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Abstract

Let us say a graph G has “tree-chromatic number” at most k if it admits a tree-decomposition
(T, (Xt : t ∈ V (T ))) such that G[Xt] has chromatic number at most k for each t ∈ V (T ). This seems
to be a new concept, and this paper is a collection of observations on the topic. In particular we show
that there are graphs with tree-chromatic number two and with arbitrarily large chromatic number;
and for all ℓ ≥ 4, every graph with no triangle and with no induced cycle of length more than ℓ has
tree-chromatic number at most ℓ − 2.



1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges. If G is a graph and X ⊆ V (G),
we denote by G[X] the subgraph of G induced on X. The chromatic number of G is denoted by
χ(G), and for X ⊆ V (G), we write χ(X) for χ(G[X]) when there is no danger of ambiguity.

A tree-decomposition of a graph G is a pair (T, (Xt : t ∈ V (T ))), where T is a tree and (Xt : t ∈
V (T )) is a family of subsets of V (G), satisfying:

• for each v ∈ V (G) there exists t ∈ V (T ) with v ∈ Xt; and for every edge uv of G there exists
t ∈ V (T ) with u, v ∈ Xt

• for each v ∈ V (G), if v ∈ Xt ∩ Xt′′ for some t, t′′ ∈ V (T ), and t′ belongs to the path of T
between t, t′′ then v ∈ Xt′ .

The width of a tree-decomposition (T, (Xt : t ∈ V (T ))) is the maximum of |Xt| − 1 over all t ∈
V (T ), and the tree-width of G is the minimum width of a tree-decomposition of G. Tree-width was
introduced in [4] (and independently discovered in [7]), and has been the subject of a great deal of
study.

In this paper, we focus on a different aspect of tree-decompositions. Let us say the chromatic
number of a tree-decomposition (T, (Xt : t ∈ V (T ))) is the maximum of χ(Xt) over all t ∈ V (T ); and
G has tree-chromatic number at most k if it admits a tree-decomposition with chromatic number at
most k. Let us denote the tree-chromatic number of G by Υ(G). This seems to be a new concept,
and we begin with some easy observations.

Evidently Υ(G) ≤ χ(G), and if ω(G) denotes the size of the largest clique of G, then ω(G) ≤ Υ(G)
(because if Z is a clique of G and (T, (Xt : t ∈ V (T ))) is a tree-decomposition of G, then there exists
t ∈ V (T ) with Z ⊆ Xt, as is easily seen.) If H is an induced subgraph of G then Υ(H) ≤ Υ(G),
but unlike tree-width, tree-chromatic number may increase when taking minors. For instance, let G
be the graph obtained from the complete graph Kn by subdividing every edge once; then χ(G) = 2,
and so Υ(G) = 2 (take the tree-decomposition using a one-vertex tree), and yet G contains Kn as a
minor, and Υ(Kn) = n.

For a graph G, how can we prove that Υ(G) is large? Here is one way. A separation of G is a
pair (A,B) of subsets of V (G) such that A ∪ B = V (G) and there is no edge between A \ B and
B \ A.

1.1 For every graph G, there is a separation (A,B) of G such that χ(A ∩ B) ≤ Υ(G) and

χ(A \ B), χ(B \ A) ≥ χ(G) − Υ(G).

Proof. Let (T, (Xt : t ∈ V (T ))) be a tree-decomposition of G with chromatic number Υ(G). For
any subtree T ′ of T we denote the union of the sets Xt (t ∈ V (T ′)) by X(T ′). Let t0 ∈ V (T ), let
t1, . . . , tk be the vertices of T adjacent to t0, and let T1, . . . , Tk be the components of T \t0 containing
t1, . . . , tk respectively. For 1 ≤ i ≤ k let Yi = X(Ti) \ Xt0 . Since there are no edges between Yi and
Yj for 1 ≤ i < j ≤ k, it follows that χ(Y1∪· · ·∪Yk) is the maximum of the numbers χ(Y1), . . . , χ(Yk);
and since χ(G) ≤ χ(Xt0) + χ(Y1 ∪ · · · ∪ Yk), we deduce that there exists i with 1 ≤ i ≤ k such that
χ(Yi) ≥ χ(G) − χ(Xt0) ≥ χ(G) − Υ(G).

