Some results and problems on tournament structure

Tung Nguyen ${ }^{1}$
Princeton University, Princeton, NJ 08544, USA

Alex Scott ${ }^{2}$
Mathematical Institute,
University of Oxford, Oxford OX2 6GG, UK

Paul Seymour ${ }^{1}$
Princeton University,
Princeton, NJ 08544, USA

February 24, 2023; revised May 29, 2023

[^0]
Abstract

This paper is a survey of results and problems related to the following question: is it true that if G is a tournament with sufficiently large chromatic number, then G has two vertex-disjoint subtournaments A, B, both with large chromatic number, such that all edges between them are directed from A to B ? We describe what we know about this question, and report some progress on several other related questions, on tournament colouring and domination.

1 Introduction

There is an open question of El-Zahar and Erdős [5], the following:
1.1 Problem: Is the following true? For all integers $t, c \geq 1$, there exists $d \geq 1$, such that if a graph G satisfies $\chi(G) \geq d$ and has no clique with t vertices, then there are subsets $A, B \subseteq V(G)$ with $\chi(G[A]), \chi(G[B]) \geq c$, such that there are no edges between A and B.
$(\chi(G)$ denotes the chromatic number of a graph G.) In this paper we consider an analogue of this for tournaments, and a number of related results and conjectures. (Henceforth we use "Conjecture" for open questions: we do not intend to imply that we believe them to be true.)

The chromatic number $\chi(G)$ of a tournament G is the minimum k such that $V(G)$ is the union of k subsets A_{1}, \ldots, A_{k} that each induce an acyclic subtournament. If G is a tournament and $A \subseteq V(G)$, we denote by $G[A]$ the subtournament with vertex set A, and write $\chi(A)$ for $\chi(G[A])$. If A, B are disjoint, and there is no edge with tail in B and head in A, we say A is complete to B, and B is complete from A, and write $A \Rightarrow B$, and call (A, B) a complete pair.

In [9] we made the following conjecture, which implies 1.1:
1.2 Conjecture: For all $c \geq 0$ there exists $d \geq 0$ such that if G is a tournament with $\chi(G) \geq d$, there is a complete pair (A, B) of G such that $\chi(A), \chi(B) \geq c$.

This is very strong, and may well be false. Indeed, here are three points that argue against its truth:

- We can show it implies 1.1, but we have not been able to show the converse; it seems to be strictly stronger.
- In 1.1 we exclude large cliques, but in 1.2 we exclude nothing.
- For several years it was an open conjecture even to show that a tournament with sufficiently large chromatic number has a vertex whose out-neighbour set has large chromatic number; and the proof of this is highly non-trivial.

But 1.2 still survives, and we have some partial results in its favour.
First, a cyclic triangle is a tournament with three vertices, each with out-degree one; and we use the same name for the vertex set of such a tournament. Thus, a tournament is transitive if and only if it contains no cyclic triangle. In defense of 1.2 , we will prove:
1.3 For all $c \geq 0$ there exists $d \geq 0$ such that if G is a tournament with $\chi(G) \geq d$, there is a complete pair (A, B) of G such that A is a cyclic triangle and $\chi(B) \geq c$.

The domination number $\operatorname{dom}(G)$ of a tournament G is the size of the smallest set X of vertices such that every vertex in $V(G) \backslash X$ is adjacent from a vertex in X; it is always at most the chromatic number. A second result in defense of 1.2 is that it is true for tournaments with sufficiently large domination number. More exactly, we will show:
1.4 For every integer $c \geq 1$, there exists $d \geq 1$ such that if G is a tournament with $\operatorname{dom}(G) \geq d$ then there is a complete pair (A, B) such that $\chi(A), \chi(B) \geq c$.

This area seems to be relatively unexplored, and yet full of interesting, significant, interconnected questions. Indeed, our attempts to decide 1.2 , while unavailing, led to progress on several other tournament problems, for instance:

- A rebel is a tournament H such that all H-free tournaments have bounded domination number. (A tournament is H-free if no subtournament is isomorphic to H.) Until now there was only one tournament with chromatic number more than two that was known to be a rebel, and the proof that it was a rebel was difficult [3]. We give a much more general and much simpler construction of rebels.
- A hero is a tournament H such that all H-free tournaments have bounded chromatic number. It was already known which tournament are heroes [2], but our methods give a simpler proof of this result.
- A legend is an ordered tournament that is contained in every ordered tournament with sufficiently large domination number. We will find all legends.
- Harutyunyan, Le, Thomassé, and $\mathrm{Wu}[7]$ proposed two open questions about domination. We will show that one implies the other.
- We give a new class of tournaments ("crossing tournaments") with surprising properties, that provided counterexamples to some of our wilder dreams.

This paper is a survey of what we know about 1.2 , and its connections with some other questions.

2 The connection with the problem of El-Zahar and Erdős

First, let us see that 1.2 implies 1.1. There is a standard technique to go between graphs and tournaments, as follows. Let T be a tournament, and choose a numbering v_{1}, \ldots, v_{n} of its vertex set. Let G be the graph with vertex set $V(T)$, in which for $1 \leq i<j \leq n$, the pair v_{i}, v_{j} are adjacent in G if and only if v_{i} is adjacent from v_{j} in G. We call G the backedge graph of T under the given numbering. The construction can evidently be reversed: given a graph G and a numbering, there is a tournament T such that G is the backedge graph of T under the numbering.

We begin with a standard result:
2.1 Let G be the backedge graph of a tournament T under the numbering v_{1}, \ldots, v_{n}. Let $\omega(G)$ be the size of the largest clique of G. Then

$$
\chi(T) \leq \chi(G) \leq \omega(G) \chi(T)
$$

Proof. Every set that is stable in G is transitive in T, so $\chi(T) \leq \chi(G)$. Now let X be transitive in T, and let $<_{P}$ be the partially ordered set with element set X in which for $v_{i}, v_{j} \in X$, we say $v_{i}<_{P} v_{j}$ if $i<j$ and $v_{j} v_{i} \in E(T)$. This is indeed a poset, because if $i<j<k$ and $v_{i}, v_{j}, v_{k} \in X$, and $v_{j} v_{i}, v_{k} v_{j} \in E(T)$, then $v_{k} v_{i} \in E(T)$ (since X is transitive and so $v_{i} v_{k} \notin E(T)$). Every totally ordered subset of the poset is a clique of G and so has size at most $\omega(G)$; and hence by (the dual of) Dilworth's theorem, X can be partitioned into $\omega(G)$ subsets, each an antichain of the poset and hence each a stable set of G. Thus $\chi(G[X]) \leq \omega(G)$ when X is transitive in T; and so $\chi(G) \leq \omega(G) \chi(T)$. This proves 2.1.

Proof of 1.1, assuming 1.2. We proceed by induction on t; so we may assume that $t \geq 3$, and there exists d_{1} such that for every graph G with $\chi(G) \geq d_{1}$ and $\omega(G)<t-1$, there are anticomplete subsets A, B of $V(G)$, both with chromatic number at least c. Let $c_{2}=\max \left(2 d_{1}, 2 c\right)$; by the assumed truth of 1.2 , there is an integer $d_{2} \geq 1$ such that if G is a tournament and $\chi(G) \geq d_{2}$, there is a complete pair (A, B), where A, B both induce tournaments with chromatic number at least c_{2}.

Let $d=t d_{2}$. Let G be a graph with $\chi(G) \geq d$ and $\omega(G)<t$. We must show that there are anticomplete subsets A, B of $V(G)$, both with chromatic number at least c. We may therefore assume that for every vertex $v \in V(G)$, the subgraph induced on its neighbour set has chromatic number less than d_{1}.

Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$, and let T be the tournament such that G is its backedge graph under the numbering v_{1}, \ldots, v_{n}. From 2.1, it follows that $\chi(T) \geq d / t=d_{2}$. By 1.2 , there exist disjoint $A^{\prime}, B^{\prime} \subseteq V(T)$ with A^{\prime} complete to B^{\prime}, such that $T\left[A^{\prime}\right], T\left[B^{\prime}\right]$ both have chromatic number at least c_{2}. Choose i minimum such that one of

$$
\left\{v_{1}, \ldots, v_{i}\right\} \cap A^{\prime},\left\{v_{1}, \ldots, v_{i}\right\} \cap B^{\prime}
$$

induces a tournament with chromatic number at least $c_{2} / 2$. Now there are two cases.
Suppose first that $\left\{v_{1}, \ldots, v_{i}\right\} \cap A^{\prime}$ induces a tournament with chromatic number at least $c^{\prime} / 2$. Let $A=\left\{v_{1}, \ldots, v_{i}\right\} \cap A^{\prime}$ and $B=\left\{v_{i+1}, \ldots, v_{k}\right\} \cap B^{\prime}$. Thus $A \neq \emptyset$ and from the minimality of i, $\chi(T \backslash B) \leq c_{2} / 2$, and so $\chi(T[B]) \geq c_{2} / 2 \geq d_{2}$. Since A is complete to B in T, and $h \leq i<j$ for all h, j with $v_{h} \in A$ and $v_{j} \in B$, it follows that every vertex of A is adjacent in G to every vertex in B. But every subset that is stable in G is acyclic in T, and so $\chi(G[B]) \geq c_{2} / 2 \geq d_{1}$, contradicting that for every vertex $v \in V(G)$, the subgraph induced on its neighbour set has chromatic number less than d_{1}.

Thus $\left\{v_{1}, \ldots, v_{i}\right\} \cap B^{\prime}$ induces a tournament with chromatic number at least $c^{\prime} / 2$. Let $B=$ $\left\{v_{1}, \ldots, v_{i}\right\} \cap B^{\prime}$ and $A=\left\{v_{i+1}, \ldots, v_{k}\right\} \cap A^{\prime}$. As before, $\chi(T[A]), \chi(T[B]) \geq c_{2} / 2 \geq c$. Since A is complete to B in T, and $h \leq i<j$ for all h, j with $v_{j} \in A$ and $v_{h} \in B$, it follows that every vertex of A is nonadjacent in G to every vertex in B. Moreover, every subset that is stable in G is acyclic in T, and so $\chi(G[A]) \geq \chi(T[A]) \geq c$ and similarly $\chi(G[B]) \geq c$. This proves 1.1.

Rather disturbingly, we have not been able to prove the reverse implication, which suggests that perhaps 1.2 is too strong to be true, and one might look for a weaker statement about tournaments that still implies 1.1. In the proof above that 1.2 implies 1.1, the tournament T constructed has domination number less than t, and so do all its subtournaments. (To see this, choose a clique X of G that is optimal in the following sense: it contains v_{n}, and it contains v_{j} where $j<n$ is maximum such that v_{j}, v_{n} are adjacent, and it contains v_{i} where $i<j$ is maximum such that v_{i} is adjacent to both v_{j}, v_{n}, and so on. This clique is dominating in T.)

So, in order to make a version of 1.2 that is more plausible, one might consider restricting it to tournaments such that all subtournaments have bounded domination number, since that would still be strong enough to imply 1.1, as we just saw. But here is a surprise: that conjecture, apparently much weaker, is the hard part of 1.2: the latter is true for all tournaments with sufficiently large domination number, as we will show below. We will need a theorem of Harutyunyan et al. [7]:
2.2 For every integer $c \geq 1$, there exist integers $K, k \geq 1$ such that every tournament G with $\operatorname{dom}(G) \geq K$ contains a subtournament on at most k vertices having chromatic number at least c.

This implies:
2.3 For every integer $c \geq 1$, there exists $d \geq 1$ such that if G is a tournament with $\operatorname{dom}(G) \geq d$, then there is a complete pair (A, B) such that $\chi(G[A]), \chi(G[B]) \geq c$, and $\operatorname{dom}(G[A]) \geq c$.

Proof. Choose K, k as in 2.2, and let $d=\max (K, k+c)$. Let G be a tournament with $\operatorname{dom}(G) \geq d$. Since $d \geq K$, there exists $B \subseteq V(G)$ with $|B| \leq k$ such that $\chi(B) \geq c$, by 2.2 . Let X be the set of vertices of G that either belong to B or are adjacent from some vertex in B. Thus $\operatorname{dom}(G \backslash X) \geq c$, since $\operatorname{dom}(G) \geq K+c$ and $|B| \leq k$. Let $A=G \backslash X$; then every vertex in B is adjacent from every vertex in A, since $A \cap(B \cup X)=\emptyset$. This proves 2.3.

This reduces proving 1.2 to proving it for tournaments in which every subtournament has bounded domination number. Later, in 11.3, we will reduce proving 1.2 to proving it for an even more restricted class of tournaments, those that admit a "numbering with bounded local chromatic number".

3 Complete pairs (A, B) with $\chi(A)$ small

The conjecture 1.2 says that if $\chi(G)$ is large then there is a complete pair (A, B) with both $\chi(A), \chi(B)$ large. Can we at least get a complete pair (A, B) with $\chi(A), \chi(B)$ small but nonzero? Or perhaps with one of them large?

It is not obvious even that there is a complete pair (A, B) with $|A|=1$ and $\chi(B)$ large, and this was raised in [2] as a conjecture. It was proved in a breakthrough paper [7] by Harutyunyan, Le, Thomassé, and Wu , as a consequence of 2.3 . They proved:
3.1 For all integers $c \geq 0$ there exists $d \geq 0$ such that for every tournament G with $\chi(G) \geq d$, there exists $v \in V(G)$ such that $\chi\left(N^{+}(v)\right) \geq c$.

For a vertex v, we define $N^{+}[v]=N^{+}(v) \cup\{v\}$, and $N^{-}[v]$ is defined similarly. The proof in [7] gives d bounded by a very large, tower-type, function of c, but we do not know that it needs to be so large. In fact we do not have a counterexample for the following, although we find it hard to believe:
3.2 Conjecture: For all integers $c \geq 0$ and every tournament G with $\chi(G) \geq 2 c$, there exists $v \in V(G)$ such that $\chi\left(N^{+}(v)\right) \geq c$.

By a standard argument using linear programming duality, one can assign a non-negative weight to each vertex of a tournament, totalling to 1 , such that for every vertex v, the sum of the weights in $N^{+}[v]$ is at least $1 / 2$; so if we replace chromatic number by "fractional chromatic number" in the usual sense, then 3.2 becomes true.

