
Tournament immersion and cutwidth

Maria Chudnovsky1

Columbia University, New York, NY 10027

Alexandra Fradkin

Princeton University, Princeton, NJ 08544

Paul Seymour2

Princeton University, Princeton, NJ 08544

June 12, 2009; revised July 21, 2009

1Supported by NSF grant DMS-0758364.
2Supported by ONR grant N00014-01-1-0608.

Abstract

A (loopless) digraph H is strongly immersed in a digraph G if the vertices of H are mapped to
distinct vertices of G, and the edges of H are mapped to directed paths joining the corresponding
pairs of vertices of G, in such a way that the paths used are pairwise edge-disjoint, and do not pass
through vertices of G that are images of vertices of H. A digraph has cutwidth at most k if its
vertices can be ordered {v1, . . . , vn} in such a way that for each j, there are at most k edges uv such
that u ∈ {v1, . . . , vj−1} and v ∈ {vj , . . . , vn}.

We prove that for every set S of tournaments, the following are equivalent:

• there is a digraph H such that H cannot be strongly immersed in any member of S

• there exists k such that every member of S has cutwidth at most k

• there exists k such that every vertex of every member of S belongs to at most k edge-disjoint
directed cycles.

This is a key lemma towards two results that will be presented in later papers: first, that strong
immersion is a well-quasi-order for tournaments, and second, that there is a polynomial time algo-
rithm for the k edge-disjoint directed paths problem (for fixed k) in a tournament.

1 Introduction

In this paper, all graphs and digraphs are finite, and may have loops or multiples edges. A digraph
is simple if it has no loops, and for every pair of distinct vertices u, v there is at most one edge with
tail u and head v. A digraph is semi-complete if it is simple, and for every pair of distinct vertices
u, v, either there is an edge uv (this means an edge with tail u and head v) or an edge vu. A digraph
is a tournament if it is simple and for every pair of distinct vertices u, v, there is exactly one edge
with ends {u, v}. Thus, every tournament is semi-complete.

Let G,H be digraphs. A weak immersion of H in G is a map η such that

• η(v) ∈ V (G) for each v ∈ V (H)

• η(u) 6= η(v) for distinct u, v ∈ V (H)

• for each non-loop edge e = uv of H (this notation means that e is directed from u to v), η(e)
is a directed path of G from η(u) to η(v) (paths do not have “repeated” vertices)

• for each loop e of H incident with v ∈ V (H), η(e) is a directed cycle of G passing through η(v)

• if e, f ∈ E(H) are distinct, then η(e), η(f) have no edges in common, although they may share
vertices.

If in addition we add the condition

• if v ∈ V (H) and e ∈ E(H), and e is not incident with v in H, then η(v) is not a vertex of η(e)

we call the relation strong immersion.
Two of us proved the following, which will be presented in another paper [2]:

1.1 In every infinite set of tournaments there are two tournaments such that one can be strongly
immersed in the other.

The result of the present paper is a key lemma that allows us to prove 1.1 for strong immersion
rather than just weak immersion. Before its statement we need a few more definitions. If G is a
digraph, we define λ(G) to be the maximum t such that some vertex of G belongs to t directed cycles
that are pairwise edge-disjoint, and µ(G) the maximum t such that some vertex of G belongs to t
directed cycles that are otherwise pairwise vertex-disjoint. If k ≥ 0 is an integer, an enumeration
{v1, . . . , vn} of the vertex set of a digraph has cutwidth at most k if for all j ∈ {2, . . . , n}, there are
at most k edges uv such that u ∈ {v1, . . . , vj−1} and v ∈ {vj , . . . , vn}; and a digraph has cutwidth
at most k if there is an enumeration of its vertex set with cutwidth at most k. Two vertices u, v
are k-edge-connected if there are k pairwise edge-disjoint directed paths from u to v, and k pairwise
edge-disjoint directed paths from v to u. We say u, v are strongly k-vertex-connected if there are k
directed paths from u to v, each with an internal vertex and pairwise vertex-disjoint except for u, v,
and there are k directed paths from v to u, each with an internal vertex and pairwise vertex-disjoint
except for u, v.