Suppose that there are two such values of i, say i = 1 and i = 2. Then (Y1∪Xt0 , Y2∪· · ·∪Yk∪Xt0)
is a separation of G satisfying the theorem. So we may assume that for each choice of t0 ∈ V (T )
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there is a unique component T ′ of T \ t0 with χ(X(T ′) \Xt0) ≥ χ(G) − Υ(G). For each t0, let f(t0)
be the neighbour of t0 that belongs to the component T ′ of T \ t0 just described. Since T has more
vertices than edges, there exist adjacent s, t ∈ V (T ) such that f(s) = t and f(t) = s. Let S′, T ′ be
the components of T \ e (where e is the edge st). Then (X(S′),X(T ′)) is a separation satisfying the
theorem. This proves 1.1.

It follows from 1.1 that the graphs from Erdős’s random construction [2] of graphs with large
chromatic number and large girth also have large tree-chromatic number (with high probability). It
does not seem obvious that there is any graph with large chromatic number and small tree-chromatic
number, but here is a construction to show that (apply it to a graph G with large chromatic number).

1.2 Let G be a graph with vertex set {v1, . . . , vn} say, and make a graph H as follows. The vertex
set of H is E(G), and an edge vivj of G (where i < j) and an edge vhvk of G (where h < k) are
adjacent in H if either h = j or i = k. Then

• H is triangle-free;

• H admits a tree-decomposition (T, (Xt : t ∈ V (T ))) of chromatic number two, such that T is a
path;

• χ(H) ≥ log(χ(G)); and

•
( χ(H)

⌊
χ(H)

2
⌋

)

≤ χ(G), and so χ(H) ≤ log(χ(G)) + 1
2 log log(χ(G)) + 1

2 log(π/2) + o(1).

Proof. For the first claim, let vavb, vcvd, vevf be edges of G, where a < b and c < d and e < f , and
suppose that these three edges are pairwise adjacent vertices of H. We may assume that a ≤ c, e,
and so a 6= d, f ; and since vavb is adjacent to vcvd in H, it follows that c = b, and similarly e = b.
But then vcvd and vevf are not adjacent in H. This proves the first claim.

For the second claim, let T be a path with vertices t1, . . . , tn in order, and for 1 ≤ i ≤ n let
Xi be the set of all edges vavb of G with a ≤ i ≤ b. We claim that (T, (Xt : t ∈ V (T ))) is a
tree-decomposition of H. To see this, observe that if pq is an edge of H then there exist a < b < c
such that p = vavb and q = vbvc (or vice versa), and then p, q ∈ Xb. Also, if h < i < j and vavb

belongs to both Xh,Xj then a ≤ h ≤ i and i ≤ j ≤ b, and so vavb ∈ Xi. Thus (T, (Xt : t ∈ V (T ))) is
a tree-decomposition. For its chromatic number, let 1 ≤ i ≤ n; then Xi is the union of two sets that
are stable in H, namely {vavb : a < i ≤ b} and {vavb : a ≤ i < b}, and so χ(Xi) ≤ 2. This proves the
second claim.

For the third, let k = χ(H) and take a k-colouring φ of H; we must show that χ(G) ≤ 2k. For
each vertex vi of G, there is no edge vhvi of G with h < i which has the same colour as an edge vivj

of G with j > i (since these two edges would be adjacent in H), and consequently there is a partition
(Ai, Bi) of {1, . . . , k} such that φ(vhvi) ∈ Bi for every edge vhvi with h < i, and φ(vivj) ∈ Ai for
every edge vivj of G with j > i. For each A ⊆ {1, . . . , k}, let FA be the set of all vi with 1 ≤ i ≤ n
such that Ai = A. It follows that each FA is a stable set of G; because if vi, vj ∈ FA are adjacent in
G and i < j, then φ(vivj) ∈ Ai = A and φ(vivj) ∈ Bj = {1, . . . , k} \ A, a contradiction. This proves
that V (G) is the union of 2k stable sets, and so χ(H) ≥ log(χ(G)).
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For the fourth assertion (thanks to Alex Scott for this argument), let k = χ(G), take a k-colouring
φ of G, and choose an integer s minimum such that

(

s

⌊ s
2⌋

)

≥ k.