Two of us proposed [10] a strengthening of 3.1: that if G is a graph with large chromatic number, and T is a tournament with the same vertex set, then for some vertex v, the set of out-neighbours of v in T induces a subgraph of G with large chromatic number. But this has very recently been disproved, by Girão, Hendrey, Illingworth, Lehner, Michel, Savery and Steiner [8], who showed the following:
3.3 For all $d \geq 0$, there is a graph G with chromatic number at least d, and a tournament T with vertex set $V(G)$, such that for each $v \in V(G)$, the set of out-neighbours of v in T induces a bipartite subgraph of G.

Here is another possible strengthening of 3.1 in which we had some hope: that if A, B are disjoint subtournaments of a tournament G, both with sufficiently large chromatic number, then there is a vertex in one of A, B such that its set of out-neighbours in the other set has large chromatic number. But this too is false. By a simple modification of their example in 3.3, Girão et al. [8] showed:

3.4 For all $d \geq 0$, there is a tournament with two disjoint subtournaments A, B, both with chromatic

 number at least d, such that $\chi\left(B\left[N^{+}(v)\right]\right) \leq 2$ for each vertex $v \in V(A)$, and $\chi\left(A\left[N^{+}(v)\right]\right) \leq 2$ for each vertex $v \in V(B)$.Indeed, we suspect that even the following is false, although it remains open for the moment:
3.5 Conjecture: There exists $d \geq 0$ such that if G is a tournament, and A, B are disjoint subsets of $V(G)$ with $\chi(A), \chi(B) \geq d$, then there exist $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, both cyclic triangles, such that one of $\left(A^{\prime}, B^{\prime}\right),\left(B^{\prime}, A^{\prime}\right)$ is a complete pair.

A digression: how much does it matter that we are concerned with chromatic number in 3.2 ? If G is a tournament, a submeasure on G is a function $\mu: 2^{V(G)} \rightarrow \mathbb{R}^{+}$(we use \mathbb{R}^{+}to denote the set of nonnegative real numbers), such that $\mu(\emptyset)=0$, and μ is increasing and subadditive (that is, $\mu(A) \leq \mu(B)$ when $A \subseteq B$, and $\mu(A \cup B) \leq \mu(A)+\mu(B)$ for all $A, B)$. Thus chromatic number is a submeasure. One might hope that we could extend 3.1, to general submeasures instead of chromatic number, but that is false, because of the following, due to Noga Alon:
3.6 For every tournament G, there is a submeasure μ on G such that $\mu(G)$ is the domination number of G, and $\mu\left(N^{+}(v)\right)=1$ for every vertex v.

Proof. For each $X \subseteq V(G)$, let $\mu(X)$ be the cardinality of the smallest subset $Y \subseteq V(G)$ such that every vertex in X either belongs to Y or is adjacent from a member of Y. Then μ is a submeasure with the desired properties. This proves 3.6.

Let H be a tournament, and for a tournament G define $\chi_{H}(G)$ to be the minimum k such that $V(G)$ can be partitioned into k subsets each inducing an H-free tournament. Thus, $\chi(G)$ is the same as $\chi_{H}(G)$ when H is a cyclic triangle. Perhaps one can extend 3.1 to:
3.7 Conjecture: For every tournament H with $\chi(H) \geq 2$ and every integer $c \geq 0$, there exists $d \geq$ 0 such that for every tournament G with $\chi_{H}(G) \geq d$, there exists $v \in V(G)$ such that $\chi_{H}\left(N^{+}(v)\right) \geq c$.

Another digression: the domination number of a tournament is at most its chromatic number. One might ask, does 3.1 work for domination number? This is false, as a neat example due to Noga Alon shows:
3.8 For all $d \geq 0$, there is a tournament G with domination number at least d, such that $G\left[N^{+}(v)\right]$ has domination number one for every vertex v.

Proof. Take a tournament H with domination number at least d, and replace each vertex x with a cyclic triangle T_{x}, such that $T_{x} \Rightarrow T_{y}$ if y is adjacent from x in G. This forms a larger tournament G say. The domination number of G is at least d; but for every vertex v of $G, \operatorname{dom}\left(G^{\prime}\left[N^{+}(v)\right]\right)=1$ (because if $v \in T_{x}$, the out-neighbour of v in T_{x} belongs to and dominates $\left.G^{\prime}\left[N^{+}(v)\right]\right)$. This proves 3.8 .

Domination number is very interesting, and we will discuss it more later. The reverse of a tournament G is obtained from it by reversing the direction of all its edges. It is convenient at this point to prove a slight extension of 3.1, the following:
3.9 There is an integer-valued function ϕ such that for every integer $c \geq 0$, if G is a tournament with $\chi(G) \geq \phi(c)$ then there exists $v \in V(G)$ such that $\chi\left(N^{+}(v)\right) \geq c$ and $\chi\left(N^{-}(v)\right) \geq c$.

Proof. By 3.1, there is an integer-valued function ψ such that for every integer $c \geq 0$, if G is a tournament with $\chi(G) \geq \psi(c)$, then there exists $v \in V(G)$ such that $\chi\left(N^{+}(v)\right) \geq c$. Define $\phi(c)=2 \psi(c)$ for $c \geq 0$. We claim that ϕ satisfies the theorem.

Let G be a tournament with $\chi(G) \geq \phi(c)$, and let X be the set of vertices of G such that $\chi\left(N^{+}(v)\right) \geq c$. It follows that $\chi(G \backslash X)<\psi(c)$, and so $\chi(X) \geq \chi(G)-\psi(c) \geq \psi(c)$. Hence (by the property of ψ, applied to the reverse of $G[X])$, there exists $v \in X$ such that $\chi\left(X \cap N^{-}(v)\right) \geq c$. But then $\chi\left(N^{+}(v)\right) \geq c$ and $\chi\left(N^{-}(v)\right) \geq c$. This proves 3.9.

Let us return to 3.1 and weakenings of 1.2 . It is a consequence of a result of [2] that every tournament with sufficiently large chromatic number contains a complete pair (A, B) where A, B are both cyclic triangles. We will prove a strengthening of this which also is a strengthening of 3.1:
3.10 For all $c \geq 0$ there exists $d \geq 0$ such that if G is a tournament with $\chi(G) \geq d$, then there exist disjoint sets $P, A, Q \subseteq V(G)$ such that $P \Rightarrow A \Rightarrow Q$, and A is a cyclic triangle, and $\chi(P), \chi(Q) \geq c$.

Indeed, this partially extends to χ_{H}. We will show:
3.11 For every tournament H with $\chi(H) \geq 2$, and all $c \geq 0$, there exists $d \geq 0$ such that if G is a tournament with $\chi_{H}(G) \geq d$, then there exist disjoint sets $P, A, Q \subseteq V(G)$ such that $P \Rightarrow A \Rightarrow Q$, where $G[A]$ is isomorphic to H, and $\chi(P), \chi(Q) \geq c$.

We have not been able to show the same with the stronger conclusion that $\chi_{H}(P), \chi_{H}(Q) \geq c$, though this would be true if conjecture 3.7 is true.

4 Rebels and posets

A tournament H is a rebel if for some $c>0$, every H-free tournament has domination number less than c. Which tournaments are rebels? This section and the next give several new results towards answering this question.

Let us say a tournament H is a poset tournament if its vertex set can be arranged in a circular order, such that there is no clockwise cyclic triangle; or equivalently, if its vertex set can be numbered v_{1}, \ldots, v_{n} such that for all i, j, k with $1 \leq i<j<k \leq n$, if $v_{i} v_{j}$ and $v_{j} v_{k}$ are edges, then $v_{i} v_{k}$ is an edge. Chudnovsky, Kim, Liu, Seymour and Thomassé [3] proved that not all tournaments are rebels, and indeed:

4.1 Every rebel is a poset tournament.

They proposed the conjecture, still open, that the converse also holds:
4.2 Conjecture: H is a rebel if and only if H is a poset tournament.

The conjecture 4.2 is very strong, and here is an entertaining way that one might try to disprove it. Take a class of graphs \mathcal{F}, that is closed under taking induced subgraphs, and let \mathcal{F}^{\prime} be the class of all tournaments T that admit a numbering with backedge graph in $\mathcal{F} .4 .2$ would imply that either every poset tournament is in \mathcal{F}^{\prime}, or all members of \mathcal{F}^{\prime} have bounded domination number. We tested this on a few familiar classes \mathcal{F}, and showed the following;

- if \mathcal{F} is the class of all split graphs (graphs with vertex set the union of a clique and a stable set) then every member of \mathcal{F}^{\prime} has domination number at most two;
- if \mathcal{F} is the class of all line graphs, then every member of \mathcal{F}^{\prime} has domination number at most three;
- if \mathcal{F} is the class of all cographs (graphs that do not contain a four-vertex path as an induced subgraph) then there exists k such that such that all members of \mathcal{F}^{\prime} have domination number at most k;
- more generally, if \mathcal{F} is the class of all circle graphs (the intersection graph of a set of chords of a circle), there exists k such that all members of \mathcal{F}^{\prime} have domination number at most k;
- if \mathcal{F} is the class of all graphs with no four-vertex induced cycle, then every member of \mathcal{F}^{\prime} has domination number at most four;
- if H is a permutation graph (that is, there are two numberings σ, τ of $V(G)$, such that u, v are adjacent if u is earlier than v in one of these numberings and later in the other), and \mathcal{F} is the class of all graphs that do not contain H as an induced subgraph, then there exists k such that all members of \mathcal{F}^{\prime} have domination number at most k.

Here are sketches of the proofs. The first bullet is trivial, because the tournament we obtain from a split graph is two-colourable. For the second bullet, the set of in-neighbours of the first vertex in the numbering is the union of two cliques. The third is a special case of the fourth, because cographs are permutations graphs (easily proved by induction) and hence circle graphs. For the fourth, we observe that circle graphs have bounded VC-dimension, and hence yield tournaments with bounded VC-dimension, and such tournaments have bounded domination number. For the fifth, let v_{1}, \ldots, v_{n} be a numbering of a tournament T, such that its backedge graph G does not contain the four-vertex cycle C_{4} as an induced subgraph. Choose $1 \leq i<j \leq n$ with j minimum such that v_{j} is adjacent from v_{i}. Thus $T\left[\left\{v_{1}, \ldots, v_{j-1}\right\}\right]$ is transitive and so has domination number at most one; the set of vertices in $\left\{v_{j+1}, \ldots, v_{n}\right\}$ that are adjacent to both v_{i}, v_{j} is transitive, since G does not contain C_{4}; and all other vertices in $\left\{v_{j+1}, \ldots, v_{n}\right\}$ are dominated by one of v_{i}, v_{j}. Hence $\operatorname{dom}(T) \leq 4$. For the sixth, observe that if H is a permutation graph, then it admits a numbering such that the corresponding tournament is transitive, and so the claim follows from 4.4 below.

Which graphs are good, in the sense of the last bullet above, in addition to permutation graphs? The complement of any good graph is good, and the disjoint union of two good graphs is also good (the latter can be shown by an easy modification of the proof above that C_{4} is good). Thus all cographs are good. (Every cograph G admits a numbering such that G is the backedge graph of a transitive tournament, so the fact that cographs are good also follows from 4.4 below.) If we set \mathcal{F} to be the class of all comparability graphs, there is no bound on the domination number of the members of \mathcal{F}^{\prime}; and so if H is good, then \mathcal{F} contains H, and therefore H is a comparability graph.

Could the converse be true? That gives us a cousin of 4.2 (as far as we know, it neither implies nor is implied by 4.2), the following (the "only if" part is true):
4.3 Conjecture: If H is a graph, there exists k such that for every tournament T with domination number at least k and every numbering of T, the backedge graph contains H as an induced subgraph, if and only if H is a comparability graph.

Here is another variation, even prettier. Let us say an ordered tournament is a pair (G, τ), where G is a tournament and τ is a numbering of its vertex set; and its domination number is the domination number of G. We say an ordered tournament (H, σ) is a legend if there exists k such that every ordered tournament (G, τ) with domination number at least k contains (H, σ) in the natural sense. Which ordered tournaments are legends? We can answer this.

4.4 An ordered tournament (H, σ) is a legend if and only if H is transitive.

Proof. Let us show first that for every legend $(H, \sigma), H$ is transitive. The reverse of an ordered tournament is obtained by reversing the direction of all edges, without reversing the numbering. We say a ordered tournament (H, σ) is an ordered poset tournament, where σ is the numbering $\sigma_{1}, \ldots, \sigma_{n}$, if $\sigma_{k} \sigma_{i}$ is an edge of H for all $1 \leq i<j<k \leq n$, such that $\sigma_{j} \sigma_{i}$ and $\sigma_{k} \sigma_{j}$ are edges of H. There are ordered poset tournaments with arbitrarily large domination number, as was shown in [3], so every legend must be an ordered poset tournament. If we take an ordered poset tournament, and reverse all its edges, and reverse the numbering, we obtain another ordered poset tournament; and therefore there are ordered tournaments with arbitrarily large domination number, such that their reverses are ordered poset tournaments. Hence, the reverse of every legend must also be an ordered poset tournament. But for an ordered tournament (H, σ), if both (H, σ) and its reverse are ordered poset tournaments, then H is transitive (as can be seen by checking that no three vertices make a cyclic triangle). This proves the "only if" part of the theorem.

