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Abstract

For any connected surface X, we find explicitly an upper bound on the number
of vertices in any graph that cannot be embedded in 3 and is minor-minimal with

this property.



1. INTRODUCTION

In this paper, by a surface we mean a compact, connected 2-manifold without bound-
ary. An ezcluded minor for a surface ¥ is a graph G that cannot be embedded in 3,
without isolated vertices, such that for every edge e of G, both G\e and G/e can be
embedded in ¥. (G\e and G/e are the graphs obtained by deleting e and contracting
e respectively.) Kuratowski’s theorem implies that the excluded minors for the sphere
are precisely K5 and K33 (up to isomorphism - we shall omit this henceforth), and the
excluded minors for the projective plane are given by Archdeacon’s result [1] - there are
35 of them. For much more complicated surfaces, one would not expect to find all the
excluded minors explicitly, because there are too many, and an easier task is to find an
upper bound on their size (that is, number of vertices). Archdeacon and Huneke [2] did
this for every non-orientable surface, but for the orientable surfaces no bound has yet been
found. That there is a bound, that is, that the number of excluded minors is finite, was
shown by Robertson and the author in [6]; indeed, we show in [10] that for any property
of graphs that can be characterized by excluded minors (such as having an embedding in

¥)) the list of excluded minors is finite.

The main result of this paper is such a bound, for every surface. By the complezity
of a surface ¥ we mean twice its orientable genus if it is orientable (that is, twice the
number of handles we must add to a sphere to obtain it), and its non-orientable genus if
it is non-orientable (that is, the number of crosscaps we must add to a sphere to obtain

it). We shall show the following.

(1.1) Let ¥ be a surface of complezity g. Then every ezcluded minor for ¥ has at most
22" vertices, where k = (3g +9)°.

To show (1.1), we first show that every excluded minor for ¥ has “tree-width” <



14(g + 3)® (we define tree-width in section 3), and then use Thomas’ theorem [12] to
bound its size. Obtaining the tree-width bound occupies sections 2 and 3, and in section

4 we convert it to the size bound.

M. Fellows told me in 1989 that finding an explicit bound on the tree-width of the
excluded minors for a surface ¥ would yield an algorithm to find the excluded minors (see
[4]). That motivated the research reported here, and I would like to express my thanks
to Fellows for this idea.

2. REDRAWING A GRAPH

If ¥ is a compact 2-manifold, an O-arc in ¥ is a subset homeomorphic to a circle,
and a line is a subset homeomorphic to the closed interval [0, 1]. If X C X, its closure is
denoted by X. A closed discin ¥ is a subset homeomorphic to {(z,y) : 2% +y? < 1}, and

an open disc is defined similarly.

A drawing in a compact 2-manifold ¥ is a pair (U, V), where U C ¥ is closed, V C U
is finite, U — V has only finitely many arc-wise connected components, called edges, and
for each edge e, either |e—e| = 1 and € is an O-arc, or |e—e| = 2 and € is a line with ends
the membersof e —e. If ' = (U, V) is a drawing, we write U(T") = U, V(T') = V, and the
members of V' are the vertices of I'. The arc-wise connected components of ¥ — U(T') are
the regions of I'. If every region is an open disc, I' is 2-cell (in ). If T' is 2-cell in %, it
follows that bd(%) C U(T') where bd(%) denotes the boundary of ¥. If I' is a drawing in %
and A C ¥ is such that € C A or eNA = ) for every edge e of T, then (U(T)NA,V(I')NA)
is a drawing which we denote by ' M A. A drawing is obviously a graph with vertices and

edges as given, and we use graph-theoretic terminology for drawings in the natural way.

Graphs in this paper are finite, and may have loops or parallel edges. If G is a graph,
we write H C G to denote that H is a subgraph of G. V(@) and E(G) denote the vertex-

and edge-sets of a graph G. A circuit of G is a non-null connected subgraph in which
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every vertex has valency 2 (for instance, a loop forms a 1-edge circuit). A path is a non-
null tree in G in which every vertex has valency < 2. In particular, paths and circuits
have no “repeated” vertices or edges. We denote by G\ X the graph obtained from G by
deleting X (here X may be a vertex or an edge, or a set of vertices or edges). If H is a

subgraph of G, a bridge of H in G is a connected subgraph B of G with |E(B)| # () and
E(BN H) =0, such that either

(i) |E(B)| =1 and the edge of B has both ends in V(H); such bridges are called

trivial bridges

(ii) |E(B)| > 1 and B consists of a component C of G\V(H) together with all

edges of G between V(C) and V(H) and their ends; these are called non-trivial
bridges.

An embedding (o, I') of a graph G in a compact 2-manifold ¥ is an isomorphism « between

(G and a drawing I' in ¥; and if (¢, I') is an embedding of G in ¥ we say that I is a drawing
of Gin X.

