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obertson and Seymour introduced branch-width as a new connectivity invariant of
Rgraphs in their proof of the Wagner conjecture. Decompositions based on this invari-
ant provide a natural framework for implementing dynamic-programming algorithms to
solve graph optimization problems. We describe a heuristic method for finding branch-
decompositions; the method is based on the eigenvector technique for finding graph sepa-
rators. We use this as a tool to obtain high-quality tours for the traveling salesman problem
by merging collections of tours produced by standard traveling salesman heuristics.
(Combinatorial Optimization; Traveling Salesman Problem)

1. Tour Merging

For many discrete optimization problems, heuristic
algorithms are both a practical technique for obtain-
ing acceptable solutions, as well as a key ingredient
in exact solution methods such as branch-and-bound.
In the later case, in particular, it is important to have
solutions that are of near-optimal quality, in order to
guide the exact search.

A common approach taken to improve the quality
of solutions provided by heuristics is to apply them
repeatedly, using pseudo-random numbers or other
methods to alter the behavior of the algorithms on
each run, and selecting the best among the solutions
that are produced. A valid criticism of such multiple-
run methods is that we may be discarding a great
deal of valuable information; a challenge is to utilize
the combined content of the solutions to produce an
overall result that is superior to any single member of
the collection.

In this paper, we consider the case of the traveling
salesman problem (TSP), where the travel costs are sym-
metric (the cost to travel between city x and city y
does not depend on the direction we are traveling).
A TSP instance can be specified as an edge-weighted
complete-graph, where nodes represent cities and
edge weights give the cost of travel between pairs of
nodes. A solution to the TSP is a tour (or Hamiltonian
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circuit) in the graph, that is, a circuit through the
entire set of nodes.

For the TSP, multiple-run heuristics have long been
the method of choice when very high-quality solu-
tions are required. In the classic work of Lin and
Kernighan (1973), pseudo-random starting tours are
used to permit repeated application of their local-
search procedure. Besides just taking the best of the
tours that are produced, Lin and Kernighan propose
to use the intersection of the edge sets of the tours as a
means to guide further runs of their algorithm. Their
idea is to modify the basic procedure so that it will not
delete any edge that has appeared in each of the tours
that has been found up to that point (they start this
restricted search after a small number of tours have
been found [between two and five in their tests]).
Variations of this idea have been explored recently by
Helsgaun (2000), Schilham (2001), and Tamaki (2003).

A general technique to utilize the collective infor-
mation in a set of tours 7 is to assemble a graph
consisting of the union of the edge sets of the tours
and look for a tour in this restricted graph G; an
optimal tour in G would give the best combination
of tour-segments from 7. This type of tour-merging
can improve the tour-quality of even the best avail-
able heuristic algorithms. For example, the graph in
Figure 1 consists of the union of ten tours for the
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Figure 1 Union of Ten LKH Tours for ri5934

5,934-city TSP instance rl5934 (from the TSPLIB test
instances, collected by Reinelt 1991); the ten tours
were obtained by running the LKH code of Helsgaun
(2000), a powerful variant of the Lin-Kernighan
heuristic. While the cost of the best of the ten LKH
tours is only 0.006% above the optimal value for
rl5934, the best tour in the union is in fact an optimal
solution for this instance.

The difficulty with tour-merging is, of course, solv-
ing the TSP over the restricted graph G. In general,
optimizing over G can be as hard as the original TSP
instance. The main purpose of this paper is to pro-
pose a “branch-width” algorithm as a practical means
for merging collections of high-quality tours.

Branch-width (defined below in §2) is a graph
invariant introduced by Robertson and Seymour
(1991); it is closely related to the more widely stud-
ied notion of tree-width. Graph decompositions based
on branch-width (or on tree-width) provide a natural
framework for implementing dynamic-programming
algorithms to solve graph optimization problems;
theoretical studies of this approach can be found in

Bern et al. (1987), Courcelle (1990), Arnborg et al.
(1991), Borie et al. (1992), and elsewhere. Despite a
large body of theoretical work, little in the way of
practical computation has been reported in the lit-
erature. We use the TSP as a means to demonstrate
that branch-width can be a practical tool in large-scale
optimization, reporting computational results on tour
merging for graphs having well over 10,000 nodes.

Returning to the rl5934 example, the average cost
of the ten tours is 0.089% above optimum, and LKH
required an average of 1,973 seconds on a Compagq
Alphaserver ES40 (500 MHz EV6 Alpha processor) to
produce each tour. The union of the ten tours has
6,296 edges, and the branch-width algorithm required
2.10 seconds to determine the best solution in the
restricted graph (and thus produce an optimal solu-
tion for the instance). This example is typical of
the performance of the merging algorithm on LKH-
generated tours, where the consistent high quality of
the LKH heuristic produces a very sparse union of
edges. In general, the branch-width algorithm is sen-
sitive to the density of the graph G, although the
practical performance exceeds that which would be
predicted by a worst-case analysis of the underlying
dynamic-programming method.

The paper is organized as follows. In §2 we
define branch-decompositions and the branch-width
of a graph, and in 8§83 and 4 we describe our
heuristic for finding branch-decompositions. Compu-
tational results for the branch-decomposition heuristic
are given in §5. In 8§ we describe the dynamic-
programming algorithm for the TSP, and in §7 we
present computational results using this algorithm in
a tour-merging heuristic. Some concluding remarks
are given in §8.

2. Branch Decompositions

Let G be a graph, with node set V(G) and edge
set E(G). Any partition of E(G) into two sets (A, B)
is called a separation of G. Let us assume that each
node in G has degree at least one (the degree of a
node is the number of edges it meets). Then any sep-
aration (A, B) partitions the nodes of G into three
classes: Those that meet only edges in A, those that
meet only edges in B, and those that meet both edges
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in A and edges in B. We call these three classes
the left(A, B) nodes, the right(A, B) nodes, and the
middle(A, B) nodes, respectively. Note that no node in
left(A, B) has a neighbor in right(A, B). Consequently,
middle(A, B) does indeed “separate” left(A, B) from
right(A, B). The cardinality of middle(A, B) is called
the order of the separation.

Let T be a tree (not necessarily a subtree of G) hav-
ing |E(G)| leaves and in which every non-leaf node
has degree at least three. Associate with each leaf v
of T one of the edges of G, say v(v), in such a way
that every edge of G is associated with a distinct leaf.
The tree T, together with the function v, is called a
partial branch-decomposition of G. If each non-leaf node
of T has degree exactly three, then (T, ») is a branch-
decomposition.