If A is a subset of $V(G)$, where G is a tournament, we define the external domination number $\operatorname{edom}(A)$ of A to be the size of the smallest subset $X \subseteq V(G)$ such that every vertex in $A \backslash X$ is adjacent from a vertex in X. (This differs from the domination number of the subtournament induced on A; and in particular, edom is subadditive.) Now let (H, σ) be an ordered tournament where H is transitive, and let σ be the numbering $\sigma_{1}, \ldots, \sigma_{h}$ where $h=|H|$. We need to show that (H, σ) is a legend, but for purposes of induction, we will prove a stronger statement, the following:
(1) If an ordered tournament (G, τ) has domination number at least $d 2^{h}$ where $d \geq h$ is an integer, and τ is $\tau_{1}, \ldots, \tau_{n}$, then there exist $t_{1}<t_{2}<\cdots t_{h}$ such that the restriction of (G, τ) to $\left\{\tau_{t_{1}}, \ldots, \tau_{t_{h}}\right\}$ is a copy of (H, σ), and each of the $h+1$ sets

$$
\left\{\tau_{1}, \ldots, \tau_{t_{1}-1}\right\},\left\{\tau_{t_{1}+1}, \ldots, \tau_{t_{2}-1}\right\}, \ldots,\left\{\tau_{t_{h}+1}, \ldots, \tau_{n}\right\}
$$

has external domination number at least $d-h$.
The claim is true if $h=0$, so we assume that $h \geq 1$ and the result holds for $h-1$. Choose f with $1 \leq f \leq h$ such that σ_{f} is the vertex of H with in-degree zero; let H^{\prime} be the transitive tournament obtained from H by deleting σ_{f}; and let σ^{\prime} be the sequence obtained from σ by removing the term σ_{f}. In other words, $\sigma_{i}^{\prime}=\sigma_{i}$ for $1 \leq i<f$, and $\sigma_{i}^{\prime}=\sigma_{i+1}$ for $f \leq i \leq h-1$. Thus
$\left(H^{\prime}, \sigma^{\prime}\right)$ is an ordered tournament and H^{\prime} is transitive. Let (G, τ) be an ordered tournament with domination number at least $d 2^{h}$, where $d \geq h$ is an integer and τ is $\tau_{1}, \ldots, \tau_{n}$. Temporarily, define $t_{0}=0$ and $t_{h}=n+1$. From the inductive hypothesis (with d replaced by $2 d$) there exist $1 \leq t_{1}<t_{2}<\cdots t_{h-1} \leq n$ such that the restriction of (G, τ) to $\left\{\tau_{t_{1}}, \ldots, \tau_{t_{h-1}}\right\}$ is a copy of $\left(H^{\prime}, \sigma^{\prime}\right)$, and each of the h sets $\left\{\tau_{t_{i-1}+1}, \ldots, \tau_{t_{i}-1}\right\}(1 \leq i \leq h)$ has external domination number at least $2 d-(h-1)$. Let $V=\left\{\tau_{t_{f-1}+1}, \ldots, \tau_{t_{f}-1}\right\}$; thus, $\operatorname{edom}(V) \geq 2 d-(h-1)$. Let Y be the set of vertices in V that are adjacent from one of the vertices $\tau_{t_{1}}, \ldots, \tau_{t_{h-1}}$. Since edom $(Y) \leq h-1$, it follows that $\operatorname{edom}(V \backslash Y) \geq 2 d-2(h-1)$. Each vertex $v \in V \backslash Y$ is adjacent to all of $\tau_{t_{1}}, \ldots, \tau_{t_{h-1}}$, and so the restriction of (G, τ) to $\left\{\tau_{t_{1}}, \ldots, \tau_{t_{h}}, v\right\}$ is a copy of (H, σ). But we need to choose v more carefully, to arrange the final requirement about external domination number. Since edom $(V \backslash Y) \geq 2 d-2(h-1)$, we may choose k minimum such that

$$
\operatorname{edom}\left(\left\{\tau_{1}, \ldots, \tau_{k}\right\} \cap(V \backslash Y)\right)>d-h .
$$

The minimality of k implies that $\tau_{k} \in V \backslash H$, and that

$$
\operatorname{edom}\left(\left\{\tau_{1}, \ldots, \tau_{k-1}\right\} \cap(V \backslash Y)\right) \leq d-h
$$

Since adding a vertex to a set changes its external domination number by at most one, it follows that

$$
\operatorname{edom}\left(\left\{\tau_{1}, \ldots, \tau_{k}\right\} \cap(V \backslash Y)\right)=d-h+1
$$

and so

$$
\operatorname{edom}\left(\left\{\tau_{k+1}, \ldots, \tau_{n}\right\} \cap(V \backslash Y)\right) \geq(2 d-2(h-1))-(d-h+1)=d-h+1
$$

Thus if we insert k into the sequence t_{1}, \ldots, t_{h-1}, so that the new sequence remains increasing, then our requirements are met. This proves (1).

It follows that if (G, τ) is a tournament with domination number at least $h 2^{h}$, then it contains (H, σ); and so (H, σ) is a legend. This proves 4.4.

We remark that if H is transitive and (H, σ) is an ordered tournament, then its backedge graph is a permutation graph, or equivalently the comparability graph of a poset of dimension two. This makes some connection with our two "poset" conjectures, 4.2 and 4.3.

5 Making rebels

But, despite all the attacks on it described in the previous section, 4.2 remains open. In support of it, Chudnovsky et al. [3] proved the following two results:

5.1 Every tournament with chromatic number two is a rebel.

$5.2 \mathcal{S}_{3}$ is a rebel.
The proof of the second was complicated, using a randomized version of VC-dimension, and we will give a much simpler proof. But first, let us observe:
5.3 Let H be obtained from the disjoint union of rebels H_{1}, H_{2} by making $V\left(H_{1}\right)$ complete to $V\left(H_{2}\right)$. Then H is a rebel.

Proof. Choose d such that every tournament with domination number at least d contains both H_{1} and H_{2}, and let $c=d+\left|H_{2}\right|$. Let G be a tournament with $\operatorname{dom}(G) \geq c$; we claim that G contains H and hence H is a rebel. Since $c \geq d$, there is a copy S of H_{2} in G. Let X be the set of vertices of $G \backslash V(S)$ that are adjacent to every vertex in $V(S)$. It follows that $\operatorname{dom}(G[X]) \geq c-\left|H_{2}\right|$, since every vertex of G not in X either belongs to $V(S)$ or is adjacent from a vertex of S. Since $c-\left|H_{2}\right|=d$, we deduce that $G[X]$ contains H_{1}, and so G contains H. This proves 5.3.

A tournament H is a hero if for some $c>0$, every H-free tournament has chromatic number less than c. (Thus, "hero" is the concept analogous to "rebel" for chromatic number instead of domination number.) All heroes are rebels, but not all rebels are heroes, and indeed we know which tournaments are heroes: Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé [2] showed that:
5.4 A tournament is a hero if and only if all its strongly-connected components are heroes. A strongly-connected tournament with more than one vertex is a hero if and only if it equals $\Delta(H, K, 1)$ or $\Delta(K, H, 1)$ for some hero H and some acyclic tournament K.

The methods of this paper will give a simpler proof of the main part of 5.4, as we will explain later.
Until now, \mathcal{S}_{3} was the only non-two-colourable tournament that was known to be a rebel. 5.3 trivially gives more, but they are not strongly connected. The next result gives more that are strongly connected, and also gives a much simpler proof that \mathcal{S}_{3} is a rebel. Let us say a ring in a tournament G is a sequence $X_{1}, X_{2}, \ldots, X_{n}$ of subsets of $V(G)$ with $n \geq 3$, such that

$$
X_{1} \Rightarrow X_{2} \Rightarrow \cdots \Rightarrow X_{n} \Rightarrow X_{1}
$$

(Thus consecutive terms in this sequence are disjoint, but non-consecutive terms may intersect.) Using rings, we will show that if H_{1}, H_{2}, H_{3} are heroes then $\Delta\left(H_{1}, H_{2}, H_{3}\right)$ is a rebel. (This implies that \mathcal{S}_{3} is a rebel, by setting H_{1}, H_{2} to be cyclic triangles and H_{3} to have one vertex.) The claim follows from the following:
5.5 For all integers $c \geq 0$ there exist K, k such that if a tournament G with $\operatorname{dom}(G) \geq K$, then there are three disjoint sets $A, B, C \subseteq V(G)$ such that $|A|,|B|,|C| \leq k$, and $\chi(A), \chi(B), \chi(C) \geq c$, and $A \Rightarrow B \Rightarrow C \Rightarrow A$.

Proof. By 2.2 there exist integers $K, k \geq 1$ such that every tournament G with $\operatorname{dom}(G) \geq K$ contains a subtournament on at most k vertices having chromatic number at least $3 c$. Also by 2.2 there exist integers $K^{\prime}, k^{\prime} \geq 1$ such that every tournament G with $\operatorname{dom}(G) \geq K^{\prime}$ contains a subtournament on at most k^{\prime} vertices having chromatic number at least $2^{2 k} c+3 c$. We will show that every tournament with domination number at least $\max \left(K, K^{\prime}\right)+k+k^{\prime}$ contains sets A, B, C as in the theorem, each of cardinality at most $k+k^{\prime}$.

Let G be a tournament with $\operatorname{dom}(G) \geq \max \left(K^{\prime}, K\right)+k+k^{\prime}$. Let \mathcal{S} be the set of all subsets $X \subseteq V(G)$ with $|X| \leq k$ such that $G[X]$ has chromatic number exactly $3 c$. Let \mathcal{S}^{\prime} be the set of all subsets $X \subseteq V(G)$ with $|X| \leq k^{\prime}$ such that $G[X]$ has chromatic number exactly $2^{2 k} c+3 c$. Let \mathcal{R} be the set of all subsets that are the union of a member of \mathcal{S} and a member of \mathcal{S}^{\prime}. For every
$X \subseteq V(G)$, if $\operatorname{dom}(G[X]) \geq \max \left(K, K^{\prime}\right)$, then X includes a member of \mathcal{S} and a member of \mathcal{S}^{\prime}, and hence includes a member of \mathcal{R}. In particular, since $\operatorname{dom}(G) \geq \max \left(K, K^{\prime}\right)+k+k^{\prime}$, it follows that $\mathcal{R} \neq \emptyset$.
(1) For each $X \in \mathcal{R}$ there exists $Y \in \mathcal{R}$ with $X \cap Y=\emptyset$ such that $Y \Rightarrow X$.

Let $X \in \mathcal{R}$. Since $|X| \leq k+k^{\prime}$ and $\operatorname{dom}(G) \geq \max \left(K^{\prime}, K\right)+k+k^{\prime}$, it follows that the set of vertices in $V(G) \backslash X$ that are complete to X induces a tournament with domination number at least $\max \left(K, K^{\prime}\right)$, and so contains a member of \mathcal{R}. This proves (1).

From (1) and since G is finite, there is a ring of members of \mathcal{R}, and consequently there is a ring $X_{1}, X_{2}, \ldots, X_{n}$ such that

- $\left|X_{1}\right| \leq k+k^{\prime}$ and $\chi\left(X_{1}\right) \geq c$;
- $\left|X_{2}\right| \leq k$ and $\chi\left(X_{2}\right) \geq 2 c$;
- $\left|X_{3}\right| \leq k$ and $\chi\left(X_{3}\right)=3 c$ (that is, $X_{3} \in \mathcal{S}$); and
- $X_{i} \in \mathcal{R}$ for $4 \leq i \leq n$.

Let us call such a sequence a special ring. Choose a special ring $X_{1}, X_{2}, \ldots, X_{n}$ with n minimum. We may assume that $n \geq 4$, since if $n=3$ then the theorem holds.

Since X_{n} includes a member of \mathcal{S}^{\prime} and hence has chromatic number at least $2^{2 k} c+3 c$, it follows that $\chi\left(X_{n} \backslash X_{3}\right) \geq 2^{2 k} c$. Moreover, $X_{n} \cap X_{2}=\emptyset$, since $X_{n} \Rightarrow X_{1} \Rightarrow X_{2}$. For each $Z \subseteq X_{2} \cup X_{3}$, let P_{Z} be the set of vertices in $X_{n} \backslash X_{3}$ that are complete to Z and complete from $\left(X_{2} \cup X_{3}\right) \backslash Z$. Since there are at most $2^{2 k}$ choices of Z, and each vertex of $X_{n} \backslash X_{3}$ belongs to one of the sets P_{Z}, it follows that $\chi\left(P_{Z}\right) \geq c$ for some choice of Z. If $\chi\left(X_{2} \backslash Z\right) \geq c$, then the theorem holds, since

$$
P_{Z} \Rightarrow X_{1} \Rightarrow X_{2} \backslash Z \Rightarrow P_{Z}
$$

and so we may assume that $\chi\left(X_{2} \backslash Z\right)<c$. Consequently $\chi\left(X_{2} \cap Z\right) \geq c$. If $\chi\left(X_{3} \backslash Z\right) \geq c$ then the theorem holds, since

$$
P_{Z} \Rightarrow X_{2} \cap Z \Rightarrow X_{3} \backslash Z \Rightarrow P_{Z}
$$

and so we may assume (for a contradiction) that $\chi\left(X_{3} \backslash Z\right)<c$. Hence $\chi\left(X_{3} \cap Z\right) \geq 2 c$ (and consequently $n \geq 5$, since X_{3} is not complete to X_{n}). Choose $Y \subseteq X_{4}$ with $Y \in \mathcal{S}$; then

$$
P_{Z}, X_{3} \cap Z, Y, X_{5}, \ldots, X_{n-1}
$$

is a special ring, contrary to the minimality of n. This proves 5.5.
We deduce:
5.6 If H_{1}, H_{2}, H_{3} are heroes then $\Delta\left(H_{1}, H_{2}, H_{3}\right)$ is a rebel.

Proof. Choose c sufficiently large that every tournament with chromatic number at least c contains each of H_{1}, H_{2}, H_{3}. Choose K, k as in 5.5. We claim that every tournament G with $\operatorname{dom}(G) \geq K$ contains $\Delta\left(H_{1}, H_{2}, H_{3}\right)$. Let G be a tournament with $\operatorname{dom}(G) \geq K$. By 5.5 there exist A, B, C as in 5.5. But $G[A]$ contains H_{1}, and $G[B]$ contains H_{2}, and $G[C]$ contains H_{3}, and so G contains $\Delta\left(H_{1}, H_{2}, H_{3}\right)$. This proves 5.6.

In view of 5.3 and 5.6 , one might hope for the following:
5.7 Conjecture: If H_{1}, H_{2}, H_{3} are rebels then $\Delta\left(H_{1}, H_{2}, H_{3}\right)$ is a rebel.

This is consistent with 4.2 , but we cannot yet prove it. But here is a special case of 5.7 that we can prove:
5.8 Let H be a rebel, and let K be a transitive tournament. Then $\Delta(H, K, K)$ is a rebel.

Proof. For each integer $r \geq 1$, let H^{r} be obtained from r disjoint copies of H (say with vertex sets $\left.S_{1}, \ldots, S_{r}\right)$, by making $V\left(S_{i}\right)$ complete to $V\left(S_{j}\right)$ for $1 \leq i<j \leq r$. If $G[X]$ is isomorphic to H^{r}, we call the subsets of X corresponding to S_{1}, \ldots, S_{r} the parts of X. By $5.3, H^{r}$ is a rebel. Let $k=|K|$, let $p=k^{2}, q=p+k|H|$, and $r=k\left(p^{k}+q^{k}\right)|H|^{k}+1$. Choose c such that every tournament with domination number at least c contains H^{r}. Now let $d=c+r|H|$, and let G be a tournament with domination number at least d; we will show that G contains $\Delta(H, K, K)$. Suppose not (for a contradiction). Let \mathcal{R} be the set of all subsets of $V(G)$ that induce a copy of H^{r}. Since $d \geq c, G$ contains a copy of H^{r}, so $\mathcal{R} \neq \emptyset$; and for each $X \in \mathcal{R}$, the set of vertices not dominated by X (that is, the set of $v \in V(G) \backslash X$ that are adjacent to every vertex of X) induces a subtournament with domination number at least $d-|X|=c$, and consequently also includes a member of \mathcal{R}. Hence there is a ring X_{1}, \ldots, X_{n} of members of \mathcal{R}.