Let T be a digraph, let k ≥ 0 be an integer, and let u, v ∈ V (T) be distinct. We say that (u, v)
is a

• k-pair of the first type if there is a set A of k vertices in T each adjacent to u and adjacent from
v, and there is a set B of k vertices each adjacent from u and adjacent to v, with A ∪ B = ∅

1

• k-pair of the second type if there is a set C of k vertices in T each adjacent to u and not from
u, and each adjacent from v and not to v, and there is a set of k edges {a1b1, . . . , akbk} such
that a1, . . . , ak, b1, . . . , bk are all distinct and not in C, and a1, . . . , ak are adjacent from u and
not to u, and b1, . . . , bk are adjacent to v and not from v.

Our main theorem is the following.

1.2 For every set S of semi-complete digraphs, the following are equivalent:

1. there exists k such that every member of S has cutwidth at most k

2. there exists k such that λ(T) ≤ k for every T ∈ S

3. there exists k such that for each T ∈ S, no two vertices of T are k-edge-connected

4. there exists k such that for each T ∈ S, there do not exist k vertices of T that are pairwise
k-edge-connected

5. there is a digraph H such that H cannot be weakly immersed in any member of S

6. there is a digraph H such that H cannot be strongly immersed in any member of S

7. there exists k such that µ(T) ≤ k for every T ∈ S

8. there exists k such that for each T ∈ S, no two vertices of T are strongly k-vertex-connected

9. there exists k such that for each T ∈ S, no pair of vertices is a k-pair of either the first or
second type.

The proof is given in the next section. Incidentally, here are a couple more statements that are NOT
equivalent to the statements of 1.2.

• there exists k such that for each T ∈ S, there do not exist k vertices of T that are pairwise
strongly k-vertex-connected

• there is a digraph H such that no subdivision of H is a subgraph of any member of S. (A
subdivision of a digraph H is obtained by repeatedly deleting an edge uv, and adding a new
vertex w, and adding two new edges uw and wv.)

To see the non-equivalence, take a tournament T with 2k + 1 vertices v0, v1, . . . , v2k, in which vi is
adjacent to vj for 1 ≤ i < j ≤ 2k, and v0 is adjacent to v1, . . . , vk and from vk+1, . . . , v2k. Then
µ(T) = k, and yet no three vertices are strongly 2-vertex-connected. Moreover, if H is the digraph
obtained from a directed cycle of length three by adding a new edge parallel to each of the three
original edges, then no subdivision of H is a subgraph of T .

There are also at least two algorithmic consequences of 1.2. In the final section we show that
for every fixed digraph H there is an algorithm to test whether H can be strongly immersed in a
semi-complete digraph T , with running time polynomial in the size of T ; and also such an algorithm
for weak immersion. Secondly, two of us proved, using 1.2, that for all fixed k there is an algorithm
which, given a tournament T and k pairs s1, t1, . . . , sk, tk of vertices, tests in polynomial time whether
there are k edge-disjoint directed paths of T where the ith path is from si to ti for 1 ≤ i ≤ k. This
will be presented in a later paper [3].

2

2 The main proof

We begin by studying the semi-complete digraphs that do not have any k-pair of the first type. Let
T be a digraph. For every enumeration {v1, . . . , vn} of the vertex set of T , we define the back-degree
of this enumeration to be the maximum over all j ∈ {1, . . . , n} of the larger of

• the number of edges with head vj and tail in {v1, . . . , vj−1}

• the number of edges with tail vj and head in {vj+1, . . . , vn}.

We define the back-degree of T to be the smallest k such that some enumeration of V (T) has back-
degree k. Thus, the back-degree of T is at most the cutwidth of T . We first prove:

2.1 Let T be a digraph, and let k ≥ 0 be an integer.

• If some pair of vertices is a k-pair of the first type then the back-degree of T is at least k/2.

• If T is semi-complete and no pair of vertices is a k-pair of the first type then the back-degree
of T is at most 4k.