Spencer [9] observed that

s = log(k) +
1

2
log log(k) +

1

2
log(π/2) + o(1),

and proved that there is a collection (A1, B1), . . . , (As, Bs) of partitions of {1, . . . , k} such that for all
distinct x, y ∈ {1, . . . , k}, there exists i with 1 ≤ i ≤ s such that x ∈ Ai and y ∈ Bi. For 1 ≤ i ≤ s,
let Fi be the set of all edges vavb of G with a < b such that φ(va) ∈ Ai and φ(vb) ∈ Bi. Then
F1 ∪ · · · ∪Fs = E(G), because for every edge vavb of G with a < b, φ(va) 6= φ(vb), and so there exists
i ∈ {1, . . . , s} with φ(va) ∈ Ai and φ(vb) ∈ Bi and hence with vavb ∈ Fi. Moreover each Fi is a stable
set of H; because if vavb and vcvd both belong to Fi, where a < b and c < d, then φ(va), φ(vc) ∈ Ai

and φ(vb), φ(vd) ∈ Bi, and so a, c 6= b, d, and consequently vavb and vcvd are not adjacent in H. This
proves that χ(H) ≤ s. This proves the fourth assertion, and so completes the proof of 1.2.

A tree-decomposition (T, (Xt : t ∈ V (T ))) is a path-decomposition if T is a path. Let us say that
G has path-chromatic number at most k if it admits a path-decomposition with chromatic number at
most k. The construction of 1.2 yields a graph with large χ and with small path-chromatic number.
To complete the picture, we should try to find an example with arbitrarily large path-chromatic
number and bounded tree-chromatic number, but so far I have not been able to do this. Here is an
example that I think works, but I am unable to prove it.

Take a uniform binary tree T of depth d, with root t0. If s, t ∈ V (T ), s, t are incomparable if
neither is an ancestor of the other. If s, t ∈ V (T ), the three paths of T between s and t, between
s and t0, and between t and t0, have a unique common vertex, denoted by sup(s, t). Let H be the
graph with vertex set all incomparable pairs (s, t) of vertices of T , and we say (s, t) and (p, q) are
adjacent in H if either sup(s, t) is one of p, q, or sup(p, q) is one of s, t. It is easy to check that for
d large, this graph H has large chromatic number, and tree-chromatic number two, and I suspect
that it has large path-chromatic number, but have not found a proof. Indeed, in an earlier version
of this paper I asked whether for all G the path-chromatic number and tree-chromatic number of G
are equal; but this has now been disproved by Huynh and Kim [5].

2 Uncle trees

The remainder of the paper is directed to proving that graphs with no long induced cycle and no
triangle have bounded tree-chromatic number, but for that we use a lemma that might be of interest
in its own right. We prove the lemma in this section.

Let T be a tree, and let t0 ∈ V (T ) be a distinguished vertex, called the root. If s, t ∈ V (T ), t is
an ancestor of s if t lies in the path of T between s and t0; and t is a parent of s if t is an ancestor
of s and s, t are adjacent; and in this case, s is a child of t. Thus every vertex has a unique parent
except t0. For each vertex t of T , choose a linear order of its children; if s, s′ are children of t, and
s precedes s′ in the selected linear order, we say that s is older than s′. We call T , together with t0
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and all the linear orders, an ordered tree. The elder line P of an ordered tree is the maximal path
of T with one end t0 with the property that if a vertex v of P has a child, then the eldest child of
v also belongs to P . (In other words, we start with t0, and keep choosing the eldest child until the
process stops.) Given an ordered tree, and u, v ∈ V (T ), we say that u is an uncle of v if u 6= t0, and
there is a child u′ of the parent of u that is older than u and that is an ancestor of v.

Now let G be a graph. An uncle tree in G is an ordered tree T , such that T is a spanning tree of
G, and for every edge uv of G that is not an edge of T , one of u, v is an uncle of the other. Thus, if
T is an uncle tree in G, then every path of T with one end t0 is an induced path of G. We need:

2.1 For every connected graph G and vertex t0, there is an uncle tree in G with root t0.

Proof. For inductive purposes, it is helpful to prove a somewhat stronger statement: that for every
induced path P of G with one end t0, there is an uncle tree such that P is a subpath of its elder line.
We prove this by induction on 2|V (G)| − |V (P )|. Let P have vertices p1- · · · -pk say, where p1 = t0.
If some neighbour v of pk not in V (P ) is nonadjacent to p1, . . . , pk−1, then we add v to P , and the
result follows from the inductive hypothesis applied to G and this longer path. Thus we may assume
that:

(1) Every neighbour of pk not in V (P ) is adjacent to one of p1, . . . , pk−1.

