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Abstract

Let us say a graph G has “tree-chromatic number” at most k if it admits a tree-decomposition
(T, (X; : t € V(T))) such that G[X;] has chromatic number at most k for each ¢t € V(7). This seems
to be a new concept, and this paper is a collection of observations on the topic. In particular we show
that there are graphs with tree-chromatic number two and with arbitrarily large chromatic number;
and for all £ > 4, every graph with no triangle and with no induced cycle of length more than ¢ has
tree-chromatic number at most ¢ — 2.



1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges. If G is a graph and X C V(G),
we denote by G[X] the subgraph of G induced on X. The chromatic number of G is denoted by
X(G), and for X C V(G), we write x(X) for x(G[X]) when there is no danger of ambiguity.

A tree-decomposition of a graph G is a pair (T, (X, :t € V(T))), where T is a tree and (X; : ¢t €
V(T)) is a family of subsets of V(G), satisfying:

e for each v € V(G) there exists t € V(T') with v € X;; and for every edge uv of G there exists
t € V(T') with u,v € Xy

e for each v € V(G), if v € Xy N Xy for some t,t" € V(T), and t' belongs to the path of T
between t,t” then v € Xy .

The width of a tree-decomposition (T',(X; : t € V(T))) is the maximum of |X;| — 1 over all ¢ €
V(T), and the tree-width of G is the minimum width of a tree-decomposition of G. Tree-width was
introduced in [4] (and independently discovered in [7]), and has been the subject of a great deal of
study.

In this paper, we focus on a different aspect of tree-decompositions. Let us say the chromatic
number of a tree-decomposition (7', (X; : t € V(T))) is the maximum of x(X;) over all ¢t € V(T'); and
G has tree-chromatic number at most k if it admits a tree-decomposition with chromatic number at
most k. Let us denote the tree-chromatic number of G by Y(G). This seems to be a new concept,
and we begin with some easy observations.

Evidently T(G) < x(G), and if w(G) denotes the size of the largest clique of G, then w(G) < Y(G)
(because if Z is a clique of G and (T, (X; : t € V(T))) is a tree-decomposition of G, then there exists
t € V(T) with Z C Xy, as is easily seen.) If H is an induced subgraph of G then Y(H) < T(G),
but unlike tree-width, tree-chromatic number may increase when taking minors. For instance, let G
be the graph obtained from the complete graph K, by subdividing every edge once; then x(G) = 2,
and so T(G) = 2 (take the tree-decomposition using a one-vertex tree), and yet G contains K,, as a
minor, and Y(K,,) = n.

For a graph G, how can we prove that T(G) is large? Here is one way. A separation of G is a
pair (A, B) of subsets of V(G) such that AU B = V(G) and there is no edge between A\ B and
B\ A.

1.1 For every graph G, there is a separation (A, B) of G such that x(AN B) < Y(G) and
X(A\ B),x(B\ 4) = x(G) = T(G).

Proof. Let (T,(X;:t € V(T))) be a tree-decomposition of G with chromatic number Y(G). For
any subtree 7" of T we denote the union of the sets X; (¢t € V(T")) by X(T"). Let to € V(T), let
t1,...,tx be the vertices of T adjacent to ¢y, and let T1, ..., T} be the components of T'\ ty containing
t1,...,t respectively. For 1 <i <k let Y; = X(T;) \ Xy,. Since there are no edges between Y; and
Yj for 1 <i < j <k, it follows that x(Y1U---UY}) is the maximum of the numbers x (Y1), ..., x(Y%);
and since x(G) < x(X¢,) + x(Y1 U---UYy), we deduce that there exists ¢ with 1 < ¢ < k such that
YY) > x(G) — x(Xi) = X(G) = T(G).

