sup [PH[X; = i] — PV [Xe = i]| 22 0

[T
at a geometric rate. So we evidently have asymptotic stability
of the hidden process while filter stability fails.

In view of this example, one might fear that the intuition
gained from the Kalman filter does not apply in the nonlinear
case and must be abandoned. Fortunately, it turns out that
counterexamples of this type are extemely fragile and dis-
appear if we impose mild nondegeneracy assumptions. For
example, if we add arbitrarily small noise to the observations,
e.g., Yi = 1y 33 (Xk) + i where (1)1 are i.i.d. N(0,€) with
€ > 0, the filter will be stable. Alternatively, if we slightly
perturb one of the transition probabilities in our example, the
filter will be stable due to observability (our original example
can clearly not be observable in any reasonable sense due



to the symmetry in the model). We will see in the following
sections that our intuition holds true in a surprisingly general
setting, but the above example warns us that we must be very
careful in formulating the appropriate assumptions.

III. THE ERGODIC CASE
A. A general result

The goal of this section is to make precise the following
intuition: if the hidden process “forgets” its initial condition,
then so does the filter. The requisite stability property of the
hidden process is made precise by the following assumption,
which replaces asymptotic stability in the linear setting. Here
|l — p’|lTv denotes the total variation distance.

Assumption IIL1. There is a probability measure A so that
|[PH[Xg € -] —AllTv — 0 as k — oo for any initial measure U.

If Assumption III.1 holds, the hidden process is said to
be ergodic. More precisely, it is well known in the theory of
Markov chains that Assumption III.1 holds if and only if the
hidden process is positive Harris recurrent and aperiodic.

As is demonstrated by the example in section II-C, As-
sumption III.1 is not quite enough to guarantee stability of
the filter. We need a mild nondegeneracy assumption.

Assumption III.2. There is a strictly positive function
g(x,y) >0 and a measure @(dy) such that P*[Y; € A|X;] =

Ja8(Xk,y) @(dy) for every k,A, .

Assumption III.2 states that the conditional law of the
observations possesses a positive density g (with respect
to some reference measure @). It is essentially equivalent
to the following statement: for every x,x’, the conditional
laws PH[Y; € -|X; = x| and P*[Y; € - |X; = X] are absolutely
continuous. Thus observation of Y; cannot give us any precise
information on Xj, which rules out the example in section
II-C. On the other hand, an arbitrarily small amount of noise
will immediately force Assumption II1.2 to hold.

Our general result is now easily stated [8, Corollary 5.5].

Theorem IIL.3. Suppose that Assumptions Ill.1 and III.2
hold. Then the nonlinear filter is stable in the sense that
|7t — &)/ ||Tv — 0 PY-a.s. as k — oo for any |1, V,Y.

The assumptions of this result are intuitive, but its proof
is long and fairly technical. Nonetheless, the idea behind the
proof is not difficult to understand, and provides significant
insight into how filter stability is inherited from ergodicity
and what goes wrong in the absence of nondegeneracy.

B. Orey’s theorem

To understand the proof of Theorem III.3, we must recall
a classic result in the general theory of Markov chains.

Theorem IIL.4 (Orey’s theorem). Assumption II1.1 holds if
and only if the Markov chain (Xi)x>0 possesses an invariant
probability measure A, and the tail c-field

T = () o{Xe:k>m}
m>0

is PH-trivial for every initial measure |L.

A complete proof can be found in [9, Ch. 6, Theorem 1.8].
However, to understand Theorem II1.3, it will be helpful to
give a different proof of the sufficiency part of the result.

Proof of sufficiency. Let 1 < v be absolutely continuous
initial measures. Then dP* /dPY = (du/dv)(Xo), so

dPH[X; € -] d/.L
dPV[X; € -] o)X
d
As lp=p'lltv = [ |35 — 11dp'. we get

IPHX, € -] —PY[X, € .]||Tv=EV[EV[d“ (Xo) ‘Xk} —1H

But the Markov property states that the past and future are
conditionally independent given the present. In particular, Xy
and o{X, : r > k} are conditionally independent given Xj:

d

E"[ K x0) ’x] EV[%(XO)‘G{X,:rEk}]

Therefore, the martingale convergence theorem gives

lim [P[X, € | —PV[Xc € -] :E"{Ev[d“ (Xo) ‘9’} —1H

But .7 is PV-trivial, so PV[ - (X0)|.7] = PV[Z—‘J(XO)] =1
We have shown that HP”[Xk €-]-PV[Xx € -]llrv — 0 as

k — oo whenever i < v. Now consider any initial measure

u,and let v=(u+21)/2. Then 4 < v and A < v, so

[PH[Xy € -] = Allrv < [[PH[X; € -] —PY[X; € -][ITv
k—o0
+ ||P)L[Xk S } *PV[Xk S H|TV — 0,
where we have used that A is invariant, i.e., P* X e ]=21
for all k. Thus Assumption III.1 is established. O

The key idea of this proof is that if we consider absolutely
continuous initial measures, one can give an explicit expres-
sion for the limiting total variation distance in terms of some
tail o-field. This idea appears to be quite fundamental and
appears in various guises in the proof of Theorem III.3 and
in the observability results of section IV below.

C. Key elements of the proof of Theorem III.3

1) Representation of the limit: The beginning of the proof
of Theorem II.3 is very similar to the proof of Orey’s
theorem given above. First, a somewhat tedious technical
argument shows that is suffices to prove that

k—o0

||z} — 1}ty —= 0 PH-as. for u < A.

That is, the problem is reduced to the absolutely continuous

case. At this point, we will obtain an explicit representation

of the limit limy_... ||} — ||ty in terms of tail o-fields.
Let u < A. The density of (Yi,...,Y;,X;) is given by

dPH[(Y), ...
dPA[(Yy,. ..