Let us say a special ring is a ring X_{1}, \ldots, X_{n}, where $G\left[X_{1}\right]$ is a copy of $H^{p}, G\left[X_{2}\right]$ is a copy of H, and $X_{3}, \ldots, X_{n} \in \mathcal{R}$. It follows that G contains a special ring; let us choose a special ring X_{1}, \ldots, X_{n} with n minimum. Thus $n \geq 3$.

Let P be the set of vertices in X_{3} that have an out-neighbour in at least k parts of X_{1}.
(1) There are fewer than $k(p|H|)^{k}$ parts of X_{3} that have a vertex in P.

Suppose that there is a set $Y \subseteq X_{3} \cap P$ with $|Y| \geq k(p|H|)^{k}$ such that all vertices in Y belong to different parts of X_{3} (and hence Y is transitive). Each $y \in Y$ has k out-neighbours in X_{1} that all belong to different parts of X_{1}, and hence form a transitive set of cardinality k; and there are at most $(p|H|)^{k}$ choices of such a set, since $\left|X_{1}\right|=p|H|$. So there is a subset $Y^{\prime} \subseteq Y$ with $\left|Y^{\prime}\right| \geq|Y| /(p|H|)^{k} \geq k$, and a transitive subset $Z \subseteq X_{1}$ with cardinality k, such that $Y^{\prime} \Rightarrow Z$. But then $G\left[X_{2} \cup Y^{\prime} \cup Z\right]$ is a copy of $\Delta(H, K, K)$, a contradiction. This proves (1).

The set X_{n} has r parts; let us fix some q of them, called the primary parts of X_{n}. Let Q be the set of vertices in X_{3} that have an out-neighbour in at least k primary parts of X_{n}.
(2) There are fewer than $k\left(p^{k}+q^{k}\right)|H|^{k}$ parts of X_{3} that have a vertex in $P \cup Q$.

Suppose not; then, by (1), there is a set $Y \subseteq X_{3} \cap(Q \backslash P)$ with $|Y| \geq k(q|H|)^{k}$ such that all vertices in Y belong to different parts of X_{3} (and hence Y is transitive). As in the proof of (1), there exists $Y^{\prime} \subseteq Y$ with $\left|Y^{\prime}\right|=k$, and a transitive subset $Z \subseteq X_{n}$ with $|Z|=k$, such that $Y^{\prime} \Rightarrow Z$. Since $Y^{\prime} \cap P=\emptyset$, each vertex in Y^{\prime} has an out-neighbour in fewer than k parts of X_{1}, and since $\left|Y^{\prime}\right|=k$ and X_{1} has $p=k^{2}$ parts, there is a part S of X_{1} such that $S \Rightarrow Y^{\prime}$. But then $G\left[S \cup Y^{\prime} \cup Z\right]$ is a copy of $\Delta(H, K, K)$, a contradiction. This proves (2).

Since $r>k\left(p^{k}+q^{k}\right)|H|^{k}$, it is not the case that $X_{3} \Rightarrow X_{n}$, and so $n \geq 5$. For the same reason, there is a part S of X_{3} that is disjoint from Q. Each vertex in S has out-neighbours in fewer than k primary parts of X_{n}, and, since there are $q=k|H|+p$ primary parts of X_{n}, there are p of them that are all complete to S. Hence there is a copy T of H^{p} in $G\left[X_{n}\right]$ that is complete to S. But then $S, X_{4}, \ldots, X_{n-1}, T$ is a special ring, contrary to the minimality of n. This proves 5.8.

6 Two conjectures of Harutyunyan et al.

Several of our results are based on the breakthrough result 2.2 by Harutyunyan et al. [7]. In the same paper they also proposed two strengthenings, that are both still open. First, they proposed:
6.1 Conjecture: For every integer $c \geq 1$, there exist integers $K, k \geq 1$ such that every tournament with domination number at least K contains a subtournament on at most k vertices having domination number at least c.

For the second conjecture, we need some definitions. If H_{1}, H_{2}, H_{3} are tournaments, we denote by $\Delta\left(H_{1}, H_{2}, H_{3}\right)$ the tournament G with vertex set the disjoint union of three sets A_{1}, A_{2}, A_{3}, where $G\left[A_{i}\right]$ is isomorphic to H_{i} for $i=1,2,3$, and $A_{1} \Rightarrow A_{2} \Rightarrow A_{3} \Rightarrow A_{1}$. When H_{3} is a one-vertex tournament we write $\Delta\left(H_{1}, H_{2}, 1\right)$ for $\Delta\left(H_{1}, H_{2}, H_{3}\right)$. Let \mathcal{S}_{1} be the tournament with one vertex, and inductively for $t \geq 2$ let $\mathcal{S}_{t}=\Delta\left(\mathcal{S}_{t-1}, \mathcal{S}_{t-1}, 1\right)$. For tournaments G, H, we say G contains H if G has a subtournament isomorphic to H.

Harutyunyan et al. [7] proposed:
6.2 Conjecture: For every integer $t \geq 1$, there exist $K \geq 1$ such that every tournament with domination number at least K contains \mathcal{S}_{t}.

The proof of 5.5 can be adjusted to show that conjecture 6.1 implies conjecture 6.2. Indeed, if 6.1 is true then something stronger than 6.2 holds. Let \mathcal{T}_{1} be a tournament with one vertex, and for $t>1$ let $\mathcal{T}_{t}=\Delta\left(\mathcal{T}_{t-1}, \mathcal{T}_{t-1}, \mathcal{T}_{t-1}\right)$. We will show that:
6.3 Suppose that for every integer $c \geq 0$, there exists integers $K, k \geq 1$ such that every tournament with domination number at least K contains a subtournament on at most k vertices having domination number at least c. Then for every integer $t \geq 1$, there exists K such that every \mathcal{T}_{t}-free tournament has domination number at most K.

Proof. We may assume that $t \geq 2$, and we proceed by induction on t. Thus we may assume that there exists c such that every \mathcal{T}_{t-1}-free tournament has domination number less than c. From the hypothesis, there exist integers $K, k \geq 1$ such that every tournament G with $\operatorname{dom}(G) \geq K$ contains a subtournament on at most k vertices having domination number at least $3 c$; and there exist integers $K^{\prime}, k^{\prime} \geq 1$ such that every tournament G with $\operatorname{dom}(G) \geq K^{\prime}$ contains a subtournament on at most k^{\prime} vertices having domination number at least $2^{2 k} c+3 c$. We will show that every tournament with domination number at least $\max \left(K, K^{\prime}\right)+k+k^{\prime}$ contains \mathcal{T}_{t}.

Let G be a tournament with $\operatorname{dom}(G) \geq \max \left(K^{\prime}, K\right)+k+k^{\prime}$. Let \mathcal{S} be the set of all subsets $X \subseteq V(G)$ with $|X| \leq k$ such that $\operatorname{dom}(G[X])=3 c$; and let \mathcal{S}^{\prime} be the set of all subsets $X \subseteq V(G)$ with $|X| \leq k^{\prime}$ such that $\operatorname{dom}(G[X])=2^{2 k} c+3 c$.

Now the proof proceeds exactly as the proof of 5.5: claim (1) holds, and we get a special ring, which now means a ring $X_{1}, X_{2}, \ldots, X_{n}$ such that

- $\left|X_{1}\right| \leq k+k^{\prime}$ and $\operatorname{dom}\left(X_{1}\right) \geq c$;
- $\left|X_{2}\right| \leq k$ and $\operatorname{dom}\left(X_{2}\right) \geq 2 c$;
- $\left|X_{3}\right| \leq k$ and $\operatorname{dom}\left(X_{3}\right)=3 c$ (that is, $X_{3} \in \mathcal{S}$); and
- $X_{i} \in \mathcal{R}$ for $4 \leq i \leq n$.

We choose such a ring with n minimum, and as before, we prove that $n=3$. But each of $G\left[X_{1}\right], G\left[X_{2}\right], G\left[X_{3}\right]$ has domination number at least c and so contains \mathcal{T}_{t-1}, and hence G contains \mathcal{T}_{t}. This proves 6.3.

It is not easy to think of tournaments with arbitrarily large domination number such that there is some tournament not contained in them. For instance:

- A uniformly random tournament probably has large domination number, but it also probably contains every small tournament.
- Let $q \geq 3$ be a prime congruent to 3 modulo 4. The Paley tournament has vertex set the element set of the field \mathcal{F}_{q}, in which y is adjacent from x if $x-y$ is a square. It was shown by Graham and Spencer [6] that the Paley tournament has domination number at least $\Omega(\log q)$. But Chung and Graham [4] showed that for every tournament H, if q is large enough then the Paley tournament contains H.
- Take $2 k-1$ linear orderings of the same set V, and make a tournament with vertex set V where v is adjacent from u if v is later than u in at least k of the orderings. This is called a k-majority tournament. Alon, Brightwell, Kierstead, Kostochka and Winkler [1] showed that there are k-majority tournaments with domination number at least $\Omega(k / \log k)$. But every tournament is a k-majority tournament if k is large enough.

Unlike chromatic number, domination number is not monotone; let us define the subdomination number of a tournament to be the maximum of the domination number of all subtournaments. The first conjecture 6.1 would imply that we can show that subdomination number is big (when it is) with a constant-time non-deterministic algorithm. More exactly, for all k there exists K, such that if the subdomination number of G is at least K, one can demonstrate with a non-deterministic algorithm (with constant running time if k is fixed) that its subdomination number is at least k. This would be a very nice thing to have, not necessarily via 6.1.

One can show that domination number is small (when it is), just by exhibiting a small dominating set. But can we show that subdomination number is small (when it is)? Is it true that for all integers $k \geq 0$ there exists K, and a poly-time algorithm when k is fixed, that would decide either that G has subdomination number at most K or that G has subdomination number at least k ? More plausibly, is there a non-deterministic poly-time algorithm that would do this?

There are many other basic questions about domination number and rebels that we cannot answer; for instance the following three:
6.4 Conjecture: For all $c \geq 0$, there exists $d \geq 0$ such that if a tournament G has $\operatorname{dom}(G) \geq d$, then it has a subtournament whose reverse has domination number at least c.

This is trivially true when $c=2$, but we cannot even prove it when $c=3$. It would imply the following, an analogue of 3.1 for subdomination number (the analogue for domination number is false, as we saw in 3.6):
6.5 Conjecture: For all integers $c \geq 0$ there exists $d \geq 0$ such that for every tournament G with subdomination number at least d, there exists $v \in V(G)$ such that $G\left[N^{+}(v)\right]$ has subdomination number at least c.
6.4 would also imply:
6.6 Conjecture: If H is a rebel, then the reverse of H is a rebel.

7 The density property.

In this section we prove a result that will be used to deduce 1.3 (and some extensions of it), and to prove 10.1. It will be applied to variants of chromatic number, but it holds for general submeasures, and so we have written it in terms of submeasures (we recall that a submeasure on a tournament G is a function $\mu: 2^{V(G)} \rightarrow \mathbb{R}^{+}$, such that $\mu(\emptyset)=0$, and μ is increasing and subadditive). We call $\mu(X)$ the μ-value of X.

Let G be a tournament, and let μ be a submeasure on G. If $P, Q \subseteq V(G)$ are disjoint and $c \geq 0$, we denote by $\langle P \xrightarrow{c, \mu} Q\rangle$ the set of all $v \in P$ such that $\mu\left(N^{+}(v) \cap Q\right) \leq c$. Similarly, $\langle P \stackrel{c, \mu}{\longleftrightarrow} Q\rangle$ denotes the set of all $v \in P$ such that $\mu\left(N^{-}(v) \cap Q\right) \leq c$ (not to be confused with $\langle Q \xrightarrow{c, \mu} P\rangle$). When μ is the chromatic number χ, we omit the reference to it and write $\langle P \xrightarrow{c} Q\rangle$, and so on.

Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be some function, and let $k \in \mathbb{R}^{+}$. A pair (P, Q) of disjoint subsets of $V(G)$ has the (g, k, μ)-out-density property if

$$
\mu\left(\left\langle P \xrightarrow{c, \mu} Q^{\prime}\right\rangle\right)<k
$$

for all $c \geq 0$ and for every $Q^{\prime} \subseteq Q$ with $\mu\left(Q^{\prime}\right) \geq g(c)$.
Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be some function. With g, k, μ as before, we say a tournament G has the (f, g, k, μ)-branching property if for all $c \geq 0$, and for every $X \subseteq V(G)$ with $\mu(X) \geq f(c)$, there is a vertex $a \in X$ and two subsets P, Q of X, with the following properties:

- $P, Q,\{a\}$ are pairwise disjoint, and $Q \Rightarrow\{a\} \Rightarrow P$;
- $\mu(P), \mu(Q) \geq c$; and
- (P, Q) has the (g, k, μ)-out-density property.

Roughly, this says that in every subset with large μ, we can find a vertex a and two sets P, Q of out-neighbours and in-neighbours of a respectively, both with large μ, such that for all $Q^{\prime} \subseteq Q$ with large μ, there are fewer than k vertices in P with out-neighbour set in Q^{\prime} of small μ.

How to arrange the (f, g, k, μ)-branching property is a separate issue, and there are combinations of hypotheses that will give this, that we discuss later. But now we need to prove the following.
7.1 Let $f, g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be functions, and let $k \geq 0$. For all $c \geq 0$ and integers $s, t \geq 1$ there exists $d_{c, s, t}$ with the following property. Let G be a tournament, and let μ be a submeasure in G, such that G has the (f, g, k, μ)-branching property. Let $P \subseteq V(G)$, and let Q_{1}, \ldots, Q_{s} be subsets of $V(G) \backslash P$ (not necessarily disjoint from each other), with the following properties:

- $\mu(P), \mu\left(Q_{1}\right), \ldots, \mu\left(Q_{s}\right) \geq d_{c, s, t}$;
- for $1 \leq i \leq s,\left(P, Q_{i}\right)$ has the (g, k, μ)-out-density property.

Then there is a copy S of \mathcal{S}_{t} in $G[P]$, and for $1 \leq i \leq s$ there is a subset $C_{i} \subseteq B_{i}$ complete from $V(S)$ with $\mu\left(C_{i}\right) \geq c$.