Suppose that there are two such values of ¢, say ¢ = 1 and i = 2. Then (Y1UX,,, YoU---UY,UXy,)
is a separation of G satisfying the theorem. So we may assume that for each choice of ty € V(T



there is a unique component 7" of T'\ to with x(X(7") \ X¢,) > x(G) — T(G). For each to, let f(to)
be the neighbour of ¢y that belongs to the component 7" of T'\ ( just described. Since T' has more
vertices than edges, there exist adjacent s,t € V(T') such that f(s) =t and f(t) = s. Let S',T" be
the components of 7'\ e (where e is the edge st). Then (X (S"), X (7")) is a separation satisfying the
theorem. This proves 1.1. |

It follows from 1.1 that the graphs from Erdds’s random construction [2] of graphs with large
chromatic number and large girth also have large tree-chromatic number (with high probability). It
does not seem obvious that there is any graph with large chromatic number and small tree-chromatic
number, but here is a construction to show that (apply it to a graph G with large chromatic number).

1.2 Let G be a graph with vertex set {v1,...,v,} say, and make a graph H as follows. The vertex
set of H is E(G), and an edge viv; of G (where i < j) and an edge vpvi, of G (where h < k) are
adjacent in H if either h = j ori =k. Then

o H is triangle-free;

e H admits a tree-decomposition (T, (X; :t € V(T))) of chromatic number two, such that T is a
path;

o X(H) >log(x(G)); and

o (M) < X(6). and so x(H) < log(x(G)) + } loglog(x(G)) + } log(r/2) +o(1).

Proof. For the first claim, let v vy, vcvg, Vv be edges of G, where a < b and ¢ < d and e < f, and
suppose that these three edges are pairwise adjacent vertices of H. We may assume that a < ¢, e,
and so a # d, f; and since v,y is adjacent to v.vg in H, it follows that ¢ = b, and similarly e = b.
But then v.vg and v.vy are not adjacent in H. This proves the first claim.

For the second claim, let 7" be a path with vertices t1,...,t, in order, and for 1 < i < n let
X; be the set of all edges v,vp of G with a < ¢ < b. We claim that (7, (X; : t € V(T))) is a
tree-decomposition of H. To see this, observe that if pg is an edge of H then there exist a < b < ¢
such that p = v,v, and ¢ = vyv. (or vice versa), and then p,q € Xp. Also, if h < i < j and v,vp
belongs to both X}, X then a <h <iand i < j <b, and so v,v, € X;. Thus (T, (X; :t € V(T))) is
a tree-decomposition. For its chromatic number, let 1 < i < n; then X; is the union of two sets that
are stable in H, namely {vavp : @ < < b} and {v,vp : @ < i < b}, and so x(X;) < 2. This proves the
second claim.

For the third, let k = x(H) and take a k-colouring ¢ of H; we must show that x(G) < 2*. For
each vertex v; of G, there is no edge vjv; of G with h < ¢ which has the same colour as an edge v;v;
of G with j > i (since these two edges would be adjacent in H), and consequently there is a partition
(A, B;) of {1,...,k} such that ¢(vyv;) € B; for every edge vpv; with h < 4, and ¢(v;v;) € A; for
every edge v;vj of G with j > 4. For each A C {1,...,k}, let F4 be the set of all v; with 1 <i <n
such that A; = A. It follows that each F4 is a stable set of G; because if v;,v; € Fs are adjacent in
G and i < j, then ¢(viv;) € A; = A and ¢(vvj) € By = {1,...,k} \ A, a contradiction. This proves
that V(G) is the union of 2¥ stable sets, and so x(H) > log(x(G)).



For the fourth assertion (thanks to Alex Scott for this argument), let & = x(G), take a k-colouring
¢ of G, and choose an integer s minimum such that

<L§J> =k

1 1
s =log(k) + 5 loglog(k) + 5 log(m/2) + o(1),

Spencer [9] observed that

and proved that there is a collection (A4y, By),. .., (As, Bs) of partitions of {1,. .., k} such that for all
distinct z,y € {1,...,k}, there exists i with 1 <4 < s such that z € A; and y € B;. For 1 <i < s,
let F; be the set of all edges v,v, of G with a < b such that ¢(v,) € A; and ¢(vy) € B;. Then
FiU---UF; = E(G), because for every edge v,vp of G with a < b, ¢(vs) # ¢(vp), and so there exists
ie{l,...,s} with ¢(v,) € 4; and ¢(vp) € B; and hence with v,v, € F;. Moreover each Fj is a stable
set of H; because if v,v, and v.vg both belong to F;, where a < b and ¢ < d, then ¢(v,), ¢(ve) € A;
and ¢(uvp), ¢(vg) € B;, and so a,c # b, d, and consequently v,v, and v.vy are not adjacent in H. This
proves that x(H) < s. This proves the fourth assertion, and so completes the proof of 1.2. |