7Yk7Xk) S } _El |:dlLl'

- Y17 Ykaxkj|
7Yk7Xk) € ] ‘



The density of (Y1,...,Y) is obtained similarly. Therefore,
by the Bayes formula, the conditional density of X; given
Y1,...,Y; is obtained by dividing these two densities:

drf  EMEX0)N,....Yi Xi]
d7'[13L E'l[d/“l(XoﬂYl, Yk] .

In particular, we have

. i
dm,

EA MY, ... Y
”nlfl_n]?HTV:/ A [Ac|Yr, ... Y]

— —1|dm,

A k d ’
dn} ‘ EA 22 (X0)|Y1,..., Y]
where we have defined

dli
E’L[
&= | 7
But any hidden Markov model (X,Y) is itself a Markov

chain, so that Xo and o{(X;,Y,) : r > k} are conditionally
independent given (Xg,Y;). In particular, we can write

x| 2] |

(Xo) ’Yl, Ykan} Ex[ (Xo) ‘Yh Yk”

A _‘E’l[ ‘ylmvﬁk |-

where we have defined the o-fields
X Y
%JZG{X["...,X‘]‘}, z,J:G{Yl77Y‘]}

By the martingale convergence theorem, we obtain
E* A7) ]

iy oy b
E* o7 (X0) [ 7] )

lim ||z}’ — 70 || rv =
k—o00

(as the denominator is P*-a.s. positive and gt < A), where
d
o= 2 S0 () 2o 2] - (|1 |
dA ’
k>0

Therefore, the filter stability property is established if we can
show that the following tail o-field identity holds:

REZE s

k>0

= 7. Phas. (5)

The validity of this measure-theoretic identity turns out to
be the central problem in the qualitative asymptotic theory
of nonlinear filters (see, e.g., [7], [10], [8], [11]).

2) The role of ergodicity: The identity (5) may seem
rather abstract to the reader unfamiliar with the ergodic
theory of Markov chains. However, the identity becomes
extremely intuitive when combined with Orey’s theorem. To
see this, suppose that Assumption III.1 holds. Note that .7 IY -
does not depend on k, so it seems that one should be able
to perform the following harmless computation:

N7Vl £ FvOFE =
k>0 k>0
By Orey’s Theorem II1.4, the tail o-field .7 is P’L—trivial, SO
the identity (5) would follow immediately from ergodicity.
The alert reader should now become extremely nervous.
After all, we have nowhere used the nondegeneracy assump-
tion IIL.2. If everything above is correct, the filter should be
stable whenever the hidden process is ergodic. This is clearly

FLNT. (6)

false: we have seen a counterexample in section II-C! The
problem is that the seemingly harmless computation (6) is
incorrect: the exchange of the intersection N and supremum
V of o-fields is not in general allowed. This subtle error?
is present in a number of early papers on the asymptotics
of nonlinear filters, starting with the classic paper of Kunita
[16] on unique ergodicity of the filter (see [7] for a list of
papers which rely on the incorrect argument (6)).

It is possible, however, to obtain a correct variant of (6)
by using a technique due to von Weizsidcker [12]:

Lemma IILS. The identity (5) holds if and only if the tail
o-field T is P*(-|F] ,)-trivial P*-a.s.

Let us reflect on what this means. By Orey’s theorem, the
hidden process (Xi)i>o is ergodic if and only if .7 is PH-
trivial (in particular, P’L-trivial). However, for the filter to be
stable, we actually need that .7 is P*(-|.7 ') -trivial:

The filter is stable when the hidden process (Xj)r>0
conditioned on the observations (Y )g> is ergodic.

It is not at all clear that if the hidden process is ergodic, it
will still be ergodic once we condition on the observations.
In fact, in the counterexample of section II-C it is easily
seen that this is not the case. For the ergodic property to be
inherited, we need the nondegeneracy Assumption I11.2.

3) Conditional ergodicity and nondegeneracy: The main
part of the proof of Theorem III.3 consists in proving that
(Xg)i>0 conditioned on the observations (Y;)r>; is ergodic
under Assumptions III.1 and III.2. The details are too long
to reproduce here, but let us sketch two essential ideas.

First, we must understand the structure of the hidden
process (Xi)r>0 under the conditional measure PMY .=

P*(-|.Z] ). To this end, we use again the Markov property
of (X,Y): as {(X,,Y,):r <k} and {X;1,Y,: r >k} are are
conditionally independent given (Xj,Y;), we have

P Xy € AT =P Xt € ALV T =
P X € ALF Vo {X ] =P X, € AX].

Therefore, under the conditional measure PMY, the hid-
den process (Xi)r>o is still an (albeit time-inhomogeneous)
Markov chain whose time k transition probability P} (x,A) :=
PMX . € A|fky w> Xi = x| depends on the observation
path (Y,),>x. Now, in general, the ergodic theory of time-
inhomogeneous Markov chains is extremely difficult. Here,
however, we are in a very fortunate situation: even though
the conditional Markov chain is time-inhomogeneous for
each observation path individually, it is not difficult to see
that the transition probabilities themselves form a stationary
stochastic process k — P,f under P*. That is, the conditioned
hidden process is a Markov chain in a random environment
in the sense of Cogburn [17]. Because of their inherent
stationarity, one may develop an ergodic theory for this class

2The problem of exchanging the intersection and supremum of o-fields
plays an important role in many problems in different areas of probability
[12], and appears to be one of its worst pitfalls [13, p. 30]. The incorrect
argument (6) can be found even in the work of Kolmogorov [14, p. 837],
Kallianpur and Wiener [15, pp. 91-93], and Kunita [7, pp. 649-650].



of Markov processes with random transition probabilities
which is surprisingly similar to the ergodic theory of ordinary
time-homogeneous chains (see [17] for a countable state
space, and [8] for general state spaces). In particular, it turns
out that such random Markov chains are ergodic if and only
if their transition probabilities are almost surely irreducible
and aperiodic, in a suitable generalized sense.