Let (T, v) be a partial branch-decomposition of G.
If e is an edge of T, then the graph obtained from T
by deleting ¢ has exactly two connected components,
and consequently the set of leaves of T is partitioned
into two subsets. Since each leaf of T is associated
with an edge of G, there corresponds a separation
(A,, B,) of G. The width of (T, v) is the maximum of
the order of (A,, B,) over all edges ¢ of T. The smallest
k such that G has a branch-decomposition of width k
is called the branch-width of G.

Branch-width was introduced in Robertson and
Seymour (1991) as part of their graph minors project
and it played a fundamental role in their proof of
the Wagner conjecture. Our interest here is not in
the connection of branch-width to graph minors, but
rather in the algorithmic possibilities it opens up via
dynamic programming. To motivate the definition of
branch-width in this context, we will describe a pos-
sible algorithm for the TSP.

Suppose our graph G has a separation (A, B) of
small order, say three. Then there are only a small
number of different ways in which a tour in G can
hit middle(A, B). See Figure 2. For a given pattern
of hitting middle(A, B), we can independently solve
the problems of finding collections of paths in A and
B that realize the pattern, since the only thing one
side needs to know about the other side is the way
it behaves on middle(A, B). This implies that we can
reduce the problem of finding a minimum-cost tour
to that of solving a list of subproblems in A and B.

Hamiltonian circuir

right(A.B)

-/

left(A,B)

L

middle(A.B)

Figure 2 A Separation of Order Three

Of course, the question now is: How do we solve the
subproblems? One approach is to try to repeat the
separation process on each of the two pieces. Sup-
pose we can find two separations of G that together
split A into two smaller pieces, as indicated in Fig-
ure 3. Using these separations, we could solve prob-
lems in the smaller pieces in order to create the solu-
tion for the larger piece. Now to solve these smaller
problems, we could split the pieces again, as indi-
cated in Figure 4. These steps can be summarized by
means of a “separation tree” as indicated in Figure 5.
In this figure, we have labeled the edges with the
middle of the corresponding separation. If we contin-
ued the splitting process until each piece consists of a
single edge, then the separation tree would represent
the tree T in a branch-decomposition of the graph,

Figure 3 A Second Pair of Separations
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Figure 4 A Third Pair of Separations
where v is given by the edges in the final pieces of
the decomposition.

This description makes it clear how we use branch-
decompositions in an optimization procedure: Start-
ing at the leafs of the tree, we work our way through
the nodes, gluing together solutions to the pieces as
we go along. This is a dynamic-programming proce-
dure. To carry it out, we need to be able to encode the
hitting patterns and to combine two hitting patterns
into a pattern for the middle of the next separation.

Branch-width is closely related to another graph
decomposition scheme known as “tree-width.” Sup-
pose we have a graph G and a tree T. Associate with
each node v of T a subset w(v) of the nodes of G. The
pair (T, w) is called a tree-decomposition of G if

(i) Ulw(v): v e V(T)} = V(G);

(ii) for each edge (v, w) € E(G), there exists a node
t € V(T) such that (v, w} € w(t);

(iii) for all u, v, w e V(T), if v is on the path from
utowin T, then w(u) Nw(w) C w(v).

The width of a tree-decomposition is the maximum
of |w(v)| — 1, taken over all v € V(T). The smallest k
such that there exists some tree-decomposition of G

Figure 5 The Separalion Tree

with width k is called the tree-width of G. (A number
of equivalent characterizations of tree-width can be
found in Bodlaender 1998.)

As we mentioned, the concepts of tree-width and
branch-width are closely related. Indeed, Robertson
and Seymour (1991) have shown that every graph of
branch-width at most k has tree-width at most 3k/2,
and every graph of tree-width at most k has branch-
width at most k + 1. So having small branch-width is
equivalent to having small tree-width.

Tree-width is studied in a great many papers; sur-
veys of the literature can be found in Bodlaender
(1993, 1998) and computational studies can be found
in Koster et al. (2001, 2002). For many discrete opti-
mization problems that deal with edge sets of graphs,
however, branch-width is a more natural framework
for carrying out dynamic programming.

3. The Eigenvector Heuristic

There are very many problems that are NP-hard
on general graphs and that can (at least in theory)
be solved quickly on graphs that have branch-
decompositions of small width k. For any constant
k, it is known that the dynamic-programming algo-
rithms for these problems have running time pro-
portional to the size of the input graph, where the
constant of proportionality depends on k. Conse-
quently, for fixed k, dynamic programming provides
linear-time algorithms for these problems. It must be
noted, however, that the constant of proportional-
ity usually grows very quickly with k, and therefore
these algorithms cannot be practically implemented
to run for even moderate values of k. It is there-
fore important that there should be very little error
in our calculation of the branch-width of a graph. For
instance, in Robertson and Seymour (1991) there is
a fast algorithm to estimate branch-width, within an
error factor of three (that is, it would decide either
that a graph has branch-width at least 10 or it would
find a branch-decomposition of width at most 30), but
this method is of little value in a practical implemen-
tation. This approximation algorithm was improved
in MatouSek and Thomas (1991), Lagergren (1990),
Reed (1992), Bodlaender (1996), and Bodlaender and
Kloks (1996), but all of these methods are either
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Figure 6 Splitting a Node

impractical or yield too large an error. In Bodlaender
and Thilikos (1997) there is a linear-time algorithm
(for any constant k) that decides if a given graph has
branch-width at most k and if so, it produces the cor-
responding branch-decomposition, but this method is
again impractical. Bodlaender and Thilikos (1999) do
give a practical method for the case k = 3, but there
is no known method that can be practically imple-
mented, that runs quickly, and that will decide if a
graph has branch-width at most k for slightly larger
values of k, say k = 8.

We describe a heuristic method for finding decom-
positions: One that attempts to construct a branch-
decomposition of the input graph that is close to
optimal but for which good performance guaran-
tees cannot be made. We will assume that the input
graph is simple and 2-connected. (These conditions
are always satisfied in our TSP application; in general,
a branch-decomposition of a graph can be constructed
from decompositions for its 2-connected components.)
The method proceeds as follows.

Take a tree T, that is a “star” (that is, one of
its nodes is adjacent to all the others) with |E(G)|
leaves, and with each leaf v associate some edge v(v)
of G in a one-to-one way. Then (T, ») is a partial
branch-decomposition of order at most two. It is not
yet a branch-decomposition because the interior node
of T, does not have degree exactly three. We shall
repeatedly choose a node of the tree of degree at
least four and “split” it into two adjacent nodes of
degree at least three; when this terminates, every inte-
rior node has degree three and we have a branch-
decomposition. At each iteration, one new separation
is introduced, and we shall choose the splitting to
keep this of small order if we can.