A tree-decomposition (T, (X; : t € V(T'))) is a path-decomposition if T is a path. Let us say that
G has path-chromatic number at most k if it admits a path-decomposition with chromatic number at
most k. The construction of 1.2 yields a graph with large x and with small path-chromatic number.
To complete the picture, we should try to find an example with arbitrarily large path-chromatic
number and bounded tree-chromatic number, but so far I have not been able to do this. Here is an
example that I think works, but I am unable to prove it.

Take a uniform binary tree T' of depth d, with root to. If s,t € V(T), s,t are incomparable if
neither is an ancestor of the other. If s,¢ € V(T), the three paths of T between s and ¢, between
s and tg, and between ¢ and t(, have a unique common vertex, denoted by sup(s,t). Let H be the
graph with vertex set all incomparable pairs (s,t) of vertices of T', and we say (s,t) and (p, q) are
adjacent in H if either sup(s,t) is one of p,q, or sup(p,q) is one of s,t. It is easy to check that for
d large, this graph H has large chromatic number, and tree-chromatic number two, and I suspect
that it has large path-chromatic number, but have not found a proof. Indeed, in an earlier version
of this paper I asked whether for all G the path-chromatic number and tree-chromatic number of G
are equal; but this has now been disproved by Huynh and Kim [5].

2 Uncle trees

The remainder of the paper is directed to proving that graphs with no long induced cycle and no
triangle have bounded tree-chromatic number, but for that we use a lemma that might be of interest
in its own right. We prove the lemma in this section.

Let T be a tree, and let ¢y € V(1) be a distinguished vertex, called the root. If s,t € V/(T), t is
an ancestor of s if ¢ lies in the path of T" between s and tg; and ¢ is a parent of s if ¢ is an ancestor
of s and s,t are adjacent; and in this case, s is a child of t. Thus every vertex has a unique parent
except to. For each vertex t of T, choose a linear order of its children; if s,s” are children of ¢, and
s precedes s’ in the selected linear order, we say that s is older than s’. We call T, together with ¢



and all the linear orders, an ordered tree. The elder line P of an ordered tree is the maximal path
of T with one end ty with the property that if a vertex v of P has a child, then the eldest child of
v also belongs to P. (In other words, we start with ¢, and keep choosing the eldest child until the
process stops.) Given an ordered tree, and u,v € V(T'), we say that u is an uncle of v if u # ty, and
there is a child u’ of the parent of u that is older than u and that is an ancestor of v.

Now let G be a graph. An uncle tree in G is an ordered tree T', such that 7T is a spanning tree of
G, and for every edge uv of G that is not an edge of T', one of u, v is an uncle of the other. Thus, if
T is an uncle tree in G, then every path of T' with one end t( is an induced path of G. We need:

2.1 For every connected graph G and vertez ty, there is an uncle tree in G with root ty.

Proof. For inductive purposes, it is helpful to prove a somewhat stronger statement: that for every
induced path P of G with one end #g, there is an uncle tree such that P is a subpath of its elder line.
We prove this by induction on 2|V (G)| — |V(P)|. Let P have vertices p;----- Dk say, where p; = to.
If some neighbour v of p; not in V(P) is nonadjacent to py,...,pr_1, then we add v to P, and the
result follows from the inductive hypothesis applied to G and this longer path. Thus we may assume
that:

(1) Every neighbour of py not in V(P) is adjacent to one of p1,...,Pk—1-

If £ = 1 then (1) implies that ¢y has degree zero, and so V(G) = {to} and the result is trivial.
Thus we may assume that k£ > 2.