Proof. We prove by induction on t that the statement holds for all choices of s, c and the given value of t. Suppose first that $t=1$. We claim that we may set $d_{c, s, 1}=\max (k, g(c))$. Let $G, P, Q_{1}, \ldots, Q_{s}$ be as in the theorem. Since $\left(P, Q_{i}\right)$ has the (g, k, μ)-out-density property, and $\mu\left(Q_{i}\right) \geq d_{c, s, 1} \geq g(c)$, it follows that $\mu\left(\left\langle P \xrightarrow{c, \mu} Q_{i}\right\rangle\right)<k$ for $1 \leq s$, and so the union of those sets has μ-value less than $k s$. Since $\mu(P) \geq d_{c, s, 1} \geq k s$, there exists $a \in P$ in none of the sets $\left\langle P \xrightarrow{c, \mu} Q_{i}\right\rangle$, and consequently satisfying the theorem.

Thus the theorem holds when $t=1$; so we assume that $t>1$, and the theorem holds for $t-1$ and all choices of s, c. Let $c^{\prime}=d_{c, s, t-1}$, and $d^{\prime}=d_{c^{\prime}, s+1, t-1}$. We claim that setting $d_{c, s, t}=$ $\max \left(g\left(d^{\prime}\right), s k+f\left(d^{\prime}\right)\right)$ satisfies the theorem. To see this, let $G, \mu, P, Q_{1}, \ldots, Q_{s}$ be as in the theorem. For $1 \leq i \leq s$, since $\left(P, Q_{i}\right)$ has the (g, k, μ)-out-density property, and $\mu\left(Q_{i}\right) \geq d_{c, s, t} \geq g\left(d^{\prime}\right)$, it follows that

$$
\mu\left(\left\langle P \xrightarrow{d^{\prime}, \mu} Q_{i}\right\rangle\right)<k .
$$

Consequently the set P_{0} of vertices in P that belongs to none of the sets $\left\langle P \xrightarrow{d^{\prime}, \mu} Q_{i}\right\rangle$ has μ-value at least $\mu(P)-s k \geq d_{c, s, t}-s k \geq f\left(d^{\prime}\right)$.

Since G has the (f, g, k, μ)-branching property, and $\mu\left(P_{0}\right) \geq f\left(d^{\prime}\right)$, there is a vertex $a \in P_{0}$ and two subsets P^{\prime}, Q^{\prime} of P_{0}, with the following properties:

- $P^{\prime}, Q^{\prime},\{a\}$ are pairwise disjoint, and $Q^{\prime} \Rightarrow\{a\} \Rightarrow P^{\prime}$;
- $\mu\left(P^{\prime}\right), \chi_{\mu}\left(Q^{\prime}\right) \geq d^{\prime}$; and
- $\left(P^{\prime}, Q^{\prime}\right)$ has the (g, k, μ)-out-density property.

For $1 \leq i \leq s$, let Q_{i}^{\prime} be the set of vertices in Q_{i} that are adjacent from a. So $\mu\left(Q_{i}^{\prime}\right) \geq d^{\prime}$ for $1 \leq i \leq s$, since $a \in P_{0}$. Then Q^{\prime} and $Q_{1}^{\prime}, \ldots, Q_{s}^{\prime}$ are all disjoint from $P^{\prime} ;\left(P^{\prime}, Q^{\prime}\right)$ and all the pairs ($P^{\prime}, Q_{i}^{\prime}$) have the (g, k, μ)-out-density property; and P^{\prime}, Q^{\prime} and all the sets Q_{i}^{\prime} have μ-value at least $d^{\prime}=d_{c^{\prime}, s+1, t-1}$. From the inductive hypothesis, there is a copy R of \mathcal{S}_{t-1} in $G\left[P^{\prime}\right]$, and for $1 \leq i \leq s$ there is a subset $C_{i} \subseteq Q_{i}^{\prime}$ complete from $V(R)$ with $\mu\left(C_{i}\right) \geq c^{\prime}$, and there is a subset $C \subseteq Q^{\prime}$ complete from $V(R)$ with $\mu(C) \geq c^{\prime}$. Now C_{1}, \ldots, C_{s} are all disjoint from C; all the pairs $\left(C, C_{i}\right)$ have the (g, k, μ)-out-density property; and C and all the sets C_{i} have μ-chromatic number at least $c^{\prime}=d_{c, s, t-1}$. From the inductive hypothesis, there is a copy R^{\prime} of \mathcal{S}_{t-1} in $G[C]$, and for $1 \leq i \leq s$ there is a subset $C_{i}^{\prime} \subseteq C_{i}$ complete from $V\left(R^{\prime}\right)$ with $\mu\left(C_{i}^{\prime}\right) \geq c$. But then the subtournament S with vertex set $V(R) \cup V\left(R^{\prime}\right) \cup\{a\}$ is a copy of \mathcal{S}_{t} satisfying the theorem. This proves 7.1.

$8 \quad \mathcal{L}$-colouring

Colouring a tournament means partitioning its vertex set into subsets none of which includes a cyclic triangle; and this can usefully be generalized, as follows. Let G be a tournament, and let \mathcal{L} be a
set of subsets of $V(G)$, each including the vertex set of a cyclic triangle of G. We call \mathcal{L} a law for G. The order of a law is the maximum cardinality of its members (or $|G|$ if $\mathcal{L}=\emptyset$). We define the \mathcal{L}-chromatic number $\chi_{\mathcal{L}}(G)$ to be the minimum k such that $V(G)$ can be partitioned into k sets, each including no member of \mathcal{L}. The function $\chi_{\mathcal{L}}$ is a submeasure. Colouring in this sense is the same as colouring the hypergraph \mathcal{L} in the usual sense of hypergraph colouring; and $\chi(G)=\chi_{\mathcal{L}}(G)$ when \mathcal{L} is the set of all vertex sets of cyclic triangles of G.

Now we give the first application of 7.1, to prove 3.11 (and therefore its corollary 3.10), which we restate:
8.1 Let H be a tournament and $d \geq 0$. Then there exists n such that for every tournament G, either

- there exists a copy S of H in G, and two subsets $P, Q \subseteq V(G) \backslash V(S)$ with $Q \Rightarrow V(S) \Rightarrow P$, such that $\chi(P), \chi(Q) \geq d$; or
- $V(G)$ can be partitioned into n subsets each inducing an H-free subtournament.

This is implied by the following, by taking \mathcal{L} to be the law of all $X \subseteq V(G)$ such that $G[X]$ is isomorphic to H, and $\ell=|H|$.
8.2 Let $d, \ell \geq 0$. Then there exists n such that for every tournament G, and every law \mathcal{L} in G of order at most ℓ, if $\chi_{\mathcal{L}}(G)>n$ then there exists $A \in \mathcal{L}$ and two subsets $P, Q \subseteq V(G) \backslash A$ with $Q \Rightarrow A \Rightarrow P$, such that $\chi(P), \chi(Q) \geq d$.
(Note that the condition $\chi(P), \chi(Q) \geq d$ refers to chromatic number, and not \mathcal{L}-chromatic number. We do not know if the same holds using \mathcal{L}-chromatic number.)

We first prove the following weaker statement:
8.3 Let $d, \ell \geq 0$. Then there exists n such that for every tournament G, and every law \mathcal{L} in G of order at most ℓ, if $\chi_{\mathcal{L}}(G)>n$ then there exist $A \in \mathcal{L}$ and a subset $Q \subseteq V(G) \backslash A$ with $Q \Rightarrow A$, such that $\chi(Q) \geq d$.

Proof. Let g be the function defined by $g(c)=c \ell+d$ for $c \geq 0$. By 2.2 , there exist K, k such that every tournament with domination number at least K has a subtournament with chromatic number at least d and with at most k vertices. Let f be the function defined by

$$
f(c)=(c+1) \ell+d+\max (K(c+1), k(c+1)+1)
$$

for $c \geq 0$. With this choice of f, g let $d_{c, s, t}$ be as in 7.1, for all $c, s, t \geq 0$. Define $n=2 d_{2,1, d}$, let G be a tournament, and let \mathcal{L} be a law in G such that $\chi_{\mathcal{L}}(G)>n$. Let $\mu(X)=\chi_{\mathcal{L}}(X)$ for each $X \subseteq V(G)$; thus μ is a submeasure. We suppose for a contradiction that there do not exist $A \in \mathcal{L}$ and a subset $Q \subseteq V(G) \backslash A$ with $Q \Rightarrow A$, such that $\chi(Q) \geq d$.
(1) If $P, Q \subseteq V(G)$ are disjoint then (P, Q) has the $(g, 2, \mu)$-out-density property.

Let $c \geq 0$ and let $Q^{\prime} \subseteq Q$ with $\mu\left(Q^{\prime}\right) \geq g(c)$. Suppose that there exists $S \in \mathcal{L}$ with $S \subseteq\left\langle P \xrightarrow{c, \mu} Q^{\prime}\right\rangle$. For each $v \in S$, the set of out-neighbours of v in Q^{\prime} has μ-value at most c, and since \mathcal{L} has order at most ℓ, the set of vertices in Q^{\prime} that have an in-neighbour in S has μ-value at most $c \ell$. Consequently
the set of vertices in Q^{\prime} that are complete to S has μ-value at least $\mu\left(Q^{\prime}\right)-c \ell \geq d$, a contradiction. Thus there is no such S; and so $\mu\left(\left\langle P \xrightarrow{c, \mu} Q^{\prime}\right\rangle\right)<2$. This proves (1).
(2) For every $c \geq 0$ and every $P \subseteq V(G)$ with $\mu(P) \geq(c+1) \ell+d$, there exists $v \in P$ such that $\mu\left(P \cap N^{+}(v)\right) \geq c$.

Choose $S \in \mathcal{L}$ with $S \subseteq P$. The set of vertices in $P \backslash S$ that are complete to S has chromatic number less than d, and hence has \mathcal{L}-chromatic number less than d (here we use that every member of the law includes a cyclic triangle). So the union over $v \in S$ of the sets $P \cap N^{+}[v]$ has μ-value at least $\mu(P)-d \geq(c+1) \ell$, and since $|S| \leq \ell$, there exists $v \in S$ such that $\mu\left(P \cap N^{+}[v]\right) \geq c+1$, and so $\mu\left(P \cap N^{+}(v)\right) \geq c$ (because μ is subadditive and $\mu(\{v\}) \leq 1$). This proves (2).
(3) For every $c \geq 0$ and every $P \subseteq V(G)$ with $\mu(P) \geq \max (K(c+1), k(c+1)+1)$, there exists $v \in P$ such that $\mu\left(P \cap N^{-}(v)\right) \geq c$.

From the choice of K, k, applied to the reverse of $G[P]$, we deduce that either there is a subset $X \subseteq P$ with $|X|<K$ such that every vertex in $P \backslash X$ has an out-neighbour in X, or there exists $C \subseteq P$ with $\chi(C) \geq d$ and $|C| \leq k$. In the first case, since $\mu(P) \geq K(c+1)$, there exists $v \in X$ such that $\mu\left(P \cap N^{-}[v]\right) \geq c+1$, and hence $\mu\left(P \cap N^{-}(v)\right) \geq c$ as required. In the second case, the set of vertices in $P \backslash C$ that are complete from C contains no member of \mathcal{L}, by hypothesis, and so has \mathcal{L}-chromatic number at most one; and so for some $v \in C, \mu\left(P \cap N^{-}[v]\right) \geq(\mu(P)-1) / k \geq c+1$, and hence $\mu\left(P \cap N^{-}(v)\right) \geq c$. This proves (3).
(4) For every $c \geq 0$ and every $P \subseteq V(G)$ with $\mu(P) \geq f(c)$, there exists $v \in P$ such that $\mu\left(P \cap N^{+}(v)\right) \geq c$ and $\mu\left(P \cap N^{-}(v)\right) \geq c$.

Let X be the set of vertices $v \in P$ such that $\mu\left(P \cap N^{+}(v)\right) \geq c$. By $(2), \mu(P \backslash X)<(c+1) \ell+d$, and so

$$
\mu(X) \geq \mu(P)-((c+1) \ell+d) \geq \max (K(c+1), k(c+1)+1) .
$$

Hence the claim follows from (3). This proves (4).
From (4) and (1), it follows that G has the ($f, g, 2, \mu$)-branching property. Since $\mu(G) \geq 2 d_{2,1, d}$, there exist disjoint $P, Q \subseteq V(G)$ both with \mathcal{L}-chromatic number at least $d_{2,1, d}$. By 7.1, with $k=2$, $c=2, s=1$ and $t=d$, we deduce that there is a copy S of \mathcal{S}_{d} in $G[P]$, and there is a subset $C \subseteq Q$ complete from $V(S)$ with $\mu(C) \geq 2$. Choose $A \in \mathcal{L}$ with $A \subseteq C$; then A is complete from a copy of \mathcal{S}_{d}, and the latter has chromatic number at least d, a contradiction. This proves 8.3.

We remark that the proof of 8.3 almost never refers to (normal) chromatic number; the only place we need it is when we apply 2.2 . It would be good to have a version of 8.3 with $\chi(Q)$ replaced by $\chi_{\mathcal{L}}(Q)$, but we have not been able to prove this.

Now let us deduce 8.2, which we restate:
8.4 Let $d, \ell \geq 0$. Then there exists n such that for every tournament G, and every law \mathcal{L} in G of order at most ℓ, if $\chi_{\mathcal{L}}(G)>n$ then there exists $A \in \mathcal{L}$ and two subsets $P, Q \subseteq V(G) \backslash A$ with $Q \Rightarrow A \Rightarrow P$, such that $\chi(P), \chi(Q) \geq d$.

Proof. Choose m such that for every tournament G, and every law \mathcal{L} in G of order at most ℓ, if $\chi_{\mathcal{L}}(G)>m$ then there exists $A \in \mathcal{L}$ and a subset $P \subseteq V(G) \backslash A$ with $A \Rightarrow P$, such that $\chi(P) \geq d$. Define $n=m^{2}$. We will show that n satisfies the theorem.
(1) For every tournament G, and every law \mathcal{L} in G of order at most ℓ, if $\chi_{\mathcal{L}}(G)>m$ then there exists $A \in \mathcal{L}$ and a subset $P \subseteq V(G) \backslash A$ with $A \Rightarrow P$, such that $\chi(P) \geq d$.