Let us state this more precisely. At the start of the
ith iteration, we have a partial branch-decomposition

(T;, v) such that T; has precisely i internal nodes. If
every internal node has degree three we stop. Other-
wise, we choose an internal node v of T, of degree at
least four. Let D be the set of edges of T, incident with
v, and partition D into two sets X, Y both of cardi-
nality at least two. In T,, replace the node v by two
new nodes x and y, so that x is an end of each edge
in X, and y is an end of each edge in Y, and there is
an edge xy (see Figure 6). This forms T, ,. We see that
in T,,,, every internal node has degree at least three,
since |X|, |Y|>2; and so (T;,,, ») is a partial branch-
decomposition of G. This completes the iteration.

Let us say that (T,wv) is extendible if there is
some way (repeatedly) to split the nodes of T hav-
ing degree greater than three to obtain a branch-
decomposition of width equal to the branch-width of
G. Certainly (T}, v) is extendible, and on the other
hand, if the process terminates with an extendible
branch-decomposition, then this is optimal. Thus, we
need to choose X and Y at each stage so that if (T;, v)
is extendible, then so is (T;,,, v). Unfortunately, we do
not know how to check directly if a given (T, v) is
extendible. We therefore need some indirect method
to maintain extendibility.

The first, most obvious, method to try to preserve
extendibility is the greedy one; we just choose X, Y at
each step so that (T, ,, v) has small width, if we can.
Every separation of G arising from (T, ,, v) also arises
from (T;, v) except for one, the separation arising from
the new edge xy. The order of this separation depends
on the choice of X and Y. For each ¢ € D, let us define
M, to be the middle of the separation of G arising
from e in (T}, »). (We recall that D is the set of edges
of T, incident with v.) Define

M(X,Y) = ‘U(Ml.: ee X)N|J(M,: e e "r)|.
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One can easily check that the new separation has
order M(X,Y). Therefore, we certainly want to
choose X, Y at each stage so that M(X, Y) is small.

Unfortunately, repeatedly choosing X,Y with
M(X,Y) small, without regard to other considera-
tions, is too short-sighted and does not work well in
practice. If we are more careful in the choice of X, Y,
we can do better. Indeed, there is often an “obvi-
ously safe” way to split v. By “safe” we mean that if
the current decomposition is extendible, then the new
decomposition will be extendible as well. Our com-
puter code uses a number of algorithms that search
for obviously safe splits; we describe these algorithms
in the next section.

If we cannot find an obviously safe split, then we
do not in general know how to choose a partition
(X, Y) such that the derived decomposition (T, »)
is extendible if (T;, v) is extendible. However, we
have made the following empirical observation: If we
choose (X, Y) with M(X, Y) small, in such a way that
1X|, Y| = |D|/3, then often the (T,,, v) that we pro-
duce will be extendible. Conversely, we can show that
if (T;, v) is extendible, then there always is a choice of
(X, Y) with M(X, Y) small and with |X|, |Y| > |D|/3.
The problem of finding such an (X, Y) is called the
separator problem.

We do not know how to solve the separator prob-
lem efficiently, but we do have a good heuristic
method. It is based on the eigenvector work of Alon
(1986) and others and proceeds as follows.

Let S denote | J(M,: e € D), and for each v € § let
N, ={e e D: ve M,}. Construct a |D| x |D| matrix F =
(fi: i, j € D) as follows. For distinct i, j € D, let

-1
: i, il SN, ).
fi=E e e S il <)

For each i € D, let

fii=|{v € 5: i € Ny}l

Then for each i, we have Y} (f;: j € D) =0, and every
eigenvalue of F is nonnegative.

We compute the eigenvector x = (x;: 1 € D) of F,
corresponding to the second smallest eigenvalue of F.
We then order D so that the numbers x; are in nonde-
creasing order, and we let A be the [|D|/3] first terms
and B be the [|D|/3] last terms.

Given A and B, we use network flow theory to com-
pute a partition (X,Y) of D with ACX and BC Y
such that M(X, Y) is minimum. These sets X, Y are
the solution to the separator problem. They are not
always the optimal answer, but in practice it seems
that they are a often a good approximation.

Our overall decomposition algorithm is then the
following. At any stage, if there is an obviously safe
split we make it. Otherwise, we choose a node v hav-
ing degree at least four, and we split it using the
above eigenvector method. (After the use of the eigen-
vector method, our search for obviously safe splits is
restricted to the neighborhood of the new edge that
we introduced into the tree, since this is the only por-
tion of the tree that was altered.)

4. Safe Splits

We describe two techniques for producing safe splits
during our decomposition algorithm. The first tech-
nique uses pairs of separations from the current par-
tial branch-decomposition, and the second technique
uses 2-separations and 3-separations that satisfy some
simple conditions.

4.1. Pushing

Let (T;, v) be a partial branch-decomposition of G and
let v be a node of T; with degree at least four. As
in the previous section, let D be the set of edges of
T, incident with v and for each e € D, let M, be the

I

middle of the separation of G arising from e.

LEmMA 1. Let e, e, € D be distinct edges and suppose

{Mfl UME:) HU(ME': €c D\{Elr EEI}
< max(|M, |, |M,,]) (1)

holds. Then taking X = |e,, e,}, Y = D\X yields a tree T,
that is extendible if T; is extendible.

Proor. Since the partial branch-decomposition
(T, v) is extendible, there is a branch-decomposition
(T,v) extending it that is of width equal to the
branch-width of G. We need to show that there is such
an extension so that the edges ¢,, ¢, have a common
end in T. Let P be the path of T with first edge ¢, and
last edge e,, with vertices p;, ... , p,. (We may assume
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that n > 4.) So ¢, is incident with p,, p, in T, and so on.
Let 5,,5,,5; be the three components of T\{e,, e,},
where p, € V(5,) and p, € V(S,); and fori=1, 2, 3 let
E; be the set of all edges e € E(G) with v(e) € V(S;). So
E,, E,, E; is a partition of E(G). For 1 <i <3 let N, be
the set of vertices of G incident with an edge of E;; so

|Mu,| = |N; N (N, UN;)|

and so on. From the given inequality, we may assume
that
IN; N (N, UN3)| = [(N; UN,) NN,

and so
[((N; NINL)AN;| = [(N; NN;)\N, |

Now let us make a new tree as follows. Contract the
edge p,_»p,., from S;, forming, say, S;. Take a new
vertex w, and the three disjoint trees S,, S,, S;, and
add three edges ¢, = wp,, e, = wp, and a new edge,
say, f = wp,. This produces a tree in which every
vertex has degree 1 or 3. Then (T', v) is a branch-
decomposition, extending (T;, »), and in it, e,, ¢, have
a common end. So it suffices to show that its width is
the branch-width of G. This was true for (T, »), and
the only edges that make separations whose orders
might differ in the two branch-decompositions, are
the edges of the path p,, ... , p,_;, and the new edge f.
However, f is fine, since it makes the separation that
we wanted to add to (T;, ») in the first place. For
an edge of p,, ..., p,_,, it make a separation in both
(T, v)and (T', v). However, in the order of the second
separation, we no longer have to count the vertices
in (N; N N,)\N;, and the only new vertices that we
might need to count belong to (N, N N;)\N,. Since the
first set is at least as large as the second, this is a net
improvement, and shows that (T’, ») has width equal
to the branch-width of G, as required. [

We call (1) the pushing inequality. Whenever there is a
pair e, ¢, that satisfies the pushing inequality, we say
that the separations made by e, and ¢, can be pushed
towards v, and we say T, , is obtained by pushing.