Proof. For the first assertion, we assume that some pair of vertices of T is a k-pair of the first type.
Let b be the back-degree of T , and let {v1, . . . , vn} be an enumeration of V (T) with back-degree
b. Let (vi, vj) be a k-pair of the first type. Since also (vj , vi) is a k-pair of the first type, we may
assume that i < j. Let X be a set of k vertices adjacent from vi and to vj . For every vh ∈ X, either
h > i or h < j, since i < j; but there at most b values of h with vh ∈ X such that h > i, since the
enumeration has back-degree b and each such vh is adjacent from vi; and similarly there are at most
b values of h such that vh ∈ X and h < j. Consequently |X| ≤ 2b. Since |X| = k, we deduce that
b ≥ k/2. This proves the first assertion of the theorem.

For the second, we assume that T is semi-complete and no pair of vertices of T is a k-pair of
the first type. For distinct u, v ∈ V (T), let us write u ⇒ v if there are at least 2k vertices that are
adjacent from u and adjacent to v.

(1) There is no sequence x1, . . . , xt of vertices such that

x1 ⇒ x2 ⇒ x3 ⇒ · · · ⇒ xt ⇒ x1.

For suppose that x1, . . . , xt is such a sequence; thus t ≥ 2. For 1 ≤ i ≤ t, let Ai be a set of 2k
vertices that are adjacent from xi and to xi+1 (where xt+1 means x1). Now x1 is adjacent to at least
k members of A1 (indeed, to all 2k ≥ k members of A1), and so we may choose i with 1 ≤ i ≤ t − 1
maximum such that x1 is adjacent to at least k members of Ai. Choose A ⊆ Ai with |A| = k such
that x1 is adjacent to every vertex in A. If i = t − 1, then there exists B ⊆ At with |B| = k and
A ∩ B = ∅, since |At| = 2k, and so (x1, xt−1) is a k-pair of the first type, a contradiction. Thus
i < t − 1; and from the maximality of i, we deduce that there is a set B ⊆ Ai+1 with |B| = k such
that x1 is not adjacent to any member of B. In particular, A ∩B = ∅, and since T is semi-complete
it follows that x1 is adjacent from every member of B, and so (x1, xi+1) is a k-pair of the first type,
a contradiction. This proves (1).

3

From (1) we may write V (T) = {v1, . . . , vn} such that for all distinct i, j ∈ {1, . . . , n}, if vi ⇒ vj

then j < i. We claim this enumeration has back-degree at most 4k. For let 1 ≤ j ≤ n, and let

X = {vi : 1 ≤ i < j, vi is adjacent to vj}, Y = {vi : j < i ≤ n, vi is adjacent from vj}.

We claim that |X| ≤ 4k. Thus we may assume that X 6= ∅, and so, since T is semicomplete, some
vertex vi ∈ X is adjacent to at least half of the other members of X, that is, to at least (|X| − 1)/2
other members of X. Since i < j (because vi ∈ X), it follows that vi 6⇒ vj , and so (|X| − 1)/2 < 2k,
that is, |X| ≤ 4k. Similarly |Y | ≤ 4k, and so T has back-degree at most 4k. This proves 2.1.

The second part of 2.1 is easily converted to an algorithm; we have:

2.2 There is an algorithm with running time O(n3), which, given as input a semi-complete digraph
with n vertices and an integer k ≥ 0, outputs a k-pair of the first type if one exists, and otherwise
outputs an enumeration of V (T) with back-degree at most 4k.

Proof. For every pair of distinct vertices u, v, we find the set of all vertices adjacent from u and
to v. (This takes time O(n3).) From this information we read off whether some pair is a k-pair of
the first type, and if so we output it and stop. If there is no k-pair of the first type, we find all
pairs u, v such that u ⇒ v (defined as in the proof of 2.1); and it follows that statement (1) in the
proof of 2.1 holds. Construct the enumeration V (T) = {v1, . . . , vn} as in the proof of 2.1 (to do so,
repeatedly choose a vertex u such that there is no v satisfying v ⇒ u, and then delete u; the order
in which vertices are chosen is the desired enumeration); this takes time O(n2). Then output this
enumeration. This proves 2.2.