(2) G\ pg is connected.

For if not, let C1, C5 be distinct components of G\px, where p; € V(C4). It follows that py,...,pp_1 €
V(Ch), and so by (1), every neighbour of py belongs to C. Since G is connected, pi has a neighbour
in C9, a contradiction. This proves (2).

By the inductive hypothesis applied to G \ pi and the path p,...,px_1, there is an uncle tree T
of G \ px with root ty such that pj----- pr_1 is a subpath of its elder line. Let us add p; to T', and
the edge pr_1pk, and make py the eldest child of py_; (leaving the linear orders of the ordered tree
otherwise unchanged). We thus obtain an ordered tree T”, and P is a subpath of its elder line. We
must check that it is an uncle tree of G. To do so it suffices to check that for every edge upy of G
with u # pg_1, u is an uncle of pg. Thus, let upy € E(G), where u # pi_1. It follows that u ¢ V(P)
since P is induced. From (1), u is adjacent in G to some p; where i < k. If the edge up; is an edge
of T then u is indeed an uncle of p; as required, so we assume not; and since 1" is an uncle tree of
G \ pg, it follows that one of u,p; is an uncle of the other. Suppose first that p; is an uncle of w.
Then ¢ > 2, and there is a child ¢ of p;_1, older than p;, such that ¢ is an ancestor of u. But this is
impossible since p; is the eldest child of p;_1. So u is an uncle of p;. Hence the parent of u is one of
P1,...,Pi—1, and so u is also an uncle of p; as required. This proves 2.1. |

Another proof, perhaps more intuitive, is as follows: start from t¢g, and follow the procedure
to grow a depth-first tree, subject to the condition that every path of the tree with one end ¢ty is
induced. Thus, we begin with a maximal induced path p;----- D say, where p; = tp, and then back



up the path to the largest value of ¢ such that p; has a neighbour v not in the path and which is
nonadjacent to p1,...,p;—1, and add v and the edge vp; to the tree. If v has a neighbour not yet in
the tree and nonadjacent to p1,...,p;, we add the corresponding edge at v to the tree, and otherwise
back down the tree again to the next vertex where growth is possible. And so on; the result is an
uncle tree.

3 Long holes

A hole in a graph G is an induced subgraph which is a cycle of length at least four. In 1985,
Gyérfés [3] made the conjecture that

3.1 Conjecture: For every integer £ there exists n such that every graph with no hole of length
> { and no triangle has chromatic number at most n.

(Since the paper was submitted for publication, we have proved this conjecture and stronger state-
ments, in joint work with Maria Chudnovsky and Alex Scott [1, 8].) Here we prove the following.
(Note that if G is triangle-free then we may set d = 1.)

3.2 For all integers d > 1 and ¢ > 4, if G is a graph with no hole of length > £, and such that for
every vertex v, the subgraph induced on the set of neighbours of v has chromatic number at most d,
then G has tree-chromatic number at most d(¢ — 2).

This follows immediately from the following. (A referee of this paper brought to my attention
the paper [6] in which a very slightly weaker version of the same result was proved, independently.)

3.3 For all integers ¢ > 4, if G is a graph with no hole of length > £, then G admits a tree-
decomposition (T, (X; : t € V(T))) such that for each t € V(T), there is an induced path Q¢ of G[X¢]
with at most £ —2 vertices, such that every vertex in Xy either belongs to Q¢ or is adjacent to a vertex

m Qt'

Proof. We may assume that G is connected. Choose a vertex tp; by 2.1 there is an uncle tree T
in G with root ty. For each t € V(T'), let P; be the subpath of T' between ¢ and tg, and let @Q; be
the maximal subpath of P, with one end ¢ and with length at most ¢ — 3. (Thus @; has length ¢ —3
unless P; has length less than [ — 3, and in that case Q; = P;.) If s,t € V(T'), we say that s is junior
to t if neither is an ancestor of the other, and there exists w € V(T), and distinct children s';¢' of
w, such that s’ is an ancestor of s, and ¢’ is an ancestor of ¢, and ¢’ is older than s’. (It follows easily
that for every two vertices s, t, if neither is an ancestor of the other then one is junior to the other.)
For t € V(T), let X; be the set of all vertices v of G such that either

e veV(Qy),or
e visachild of tin T, or
e v is junior to ¢ and is adjacent in G to a vertex in (.