In our algorithm, whenever we introduce a new
separation into the partial branch-decomposition, we
immediately try to push it towards both ends of the
corresponding edge of the tree. If we succeed in push-
ing the separation, we obtain more separations to try
to push, and it can happen that one good initial choice

of a separation and then pushing alone will com-
pletely decompose the graph.

We mention a few details of our pushing imple-
mentation. First, we wish at every stage to be sure
that every separation arising from the tree cannot be
pushed in either direction, or if it can, we wish to do
the corresponding splitting immediately. It is not nec-
essary to keep rechecking old separations, however;
the only pairs that might become pushable after intro-
ducing some new separations each involve at least
one of the new separations.

To check if the separation arising from an edge
¢, € D can be pushed towards v (with the notation
as above) we need to examine all edges e, € D\|e, ]}
and check the pushing inequality. However, for any
edge e, for which the pushing inequality holds, there
will be a node w € M, N M,, such that w ¢ M, for
all e € D\|e,, e,}; and this observation eliminates most
possibilities for e, at a stroke.

4.2. 2-Separations and 3-Separations

In our algorithm, we construct the star T, as before
and then we push all separations as much as possible.
This results in a partial branch-decomposition (T, v)
in which one node of T has large degree, but all others
have degree one or three; the decomposition has order
two and is extendible, and no separation arising can
be pushed. (Recall that we have assumed the input
graph is simple and 2-connected.)

Now we wish to introduce more separations of
order two if possible. In general, we have a partial
branch-decomposition (T, ) of order two, and in it
several internal nodes have degree greater than three.
For each such node v, let D be as before; we test if
there is a partition X, Y of D with |X|, |Y| = 2 such
that [M(X, Y)| = 2. If we find one, we make the cor-
responding split of T, push in both directions, and
repeat. The new tree we obtain is guaranteed to be
extendible. To see this, note that in a 2-connected
graph, every separation of order 2 is “titanic,” in the
terminology of Robertson and Seymour (1991). It fol-
lows that for any 2-separation with middle {u, v}, we
can add an edge joining u, v, without changing the
branch-width, because of Theorems (4.3) and (8.3) of
that paper. But then the claim follows. To test if there
is such a partition, we construct the graph H with
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node set | J(M,: ¢ € D), in which two nodes are adja-
cent if some M, contains them both. This graph H is
necessarily 2-connected, and we are looking for a sep-
aration (A, B) of H of order two with left(A, B) # @
and right(A, B) # @. To test for this, we choose a node
x of H and three edges e, f, ¢ of H incident with x.
First we look for (A, B) with e€ A and f € B. To do so,
we choose a separation (A, B) withe, ¢ H and f €B
of order two with A minimal (using network flows)
and see if right(A, B) # @. Failing this, we repeat with
ee€ A and f, ¢ € B, and now choose the separation
with B minimal and see if left(A, B) # @. If this also
fails, then e and f are on the same side of every sep-
aration (A, B) of H of order two with left(A, B) # @
and right(A, B) # @; so we choose (A, B) of H of
order two with ¢, f € A and with A minimal and see
if right(A, B) # @. If this fails there is no choice of
(A, B) possible, and no splitting of v is possible with
2-separations. If one of these three succeeds, we find
a way to split v with a 2-separation; we construct the
corresponding new partial branch-decomposition and
push the new separation in both directions as much
as possible. We continue this process until no further
splitting with 2-separations is possible.

The next step is the introduction of 3-separations.
At the start of the iteration we have a partial branch-
decomposition (T, v), of width at most three, and
we try to split each internal node of T with a
3-separation. We construct H as before; H is now
3-connected. First we test if some x € V(H) has degree
three and has two adjacent neighbors. If so, let X =
(e e D: xe M,} and Y = D\X; then we split accord-
ing to X, Y and push in both directions and repeat.
If there is no such x, we choose x € V(H) arbitrar-
ily, let w and y be distinct neighbors of x and let
z be a neighbor of y different from w, x. We test if
there is a 3-separation (A, B) of H such that left(A, B)
and right(A, B) both meet {w, x, y, z} and left(A, B),
right(A, B) both have size at least two; this is done
by enumerating the different possibilities for which
nodes of w, y, y, z are on the left and right and solv-
ing a max-flow problem in each case. If we find such a
3-separation, we split using it, and then we push and
repeat. If not, then we choose a 3-separation (A, B)
of H with {wx, xy, yz} 2 A and with A minimal, and
see if right(A, B) has size at least two; if so, we split,

push, and repeat. If not then we abandon trying to
split v with 3-separations, and move on to the next
node of T.

This process concludes with a partial branch-
decomposition of order at most three, still guaranteed
to be extendible, such that for every internal node
of the tree, it H is the corresponding graph, then
H is 4-connected, except for nodes of degree three,
and no node of degree three is in a triangle. Show-
ing that these splits are safe is another application of
Theorems (4.3) and (8.3) of Robertson and Seymour
(1991), and we omit the details. The main point is
that, since H is 3-connected, every 3-separations of H
(that corresponds to a split) is safe unless its middle
is a stable set and one of the left and right sets con-
tains only one vertex. The algorithm above is just a
fast way of looking for such a 3-separations.

At this stage, if there is a node of the tree with
degree at least four, we apply the eigenvector method
to find a way to split; then we push and repeat. It is
not necessary to keep checking for 2-separations and
3-separations; none can appear.

5. Decomposition Results

To be effective in applications, branch-decomposition
heuristicc must be able to produce near-optimal
decompositions. This criterion is unfortunately diffi-
cult to evaluate, since Seymour and Thomas (1994)
proved that determining if a graph has branch-width
<k is N %P-complete (when k is part of the input to the
problem). This makes it difficult to obtain a reliable
set of benchmark results for instances appropriate to
our TSP setting. (Note, moreover, that the width of
a decomposition is only a rough measure of its qual-
ity; a more refined approach would be to consider the
distribution of middle sets of the various sizes.)