We use 2.1 for part of 1.2, the following.

2.3 Let T be a semi-complete digraph and let k ≥ 0 be an integer. Suppose that no pair of vertices
of T is a k-pair of the first or second type. Then the cutwidth of T is at most 72k2 + 8k; and indeed
every enumeration of V (T) with back-degree at most 4k has cutwidth at most 72k2 + 8k.

Proof. Since there is no k-pair of the first type, there is an enumeration of V (T) with back-degree at
most 4k, by 2.1. Take some such enumeration V (T) = {v1, . . . , vn}. We claim that this enumeration
has cutwidth at most 72k2 +8k. For let 2 ≤ j ≤ n; let A = {vj , vj+1, . . . , vn} and B = {v1, . . . , vj−1}.
We must show that there are at most 72k2 + 8k edges with tail in B and head in A. Let F be the
set of all such edges. Since the enumeration has back-degree at most 4k, we have immediately

(1) Every vertex of T is incident with at most 4k edges in F .

Consequently |F | ≤ 4k|A|, and so we may assume that |A| > 18k + 2; and in particular
j + 9k + 1 ≤ n. Let m = j + 9k + 1, and let C = {vj , vj+1, . . . , vm} and D = {vm+1, . . . , vn}.

(2) There are fewer than 36k2 edges in F from B to D.

For suppose that there are at least 36k2 such edges. These edges form the edge set of a bipar-
tite graph (with bipartition (B,D)) with maximum degree at most 4k; and so every set of vertices

4

that meets every edge of this bipartite graph has cardinality at least 36k2/(4k) = 9k. By König’s the-
orem it follows that this bipartite graph has a matching of cardinality 9k; and so there exist distinct
a1, . . . , a9k ∈ D and distinct b1, . . . , b9k ∈ B such that bi is adjacent in T to ai for 1 ≤ i ≤ 9k. Since
the enumeration has back-degree at most 4k, it follows that there are most 4k values of i ∈ {1, . . . , 9k}
such that vj is adjacent from bi; and at most 4k values of i ∈ {1, . . . , 9k} such that vm is adjacent
to ai. Consequently there are at least k values of i ∈ {1, . . . , 9k} such that vj is not adjacent from
bi, and vm is not adjacent to ai. Moreover, since the enumeration has back-degree at most 4k, there
are at most 4k values of i ∈ {j + 1, . . . ,m − 1} such that vj is adjacent to vi, and at most 4k such
that vm is adjacent from vi, and so at least k such that vi is not adjacent from vj and not adjacent
to vm. But then (vj , vm) is a k-pair of the second type, a contradiction. This proves (2).

Now C ∪D = A, and every edge in F is either from B to C or from B to D. Since |C| = 9k + 2,
(1) implies that there are at most 4k(9k + 2) edges from B to C; and so by (2) it follows that
|F | ≤ 72k2 + 8k. This proves 2.3.

Consequently, we have:

2.4 There is an algorithm with running time O(n4), which, given as input a semi-complete digraph
T with n vertices and an integer k ≥ 0, outputs a k-pair of the first or second type if one exists,
and otherwise outputs an enumeration of V (T) with cutwidth at most 72k2 + 8k. There is also an
algorithm with running time O(n3), which with the same input, outputs a k-pair of the first type if
one exists, and otherwise outputs either a k-pair of the second type, or an enumeration of V (T) with
cutwidth at most 72k2 + 8k.

Proof. To test whether a given pair (u, v) is a k-pair of the second type takes time O(n2) (we find
the set A of out-neighbours of u, and the set B of in-neighbours of v, duplicating any vertex that
belongs to both sets; and then run a bipartite matching algorithm on the graph formed by the edges
of T from A to B). Thus we can output a k-pair of the second type (if one exists) in time O(n4), by
trying all pairs (u, v). If there is no such pair, we run 2.2. If this provides a k-pair of the first type,
we output it. Otherwise it provides an enumeration of V (T) with back-degree at most 4k, and by
2.3 this has cutwidth at most 72k2 + 8k; we output it. This proves the first assertion.