The problem therefore reduces to showing that the con-
ditional transition probabilities P,f of the hidden process are
almost surely irreducible aperiodic. However, Assumption
III.1 only implies that the original transition probability
P(x,A) = P*[X; € A|X;_| = x] is irreducible aperiodic. The
essential idea that allows to complete the proof is that under
the nondegeneracy Assumption II1.2, one can show by means
of a coupling argument that the original and conditional
transition probabilities are almost surely mutually absolutely
continuous P ~ P,z] , so that the irreducible aperiodic property
of P is inherited by P,f . [Intuitively one may think of
finite state Markov chains: if two chains have mutually
absolutely continuous transition probabilities, they have the
same transition graph. Thus if one is ergodic, so is the other.]
We therefore see that the nondegeneracy property provides
the “glue” which links the ergodic theory of the conditioned
chain to the ergodic theory of the original chain: in the
absence of nondegeneracy this crucial connection is lost,
which leads to counterexamples like the one in section II-C.

IV. OBSERVABILITY AND CONTROLLABILITY
A. A general result

In section II-B, we discussed two mechanisms that are
expected to contribute to filter stability: asymptotic stability
of the hidden process, and observability of the model. The
former was developed in a general setting in the previous
section. The goal of this section is to investigate the latter
property in the general setting. That is, we aim to make
precise the following intuition: if the observations are suffi-
ciently informative, then the filter should “forget” its (obso-
lete) initial condition. The requisite notion of observability,
which replaces the observability property in the linear setting,
is made precise by the following definition.

Definition IV.1. A hidden Markov model is called uniformly
observable if for every € > 0, there is a & > 0 such that

||P“\(Yk)k21 —Pv‘(Yk)kzl lrv <& implies ||ju—v|sL <E€.

Itis called observable if PX |y, =PV|(y,), . implies u=v.

Here we write PPy, =PP[(Y)i>1 € -], and we have
defined the dual bounded-Lipschitz distance as ||p —p’||sL =
sup{|p(f) =p" (NI 1f ) <1, [f(¥) = f ()| < [x=y[ Vx,}.
In words, a hidden Markov model is called observable if
distinct initial measures give rise to distinct laws of the
observation process (¥ )r>1. Uniform observability is a more
quantitative version of this idea: roughly speaking, the model
is uniformly observable if two initial measures which give
rise to nearly identical observation laws must themselves be
nearly identical, in a suitable (not entirely obvious) sense.

Our general result is now as follows [18, Theorem 3.3].

Theorem IV.2. Suppose that the hidden Markov model is
uniformly observable. Then we have

k—so0

Hn]gin]XHBva_)O P-a.s. when P'u|(Yk) <<PV|(Yk)

k>1 k>1"

If (X,Y) is Feller and if X takes values in a compact state
space, it suffices to assume the model is observable.

We immediately note two things. On the one hand, this
result is very general: even nondegeneracy of the observa-
tions (Assumption II1.2) is not required. On the other hand,
the notion of stability guaranteed by this result is weaker
than that of Theorem III.3: convergence holds only in the
dual bounded-Lipschitz norm (rather than the stronger total
variation norm), and stability is only guaranteed for initial
measures with absolutely continuous observation laws. One
can easily find a variety of counterexamples which show
that one cannot strengthen the conclusion of the theorem
without additional assumptions. For example, the model
where X;. = Xo € [0, 1] for all k and Y = Xi + 1 with (M )e>1
i.i.d. N(0,1) is clearly observable and Feller, so that Theorem
IV.2 applies. However, if we choose yt = &y and v = 9y, then
m =& and ) = & for all k, so the filter is not stable.
Of course, the problem is that in this case the observation
laws Py, and PY|y,) , are mutually singular. If we
consider exactly the same example, except that we choose
the modified dynamics X; = X;_;/2 for all k, we find that
Py, < PY[(y,),., and indeed |7l — 7Y |lgL — O as is
claimed by Theorem IV.2, but ||z}’ — x|ty = 2 for all k.

The proof of Theorem IV.2 is surprisingly easy (we give
almost the entire proof in section IV-B below). A much
more difficult problem is to verify whether the uniform
observability assumption holds in a given model (this is in
contrast to the assumptions of Theorem III.3: the verication
of Assumption III.1 is a well studied problem, see [19],
while Assumption III.2 is trivial). Sufficient conditions for
observability are mainly restricted to additive noise models

Yie = h(Xy) + i,

where (Mg)r>0 are ii.d. random variables with nowhere
vanishing characteristic function and /4 is a (not necessarily
invertible) observation function. The reason is that in this
case, the characteristic function of (Y1,...,Y) factors into the
characteristic function of (A(X)),...,h(X;)) and a nowhere
vanishing function, so that the model is observable if and
only if the noiseless model ¥, = h(X;) is observable. When
the hidden process takes values in a finite state space, one can
now easily give explicit necessary and sufficient conditions
for observability in terms of linear algebra [6, section 6]. On
the other hand, in the linear-Gaussian case, we find that the
model is uniformly observable precisely when the model is
observable in the sense of linear systems theory (Definition
I1.2), see [18, section 3.3]. In more general models, it can be
shown that (uniform) observability holds for additive noise
observations whenever the observation function 4 possesses
a (uniformly continuous) inverse, see [6, section 5.3], [18,
section 3.4], [20]. Let us note that verification of uniform
observability is not entirely straightforward even in the



simplest case, as it requires us to study the inverses of
convolution operators; see [18, Appendix C] for details.