One thing we can establish (within the context
of the TSP tour-merging application) is that it does
appear to be important to consider some form of
the separator problem where we ask for splits hav-
ing a substantial number of tree edges on both sides.
In §3, we proposed to require that each side in a
split have at least |D|/3 edges, and we have incorpo-
rated this into our implementation of the eigenvector
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Table 1 Decompositions of TSP Graphs
Name Nodes Edges Default =2
pcb3038 1,985 3,109 15 18
fI3795 2103 3,973 9 10
fnld4461 3326 5,147 19 28
ri5915 1,939 2935 16 18
ri5934 2,048 3,087 16 25

heuristic. In Table 1 we compare our implementation
with one obtained by relaxing the separator problem
to require only that we have two or more edges on
each side of the split; the column labeled “Default”
contains the widths of the decompositions found by
our default implementation, and the column labeled
“>2" contains the results obtained with the modi-
fied algorithm. The graphs reported in Table 1 were
obtained by taking the union of ten tours found by an
implementation of the Chained Lin-Kernighan heuris-
tic (see §7) and shrinking any induced path containing
more than three edges; the TSP instances are taken
from the TSPLIB collection of Reinelt (1991).

The default version of our heuristic produced sub-
stantially better decompositions in the tests reported
in Table 1. It should be noted, however, that it is not
clear that the decompositions cannot be improved
further by a more effective heuristic. (Indeed, we
have found decompositions of width 14 for the rl5915
instance and of width 15 for rl5934. The five test
graphs are available for further study in the Online
Supplement to this paper on this journal’s website at
http://joc.pubs.informs.org/cooksupplement.html.)

I[f we move away from the TSP application, it is
possible to test the quality of the heuristic decompo-
sitions by considering general planar graph instances.
Seymour and Thomas (1994) have shown that the
branch-width of planar graphs can be computed in
polynomial time, and Hicks (2000) has developed
an implementation of the Seymour-Thomas algorithm
that is practical for instances having up to several
thousand nodes.

Hicks (2000) reports the branch-width of Delaunay
triangulations for many of the geometric instances
from the TSPLIB. In our tests, we consider all
instances studied by Hicks having at least 200 nodes
and having branch-width less than 20 (the graphs of
higher branch-width are less relevant in studies of

Table 2 Decompositions of Planar Graphs

Name Edges Branch-Width Heuristic Time
kroA200 586 11 1 4.31
kroB200 580 12 13 4.20
tsp225 622 12 13 4.42
pr226 586 7 7 2.36
pr264 772 13 14 8.33
il262 773 15 16 8.57
a280 788 13 14 4.10
pr299 872 1 12 10.05
rd400 1,183 17 19 21.38
fl417 1,179 9 9 20.03
pr439 1,297 16 18 25.66
pcb442 1,286 17 22 31.02
us74 1,708 17 19 45.55
rat575 1,699 17 19 45.90
p654 1,806 10 10 65.60
u724 2,117 18 22 76.34
vm1084 2,869 15 16 90.06
1304 3,879 19 21 279.93
fl1400 4,138 13 14 314.92
fl1577 4,637 16 19 209.44

optimization algorithms). The results are presented
in Table 2; the “Edges” column gives the number
of edges in each graph, the “Branch-width” column
gives the branch-width computed by Hicks (2000), the
“Heuristic” column gives the width of the decompo-
sition found by our heuristic, and the “Time” column
gives the CPU time (in seconds) used by the heuristic
on a 500 MHz EV6 Compaq Alpha processor.

For the smaller instances in Table 2, the width of
the decomposition found by the heuristic algorithm is
usually within one of the branch-width of the graph.
For the larger instances, however, the heuristic results
are as much as five away from the optimal results.
This indicates that there is certainly room to improve
the practical performance of the algorithm, especially
in applications where the dynamic-programming por-
tion of an optimization task is very sensitive to the
width of the decomposition.

6. Dynamic Programming

With a branch-decomposition in hand, it is easy to
construct a dynamic-programming algorithm to solve
the TSP on the corresponding graph. We give below
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some details of our TSP implementation, following
the sketch we presented in §2.

6.1. General Description

Let G be a simple, 2-connected graph with edge costs
(c.: e€ E(G)) and let (T, v) be a branch-decomposition
of G. The idea of the dynamic-programming algo-
rithm is to start at the leaves of the tree T and work
“inwards,” processing the corresponding separations
of G. To make the notion of “inwards” precise, we
root the branch-decomposition by selecting an arbi-
trary edge (a, b) of the tree and adding new tree nodes
r and s and new edges (a,s), (s, b), and (s, r) and by
removing the edge (a, b). Let T’ denote the tree we
obtain in this way, and call r the root node of T'. No
edge of G is assigned to node r, so the separations
corresponding to (a,s) and (s, b) are the same as the
separation for the old edge (a, b); the separation cor-
responding to (s, r) is (E(G), @).

Each node v of T', other than r, meets a unique
edge that lies on the path from v to r in the tree, and
if v is not a leaf it also meets two edges that do not
lie on this path; we refer to the unique edge as the
root edge of v, and we refer to the other two edges as
the left and right edges of v (the choice of which is left
and which is right is arbitrary). Since each tree edge
e is the root edge of precisely one node v, when we
have processed the separation corresponding to ¢ we
say that we have processed the node v. We say that a
tree node is ready to be processed if either it is a leaf
of the tree (and it is not the root node), or both its left
edge and its right edge have already been processed.
The overall procedure is then to select any ready node
and process it, stopping when r is the only remaining
node. To specialize this general algorithm, we need to
describe how to “process” a separation when solving
the TSP.

6.2. Encoding Partial Tours

Let (A, A) be a separation of G, where A = E(G)\A.
A partial tour in A is a subset R € A consisting of the
union of a collection of edge sets of paths having both
ends in the middle of (A, A), such that every node in
left(A, A) is included in exactly one of the paths and
every node in middle(A, A) is included in at most one
of the paths.

Let R be a partial tour in A, and let ny, n,,...,n,
be the nodes in the middle set of (A, E], A middle
node 1, meets either zero, one, or two edges in R. We
say that n; is free if it meets zero edges, paired if it
meets one edge, and wused if it meets two edges. If we
follow the path in R meeting a paired middle node n,,
we will reach another paired middle node n,. We can
specify how R “hits” the middle of (A, A) by listing
the pairs (n;, n;) of paired nodes and listing the free
nodes and the used nodes. We refer to such an encod-
ing as a matching. To process the separation (A, A), we
find the list of matchings corresponding to the par-
tial tours in A, and for each matching we record the
corresponding partial tour having the least cost, that
is, the partial tour S that realizes the matching and
minimizes » (c,: e € S).

6.3. Processing Separations

Let us first consider a separation corresponding to a
leaf v of T" (other than the root node). Since G is sim-
ple and 2-connected, the middle set of the separation
consists of two nodes, 1, and n, (the ends of the edge
v(v)). The only matchings in this case are either to
have both n, and n, free (of total cost 0) or to have n,
paired with 1, (of total cost c,,).