If k = 1 then (1) implies that t0 has degree zero, and so V (G) = {t0} and the result is trivial.
Thus we may assume that k ≥ 2.

(2) G \ pk is connected.

For if not, let C1, C2 be distinct components of G\pk, where p1 ∈ V (C1). It follows that p1, . . . , pk−1 ∈
V (C1), and so by (1), every neighbour of pk belongs to C1. Since G is connected, pk has a neighbour
in C2, a contradiction. This proves (2).

By the inductive hypothesis applied to G \ pk and the path p1, . . . , pk−1, there is an uncle tree T
of G \ pk with root t0 such that p1- · · · -pk−1 is a subpath of its elder line. Let us add pk to T , and
the edge pk−1pk, and make pk the eldest child of pk−1 (leaving the linear orders of the ordered tree
otherwise unchanged). We thus obtain an ordered tree T ′, and P is a subpath of its elder line. We
must check that it is an uncle tree of G. To do so it suffices to check that for every edge upk of G
with u 6= pk−1, u is an uncle of pk. Thus, let upk ∈ E(G), where u 6= pk−1. It follows that u /∈ V (P )
since P is induced. From (1), u is adjacent in G to some pi where i < k. If the edge upi is an edge
of T then u is indeed an uncle of pk as required, so we assume not; and since T is an uncle tree of
G \ pk, it follows that one of u, pi is an uncle of the other. Suppose first that pi is an uncle of u.
Then i ≥ 2, and there is a child q of pi−1, older than pi, such that q is an ancestor of u. But this is
impossible since pi is the eldest child of pi−1. So u is an uncle of pi. Hence the parent of u is one of
p1, . . . , pi−1, and so u is also an uncle of pk as required. This proves 2.1.

Another proof, perhaps more intuitive, is as follows: start from t0, and follow the procedure
to grow a depth-first tree, subject to the condition that every path of the tree with one end t0 is
induced. Thus, we begin with a maximal induced path p1- · · · -pk say, where p1 = t0, and then back
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up the path to the largest value of i such that pi has a neighbour v not in the path and which is
nonadjacent to p1, . . . , pi−1, and add v and the edge vpi to the tree. If v has a neighbour not yet in
the tree and nonadjacent to p1, . . . , pi, we add the corresponding edge at v to the tree, and otherwise
back down the tree again to the next vertex where growth is possible. And so on; the result is an
uncle tree.

3 Long holes

A hole in a graph G is an induced subgraph which is a cycle of length at least four. In 1985,
Gyárfás [3] made the conjecture that

3.1 Conjecture: For every integer ℓ there exists n such that every graph with no hole of length
> ℓ and no triangle has chromatic number at most n.

(Since the paper was submitted for publication, we have proved this conjecture and stronger state-
ments, in joint work with Maria Chudnovsky and Alex Scott [1, 8].) Here we prove the following.
(Note that if G is triangle-free then we may set d = 1.)

3.2 For all integers d ≥ 1 and ℓ ≥ 4, if G is a graph with no hole of length > ℓ, and such that for
every vertex v, the subgraph induced on the set of neighbours of v has chromatic number at most d,
then G has tree-chromatic number at most d(ℓ − 2).

This follows immediately from the following. (A referee of this paper brought to my attention
the paper [6] in which a very slightly weaker version of the same result was proved, independently.)

3.3 For all integers ℓ ≥ 4, if G is a graph with no hole of length > ℓ, then G admits a tree-
decomposition (T, (Xt : t ∈ V (T ))) such that for each t ∈ V (T ), there is an induced path Qt of G[Xt]
with at most ℓ−2 vertices, such that every vertex in Xt either belongs to Qt or is adjacent to a vertex
in Qt.

Proof. We may assume that G is connected. Choose a vertex t0; by 2.1 there is an uncle tree T
in G with root t0. For each t ∈ V (T ), let Pt be the subpath of T between t and t0, and let Qt be
the maximal subpath of Pt with one end t and with length at most ℓ− 3. (Thus Qt has length ℓ− 3
unless Pt has length less than l− 3, and in that case Qt = Pt.) If s, t ∈ V (T ), we say that s is junior
to t if neither is an ancestor of the other, and there exists w ∈ V (T ), and distinct children s′, t′ of
w, such that s′ is an ancestor of s, and t′ is an ancestor of t, and t′ is older than s′. (It follows easily
that for every two vertices s, t, if neither is an ancestor of the other then one is junior to the other.)
For t ∈ V (T ), let Xt be the set of all vertices v of G such that either

• v ∈ V (Qt), or

• v is a child of t in T , or

• v is junior to t and is adjacent in G to a vertex in Qt.