B. Proof of Theorem IV.2

We now give an essentially complete proof of the first part
of Theorem IV.2. Once the correct notion of observability
is formulated, the proof follows almost immediately from
the following classic result of Blackwell and Dubins [21]
(a special case of this result was rediscovered in connection
with filter stability by Chigansky and Liptser [22]). Note the
strong similarity between the proof of this result and that of
Orey’s theorem (see Theorem III.4 above).

Theorem IV.3 (Blackwell and Dubins). Let P and Q be two
probability laws of a stochastic process (Yy)x>1. Then

||P[( )r>l< € - ‘Yla aYk] 7Q[(Yr)r>k € "Ylv"w

as k — oo P-a.s., provided P < Q are absolutely continuous.

Yilllrv — 0

Proof. Note that, by assumption, the density of (¥i)i>1 is
dP/dQ. Therefore, the density of (Y1,...,Y;) is given by

dP[(Y1,7Yk)E} B dP
dQ[(Yy,....Y,) € -] Q[E’YI’“-va]

Dividing the two densities, we obtain by the Bayes formula

dP
dP[(Y:)r>k € - |Y1,. .., Yi] _ Q

dQ[(Y))rsk € - |11,..., Y] - EQ[%‘Yl,...,Yk].

i d
As [lp —p'llTv :j|d—§—1|dp’, we get
IP[(Y)rsk € Y1, Y] = Q[(Yr) sk € - Y1, Yi]|lTv =
Eq[ \m*EQ[%\YI,m,YkH [Y1,..., Y]

EQ[%|Y1,...,Y]<]

But clearly Eq[dP/dQ|Y1,...,Yi] — dP/dQ as k — « Q-
a.s. by the martingale convergence theorem (hence P-a.s. as
P <« Q), while dP/dQ > 0 P-a.s. The result follows.> O

Blackwell and Dubins’ theorem can be stated as follows:
predicting the future of a stochastic process given its past will
“forget” the difference between any two absolutely continu-
ous probability measures. In order to apply this result to the
filter, we must understand the relation between estimating
the current value of the hidden process and predicting the
future values of the observation process. To this end, note
that, for any function f(yi,...,ys), we have

E#[f(YkH, Yk+£)|Ylv~~~aYk]
= E*[ B*[f (Y1, Yird) V1o Y Xe] T, Y]
=B EF[f(Yierrs - Vi) [Xa] Y150, Y]
=EM[EX[f(Y),....Y))] |Y1,.... Y]
—E% [f(Yh,....Y0)],

3We have glossed over a technicality: if Ay — 0 a.s., this does not
automatically imply E[A;|-%;] — 0 a.s. The problem is resolved by the
application of Hunt’s lemma and a simple truncation argument.

where we have used the tower property of the conditional
expectation and the conditional independence structure of
the hidden Markov model. We can therefore write

[PH[(Yr) sk € - |Y1,e - Y] = PY[(Y,) ok € - Y15 Wil [lTv

n v
= HPnk |(Y)‘)r21 —P% |(Yr)r2] HTV'

Theorem IV.3 therefore shows that

k—so0

u
1P |y, =P |1, v =0 PHas.

whenever P#|(y,) < PY|y,) . But then

|zt — 7! |l 520 PHass.

follows immediately from the definition of uniform observ-
ability. Once we have seen this proof, the significance of
the uniform observability assumption becomes completely
transparent: the Blackwell-Dubins theorem shows that the
predictor of the observations is always stable; but if the
observations are sufficiently informative (in the sense of
uniform observability), then two initial measures which lead
to nearly equal estimates of the observations will also lead to
nearly equal estimates of the hidden process. Thus filter sta-
bility obtains. In my opinion, this demystifies the connection
between observability and filter stability even in the linear-
Gaussian case: a proof using the Kalman filtering equations
does not admit such a natural probabilistic interpretation!

We omit the second part of the proof of Theorem IV.2,
which shows that observability already implies uniform
observability if (X,Y) is Feller and X takes values in a
compact state space. This result follows from elementary
weak convergence arguments, see [18, Proposition 3.5].

C. The role of controllability

In the Kalman filter case, stability results typically require
some form of controllability in addition to observability (e.g.,
Theorem I1.6). In contrast, our general Theorem II1.3 merely
requires observability, but the filter stability property holds
only for initial measures that give absolutely continuous
observation laws. This suggests that the main role of the
classical controllability assumption has nothing to do with
the stability property itself, but merely forces the absolute
continuity condition P# |y < PY|wy,,., to hold for any
pair of initial measures u,v. The modified Theorem II.7 for
the Kalman filter provides further evidence for this claim.
[Let us note that Theorem II.7 was proved in [6] specifically
in order to gain insight into the role of controllability
suggested by our general observability results; it does not
appear to be known in the classical literature.]

To justify this claim, we now give a general result on the
absolute continuity of the observation laws.

Lemma IV4. Suppose that one of the following holds:

) ugv; or
2) Assumption II1.2 holds and

|IPH[Xi € - ]—PV[ Xy € -]ltv =0 as k— oo or



3) Assumption II1.2 holds and
PH X e -] <PY[Xp € -] for some k> 0.