For the second, we begin by running 2.2. If it give us a k-pair of the first type, we output it,
and if not then we are given an enumeration V (T) = {v1, . . . , vn} with back-degree at most 4k. We
test its cutwidth. If its cutwidth is at most 72k2 + 8k then we output the enumeration and stop.
Otherwise we find some j such that |F | > 72k2 + 8k, with notation as in the proof of 2.3. Defining
A,B,C,D as in that proof, it follows that there are at most 4k(9k + 2) edges from B to C, and so
at least 36k2 edges from B to D. By running a bipartite matching algorithm in the corresponding
bipartite graph, we find a 9k-edge matching of edges from B to D; and as in the proof of step (2) of
2.3, we convert this to a k-pair of the second type. (This takes time O(n3).) This proves the second
assertion, and so completes the proof of 2.4.

Proof of 1.2. By 2.3 it follows that 1.2.9 implies 1.2.1. We prove the remaining implications in
order (except for two).

(1) If T is a loopless digraph of cutwidth at most k then λ(T) ≤ 2k. In particular 1.2.1 implies

5

1.2.2.

For let {v1, . . . , vn} be an enumeration of V (T) of cutwidth at most k. Let 1 ≤ j ≤ n. Let A
be the set of edges from {vi : 1 ≤ i < j} to {vi : j ≤ i ≤ n}, and let B be the set of edges
from {vi : 1 ≤ i ≤ j} to {vi : j < i ≤ n}. Since the enumeration has cutwidth at most k it
follows that |A|, |B| ≤ k. Suppose that C1, . . . , Ct are edge-disjoint directed cycles, all containing vi.
Let 1 ≤ h ≤ t. We claim that some edge of Ch belongs to A ∪ B. For if some vertex of Ch is in
{vi : 1 ≤ i < j} then some edge of Ch is in A, and if some vertex of Ch is in {vi : j < i ≤ n} then
some edge of Ch is in B; and if neither of these happens then V (Ch) = {vj}, which is impossible
since T is loopless. This proves that some edge of Ch belongs to A ∪ B. Since |A ∪ B| ≤ 2k and
C1, . . . , Ct are pairwise edge-disjoint, it follows that t ≤ 2k and so λ(T) ≤ 2k. This proves (1).

(2) If T is a loopless digraph with λ(T) ≤ k, then there do not exist two vertices u, v that are
(k + 1)-edge-connected to each other. In particular, 1.2.2 implies 1.2.3.

For suppose that u, v are (k + 1)-edge-connected to each other. Let H be the digraph obtained
from T by deleting u and adding two new vertices u1, u2, where the edges incident with u1, u2 are
as follows. If e is an edge of T with tail u and head x say, then in H let e be an edge with tail u1

and head x; and if e has head u and tail x in T , then in H let e have head u2 and tail x. We claim
that there are k + 1 directed paths of H from u1 to u2, pairwise edge-disjoint. For suppose not; then
by Menger’s theorem there exists X ⊆ V (H) with u1 ∈ X and u2 /∈ X such that there are at most
k edges of H with tail in X and head in V (H) \ X. Since u, v are (k + 1)-edge-connected to each
other, Menger’s theorem applied to T implies that there are k + 1 edge-disjoint directed paths of T
from u to v; and hence there are (k + 1) edge-disjoint paths in H from u1 to v. Since there are at
most k edges in H from X to V (H) \X, one of these paths uses no such edge, and so, since u1 ∈ X,
it follows that v ∈ X. But similarly since there are k + 1 edge-disjoint directed paths in T from v to
u, it follows that v ∈ V (H) \ X, a contradiction. This proves (2).

It is clear that 1.2.3 implies 1.2.4; also 1.2.4 implies 1.2.5 (take H to be the digraph obtained from
a directed cycle of length k by replacing each edge by k parallel edges; if H can be weakly immersed in
T then the k images of vertices of H are pairwise k-edge-connected). Also, trivially 1.2.5 implies 1.2.6.