We claim that (T, (X; : t € V(T'))) is a tree-decomposition of G. To show this we must check several
things. We start by verifying the first condition in the definition of “tree-decomposition”.



(1) For each v € V(QG) there exists t € V(T) with v € Xy; and for every edge wv of G there ex-
ists t € V(T) with u,v € X;.

The first statement is clear, because v € X,. For the second, let uv be an edge of G. If wv € E(T),
and u is a parent of v, then u,v € X,, as required, so we may assume that uv ¢ F(T); and hence we
may assume that u is an uncle of v, and so is junior to v. Since wv is an edge it follows that u € X,
as required. This proves (1).

To verify the second condition in the definition of “tree-decomposition”, it is easier to break it
into two parts.

(2) Let r,s,t € V(T), where r is an ancestor of t and s lies on the path of T between r,t; then
X, NX; CX,.

We may assume that r,s,t are all different. Let v € X, N X;. Suppose first that there is a path
P of T with one end ¢y that contains all of r,s,t,v. Since v € X, and is not junior to r (because
v € P), it follows that v € Q;, where Q; denotes the subpath of P consisting of @, together with
the neighbour of r in P that is not in @),. Consequently v is not a child of ¢ in 7', and since v € X}
it follows that v € Q¢; and so

'UGQ;!_mthngXs

as required. Thus we may assume that there is no such path P. In particular, v does not belong to
P;, and is not adjacent in T to ¢, and so v is junior to ¢ and has a neighbour in Q).

We claim that v is junior to s; for if v is junior to r then v is junior to s, and otherwise, since
v € X,., it follows that v is a child of r in T', and therefore junior to s since v is junior to ¢t. This
proves that v is junior to s. Moreover, v has a neighbour in @,. Suppose that v has no neighbour
in Qs. Now Q,,Qs,Q: are all subpaths of P;, and v has a neighbour in @, and a neighbour in
Q@+, and so has neighbours in V(Q,) \ V(Qs) and in V(Q;) \ V(Qs). Hence there is a subpath of
P, between two neighbours of v that includes Qs; choose a minimal such subpath P’ say. Since
G has no hole of length > /, it follows that P’ has length at most ¢ — 2, and so @, has length at
most {—4, a contradiction. So v has a neighbour in @5 and hence v € X as required. This proves (2).

(3) Let r,s,t € V(T), where s lies on the path of T between r,t; then X, N X; C X.

By (2) we may assume that neither of r,¢ is an ancestor of the other. Let v € X, N X;. Choose
w € V(T) with distinet children 7/,¢" of w such that r’ is an ancestor of r and ¢’ is an ancestor of t.
Then s belongs to either the path of T between r,w or the path of T between ¢, w, and so by (2), if
v € X, then v € Xg; so we may assume that v ¢ X,,, and hence we may assume that s = w. We
may assume that ¢’ is older than r’ from the symmetry. If v belongs to P;, then v is not junior to r,
and so v belongs to @, and hence v € @, N P, C Q; as required. We may assume then that v ¢ P,.
Since v € X, it follows that v is not a child of ¢t in T', and so v is junior to t, and has a neighbour,
say x, in ;. It follows that either v is adjacent in T' to some vertex of (¢, or v is junior to x, and in
the latter case v is an uncle of x since T is an uncle tree. Thus both cases v is a child in T" of some
vertex y of P;. Thus v € X,. Since v € X, it follows that y belongs to Ps, and since v € X, N Xy,
and s lies on the path of T between y, ¢, (2) implies that v € X. This proves (3).



It follows that (T, (X, :t € V(T))) is a tree-decomposition of G, and this completes the proof of
3.3. |
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