Then P’“l|(yk) < Pv|(yk)

k>1 k>1°

The first case is trivial and holds regardless of any features
of the problem. The second case follows from [8, Lemma
3.7]. This holds under Assumption III.1, which explains why
our general result for the ergodic case, Theorem IIL.3, does
not require any absolute continuity assumptions. Finally, the
third case can be proved as in the proof of [20, Proposition
2.5]. This case corresponds precisely to controllability: the
linear-Gaussian model is controllable if and only if there
is a k> 0 such that P#[X; € -] has a density with respect
to the Lebesgue measure for any initial measure (. Such a
connection with the controllability of deterministic control
systems holds much more generally for stochastic systems,
particularly in continuous time where there is a deep con-
nection with so-called support theorems [23].

Let us note that in addition to eliminating the restriction
on the initial measures in Theorem IV.2, controllability
properties can often be used to strengthen the convergence in
the weak || ||gL-norm given by Theorem IV.2 to the stronger
|- |lrv convergence. See [20] for the relevant arguments.

V. DETECTABILITY
A. Finite state hidden Markov models

In the previous sections, we have seen that the two in-
tuitive mechanisms supporting the filter stability property—
asymptotic stability of the hidden process, and observability
of the model—can each be made mathematically precise in
a surprisingly general setting. In the case of the Kalman
filter, however, we could go one step further and combine the
asymptotic stability and observability properties into a single
detectability property. Unfortunately, to date, a counterpart of
this result is not known for general hidden Markov models.
However, in the special case where the hidden process X
takes values in a finife state space, we can obtain a complete
analog of the detectability result for the Kalman filter. What
is more, in this setting, the detectability property is necessary
and sufficient for stability under suitable assumptions.

Let us begin by stating the requisite result.

Definition V.1. A hidden Markov model is called detectable

if for any initial measures t, v, one of the following holds:

1) either P#|(Yk)k2I 7 Pv|(Yk)k21;
k—o0

2) |PH[X; € -]—PV[Xk € ‘]|lrv — 0.

or

Theorem V.2. Suppose that the hidden process takes values
in a finite state space, and that the observations are nonde-
generate (Assumption I11.2). The following are equivalent:

1) The hidden Markov model is detectable.
k—so0

2) ||z — &) lrv —— 0 PHoas. if PH|y, _ < PY|y,

k>1 k>1°

It should be evident that the general detectability property
of Definition V.1 is a direct counterpart to the notion of

detectability in linear systems theory, Definition II.3. Intu-
itively, each pair of initial measures can either be distin-
guished through the information obtained from the obser-
vations, or otherwise the dynamics of the hidden process
must asymptotically “forget” their difference. Thus the two
intuitive mechanisms discussed in section II-B conspire to
give rise to the filter stability property, at least in two special
cases: the linear-Gaussian case and the finite state case.

The finite state case is obviously much simpler than
general hidden Markov models. For example, finite state
Markov chains cannot be transient or null recurrent. On the
other hand, finite state Markov chains are in many ways
prototypical of nonlinear Markov models, and are almost
opposite in nature to linear-Gaussian models. Moreover, they
play an important role in many practical applications. That
a complete systems-theoretic characterization of stability is
even possible—albeit in this special case—suggests that there
must be something fundamental about the theory we have
developed. It would very interesting to find a more general
underlying result, of which Theorems V.2 and II.7 are special
cases, but I do not know how to achieve this goal.

Remark V.3. It is interesting to note that in the finite state
case, assuming P#|(y, _ <<PY|y,) _, is not a big restriction.
Indeed, if we choose an initial measure v which puts mass
at every point of the (finite) state space, then yt < v for any
initial measure u. Therefore, if we use the initial measure v
to compute the filter, the latter will be asymptotically optimal
regardless of the unknown true initial measure p.

B. Idea of the proof of Theorem V.2

The proof of a result similar to Theorem V.2, but in
continuous time, is given in [6, section 6.2]. The proof of
Theorem V.2 is a straightfoward adaptation of the proof in [6]
to the discrete time setting. We presently discuss the essential
ideas behind the proof, leaving the details to the reader.

The easy half of the proof is to show that detectability is
a necessary condition for stability. Indeed, suppose that the
filter is stable (in the sense of Theorem V.2). Either the model
is observable, in which case it is obviously detectable, or the
model is not observable. In the latter case, by definition, there

exist initial measures {4 # v such that P*|(y, _ =PV|(y,,_,-
Because 7 is a function of (Yi,...,¥;) only, we have
B m ] =E'[m]=P"[Xc€ ], E[m{]=PH[X; € ].

Note that we may assume without loss of generality that
U < v (otherwise, replace v by (u + v)/2). Therefore,

P [X; € -] —PVX € -]llrv = B [ — T llrv
<Bf[|af — ) [lrv] = 0,

where we used filter stability. Thus the model is detectable.

The difficult part of the proof of Theorem V.2 is to
show that detectability is a sufficient condition for filter
stability. Intuitively, we would like to split the model into two
parts: an observable part and an unobservable part (which
is required to be asymptotically stable by the detectability
assumption). Each part can then be dealt with separately



using the appropriate result in section III or IV. The splitting
of the model into observable and unobservable parts is
achieved by the following refinement of Theorem IV.2.

Definition V.4. For any u,v, write g ~ v iff P# |(Yk)
Pv|(Yk)k>1' Define the space of observable functions as

O={f:u(f)=v(f) for all p~~v}.

Theorem V.5. Suppose that the hidden process takes values
in a finite state space. Then |} (f) — 1) (f)| — 0 as k — oo
PH-a.s. for all f € O whenever L < V.

k>1

The space ¢ consists of those functions whose expectation
can be determined from the law of the observations; that is,
O is the part of the model about which the observations
are informative. Theorem V.5 now states that at least the
observable part of the model is always stable. The proof (in
continuous time and for more general models) is given in [6],
and is similar in spirit to the proof of Theorem IV.2. Note
that the model is observable precisely when & contains every
function, so the usual observability result is a special case.