This is immediate from 8.3, by reversing the direction of all edges.
Now let G be a tournament, and let \mathcal{L} be a law in G of order at most ℓ, such that $\chi_{\mathcal{L}}(G)>n$. Let \mathcal{L}^{\prime} be the set of all $S \in \mathcal{L}$ such that there exists $P \subseteq V(G) \backslash S$ with $S \Rightarrow P$, and $\chi(P) \geq d$. By (1), if $X \subseteq V(G)$ and $\chi_{\mathcal{L}^{\prime}}(X) \leq 1$, then $\chi_{\mathcal{L}}(X) \leq m$; and so, for each $X \subseteq V(G), \chi_{\mathcal{L}}(X) \leq m \chi_{\mathcal{L}^{\prime}}(X)$. It follows that $\chi_{\mathcal{L}^{\prime}}(G) \geq n / m=m$; and hence by 8.3 applied to \mathcal{L}^{\prime}, there exists $S \in \mathcal{L}^{\prime}$ and a subset $Q \subseteq V(G) \backslash S$ with $Q \Rightarrow S$, such that $\chi(Q) \geq d$. But since $S \in \mathcal{L}^{\prime}$ there exists $P \subseteq V(G) \backslash S$ with $S \Rightarrow P$, and $\chi(P) \geq d$. This proves 8.4.

9 Diamonds

The conjecture 1.1 of Erdös and El-Zahar could be stated in terms of tournaments that can be numbered such that the backedge graph has bounded clique number. What is special about tournaments that admit such a numbering? Can we test for this property (even in an approximate sense) in polynomial time? Is it in co-NP?

We do not know, but in this section we discuss a numbering that is more amenable to tournaments (not forcing the backedge graph to have bounded clique number, but with the same flavour); and an object (a "diamond with large chromatic number") which appears in a tournament if and only if the tournament does not admit the desired numbering, and which is quite useful when it appears.

A diamond in a tournament G is a quadruple (a, b, P, Q), where $a, b \in V(G)$ are distinct, and P, Q are disjoint subsets of $V(G) \backslash\{a, b\}$, such that $a \Rightarrow P \Rightarrow b \Rightarrow Q \Rightarrow a$. We need the sets P, Q to be "large" in some sense, typically that their chromatic numbers are large, so let us say the chromatic number of a diamond is the minimum of $\chi(P), \chi(Q)$. Diamonds with large chromatic number are valuable, so in this section we explore tournaments that contain no such diamonds.

Fix a numbering v_{1}, \ldots, v_{n} of the vertex set of a tournament G. For $1 \leq i, j \leq n$, we say v_{j} is a forward out-neighbour of v_{i} if $i<j$ and v_{j} is adjacent from v_{i}; and v_{j} is a forward in-neighbour of v_{i} if $j>i$ and v_{i} is adjacent from v_{j}. We say v_{j} is a backward out-neighbour of v_{i} if v_{i} is a forward in-neighbour of v_{j}, and backward in-neighbours are defined similarly. The local chromatic number of the numbering v_{1}, \ldots, v_{n} is the maximum over $1 \leq i \leq n$ of the chromatic number of the set of all v_{j} such that v_{j} is either a backward out-neighbour or a forward in-neighbour of v_{i} (thus, the chromatic number of the set of all neighbours of v_{i} such that the edge between v_{i}, v_{j} goes from right to left, if we arrange the numbering from left to right). Let us show a result that will have several applications, to $10.1,11.2$, and 13.2 :
9.1 If a tournament G admits a numbering with local chromatic number at most c, then it contains no diamond with chromatic number more than $2 c$. Conversely, for all $c \geq 0$ there exists $d \geq 0$ such
that if a tournament G contains no diamond with chromatic number more than c, then it admits a numbering with local chromatic number at most d.

Proof. For the first statement, let v_{1}, \ldots, v_{n} be a numbering of $V(G)$ with local chromatic number at most c, and let (a, b, C, D) be a diamond. From the symmetry we may assume that $a=v_{i}$ and $b=v_{j}$ where $i<j$ (exchanging a, b and C, D if necessary). If $v_{k} \in D$, then either $k<j$ and so v_{k} is a backward outneighbour of v_{j}), or $k>i$ (and then v_{k} is a forward in-neighbour of v_{i}); and so $\chi(D) \leq 2 c$. This proves the first statement.

For the second, by 3.1 there exists $d \geq 0$ such that if G is a tournament with $\chi(G)>d$, then there exists $v \in V(G)$ such that $\chi\left(N^{+}(v)\right) \geq 2 c+2$. Let G be a tournament that contains no diamond with chromatic number more than c. We will show that G admits a numbering with local chromatic number at most $2 d$. Let H be the digraph with vertex set $V(G)$, in which for all distinct $a, b \in V(G)$, b is adjacent from a in H if $\chi\left(G\left[N_{G}^{+}(a) \cap N_{G}^{-}(b)\right]\right) \geq 2 c+2$.
(1) H has no directed cycle.

Let $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ be the vertices in order of a directed cycle of H. Since G has no diamond of chromatic number more than c (and therefore, none of order more than $2 c$) it follows that $k>2$. For $1 \leq i \leq k$ let A_{i} be the set of vertices of G that are adjacent to v_{i+1} and from v_{i}, where v_{k+1} means v_{1}. Thus $\chi\left(A_{i}\right) \geq 2 c+2$ for $1 \leq i \leq n$. For each i, let B_{i} be the set of vertices in A_{i} adjacent from v_{1}, and C_{i} be the set of vertices in A_{i} adjacent to v_{1}. Thus $B_{i} \cup C_{i}=A_{i}$ if $v_{1} \notin A_{i}$, and $B_{i} \cup C_{i}=A_{i} \backslash\left\{v_{1}\right\}$ if $v_{1} \in A_{i}$. Let I be the set of $i \in\{1, \ldots, k\}$ such that $\chi\left(B_{i}\right)>c$, and J the set with $\chi\left(C_{i}\right)>c$. Since $\chi\left(B_{i} \cup C_{i}\right) \geq \chi\left(A_{i}\right)-1>2 c$, it follows that $i \in I \cup J$ for each i. But $1 \in I$ and $k \in J$, and so there exists i with $1 \leq i<k$ such that $i \in I$ and $i+1 \in J$. But then $i\left(v_{1}, v_{i+1}, B_{i}, C_{i+1}\right)$ is a diamond with chromatic number more than c, a contradiction. This proves (1).

From (1), there is a numbering v_{1}, \ldots, v_{n} of $V(G)$ such that for all i, j with $1 \leq i<j \leq n, v_{i}$ is not adjacent from v_{j} in H. Let $1 \leq i \leq n$, and let A be the set of forward in-neighbours of v_{i}, and let B be the set of backward out-neighbours of v_{i}. For each $v_{j} \in A$, it follows that $j>i$, and so $v_{j} v_{i} \notin E(H)$, and therefore the set of vertices in A that are out-neighbours of v_{j} has chromatic number at most $2 c+1$. From the choice of d, it follows that $\chi(A) \leq d$, and similarly $\chi(B) \leq d$ (using in-neighbours instead of out-neighbours). Thus $\left\{v_{1}, \ldots, v_{n}\right\}$ has chromatic number at most $2 d$. This proves 9.1.

We observe also that:
9.2 If a tournament G admits a numbering with local chromatic number at most c, then $\operatorname{dom}(G) \leq$ $c+1$.

Proof. Let v_{1}, \ldots, v_{n} be a numbering with local chromatic number at most c. Thus $\chi\left(N^{-}\left(v_{1}\right)\right) \leq c$, and hence $\operatorname{dom}\left(G\left[N^{-}\left(v_{1}\right)\right]\right) \leq c$. But v_{1} dominates all other vertices of G, and so $\operatorname{dom}(G) \leq c+1$. This proves 9.2.

We remark that there is no converse to 9.2 , because there are tournaments G such that every subtournament has bounded domination number, and yet G admits no numbering with small local
chromatic number. For instance, the tournament \mathcal{S}_{t} and all its subtournaments have domination number at most three, and yet:
9.3 Every numbering of \mathcal{S}_{t} has local chromatic number at least $(t-1) / 2$.

Proof. We may assume that $t \geq 3$. let $V\left(\mathcal{S}_{t}\right)$ be the disjoint union of $A, B,\{c\}$, where $c \Rightarrow A \Rightarrow B \Rightarrow$ c and A, B induce subtournaments isomorphic to \mathcal{S}_{t-1}. Suppose that v_{1}, \ldots, v_{n} is a numbering with local chromatic number less than $(t-1) / 2$, and choose i minimum such that one of $A \cap\left\{v_{1}, \ldots, v_{i}\right\}$, $B \cap\left\{v_{1}, \ldots, v_{i}\right\}$ has chromatic number at least $(t-1) / 2$. Let $I=\left\{v_{1}, \ldots, v_{i}\right\}$ and $J=\left\{v_{i+1}, \ldots, v_{n}\right\}$. Suppose that $\chi(B \cap I) \geq(t-1) / 2$. For each $v \in J$, the set of outneighbours of v in I has chromatic number less than $(t-1) / 2$ (by assumption, as they are backwards out-neighbours), and so $A \cap J=\emptyset$. Hence $\chi(A \cap I)=t-1$, and since $t-2 \geq(t-1) / 2$, this contradicts the minimality of i. It follows that $\chi(B \cap I)<(t-1) / 2$, and so $\chi(A \cap I) \geq(t-1) / 2$. For the same reason it follows that $c \notin J$, and so $c \in I$. Hence the set of in-neighbours of c in J has chromatic number less than $(t-1) / 2$, and so $\chi(B \cap J)<(t-1) / 2$. Since $\chi(B \cap I)<(t-1) / 2$, we deduce that $\chi(B)<t-1$, a contradiction. This proves 9.3.

10 Excluding $\Delta\left(H_{1}, H_{2}, 1\right)$.

We showed in 5.6 that if H_{1}, H_{2}, H_{3} are heroes then every $\Delta\left(H_{1}, H_{2}, H_{3}\right)$-free tournament has bounded domination number, but in view of 9.2, one might hope to strengthen this: is it true that if H_{1}, H_{2}, H_{3} are heroes then all $\Delta\left(H_{1}, H_{2}, H_{3}\right)$-free tournaments admit numberings with bounded local chromatic number? We shall show below that this is true if one of H_{1}, H_{2}, H_{3} has only one vertex: that is, if H_{1}, H_{2} are heroes then all $\Delta\left(H_{1}, H_{2}, 1\right)$-free tournaments admit numberings with bounded local chromatic number. But otherwise it is false. To see this, observe that if H_{1}, H_{2}, H_{3} each have at least two vertices, then \mathcal{S}_{t} is $\Delta\left(H_{1}, H_{2}, H_{3}\right)$-free, and so by 9.3 , not all $\Delta\left(H_{1}, H_{2}, H_{3}\right)$-free tournaments admit numberings with small local chromatic number.

A hereditary class \mathcal{C} is a class of tournaments such that for all $G \in \mathcal{C}$, if a tournament H is isomorphic to a subtournament of G, then $H \in \mathcal{C}$. We can define heroes relative to a hereditary class, as follows. Let \mathcal{C} be a hereditary class, and let H be a tournament. We say that H is a hero relative to \mathcal{C} if there exists $c \geq 0$ such that every H-free tournament in \mathcal{C} has chromatic number less than c. (Consequently, tournaments not in \mathcal{C} are heroes relative to \mathcal{C} if all members of \mathcal{C} have bounded chromatic number; this is for later technical convenience.) A tournament H is a hero in the earlier sense if and only if it is a hero relative to the class of all tournaments.

We already defined the (g, k, μ)-out-density property when μ is a submeasure; and we say a pair (P, Q) of disjoint subsets of $V(G)$ has the (g, k, μ)-in-density property if $\mu\left(\left\langle P \stackrel{c, \mu}{\leftrightarrows} Q^{\prime}\right\rangle\right)<k$ for all $c \geq 0$ and for every $Q^{\prime} \subseteq Q$ with $\mu\left(Q^{\prime}\right) \geq g(c)$. When $\mu=\chi$ we omit reference to it, and speak of the (g, k)-out-density property and (g, k)-in-density property, and the (f, g, k)-branching property.

We will use 7.1 to show the next result, which is needed to prove 11.2:
10.1 Let \mathcal{C} be a hereditary class of tournaments, and let H_{1}, H_{2} be heroes relative to \mathcal{C}. There exists d such that for every $\Delta\left(H_{1}, H_{2}, 1\right)$-free tournament $G \in \mathcal{C}$, every diamond in G has chromatic number at most d. Consequently there exists c such that every $\Delta\left(H_{1}, H_{2}, 1\right)$-free member of \mathcal{C} admits a numbering with local chromatic number at most c.

Proof. The first statement implies the second, by 9.1, and so it suffices to prove the first. Choose c_{0} such that every tournament in \mathcal{C} with chromatic number at least c_{0} contains both H_{1} and H_{2}. Choose $t=c_{0}+1$.

Let ϕ be as in 3.9. Let g be the function defined by $g(c)=c \max \left(\left|H_{1}\right|,\left|H_{2}\right|\right)+c_{0}$ for $c \geq 0$. Let f be the function defined by $f(c)=\phi(g(c))$ for $c \geq 0$. By 7.1 (with $\mu=\chi$, and $c=s=0$, and $k=c_{0}$, and taking $P=V(G)$), there exists d such that every tournament G with $\chi(G) \geq d$ and with the $\left(f, g, c_{0}\right)$-branching property contains \mathcal{S}_{t}.

Let G be a $\Delta\left(H_{1}, H_{2}, 1\right)$-free member of \mathcal{C}. We will show that every diamond in G has chromatic number less than $\max \left(d, 2 c_{0}\right)$, and so the theorem holds.
(1) For every diamond (a, b, P, Q) in G, the pair (P, Q) has the $\left(g, c_{0}\right)$-out-density property and the $\left(g, c_{0}\right)$-in-density property.

Let $c>0$ and let $Q^{\prime} \subseteq Q$ with $\chi\left(Q^{\prime}\right) \geq g(c)$. We must show that $\chi\left(\left\langle P \xrightarrow{c} Q^{\prime}\right\rangle\right)<c_{0}$ and $\chi\left(\left\langle P \stackrel{c}{\leftarrow} Q^{\prime}\right\rangle\right)<c_{0}$. First we show that $\chi\left(\left\langle P \xrightarrow{c} Q^{\prime}\right\rangle\right)<c_{0}$.