(3) For every digraph H there exists an integer k ≥ 0 such that there is a strong immersion of
H in every tournament with a k-pair of either the first or second type. In particular 1.2.6 implies
1.2.9.

Let H ′ be the digraph obtained by subdividing twice every edge of H (that is, replacing each edge
by a directed three-edge path joining the same pair of vertices, so that these paths have pairwise
disjoint interiors). Every tournament that admits a strong immersion of H ′ also admits a strong
immersion of H, and so it suffices to prove the result for H ′. Thus we may assume that H is a
subdigraph of a tournament; and indeed, by adding any missing edges, we may assume that H is a
tournament. Let |V (H)| = t and let k = 2t(t+2). We claim that this choice of k satisfies (3). For
let T be a tournament, and let (u, v) be a k-pair of either the first or second type. Thus there is
a set X ⊆ V (T) with |X| = k such that every vertex in X is adjacent to u and from v; and since
|E(H)| ≤ k, there is a set {Pe : e ∈ E(H)} of directed paths from u to v, all of length two or all

6

of length three, and pairwise vertex-disjoint except for their common ends u, v, and each containing
no vertex in X. Now every tournament with 2n vertices contains a transitive tournament with n
vertices. (This is easy to prove by induction on n; let v be one vertex, and choose N be either the
set of all out-neighbours of v, or the set of all in-neighbours of v, whichever is larger; then the result
follows by induction applied to N .) Thus we may assume that there exist x1, x2, . . . , xt2+2t ∈ X,
such that xi is adjacent to xj for 1 ≤ i < j ≤ t2 + 2t. Let V (H) = {h1, . . . , ht}, and for 1 ≤ i ≤ t
define η(hi) = xi(t+1). For each edge e = hihj of H, we define η(e) as follows. Let p = i(t + 1) and
q = j(t + 1). Then (in the obvious notation) η(e) is the directed path

η(hi) = xp-xp+j-u-Pe-v-xq−i-xq = η(hj).

It is easy to check that η is a strong immersion of H in T . This proves (3).

Thus 1.2.1,. . . ,1.2.6 and 1.2.9 are all equivalent. But 1.2.2 implies 1.2.7, and 1.2.7 implies 1.2.9
(because if (u, v) is a k-pair of either type, one of u, v is in at least k/2 directed cycles that are
otherwise vertex-disjoint); and 1.2.3 implies 1.2.8, and the latter implies 1.2.9. This completes the
proof of 1.2.

3 Testing for immersion

In this section we use 1.2 to give a polynomial-time algorithm to test whether a fixed digraph H can
be strongly (or weakly) immersed in a semi-complete digraph T . We remark first that it is important
that T is semi-complete; for general digraphs T the analogous problem is NP-complete. To see this,
let H be the digraph with two vertices h1, h2 and four edges, namely a loop at h1, a loop at h2, and
edges h1h2, h2h1.

3.1 It is NP-hard to test whether H can be strongly immersed in a digraph T ; and the same holds
for weak immersion.

Proof. Bienstock [1] showed that it is NP-complete to decide whether two given vertices x1, x2

of a digraph are in a directed cycle; and we may assume that x1, x2 both have indegree one and
outdegree one. But given a hard instance T of Bienstock’s question, if some vertex v has indegree
at least two, let e1, e2 be edges with head v and with tails u1, u2 say; then we may delete e1, e2 from
T and add a new vertex v′ and three new edges u1v

′, u2v
′, v′v, and in this new digraph the answer

to Bienstock’s question is the same as in T . By repeating this it follows that Bienstock’s question is
NP-hard even for digraphs T in which every vertex has indegree at most one and outdegree at most
two, or outdegree at most one and indegree at most two. For such a digraph T add a loop at x1 and
a loop at x2, forming T ′; then there is a strong (or weak) immersion of H in T ′ if and only if there
is a directed cycle of T containing x1, x2. This proves 3.1.

The idea of our algorithm is: choose k as in 1.2 such that there is a strong immersion of H in
every semi-complete digraph with a k-pair of either the first or second type. Now, given the input
a semi-complete digraph T , run 2.4 on T with this value of k. If we get a k-pair we convert it to a
strong immersion of H and we are done. Otherwise we get an enumeration of V (T) with cutwidth

7

at most 72k2 + 8k; and now we use this enumeration to test for a strong or weak immersion of H
using dynamic programming.