The key idea of the proof of Theorem V.2 is now contained
in the following lemma, which crucially uses Theorem V.5.

Lemma V.6. Suppose that the hidden process takes values
in a finite state space and that the model is detectable. Let
f be a k-invariant function, i.e., f(X,) = f(Xo) PV-a.s. for
any n,v. Then f(Xo) is PV-a.s. ﬁfw—measurable for any v.

Proof. We first claim that f € 0. Indeed, let u ~ v. Then

1 (f) = V(A = B (X)) = B[ (X)) == 0,
where the equality follows as f is k-invariant and the limit
follows as the model is detectable. Therefore, f € 0.

Fix v, and let u = &, for some point x with v(x) > 0.
Clearly E*[Z] = EY[Z|Xp = x] for any random variable Z.
By k-invariance and the martingale convergence theorem,

|7 (F) = 7o ()] = [EX [£ (X0) |7V ] — BV [ (X0) |71 ]|
2 () —EY[f(X0)| F) L) PHeas.
Therefore, as f € &, we obtain by Theorem V.5
PYIEY[f(X0)|7) ] = f(Xo0) [Xo=x] =1

for all x with v(x) > 0. Multiplying by v(x) and summing
over x gives E"[f(Xo)|§’iw] = f(Xo) PV-a.s., as desired. [

How do we use this result? It is well known that the (finite)
state space of the hidden process can be partitioned into a
set T of transient states and a finite number Ci,...,C), of
cyclic classes (e.g., [24]). If we assume for simplicity that
the hidden process does not possess any transient states, then
clearly the indicator function 1¢, of any cyclic class C; is
k-invariant, where k is the cycle length of C;. Therefore,
by Lemma V.6, we can determine with certainty from the
observations (Yy)x>1 which cyclic class we started in. The
Bayes formula then allows us to condition on the cyclic class,
so that we may consider only the stability problem for initial
measures supported in the same cyclic class [6, Lemma 14].

But given two initial measures supported in the same cyclic
class of cycle length k, the extended model (X,¥) given by
X, = (X115 -1 Xk)s v, = (Y(u1)ks15- - > Yui) defines an
ergodic hidden Markov model. Therefore, we have used the
observability Theorem V.5 and the detectabilitiy condition
to reduce the filter stability problem to the ergodic case, at
which point Theorem III.3 can be applied.*

It is interesting to note that the above proof has a com-
pletely natural interpretation in terms of the fundamental
identity (5) that played such a central role in the ergodic
case. A classic result of Blackwell and Freedman [25] states
that for a finite state Markov chain without transient states,
the tail o-field .7 is precisely generated by the cyclic events:

T = m ﬂ’,fw:cs{lcl (Xo),...,lcp(Xo)} PH-as.
k>0

(see [26] for a more general characterization of the tail o-
field of a Markov chain). Therefore, Lemma V.6 can be
restated as follows: if the model is detectable, then

T C ﬁly - P“-as.
Thus, if only the incorrect exchange of intersection and

supremum (6) were justified, we would immediately have

)
ﬂﬁzly,w\/ﬁ,fm = 9{00\/9:,?500 P“-as.,
k>0

establishing (5) and therefore filter stability! However, as
we know, the exchange of intersection and supremum is not
justified in general, and indeed Theorem V.2 only holds under
the additional nondegeneracy Assumption III.2. Nonetheless,
these observations might hint at one approach for extending
Theorem V.2 to more general hidden Markov models.

C. The Kalman filter revisited

Beside the finite state case, it is classical that detectability
implies filter stability in the linear-Gaussian case (Theorem
I1.6). This proof of this result, however, relies entirely
on a study of the Kalman filtering equations, and is not
probabilistic in nature. It is therefore natural to ask whether
this result can be reproduced in a probabilistic manner by
using the general theory discussed in the previous sections.
To this end, we presently revisit these results and discuss
how they apply to the linear-Gaussian model (1)—(2).

Let us begin with the ergodic case, Theorem III.3. The
nondegeneracy Assumption III.2 is automatically satisfied
due to the presence of the additive noise 7 in the observation
model (2). Moreover, it is well known that if the linear
control system (3)—(4) is asymptotically stable in the sense
of Definition II.1, the hidden process (1) possesses a unique
invariant probability measure A such that PH[X; € -] — A

“Note that we have assumed here that there are no transient states.
However, transient states do not play an important role in the problem.
Indeed, suppose the transient class 7 is nonempty. As X is a finite state
Markov chain, 17(X;) — 0 as k — oo P*-a.s. for any U, so that certainly
m' (17) — 0 as k — oo PH-as. for any p. A somewhat tedious technical
argument then shows that, for the purpose of filter stability, we may ignore
the transient states alltogether (see [6, section 6.2.3] for details).



weakly as k — oo for any initial measure y. However, in
this general setting, the convergence to the invariant measure
need not hold in the total variation norm || - ||y, so that
Assumption III.1 need not hold. For example, if X; | = X;/2
without any added noise (B =0 in (1)), then clearly X; — 0
P“-a.s. for any initial measure . Therefore A = & and
PHIX; € -] — A weakly for any u, but ||[PH[X; € -]— Ay =
2 for all kK when u has a density with respect to the Lebesgue
measure (as then PH[X; € -] has a density for any k, and is
therefore singular with respect to A).

In order for Assumption III.1 to hold for the linear-
Gaussian model, asymptotic stability is evidently not enough:
we must ensure that there is enough noise in the hidden
process so that convergence holds in total variation. It is well
known that controllability is necessary and sufficient for the
latter to be the case. In the linear-Gaussian case, our general
Theorem II1.3 therefore reduces to the following result:

Corollary V.7. Suppose that the linear control system (3)-
(4) is asymptotically stable and controllable. Then the filter
associated to the linear-Gaussian model (1)—(2) is stable,
ie, |m —m)|ltv — 0 PT-a.s. as k — oo for any [, v, .