We claim that (T, (Xt : t ∈ V (T ))) is a tree-decomposition of G. To show this we must check several
things. We start by verifying the first condition in the definition of “tree-decomposition”.
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(1) For each v ∈ V (G) there exists t ∈ V (T ) with v ∈ Xt; and for every edge uv of G there ex-
ists t ∈ V (T ) with u, v ∈ Xt.

The first statement is clear, because v ∈ Xv. For the second, let uv be an edge of G. If uv ∈ E(T ),
and u is a parent of v, then u, v ∈ Xu as required, so we may assume that uv /∈ E(T ); and hence we
may assume that u is an uncle of v, and so is junior to v. Since uv is an edge it follows that u ∈ Xv

as required. This proves (1).

To verify the second condition in the definition of “tree-decomposition”, it is easier to break it
into two parts.

(2) Let r, s, t ∈ V (T ), where r is an ancestor of t and s lies on the path of T between r, t; then
Xr ∩ Xt ⊆ Xs.

We may assume that r, s, t are all different. Let v ∈ Xr ∩ Xt. Suppose first that there is a path
P of T with one end t0 that contains all of r, s, t, v. Since v ∈ Xr, and is not junior to r (because
v ∈ P ), it follows that v ∈ Q+

r , where Q+
r denotes the subpath of P consisting of Qr together with

the neighbour of r in P that is not in Qr. Consequently v is not a child of t in T , and since v ∈ Xt

it follows that v ∈ Qt; and so
v ∈ Q+

r ∩ Qt ⊆ Qs ⊆ Xs

as required. Thus we may assume that there is no such path P . In particular, v does not belong to
Pt, and is not adjacent in T to t, and so v is junior to t and has a neighbour in Qt.

We claim that v is junior to s; for if v is junior to r then v is junior to s, and otherwise, since
v ∈ Xr, it follows that v is a child of r in T , and therefore junior to s since v is junior to t. This
proves that v is junior to s. Moreover, v has a neighbour in Qr. Suppose that v has no neighbour
in Qs. Now Qr, Qs, Qt are all subpaths of Pt, and v has a neighbour in Qr and a neighbour in
Qt, and so has neighbours in V (Qr) \ V (Qs) and in V (Qt) \ V (Qs). Hence there is a subpath of
Pt between two neighbours of v that includes Qs; choose a minimal such subpath P ′ say. Since
G has no hole of length > ℓ, it follows that P ′ has length at most ℓ − 2, and so Qs has length at
most ℓ−4, a contradiction. So v has a neighbour in Qs and hence v ∈ Xs as required. This proves (2).

(3) Let r, s, t ∈ V (T ), where s lies on the path of T between r, t; then Xr ∩ Xt ⊆ Xs.

By (2) we may assume that neither of r, t is an ancestor of the other. Let v ∈ Xr ∩ Xt. Choose
w ∈ V (T ) with distinct children r′, t′ of w such that r′ is an ancestor of r and t′ is an ancestor of t.
Then s belongs to either the path of T between r, w or the path of T between t, w, and so by (2), if
v ∈ Xw then v ∈ Xs; so we may assume that v /∈ Xw, and hence we may assume that s = w. We
may assume that t′ is older than r′ from the symmetry. If v belongs to Pt, then v is not junior to r,
and so v belongs to Qr, and hence v ∈ Qr ∩ Pt ⊆ Qs as required. We may assume then that v /∈ Pt.
Since v ∈ Xr, it follows that v is not a child of t in T , and so v is junior to t, and has a neighbour,
say x, in Qt. It follows that either v is adjacent in T to some vertex of Qt, or v is junior to x, and in
the latter case v is an uncle of x since T is an uncle tree. Thus both cases v is a child in T of some
vertex y of Pt. Thus v ∈ Xy. Since v ∈ Xr, it follows that y belongs to Ps, and since v ∈ Xy ∩ Xt,
and s lies on the path of T between y, t, (2) implies that v ∈ Xs. This proves (3).

6



It follows that (T, (Xt : t ∈ V (T ))) is a tree-decomposition of G, and this completes the proof of
3.3.
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