We need to explain the dynamic programming in more detail, and that is the main content of
this section. Fix a digraph H. Now let T be semi-complete, and let (A,B) be a partition of V (T).
(Our intention is to apply this when there are only at most a constant number of edges of T from
B to A). Let F be the set of all edges from B to A; and let D be the set of head of the edges in F .
Let S be the subdigraph of T with vertex set V (T) and edges the edges of T with head in A; that
is, E(S) is the union of F and the edge set of T |A. By a linkage (with respect to (A,B)) we mean a
set L of pairwise edge-disjoint directed paths of S, with the following properties:

• each path in L has at least one edge

• the number of members of L with first vertex in A is at most |E(H)|.

Let L,L′ be linkages. We say they are equivalent if they have the same cardinality, and they can be
written L = {P1, . . . , Pt} and L′ = {Q1, . . . , Qt} such that the following conditions hold, where for
1 ≤ i ≤ t, Pi is from ai to bi and Qi is from ci to di:

• for 1 ≤ i ≤ t, ai ∈ B if and only if ci ∈ B, and if so then Pi, Qi have the same first edge

• for 1 ≤ i ≤ t, ai ∈ D if and only if ci ∈ D, and if so then ai = ci

• for 1 ≤ i ≤ t, bi ∈ D if and only if di ∈ D, and if so then bi = di

• for 1 ≤ i, j ≤ t with i 6= j, ai = aj if and only if ci = cj , and bi = bj if and only if di = dj , and
ai = bj if and only if ci = dj

• for 1 ≤ i, j ≤ t with i 6= j, ai is an internal vertex of Pj if and only if ci is an internal vertex
of Qj, and bi is an internal vertex of Pj if and only if di is an internal vertex of Qj

We define the folio of (A,B) to be the set of all set of all equivalence classes of linkages with
respect to (A,B). (This set has cardinality at most some function of |F |+ |E(H)|.) The point of all
this is the following.

3.2 Let T be a semi-complete digraph, and let (A,B, {w}) be a partition of V (T). Suppose that
there are most k edges from B to A ∪ {v}, and at most k edges from B ∪ {v} to A. If we are given
the folio of (A,B ∪ {w}), then we can compute the folio of (A∪ {w}, B) in time which depends only
on k and |E(H)|.

We leave the proof to the reader. (This is very similar to dynamic programming in graphs of bounded
tree-width – see for instance [4].)

Thus, we have:

3.3 For each digraph H and each integer k, there is an algorithm with running time O(n), which,
with input a semi-complete digraph T with n vertices and an enumeration {v1, . . . , vn} of V (T) with
cutwidth at most k, outputs whether there is a strong immersion of H in T , and whether there is a
weak immersion of H in T .

Proof. For 0 ≤ i ≤ n, let Fi be the folio of ({vi+1, . . . , vn}, {v1, . . . , vi}). We can compute Fn in
constant time; and it follows that we can compute F0 by n applications of 3.2, in time O(n). But
from F0 we can read off whether there is a strong or weak immersion of H in T . This proves 3.3.

8

This can easily be modified to output an immersion if one exists, rather than just a yes/no answer
(for each equivalence class in each folio, we store one member, or more efficiently, keep track of the
member of the preceding folio that gave rise to this one). We omit these details.

Consequently, as explained at the start of this section, we have:

3.4 For every digraph H there is an algorithm, with running time O(n3), which, with input a semi-
complete digraph T with n vertices, outputs whether there is a strong or weak immersion of H in
T .

Once again, this can be modified to output the immersion if one exists.

References

[1] D. Bienstock

[2] Maria Chudnovsky and Paul Seymour, “Tournament immersion is a well-quasi-order”, in prepa-
ration.

[3] Alexandra Fradkin and Paul Seymour, “The edge-disjoint paths problem in tournaments”, in
preparation.

[4]

9