Now consider an internal node v of T'. The graph
obtained by deleting v from T’ has three connected
components, giving a partition of the leaves of T' into
three sets; let L, R, and N be the corresponding sub-
sets of E(G), where L corresponds to the component
of T"\v that meets v’s left edge, R corresponds to the
component that meets v’s right edge, and N corre-
sponds to the component that meets v’s root edge. So
(L, L) is the separation associated with the left edge
of v, (R, R) is the separation associated with the right
edge of v, and (LUR, LUR) is the separation associ-
ated with the root edge of v. (Note that N = LUR.)

Each node in middle(L UR,LUR) is either in
middle(L, L) or in middle(R, R). This makes it pos-
sible to compute the matchings for L UR by study-
ing only the matchings for L and the matchings for
R (we do not need to know anything else about the
graph G). Any partial tour in LUR must arise as the
disjoint union of a partial tour in L and a partial tour
in R, but not all such unions give partial tours in
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LUR. It easy to check, however, if a pair of match-
ings is compatible (that is, the union of their corre-
sponding partial tours gives a partial tour in LUR) by
examining only the nodes in the middle sets of (L, L)
and (R, R). So we can proceed by running through
all pairs of a matching for L and a matching for R
and computing if the pair gives a valid matching for
LUR. This procedure involves some analysis (follow-
ing paths to find the new paired nodes), but as long as
the middle sets are small it can be carried out quickly.

6.4. Merging Lists of Matchings

The main computational difficulty in the dynamic-
programming algorithm arises from the fact that the
lists of matchings for the left and right edges of a node
may be quite long, and we need to run through each
possible left-right pair in order to obtain the list for
the root edge of the node. The worst-case complex-
ity (counting the number of possible matchings on a
middle set of cardinality k) indicates that we cannot
hope to to solve every instance of width, say, 20 or
higher. We attempt to solve, however, at least a rea-
sonable portion of the examples that arise in practice
by taking some simple steps to speed up the list merg-
ing, as we indicate below. The computational tests
reported in the next section indicate mixed results—
although the code was usually successful, in some
cases we hit time or memory limits even when the
width was under 20. (The smallest case that failed
was an instance of width 18, but we also report on a
case of a width 13 decomposition that took more than
600,000 seconds to execute the dynamic-programming
algorithm.)

Let k denote the width of the branch-decomposition
(T,v), and suppose we have lists of matchings for
L and R (using the notation as above) and we need
to compute the implied list for LUR. The set Q of
local nodes that we use in the computation consists of
the union of the middle sets for the three separations
(L,L), (R,R), and (LUR,LUR). Since each node in
Q appears in at least two of the three middle sets,
we have |Q| < 3k/2. Let us order the nodes in Q as

o, Grs--- » G-y, Where t = [Q).
For a matching v, let d(y) denote the degree sequence

(do(y), d1(¥),s ..., d1_1(Y))

where for each i =0, ... ,t—1, we have

0 if g, is free in y or if g, is not in the
middle set for the separation.

1 if g; is paired in v.

2 if g; is used in ¥.

d.(y) = {

If a matching a« for L and a matching B for
R are compatible, then for each node g; that is
in both middle(L,L) and middle(R, R) but not in
middle(LUR, LUR), we must have

d;(a)+d;(B) =2

since g; will be in the left-set of (LUR, LUR). Also, for
each node g; that is in all three middle sets we must
have

di(a) +d;(B) = 2.

(This condition on the remaining local nodes will hold
trivially.) Therefore, we can avoid explicitly check-
ing many incompatible left-right pairs by keeping
the matching lists grouped according to their degree
sequences; to merge the lists, we run through the lists
of degree sequences and check the sublists of match-
ings only if the degree sequences are compatible.

As we build the list of matchings for LUR, we use a
hash table to store the collection of degree sequences,
making it simple to determine if we have already
encountered a sequence in the list-merging process.
We encode each degree sequence as a single num-
ber (by considering the sequence as ternary digits) to
make it easy to compare if two sequences are identical
(when they hash to the same value).

If we determine that the degree sequence for the
matching we are considering is already in our col-
lection, then we need to determine if the matching
itself is also one we have previously encountered. To
handle this, it is possible to use a hash table to store
the sublists of matchings for each degree sequence,
but we found it satisfactory just to keep the sublists
sorted by a numerical encoding of the matchings. If
the current matching is not in the sublist, we add it.
Otherwise, we compare the cost of the current match-
ing to the cost of the identical matching already in
the sublist. (The cost of the matching is just the sum
of the costs of the matchings in the left-right pair we
are merging.) If the current matching has lower cost,

INFORMS JournaL on CompuTING/Vol. 15, No. 3, Summer 2003 243



COOK AND SEYMOUR
Tour Merging ma Branch-Decomposition

we record it in place of the existing copy. The record
for a matching is its cost together with links to the
left matching and to the right matching we are merg-
ing; the left-right links are used to work backwards to
gather the edges in the optimal tour after we process
the entire tree, permitting us to avoid explicitly stor-
ing the partial tours associated with the matchings in
our list.

7. Tour-Merging Results

Our primary application of the TSP dynamic-
programming algorithm is to implement the tour-
merging idea we described in §1. The sensitivity of
dynamic programming to the width of the branch-
decompositions makes it clear that care needs to be
taken in generating the tours to be merged. A sim-
ple rule is that as the problem size increases, the
quality of the generated tours must also increase. We
will follow this in our computational study, using
Chained Lin-Kernighan tours for small-to-medium
instances and using Helsgaun’s LKH heuristic for
larger instances.

7.1. Merging Chained Lin-Kernighan Tours
Martin et al. (1991) introduced a TSP heuristic that
uses the basic Lin-Kernighan (1973) algorithm in
an iterative fashion. Their general method is called
Chained Local Optimization in Martin and Otto (1996),
and we refer to their TSP algorithm as Chained Lin-
Kernighan. Johnson (1990), Johnson and McGeoch
(1997, 2002), and Applegate et al. (2003) present
results showing the effectiveness of Chained Lin-
Kernighan over a wide range of problem instances.

In our tests, we build the pool 7 of tours using the
linkern implementation of Chained Lin-Kernighan
included in the Concorde TSP package of Applegate
et al. (1998). The linkern implementation is described
in Applegate et al. (2003), and it can be obtained at
http://www.math.princeton.edu/tsp.

We test the combination of Chained Lin-Kernighan
and tour-merging on all TSPLIB instances having at
least 1,000 cities and at most 10,000 cities. In each case,
we report the average results over four trials, where

we merge ten tours in each trial. The tours are gener-
ated using the default parameters of linkern (includ-
ing n iterations, where n is the number of cities in the
test instance).