Let $X=\left\langle P \xrightarrow{c} Q^{\prime}\right\rangle$, and suppose that $\chi(X) \geq c_{0}$. Consequently $G[X]$ includes a copy S of H_{2}. For each vertex $v \in V(S)$, the set of vertices in Q^{\prime} adjacent from v has chromatic number at most c, and so the set of vertices in Q^{\prime} that have an in-neighbour in $V(S)$ has chromatic number at most $c\left|H_{2}\right|$. Since $\chi\left(Q^{\prime}\right) \geq c\left|H_{2}\right|+c_{0}$, the set Y of vertices in Q^{\prime} that are adjacent to each vertex of S has chromatic number at least c_{0}, and so contains a copy T of H_{1}. But then the subtournament induced on $V(S) \cup V(T) \cup\{b\}$ is isomorphic to $\Delta\left(H_{1}, H_{2}, 1\right)$, a contradiction. This proves that $\chi\left(\left\langle P \xrightarrow{c} Q^{\prime}\right\rangle\right)<c_{0}$.

Now we show that $\chi\left(\left\langle P \stackrel{c}{\leftarrow} Q^{\prime}\right\rangle\right)<c_{0}$. (This proof is almost identical to what we just did, using a instead of b.) Let $X=\left\langle P \stackrel{\leftarrow}{\leftarrow} Q^{\prime}\right\rangle$, and suppose that $\chi(X) \geq c_{0}$. Consequently $G[X]$ includes a copy S of H_{1}. For each vertex $v \in V(S)$, the set of vertices in Q^{\prime} adjacent to v has chromatic number at most c, and so the set of vertices in Q^{\prime} that have an out-neighbour in $V(S)$ has chromatic number at most $c\left|H_{1}\right|$. Since $\chi\left(Q^{\prime}\right) \geq c\left|H_{1}\right|+c_{0}$, the set Y of vertices in Q^{\prime} that are adjacent from each vertex of S has chromatic number at least c_{0}, and so contains a copy T of H_{1}. But then the subtournament induced on $V(S) \cup V(T) \cup\{a\}$ is isomorphic to $\Delta\left(H_{1}, H_{2}, 1\right)$, a contradiction. This proves that $\chi\left(\left\langle P \stackrel{c}{\leftarrow} Q^{\prime}\right\rangle\right)<c_{0}$, and so proves (1).
(2) For every diamond (a, b, P, Q) in G, if $\chi(Q) \geq 2 c_{0}$ then $G[P]$ has the $\left(f, g, c_{0}\right)$-branching property.

We must show that for all $c \geq 0$, and for every $X \subseteq P$ with $\chi(X) \geq f(c)$, there is a vertex $a^{\prime} \in X$ and two subsets P^{\prime}, Q^{\prime} of X, with the following properties:

- $P^{\prime}, Q^{\prime},\left\{a^{\prime}\right\}$ are pairwise disjoint, and $Q^{\prime} \Rightarrow\left\{a^{\prime}\right\} \Rightarrow P^{\prime} ;$
- $\chi\left(P^{\prime}\right), \chi\left(Q^{\prime}\right) \geq c$; and
- $\left(P^{\prime}, Q^{\prime}\right)$ has the $\left(g, c_{0}\right)$-out-density property.

By the definition of ϕ, and since $\chi(X) \geq f(c)=\phi(g(c))$, there exists $a^{\prime} \in X$ such that $\chi(X \cap$ $\left.N^{+}\left(a^{\prime}\right)\right), \chi\left(X \cap N^{-}\left(a^{\prime}\right)\right) \geq g(c)$. Let $P_{1}=X \cap N^{+}\left(a^{\prime}\right)$ and $Q_{1}=X \cap N^{-}\left(a^{\prime}\right)$. By (1) applied to the diamond (b, a, Q, P), since $\chi\left(P_{1}\right) \geq g(c)$ and $\chi\left(Q_{1}\right) \geq g(c)$, it follows that $\chi\left(\left\langle Q \leftarrow P_{1}\right\rangle\right)<c_{0}$ and $\chi\left(\left\langle Q \xrightarrow{c} Q_{1}\right\rangle\right)<c_{0}$. Since $\chi(Q) \geq 2 c_{0}$, there exists $b^{\prime} \in Q$ that belongs to neither of the sets
$\left\langle Q \stackrel{c}{\leftarrow} P_{1}\right\rangle,\left\langle Q \xrightarrow{c} Q_{1}\right\rangle$. Let P^{\prime} be the set of in-neighbours of b^{\prime} in P_{1}, and let Q^{\prime} be the set of outneighbours of b^{\prime} in Q_{1}; thus $\chi\left(P^{\prime}\right), \chi\left(Q^{\prime}\right) \geq c$, and $\left(a^{\prime}, b^{\prime}, P^{\prime}, Q^{\prime}\right)$ is a diamond. Hence by (1), ($\left.P^{\prime}, Q^{\prime}\right)$ has the $\left(g, c_{0}\right)$-out-density property, and so $a^{\prime}, P^{\prime}, Q^{\prime}$ satisfy the definition of the $\left(f, g, c_{0}\right)$-branching property. This proves (2).

If $\mathcal{S}_{t-1} \in \mathcal{C}$ then it contains H_{1} and H_{2}, since its chromatic number is at least $t-1=c_{0}$; and so if $\mathcal{S}_{t} \in \mathcal{C}$ then it contains $\Delta\left(H_{1}, H_{2}, 1\right)$. Hence G does not contain \mathcal{S}_{t}; and it follows from (2) and the choice of d that there is no diamond (a, b, P, Q) in G such that $\chi(P) \geq d$ and $\chi(Q) \geq 2 c_{0}$. From 9.1 , this proves 10.1 .

11 Excluding \mathcal{S}_{t}.

\mathcal{S}_{t} is one of the simplest tournaments with large chromatic number, and it would be nice to understand the tournaments that do not contain it, particularly since if a tournament contains \mathcal{S}_{t} with t sufficiently large then it satisfies 1.2. Tournaments that admit numberings with small local chromatic number do not contain \mathcal{S}_{t} with t large, by 9.3 , and one might for some sort of converse, but the simplest hope for a converse is false: for some t, one can make tournaments that do not contain \mathcal{S}_{t} that also not admit numberings with small local chromatic number. To see this, take a tournament H with large chromatic number that does not contain \mathcal{S}_{3} (for instance, a tournament with backedge graph that has large girth and chromatic number: this has the desired properties); partition its vertex set into two sets P, Q both with large chromatic number, and add two new vertices a, b, where $a \Rightarrow P \Rightarrow b \Rightarrow Q \Rightarrow a$, forming G. The presence of the diamond guarantees that all numberings of G have large local chromatic number, by 9.1 , and yet G does not contain \mathcal{S}_{t+2}, since H does not contain \mathcal{S}_{t}.

Here is a more plausible conjecture:
11.1 Conjecture: For all integers $t \geq 1$ there exist K, k such that for every \mathcal{S}_{t}-free tournament G, there is a partition of $V(G)$ into K sets each inducing a subtournament that admits a numbering with local chromatic number at most k.

We are far from proving this, because by 9.1 it would imply 6.2 , but here is a small step in this direction. The quantifiers are complicated, but it says, roughly, that if G has large chromatic number and does not contain \mathcal{S}_{t}, then there is a subtournament with large chromatic number, in which every diamond has small chromatic number. (We remark that excluding \mathcal{S}_{t} is necessary: if $G=\mathcal{S}_{t}$ then every subtournament with large chromatic number has a diamond with large chromatic number.)
11.2 Let $t \geq 2$ be an integer, and let $c_{2}=1$. Then

$$
\forall d_{2} \exists c_{3} \forall d_{3} \exists c_{4} \cdots \forall d_{t-1} \exists c_{t}
$$

(where $d_{2}, c_{3}, d_{3}, \ldots, c_{t}$ are all non-negative integers) such that the following holds. If G is an $\mathcal{S}_{t^{-}}$ free tournament, then either every diamond in G has chromatic number less than c_{t}, or for some $i \in\{2, \ldots, t-1\}$, there is a subtournament G^{\prime} with $\chi\left(G^{\prime}\right) \geq d_{i}$, such that every diamond of G^{\prime} has chromatic number less than c_{i}.

Proof. If $t=2$, the statement is trivial, since every tournament with a diamond of positive chromatic number contains \mathcal{S}_{2}. Thus, inductively, we may assume that $t \geq 3$ and the result holds for $t-1$. Hence

$$
\forall d_{2} \exists c_{3} \forall d_{3} \exists c_{4} \cdots \exists c_{t-1},
$$

such that if G is a tournament with a diamond of chromatic number at least c_{t-1}, and for each $i \in\{2, \ldots, t-2\}$, every subtournament G^{\prime} with $\chi\left(G^{\prime}\right) \geq d_{i}$ has a diamond of G^{\prime} with chromatic number at least c_{i}, then G contains \mathcal{S}_{t-1}. Let $c_{2}, d_{2}, \ldots, c_{t-1}$ be given; then for $d_{t-1} \geq 0$, we need to show that there exists c_{t} such that the last sentence of the theorem holds.

Let \mathcal{C} be the hereditary class of all tournaments G such that for each $i \in\{2, \ldots, t-1\}$, every subtournament G^{\prime} with $\chi\left(G^{\prime}\right) \geq d_{i}$ has a diamond of G^{\prime} with chromatic number at least c_{i}. Thus if $G \in \mathcal{C}$ with $\chi(G) \geq d_{t-1}$, then G has a diamond with chromatic number at least c_{t-1}, from the definition of \mathcal{C}; and from the inductive hypothesis G contains \mathcal{S}_{t-1}. Consequently, \mathcal{S}_{t-1} is a hero relative to \mathcal{C}_{t-1}.

From 10.1, there exists c_{t} such that for every $\Delta\left(\mathcal{S}_{t-1}, \mathcal{S}_{t-1}, 1\right)$-free tournament $G \in \mathcal{C}$, every diamond in G has chromatic number at most c_{t}. Since $\Delta\left(\mathcal{S}_{t-1}, \mathcal{S}_{t-1}, 1\right)=\mathcal{S}_{t}$, this proves 11.2.

We saw already in 2.3 that to prove 1.2 it suffices to prove it for tournaments with bounded domination number, but now we can strengthen that; it suffices to prove it for tournaments that admit numberings with bounded local chromatic number. For each $\ell \geq 0$, let \mathcal{C}_{ℓ} be the class of tournaments that admit numberings with local chromatic number at most ℓ; and for $c \geq 0$, let us say a tournament is c-good if it contains a complete pair (A, B) with $\chi(A), \chi(B) \geq c$.
11.3 Let $c \geq 0$. Suppose that for all $\ell \geq 0$, there exists $d \geq 0$ such that every tournament in \mathcal{C}_{ℓ} with chromatic number at least d is c-good. Then there exists d such that every tournament with chromatic number at least d is c-good.

Proof. We may assume that $c \geq 2$ and c is an integer. Let $t=c+1$. By 9.1, for all $k \geq 0$ there exists an integer $f(k) \geq 0$ such that if a tournament G contains no diamond with chromatic number at least k, then it admits a numbering with local chromatic number at most $f(k)$. For $\ell \geq 0$, let $g(\ell)$ be an integer such that every tournament in \mathcal{C}_{ℓ} with chromatic number at least $g(\ell)$ is c-good. (This exists by hypothesis.)

By 11.2, taking $d_{i}=g\left(f\left(c_{i}\right)\right)$ for $i=2, \ldots, t-1$, we deduce that there exist $c_{2}=1, c_{3}, c_{4}, \ldots, c_{t}$ such that the following holds. If G is an \mathcal{S}_{t}-free tournament, then either every diamond in G has chromatic number less than c_{t}, or for some $i \in\{2, \ldots, t-1\}$, there is a subtournament G^{\prime} with $\chi\left(G^{\prime}\right) \geq g\left(f\left(c_{i}\right)\right)$, such that every diamond of G^{\prime} has chromatic number less than c_{i}. In particular, if G is an $\mathcal{S}_{t^{\prime}}$-free tournament with $\chi(G) \geq g\left(f\left(c_{t}\right)\right)$, then for some $i \in\{2, \ldots, t\}$, there is a subtournament G^{\prime} with $\chi\left(G^{\prime}\right) \geq g\left(f\left(c_{i}\right)\right)$, such that every diamond of G^{\prime} has chromatic number less than c_{i}. But if every diamond of G^{\prime} has chromatic number less than c_{i}, then $G^{\prime} \in \mathcal{C}_{f\left(c_{i}\right)}$, from the definition of f. Moreover, every tournament in $\mathcal{C}_{f\left(c_{i}\right)}$ with chromatic number at least $g\left(f\left(c_{i}\right)\right)$ is c-good, from the definition of g. Consequently we have shown that every \mathcal{S}_{t}-free tournament G with $\chi(G) \geq g\left(f\left(c_{t}\right)\right)$ contains a c-good subtournament, and hence is c-good. But every tournament that contains \mathcal{S}_{t} is c-good, since \mathcal{S}_{t} contains a complete pair (A, B) where A, B both induce copies of \mathcal{S}_{c}. Consequently every tournament G with $\chi(G) \geq g\left(f\left(c_{t}\right)\right)$ is c-good. This proves 11.3.

Consequently, 1.2 is equivalent to the statement that for each $\ell \geq 0$, and each $c \geq 0$, there exists $d \geq 0$ such that if G is a tournament that has chromatic number at least d and admits a numbering with strong chromatic number at most ℓ, then G is c-good.

12 Does 1.1 imply 1.2 ?

We have been working with numberings of tournaments with small local chromatic number, but numberings could be nicer than that: they might have small "strong chromatic number". If v_{1}, \ldots, v_{n} is a numbering of a tournament T, with backedge graph G, let us say the strong chromatic number of the numbering is the maximum over $1 \leq i \leq n$ of the chromatic number of the subgraph of G induced on the set of neighbours of v_{i} in G. By 2.1, the strong chromatic number of a numbering is at least its local chromatic number.

It is easy to see (we omit the details) that the conjecture 1.1 of El-Zahar and Erdős is equivalent to the following: that for each $\ell \geq 0$, and each $c \geq 0$, there exists $d \geq 0$ such that if G is a tournament that has chromatic number at least d and admits a numbering with strong chromatic number at most ℓ, then G is c-good. Since we saw in the last section that 1.2 is equivalent to the same with "strong" changed to "local", let us look more closely at the difference between local chromatic number and strong chromatic number.