We now turn to the observable case, Theorem IV.2. We
have already discussed in section IV that the linear-Gaussian
model (1)—(2) is uniformly observable precisely when the
linear control system (3)—(4) is observable in the sense of
Definition I1.2. Using this and Lemma IV.4, we find that our
general Theorem IV.2 reduces to the following result:

Corollary V.8. Suppose that the linear control system (3)-
(4) is observable. Then the filter associated to the linear-
Gaussian model (1)—(2) is stable in the sense that

k—o0

HEE*E/XHBLA‘_)() Pt-a.s. when P#|(Yk)k2| <<PV|(Yk)k21'

If, in addition, the linear control system (3)—(4) is control-
lable, then this stability property holds for arbitrary U, Vv.

We conclude that the general theory developed in the
previous sections allows us to establish stability results for
the Kalman filter, in some important special cases, using
entirely probabilistic proofs. I would argue that such proofs
are much more satisfying than the original proofs which rely
on the Kalman filtering equations, as the probabilistic proofs
are “intrinsic” to the filtering problem and really elucidate the
underlying reasons for the stability of the filter. On the other
hand, the assumptions of the above Corollaries fall short of
the generality of Theorems I1.6 and II.7 (our conclusions are
also somewhat stronger, e.g., we do not require Gaussian
initial measures, but this is not a major difficulty: Theorems
I1.6 and II.7 can be strengthened along the lines of [5]).
Therefore, the Kalman filter remains an important test case
for generalizations of the theory described in this paper.

VI. TWO APPLICATIONS

The goal of this final section is to discuss some selected
applications of the theory discussed in this paper. Due to
space constraints, we are limited here to discussing two
representative applications. Of course, these are by no means

the only possible applications: indeed, the filter stability
property turns out to play a direct or indirect role in almost
every problem in which the nonlinear filter is of interest on
the infinite time horizon. Despite the brevity of this section, I
hope to convince the reader by means of these two examples
that stability properties of nonlinear filters are not only of
interest in their own right, but play a role in quite disparate
problems involving hidden Markov models.

A. The maximal accuracy problem

As our main theme has been the connection between filter
stability and systems theory, we begin with an example of
a systems-theoretic nature. Let (X;)i>0 be any stationary
Markov chain, and consider additive noise observations

YE =h(Xy) +en, (Mk)i>o are i.i.d. N(0,1). (7)

Here £ is an observation function and € denotes the strength
of the observation noise. Our basic question is: how well
can we track the hidden process on the long run when the
observation noise is small? To this end, consider the quantity

e(f) = limsup limsup E[{ f(Xi) ~ELf (%) |7, ... 1¥].
£l —00

We say that the filter achieves the maximal accuracy property
if e(f) =0 for any (square-integrable) function f. Of course,
if the observation function % is invertible, it is clear that the
maximal accuracy property should hold: indeed, in this case,
the hidden process is revealed entirely as € — 0. On the other
hand, when / is not one-to-one, it is far from obvious whether
the maximal accuracy property can be achieved.

The practical relevance of this property to an engineer
is roughly as follows. Suppose we are trying to track some
hidden process, and we are trying to improve the precision of
our tracking device. If the maximal accuracy property holds,
it makes sense to invest effort into reducing the observation
noise in the system. On the other hand, if the maximal
accuracy property does not hold, there is only so much that
can be achieved by reducing the noise: if we want to improve
precision past a certain limit, we have no choice but to
improve our detection hardware or add additional detectors
in order to obtain more informative measurements.

For linear-Gaussian models, the maximal accuracy prop-
erty was characterized in the work of Kwakernaak and Sivan
[3]. However, their proofs once again rely heavily on the
analysis of Kalman filtering equations (or rather, their dual
control counterparts) and shed little light on the maximal
accuracy problem for more general hidden Markov models.
On the other hand, [27] gives a very general measure-
theoretic characterization of the maximal accuracy property.

Perhaps most interesting is the special case where the
hidden process X takes values in a finite state space, which
we presently describe. Let (X;)r>0 be a stationary, finite
state Markov chain with invariant measure A, and let the
observations (Y)i> be as in (7). Without loss of generality,
we assume that A has positive mass at each point. By a
standard argument, we can extend the stationary measure P
in a canonical fashion such that the hidden process is defined



also for negative times (X )rcz. Moreover, as it < A for any
U by assumption, we can extend P* to the the two-sided
process (Xi)kez also by setting dPH = %(Xo)dPl.

Definition VI.1. A finite state hidden Markov model with
additive noise observations (7) is called reconstructible if

P hx))eco = PV l(h(x))co iMplies p = v.

Definition VLI.2. A finite state hidden Markov model with
additive noise observations (7) is said to satisfy the graph
coloring condition if the following hold:
1) If i # j and P[Xp i = j|Xx = i] > 0, then (i) # h(j).
2) If i # j # k and both P[X;; = j|Xx =i] > 0 and
P[X;11 = k|Xx =] > 0, then h(j) # h(k).

Evidently reconstructibility is a sort of time-reversed ob-
servability property. The graph coloring condition is easily
visualised if we draw the transition graph of the hidden
process X and color each vertex according to the value of A
at that point. We now obtain the following result.

Theorem VI.3. The finite state hidden Markov model with
additive noise observations (7) achieves the maximal accu-
racy property if and only if the model is reconstructible and
satisfies the graph coloring condition.