The test results are presented in Table 3. The col-
umn “Best CLK" gives the % gap (to the optimal tour
value) for the best of the ten Chained Lin-Kernighan
tours, and the “Merged” column gives the % gap
for the merged tour. In the “Failures” column we
report the number of times that the merge-step failed
in the four trials. The running times are again given
in seconds on a 500 MHz EV6 Compaq Alpha pro-
cessor; the “CLK time” is the total time to generate
the ten tours; the “Merge Time” includes both the
time to find the branch-decomposition and the time to
run the dynamic-programming algorithm. The aver-
age width of the branch-decompositions is reported
in the “Width” column.

Table 3 Merging Ten Chained-LK Tours—Average over Four Trials
Best Merged CLK Merge
Name CLK (%) (%) Failures  Time Time Width

56.67 1.04 6.8

o

dsj1000 0.08 0.02

pr1002 0.22 0.05 0 22.05 1.20 8.0
si1032 0.09 0.04 0 18.78 0.14 6.8
u1060 0.14 0.01 0 33.65 1.70 7.5
vm1084 0.02 0.00 0 29.18 0.37 1.2
pcb1173 0.21 0.01 0 18.19 3.64 11.0
d1291 0.22 0.1 0 33.90 1.33 8.9
1304 0.34 0.30 0 40.80 0.42 8.5
r1323 0.18 0.07 0 32.52 0.42 8.0
nrw1379 0.13 0.03 0 21.97 3.28 10.8
fl1400 0.00 0.00 0 199.62 1,582.47 9.5
u1432 0.20 0.03 0 3449  282.46 8.8
fl1577 0.03 0.01 0 116.42 2.07 8.0
d1655 0.37 0.12 0 45.28 4.39 9.8
vm1748 0.10 0.00 0 55.22 1.47 8.5
ul817 0.38 0.12 0 32.33 10.72 13
rl1889 0.25 0.05 0 74.02 1.94 10.2
d2103 0.47 0.41 0 81.06 11.88 10.2
u2152 0.24 0.14 0 38.57 67.33 11.8
u2319 0.11 — 4 168.15 — =20

pr2392 0.25 0.04 0 44.94 12.65 11.5
pcb3038 0.16 0.03 0 55.50  346.28 14.0
fl3795 0.41 0.11 0 271.61 65.19 9.5
fnl4461 0.17 0.06 3 96.46 (38.94) (14)

5915 0.30 0.03 0 21047 47599 13.5
r5934 0.27 0.02 0 228.74 47.11 15.2
pla7397 0.25 — 4 404.04 — =20
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In two of the instances, u2319 and pla7397, the
tour-merging code failed on all four trials. In both
cases, the failures were due to decompositions of
width greater than 20 (the maximum allowed in our
dynamic-programming algorithm). For fnl4461, the
code failed in three of the four trials; in the three fail-
ures, decompositions of width 19 were found, but the
run of the dynamic-programming algorithm exceeded
the 2GByte memory limit of our computer. (In Table 3,
we report the “Width” and “Merge Time” only for the
successful fm4461 trial.)

Averaging over all trials in our tests, tour-merging
reduced the % gap (to the optimal tour value) from
0.21% down to 0.07%.

Our tests give just one sample point of the many
choices for |7| and the many possible settings for
linkern, but the results are typical of the type of
improvements that are possible with tour-merging.

7.2. Merging Lin-Kernighan-Helsgaun Tours

We use Helsgaun’s LKH code in our tests on large-scale
instances; results reported in Helsgaun (2000) and in
Johnson and McGeoch (2002) indicate that LKH finds
significantly better tours than does multiple runs of
Chained Lin-Kernighan. Other recent high-end TSP
heuristics that could also be considered include Balas
and Simonetti (2001), Schilham (2001), and Walshaw
(2000), but LKH appears to exceed the performance
of all TSP heuristic algorithms proposed to date.

7.2.1. TSPLIB Instances. In our merge tests, we
consider only those TSPLIB instances having at least
5,000 cities. For the smaller instances, Helsgaun (2000)
reports that the default version of LKH finds optimal
solutions in at least one run out of ten in each case.
We also exclude the instance pla7397 since LKH rou-
tinely finds optimal solutions in this case. Finally, we
exclude pla85900 since multiple runs of LKH on this
instance would exceed our available computing time.

Our first test on the remaining eight TSPLIB in-
stances is summarized in Table 4. Each run in this test
consists of merging ten LKH tours generated with the
default settings (n repeated trials for each n-city TSP).
For each instance we made four of these runs, and
we report the average results in Table 4. The informa-
tion in the table is organized in the same manner as

Table 4 Merging Ten LKH Tours: Average over Four Trials
Best Merged

Name LKH (%) (%) Failures LKHTime Merge Time Width
ri5915 0.0166 0.0054 0 16,298 1.55 7.50
r15934 0.0133 0.0081 0 23,134 2.07 175
11849 0.0051 Optimal 0 161,621 15.49 7.25
usa13509 0.0047 0.0010 0 242 118 29.22 9.25
brd14051 0.0086 0.0036 0 419,079  156.93 14.25
d15112  0.0047 0.0007 0 494,044  134.20 15.50
d18512  0.0161 0.0075 2 926,215 (311.71) (17.50)
pla33810 0.1024 — 4 10,908,095 — =20

in Table 3. The column “Best LKH"” gives the % gap
(to the best available lower bound) for the best of the
ten LKH tours, and the “Merged” column gives the
% gap for the merged tour (in the case of rl11849, the
optimal solution was found in each of the four trials).
In the “Failures” column we report that the merge
step failed in two of the four d18512 trials as well
as in all four pla33810 trials; the failures were due to
decompositions of width greater than 20. The running
times are again given in seconds on a 500 MHz EV6
Compaq Alpha processor.