Not all numberings with small local chromatic number have small strong chromatic number; for instance, the backedge graph could be a complete graph. But in that case, we could reverse the numbering and get a numbering with small strong chromatic number. That suggests the question, is it true that if G admits a numbering with small local chromatic number, then it also admits a numbering with small strong chromatic number? The answer is no, and in this section we explain why. Indeed, things are even worse. Let us say the clique number of a numbering of a tournament is the size of the largest clique in its backedge graph. We will show that tournaments that admit a numbering with small local chromatic number need not even admit a numbering with small clique number.

Here is an interesting tournament. Take a set P of pairs of integers (a, b) with a, b, such that all the integers used are distinct (we call this an integer matching). The graph H with vertex set P, in which (a, b) and (c, d) are adjacent if either $a<c<b<d$ or $c<a<d<b$, is called a circle graph. (We mentioned these earlier, in section 4). Let us choose a numbering of this graph by the second terms: so (a, b) is earlier than (c, d) in the numbering if $b<d$. We want to look at the tournament that has backedge graph H under this numbering. More explicitly, let G be the tournament with vertex set P, in which (c, d) is adjacent from (a, b) if $a<d$ and either $c<a$ or $c>b$. (In other words, if we arrange a, b, c, d in increasing order, the second term is one of a, b.) Let us call such a tournament a crossing tournament. We will show:

- Every crossing tournament admits a numbering such that its backedge graph is a circle graph, and for every vertex, its forward in-neighbours are transitive, and its backward out-neighbours are transitive; and consequently the numbering has local chromatic number at most two.
- Crossing tournaments do not contain \mathcal{S}_{3}.
- There is a crossing tournament such that every numbering has large clique number. Consequently the tournament has large chromatic number, and every numbering has large strong chromatic number.

We begin with:
12.1 Every crossing tournament admits a numbering such that its backedge graph is a circle graph, and for every vertex, its forward in-neighbours are transitive, and its backward out-neighbours are transitive; and consequently the numbering has local chromatic number at most two.

Proof. Let T be a crossing tournament defined by an integer matching P. Let $P=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$ where $b_{1}<b_{2}<\cdots<b_{n}$. This defines a numbering of T. Let $1 \leq i, j \leq n$. Then under this numbering, $\left(a_{j}, b_{j}\right)$ is a forward in-neighbour of $\left(a_{i}, b_{i}\right)$ if and only if $a_{i}<a_{j}<b_{i}<b_{j}$; and so the backedge graph is a circle graph. If $\left(a_{j}, b_{j}\right),\left(a_{k}, b_{k}\right)$ are both forward in-neighbours of $\left(a_{i}, b_{i}\right)$, then the adjacency between them is determined by whichever of a_{j}, a_{k} is larger; $\left(a_{j}, b_{j}\right)$ is adjacent to (a_{k}, b_{k}) if and only if $a_{k}<a_{j}$. Consequently the set of all forward in-neighbours of $\left(a_{i}, b_{i}\right)$ is transitive. Also, $\left(a_{j}, b_{j}\right)$ is a backward out-neighbour of $\left(a_{i}, b_{i}\right)$ if and only if $a_{j}<a_{i}<b_{j}<b_{i}$; and so similarly the set of backward out-neighbours of $\left(a_{i}, b_{i}\right)$ is transitive. This proves 12.1.

We do not need the next result; it is included just because we find crossing tournaments interesting.

12.2 Crossing tournaments do not contain \mathcal{S}_{3}.

Proof. Suppose that \mathcal{S}_{3} is a crossing tournament, defined by the integer matching P say. Let $P=A \cup B \cup\{c\}$ where A, B are cyclic triangles, and $\{c\} \Rightarrow A \Rightarrow B \Rightarrow\{c\}$. Let $c=(a, b)$ say. Since A is not transitive, there exists $(p, q) \in A$ such that either $p>a$ or $q<a$; and since c is adjacent to (p, q), it follows that $p>b$. Similarly there exists $(r, s) \in B$ with $s<a$. But then (r, s) is adjacent to (p, q), contradicting that $A \Rightarrow B$. This proves 12.2.

If P is an integer matching, $V(P)$ denotes the set of $2|P|$ ends of its members. If P, Q are integer matchings, we say that Q is a copy of P if $|V(P)|=|V(Q)|$ and the (unique) order-preserving bijection from $V(P)$ to $V(Q)$ maps P to Q. We need the following lemma:
12.3 Let P be an integer matching. Then there is an integer matching Q, with the property that for all Q_{1}, Q_{2} with $Q_{1} \cup Q_{2}=Q$, there is a copy of P that is a subset of one of Q_{1}, Q_{2}.

Proof. Let $|P|=p$ say. We may assume that $V(P)=\{1, \ldots, 2 p\}$. Let N be an integer such that for every partition of the edge set of the complete graph K_{N} into two classes, there is a $K_{2 p}$ subgraph with all edges in the same class. For $1 \leq i \leq N$ let

$$
V_{i}=\{(i-1)(N-1)+1, \ldots, i(N-1)\} ;
$$

thus, V_{1}, \ldots, V_{N} form a partition of $\{1, \ldots,(N-1) N\}$ into sets of cardinality $N-1$. For each pair (a, b) of integers with $1 \leq a<b \leq N$, let

$$
f(a, b)=((a-1)(N-1)+b,(b-1)(N-1)+a) .
$$

Thus the set, Q say, of all these pairs $f(a, b)$ is an integer matching, and for every choice of a, b with $1 \leq a<b \leq N$, there is a pair $(c, d) \in Q$ with $c \in V_{a}$ and $d \in V_{b}$.

We claim that Q satisfies the theorem. Let $Q_{1}, Q_{2} \subseteq Q$ with union Q. From the choice of N, there exists $I \subseteq\{1, \ldots, N\}$ with $|I|=2 p$, such that all the members of Q with both ends in $\bigcup_{i \in I} V_{i}$ belong to the same one of Q_{1}, Q_{2}, say to Q_{1}. But then Q_{1} contains a copy of P. This proves 12.3.

We deduce:
12.4 For each integer $k \geq 1$, there is a crossing tournament such that every numbering has clique number at least k. Consequently its chromatic number is at least k, and every numbering has strong chromatic number at least $k-1$.

Proof. Let us define a crossing tournament \mathcal{U}_{k} inductively for $k \geq 1$ as follows. \mathcal{U}_{k} has one vertex. For $k \geq 2$, we may assume inductively that \mathcal{U}_{k-1} is defined, by the integer matching P say. By 12.3, there is an integer matching Q such that for all Q_{1}, Q_{2} with union Q, one of Q_{1}, Q_{2} contains a copy of P.

We may assume that Q is a set of pairs of integers in $\{1, \ldots, 2 q\}$. For $i \geq 0$ let Q^{+i} be the integer matching $\{(a+i, b+i):(a, b) \in Q\}$. Let $b_{i}=k+1+(2 q+1) i$ for $1 \leq i \leq k$, and let $R=\left\{\left(i, b_{i}\right): 1 \leq i \leq k\right\}$. Let S be the union of R and all the sets $Q^{+b_{i}}$ for $1 \leq i \leq k-1$. Thus S is an integer matching. Let \mathcal{U}_{k} be the crossing tournament defined by S. This completes the inductive definition.

We claim that every numbering of \mathcal{U}_{k} has clique number at least k. The claim is true for $k=1$, so inductively we assume that $k \geq 2$ and the claim holds for \mathcal{U}_{k-1}. Let τ be a numbering of \mathcal{U}_{k}, and let G be the corresponding backedge graph. We need to prove that G has a clique of size k. Let P, Q, R, S and so on be as in the inductive definition of \mathcal{U}_{k}.

Since $\left(i, b_{i}\right)$ is adjacent from $\left(j, b_{j}\right)$ for $1 \leq i<j \leq k$, we may assume that there exists i with $1 \leq i<k$ such that $\left(i+1, b_{i+1}\right)$ precedes $\left(i, b_{i}\right)$ in the numbering τ, since otherwise G has a clique of size k as desired. Every member of $Q^{+b_{i}}$ is a vertex of \mathcal{U}_{k}, and is a pair (a, b) with $b_{i}<a<b<b_{i+1}$. Consequently every member of $Q^{+b_{i}}$ is either a left out-neighbour of $\left(i, b_{i}\right)$ or a right in-neighbour of $\left(i+1, b_{i+1}\right)$. Let Q_{1} be the set of left out-neighbours of $\left(i, b_{i}\right)$, and Q_{2} the set of right in-neighbours of $\left(i+1, b_{i+1}\right)$. From the choice of Q, one of Q_{1}, Q_{2}, say Q_{j}, contains a copy of P; and so there is a clique of $G\left[Q_{j}\right]$ of cardinality $k-1$. If $j=1$ then $\left(i, b_{i}\right)$ is adjacent in G to every vertex of this clique, and if $j=2$ then $\left(i+1, b_{i+1}\right)$ has the same property. Consequently G contains a clique of size k. This proves that every numbering of \mathcal{U}_{k} has clique number at least k.

If \mathcal{U}_{k} has chromatic number t say, take a partition into t transitive sets, and take the numbering τ where we first list the members of the first of the transitive sets, in their natural order, and then list the members of the second set, and so on. Then the backedge graph is t-colourable, and so has no clique of size larger than t. Hence $t \leq k$. Similarly if \mathcal{U}_{k} admits a numbering with strong chromatic number t, then its backedge graph has clique number at most $t+1$, and so $t+1 \geq k$. This proves 12.4.

So admitting a numbering with small local chromatic number does not imply that there is one with small strong chromatic number, or even one with small clique number.

13 Constructing heroes

Finally, let us observe that the results of this paper give a new and simpler proof of the hard part of 5.4 , which was the main theorem of [2] and took about eight pages there. The remainder of 5.4 , that every hero can be constructed as in 5.4, is easy; the hard part is to show the following two statements, 13.1 and 13.2 below:
13.1 If H is obtained from the disjoint union of heroes H_{1}, H_{2} by making $V\left(H_{1}\right)$ complete to $V\left(H_{2}\right)$, then H is a hero.

Proof. Choose c_{0} such that every tournament with chromatic number at least c_{0} contains both H_{1} and H_{2}. Choose n as in 8.1, taking $d=c_{0}$ and $H=H_{1}$, and let $c=n c_{0}$. Now let G be a tournament with chromatic number at least c. If $V(G)$ can be partitioned into n subsets each inducing an H_{1-} free subtournament, then each of these subtournaments has chromatic number less than c_{0}, and so $\chi(G)<n c_{0}$, a contradiction. So, from the choice of n, there exists a copy S of H_{1} in G, and a subset $P \subseteq V(G) \backslash V(S)$ with $V(S) \Rightarrow P$, such that $\chi(P) \geq c_{0}$. But then $G[P]$ contains H_{2}, and so G contains H. This proves 13.1.
13.2 Let H be a hero and $k \geq 0$ an integer: then $\Delta(H, K, 1)$ is a hero, where K is a transitive tournament with k vertices.

This is evidently implied by the following (since $G[P]$ contains H if c is large enough, and $G[Q]$ contains K if k in 13.3 is large enough):
13.3 For all integers $k, c \geq 0$ there exists $d \geq 0$, such that if G is a tournament with $\chi(G) \geq d$, then there exist $v \in V(G)$ and subsets $P \subseteq N^{+}(v)$ and $Q \subseteq N^{-}(v)$, where $\chi(P) \geq c$, and $|Q| \geq k$, and $P \Rightarrow Q$.

Proof. (Sketch.) Choose $t \geq 2$ such that \mathcal{S}_{t} contains v, P, Q as specified. From 9.1 and an easy modification of the proof of theorem 4.4 of [2], taking all the sets X_{i} of that theorem to be singletons, we deduce:
(1) For all c, there exists $f(c)$ such that every tournament with chromatic number at least $f(c)$ and with no diamond of chromatic number at least c contains v, P, Q as specified.

Now let G be a tournament that does not contain the desired v, P, Q. Consequently it does not contain \mathcal{S}_{t}, and we must show that its chromatic number is bounded. By (1), for all $c \geq 0$, every subtournament of G with chromatic number at least $f(c)$ has a diamond of chromatic number at least c. From 11.2, taking $c_{2}=1$ and $d_{i}=f\left(c_{i}\right)$ for $2 \leq i \leq t-1$, we deduce that, with c_{t} as in that theorem, every diamond in G has chromatic number less than c_{t}. Consequently $\chi(G) \leq f\left(c_{t}\right)$. This proves 13.3.

14 Acknowledgement

Our thanks to Noga Alon, Guillaume Aubian and Pierre Aboulker, who gave us counterexamples to some of the conjectures in an earlier version of this paper.

References

[1] N. Alon, G. Brightwell, H. A. Kierstead, A. V. Kostochka and P. Winkler, "Dominating sets in k-majority tournaments", J. Combinatorial Theory, Ser. B, 96 (2006), 374-387.
[2] E. Berger, K. Choromanski, M. Chudnovsky, J. Fox, M. Loebl, A. Scott, P. Seymour and S. Thomassé, "Tournaments and colouring", J. Combinatorial Theory, Ser. B, 103 (2013), 1-20.
[3] M. Chudnovsky, R. Kim, C. Liu, P. Seymour and S. Thomassé, "Domination in tournaments", J. Combinatorial Theory, Ser. B, 130 (2018), 98-113.
[4] F. Chung and R. Graham, "Quasi-random tournaments", J. Graph Theory 15 (1991), 173-198.
[5] M. El-Zahar and P. Erdős, "On the existence of two non-neighboring subgraphs in a graph", Combinatorica 5 (1985), 295-300.
[6] R. L. Graham and J. H. Spencer, "A constructive solution to a tournament problem", Canadian Mathematical Bull. 14 (1971), 45-48.
[7] A. Harutyunyan, T. Le, S. Thomassé, and H. Wu, "Coloring tournaments: From local to global", J. Combinatorial Theory, Ser. B, 138 (2019), 166-171.
[8] A. Girão, K. Hendrey, F. Illingworth, F. Lehner, L. Michel, M. Savery and R. Steiner, "Chromatic number is not tournament-local", in preparation.
[9] T. Nguyen, A. Scott and P. Seymour, "On a problem of El-Zahar and Erdős", submitted for publication, arXiv:2303.13449.
[10] A. Scott and P. Seymour, open problem, proposed at the 2016 workshop on structural graph theory, at Bellairs, Barbados.

[^0]: ${ }^{1}$ Supported by AFOSR grant FA9550-22-1-0234 and by NSF grant DMS-2154169.
 ${ }^{2}$ Research supported by EPSRC grant EP/X013642/1.