The proof of this odd result is given in [27] (in continuous
time, but the proof is easily adapted to the discrete time
setting). As one might imagine, the observability Theorem
IV.2 plays a key role in establishing the result. One surprising
observation is that, unlike in the case of filter stability, the
necessary and sufficient condition for the maximal accuracy
property in the finite state case is quite different in nature
than the necessary and sufficient condition for the linear-
Gaussian case. We refer to [27] for further discussion.

B. Uniform approximation of nonlinear filters

In the introduction, we explained the importance of the
filter stability property as an issue of robustness: as the initial
measure can typically not be estimated, there is no point in
computing the filter unless it is robust to misspecification of
the initial measure. However, in practice, other elements of
the model, such as the transition probabilities of the hidden
process or the observation structure, must also be calibrated
to observed data. Though good statistical procedures exist to
estimate these quantities, ultimately some small amount of
model misspecification is inevitable. Moreover, in practice,
we cannot compute the filter exactly and must therefore make
numerical approximations. The effect of these errors on the
performance of the filter in the long run is far from clear.

That an unfortunate choice of filter approximation can
have disasterous consequences is illustrated in Figure 2. For
simplicity, we have chosen a linear-Gaussian example where
the filter can be computed exactly using the Kalman filtering
equations. We now compare the exact filter with two different
types of Monte Carlo approximations of the nonlinear filter
using N particles.’ Evidently one of the algorithms performs

SSIS stands for Sequential Importance Sampling, R stands for Resam-
pling. The precise details of these algorithms are irrelevant to the present
discussion. See [28], for example, and the references therein.
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Fig. 2. SIS (green plot) and SIS-R (blue plot) Monte Carlo approximations,
each using N = 50 particles, of the Kalman filter conditional mean (red plot)
for the model X; | = 0.9X) + &, Y = X; + 1. Both SIS and SIS-R converge
to the exact filter as N — oo, but only SIS-R converges uniformly in time.

extremely poorly, while the other performs extremely well.
Nonetheless, it is easy to prove that both algorithms converge
to the exact filter as N — o! Thus a naive convergence
analysis gives us very little insight into the performance of
filter approximations. However, Figure 2 suggests that we
are asking the wrong question: note that the “bad” algorithm
initially has small error, but the error accumulates over
time, while the “good” algorithm has an approximation error
which is independent of how long the algorithm has been
running. The interesting question is therefore not whether an
approximation simply converges, but whether it converges
uniformly in time. This is a much more delicate issue.

Uniform approximation of nonlinear filters is known to be
closely related to the filter stability property. This has been
investigated, e.g., in [29], where even quantitative results are
given. However, almost all results in the literature have been
restricted to highly unrealistic assumptions. For example, the
results of [29] rely on a uniform contraction property of the
Markov kernel of the hidden process, which is almost never
satisfied in applications. In contrast, using Theorem II1.3 we
can give a very general, albeit inherently qualitative, uniform
approximation result for nonlinear filters.

To this end, we introduce a sequence (7))o of filter
approximations which are to converge to the exact filter
(M )k>0 as N — oo (for example, N could denote the number
of particles used for Monte Carlo approximation, or 1/N
could denote the degree of model misspecification). We
further assume that the approximate filters are of recursive
type: that is, Y, = FN[1),Yi 1, 0], where FV is a
suitably defined functional and (@ )g>; is an i.i.d. sequence
that is independent of (¥;)x>o (the latter is needed to provide
the additional randomness in Monte Carlo based approxima-
tions). It is sensible to consider approximations of recursive
type, as it is well known that the filter itself can be computed
in a recursive fashion: 7| = F[m, Y1 1], where F is defined
by the usual prediction/Bayes update formula. The recursive
structure guarantees that both (X, 7 )r>o and (Xk,ﬂf(v k>0
are (measure-valued) Markov chains with transition kernels
M and NV, respectively. Our general result now states that



if MY — I in a suitable sense, and under the conditions
of Theorem III.3, filter approximations of recursive type
converge to the exact filter uniformly in a time average sense.

Theorem VI1.4. Suppose that the following hold:

1) Assumptions II1.1 and II1.2 are in force.

2) MY =1 as N — oo uniformly on compacts.

3) The family {E[r)] : k,N > 1} is tight.
Then the filter approximation satisfies

lim sup E

| A
= T — || =0
Jim_sup Tkglllk I ,

i.e., the approximation converges uniformly in time average.

The proof of this result, which is based on a technique
developed by Budhiraja and Kushner [30], is given in [31].
We refer to [31] for a more precise statement and discussion
of the requisite assumptions. Let us note, however, that the
filter stability result of Theorem III.3 is a key ingredient that
allows us to obtain a result at this level of generality.

The main message of Theorem VI.4 is that under the
assumptions needed for the filter stability Theorem III.3,
almost any filter approximation of recursive type which con-
verges in one time step to the exact filter will also converge
uniformly in time. The setting is sufficiently general that one
can consider both model misspecification and Monte Carlo
approximations (or other numerical algorithms) within the
same framework. In practice, the most difficult assumption
to check is the (essentially technical) tightness assumption; it
means, roughly speaking, that we must ensure that no mass
can be “lost to infinity”. For the case of SIS-R Monte Carlo
approximations, several sufficient conditions for tightness are
given in [31, section 4]. The SIS algorithm (cf. Figure 2), on
the other hand, is not of recursive type in the sense required
here: evidently the recursive nature is really essential in order
to obtain useful filter approximations.

Finally, let us note that Theorem VI.4 holds only in the
ergodic setting (Assumption III.1). Empirically, it seems that
the filter can be approximated uniformly in time even in
the absence of ergodicity if the model is sufficiently observ-
able. No theoretical results to date support this observation,
however, and the behavior of filter approximations in the
nonergodic case therefore still remains a mystery.
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