In Table 5 we report the results of merging forty
LKH tours for each of the test instances (only a sin-
gle trial). The two largest instances failed, but in four
of the remaining six instances an optimal solution
was found. Note that although the total LKH time is
quite high, merging the tours requires only a mod-
est amount of additional computing time. The time
for merging can be reduced, moreover, if we merge
only the ten best from each set of forty tours, as we
indicate in Table 6. This ten-out-of-forty test produced
the same tours as the all-forty tests in the six smaller

Table 5 Merging Forty LKH Tours
Best Merged Total

Name LKH (%) (%) LKH Time Merge Time  Width
rl5915 0.0087  Optimal 63,954 2.21 8
ri5934 0.0065  Optimal 91,264 3.15 8
ri11849 0.0023  Optimal 646,483 36.26 7
usal3509  0.0031 0.0001 968,473 62.06 13
brd14051 0.0060  0.0030 1,676,314 444.34 17
d15112 0.0029  Optimal 1,976,174 3,944.32 19
d18512 0.0139 Failed 3,704,858 — =20
pla33810 0.0998 Failed 43,632,379 — =20
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Table 6 Merging Best Ten-Out-of-Forty LKH
Tours

Name Merged (%) Merge Time Width
5915 Optimal 1.68 7
r15934 Optimal 0.17 5
111849 Optimal 4,64 6
usa13509 0.0001 16.54 8
brd14051 0.0030 103.48 12
d15112 Optimal 107.21 15
d18512 0.0071 278.90 13
pla33810 Failed — =20

instances, and it also produced a solution to d18512
(but still failed on pla33810). The average branch-
width was reduced by 26% in the ten-out-of-forty test,
resulting in a large decrease in the merging time.

Optimal values are not known for brd14051 and
d18512; we report in Table 7 the tour lengths found
by the ten-out-of-forty merge, together with the best
reported lower bounds for the instances (found by
Applegate et al. 2001).

7.2.2. World Instances. To provide further tests of
LKH tour merging, we consider ten instances from
the “World” test set available at http://www.math.
princeton.edu/tsp/world/. We study all instances in
the range of 6,000 cities through 11,000 cities. For most
of the instances in this test set, we do not have avail-
able optimal values or good lower bounds. We there-
fore report only the final tour lengths and the percent
improvement tour merging provided over the best of
the LKH tours.

In Table 8 we report the averages over four runs,
merging ten LKH tours in each test. The percent
improvements are quite small, but they may well
account for a large portion of the gap between the
LKH tours and the (unknown) optimal values. (In the
case of gr9882, the tour length 300,899 is indeed opti-
mal, as verified by the Applegate et al. 2001 code.)

The results for merging forty LKH tours are pre-
sented in Table 9. The merging procedure improved

Table 7 Unsolved TSPLIB Instances

Name Best Tour Lower Bound Gap (%)
brd14051 469,388 469,374 0.003
d18512 645,244 645,198 0.007
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Table 8 Merging Ten LKH Tours (World Instances—Four Trials)
Merge
Name  Tour Length Improvement (%) LKH Time Merge Time Width
tz6117 394,722 0.0022 42,758 1718  8.25
eg7146 172,740 0.0017 93,352 15.23 8.25
ym7663 238,315 0.0008 59,719 16.35 8.5
pm8079 114,876 0.0183 647,351 2,076.20 10
ei8246 206,171 0.0019 76,844 26.01 9.25
ar9152 837,638 0.0070 369,531 183.19 8.5
ja9847 492,007 0.0169 119,425 1476  8.75
gr98a2 300,899 0.0003 105,013 1806 7.75
kz9976 1,061,883 0.0057 105,300 1579 8.25
fi10639 520,535 0.0029 156,039 121.12  11.75

the best of the forty LKH tours in all but two of
the cases (LKH actually delivered the optimal solution
for gr9882, and it is quite possible that the ei8246
tour is optimal as well). The ja9847 test failed, even
though the width of the decomposition was within
the range allowed in the optimization routine. In this
case, the dynamic-programming procedure exhibited
poor behavior and exceeded a 1,000,000-second time
limit. Note also the exceptionally long running time
for the merge portion of the pm8069 run; the union
of the forty tours for this 8,069-city instance contained
21,352 edges, and the decomposition had three mid-
dle sets of order 13. This example (as well as that
of ja9847) emphasizes the need for care in applying
dynamic programming in instances where the width
is relatively high—A running time limit of several
thousand seconds may be appropriate in many appli-
cations.

Table 9 Merging Forty LKH Tours—World Instances
Tour Merge

Name Length Improvement (%) LKH Time  Merge Time Width
tz6117 394,718 0.0030 169,679 2312 6
eg/146 172,738 0.0017 371,422 58.56 11
ym7663 238,314 0.0004 236,494 3015 9
pm8079 114,872 0.0139 2,586,483 620,597.08 13
giB246 206,171 0.0000 304,886 52.99 10
ar9152 837,556 0.0094 1,474,264 532.78 14
ja9847 — - 473,571 =1,000,000 18
gr9gg2 300,899 0.0000 415,948 49.72 10
kz9976 1,061,882 0.0009 417,212 34.70 10
fi10639 520,527 0.0025 619,082 167.73 14
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Table 10 Merging Best Ten-Out-of-Forty
LKH Tours—World Instances
Name Merged Merge Time Width
tz6117 394,718 6.66 9
eq7146 172,738 4.85 G
ym7663 238,314 3.78 8
pm8079 114,882 314.54 10
eig246 206,171 7.76 7
ar9152 837,611 94.36 7
ja9847 491,947 28.52 9
gragaz 300,899 8.13 8
kz9976 1,061,882 1.09 2
fi10639 520,528 69.79 10

In our final test, we again consider merging the best
ten-out-of-forty LKH tours as we did for the TSPLIB
instances. The results reported in Table 10 indicate
a sharp reduction in computing time, permitting the
algorithm to produce tours for all ten instances. In
six of the cases, the merged tour has the same length
as in the all-forty test, and in three cases the tour is
slightly worse than the corresponding all-forty tour
(the all-forty test did not produce a tour in the remain-
ing case). (Note that the width of the decomposition
for tz6117 actually increased over the width in the all-
forty test—This points out the heuristic nature of our
decomposition algorithm.)

8. Conclusions

Our TSP results provide an example of a successful
application of branch-decomposition in discrete opti-
mization. We do not claim to have a combination of
heuristics and tour-merging that is consistently bet-
ter than other high-end TSP methods. Our LKH tests
show, however, that results from even the best current
heuristics can often be improved in a nominal amount
of extra CPU time (if multiple runs of the heuristic
have been made). The branch-width based algorithm
can also be used in a stand-alone fashion, finding the
best tour through sets of well-chosen edges. This idea
was employed in the linear programming (LP)-based
ISP code of Applegate et al. (1995), where the edge
sets were provided by the solution of the LP relax-
ation (each edge assigned a value greater than € =
0.001 was placed into the edge set). This idea should

have applications to other network optimization prob-
lems where good LP relaxations are available.

Our results make use of the eigenvector-based
heuristic for finding branch-decompositions. This
method appears to work well in practice, but we have
not made a study of other classes of heuristics. One
comparison was carried out by Hicks (2000), who
described a branch-decomposition heuristic that uses
the diameter of the graph to find separations. Hicks’
results show that slightly better decompositions can
be found at the expense of additional CPU time. It
would be interesting to see how branch-width ver-
sions of the tree-width heuristics described in the the-
oretical papers of Reed (1992) and others perform in
practice.
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