Let £ > 2 be an integer, and let G be a graph. A k-nest in G consists of a (k+1)-tuple
(A,Ch,...,Ck), where

(i) ACG@E
(ii) C4, ..., Ok are mutually disjoint circuits of A
(iii) every edge of G with an end in V(A) — V() belongs to E(A)

(iv) A is planar, and there is an embedding (,T') of A in a closed disc A, so
that for 1 < ¢ < k the O-arc U(a(C;)) bounds a closed disc A; C A; with
A CAg—1 € ... C Ay, and Ag — bd(Ag) is a region of T'.



A circuit C of G is k-nested if there is a k-nest (A4, C4,...,Ck) in G with Cp = C. The

main result of this section is the following.

(2.1) Let ¥ be a surface of complezity g, and let G be a graph that has an embedding
in . Let C be a (g + 2)-nested circuit of G. Then G has an embedding (a,I') in ¥ so

that U(a(C)) bounds a region of I' that is an open disc.

Proof. We proceed by induction on g, and for fixed g by induction on |V(G)| + |E(G)|.
Let (A, Cy,...,Cy4t2) be a (g + 2)-nest in G with Cy2 = C. From the hypothesis, A has
an embedding in a disc A;, and to simplify notation we may therefore assume that A
itself is such a drawing; that is, A is a drawing in a disc A1,U(C1) = bd(A;), and for
1 <1< g+2A,is the closed disc bounded by U(C;), and A; O Ay O ... D Agyo and

Agia — U(C) is a region of A. We may assume that

1) There is no circuit C' # C of A with U(C") C Agyp1 — bd(A,11) bounding a closed
( ) g+ g+ g
disc A" in Agyq with Agys C A

Subproof. 1f there is, then C' is a (g + 2)-nested circuit in G', where G’ is obtained
from G by deleting all vertices and edges of A in A’ — bd(A’). Since G’ is a proper sub-
graph of G, from the second inductive hypothesis G’ can be drawn in ¥ so that C’ bounds
an open disc region; but then the remainder of G can be drawn inside this region and the

result holds. Thus we may assume (1).

We may assume that

(2) There is a path of A between V(C) and V(Ch).



Subproof. Suppose not, and let the component of A containing C be G'. Since V(G'NC;) =
0 it follows that G’ is a component of G; let G\V(G') = G”". Now G’ is a subgraph of
A, and hence can be drawn in a closed disc so that C' bounds an open disc region. But
G" can be drawn in ¥; take such a drawing, choose a closed disc in ¥ disjoint from the
drawing of G”, and draw G in it in the way just described. This gives a drawing of G in

¥ satisfying the theorem. Thus we may assume (2).

Now since g+2 > 2, there is a bridge B; of C containing C;. Therefore B; contains all
C1,Cs, ..., Cyyq since by (2) and the planarity of A, these circuits all belong to the same

bridge. We may assume

(3) There is no bridge B # By of Cin G with V(BN A) # 0.

Subproof. Suppose there is such a bridge. Then B is a subgraph of A since B N C}
is null; and indeed, U(B) C Agy1 — U(Cyq1). It follows that |[V(B N C)| < 1, for if
V(BN C)| > 2 there would be a circuit C’ as in (1). Let G’ be obtained from G by
deleting all vertices and edges of B not in C. Then C is (¢ + 2)-nested in G', and G’ is
a proper subgraph of G, and so from the inductive hypothesis G' can be drawn in ¥ so
that C' bounds an open disc region. But since B is planar (because U(B) C Agyy1) we can

augment this drawing to a drawing of G with the desired property. Thus we may assume
(3)-
Let G’ be obtained from G by deleting all edges and vertices of A in Agy1 — U(Cyy1).

We may assume

(4) G’ cannot be drawn in ¥ so that some non-null-homotopic O-arc F is disjoint from

the drawing.



Subproof. Suppose there is such a drawing. By cutting 3. along F' we obtain a 2-manifold
with boundary, with one or two components. Its boundary is either one O-arc, or two

disjoint O-arcs, and by pasting discs onto these O-arcs, we obtain either

(i) a surface ¥’ of complexity g — 1 or g — 2, or

(ii) two disjoint surfaces ¥q,¥, of complexity ¢; and g, where g1,92 > 0 and

91 +92=49.

In the first case G’ can be drawn in %', and since Cyyq is (g + 1)-nested in G, there is
an embedding of G’ in ¥’ so that Cyy1 bounds an open disc region. But then G” can be
drawn in this region to obtain an embedding of G in ¥’ so that C' bounds an open disc
region 7; and to convert this to an embedding in a surface homeomorphic to ¥, we choose
a region ' # r; and add a handle or crosscap within it appropriately. Thus in this case

the result holds.

In the second case, let G, G, be the subgraphs of G’ drawn in ¥%; and X, respectively,
where Cy11 € Gy. By (2), all of C1,...,C, belong to Gy and so Cyyq is (g + 1)-nested in
(1. Hence G; can be embedded in ¥ so that ;1 ; bounds an open disc region. But then,
as in the first case, we may draw the remainder of G within this region, and so G can
be embedded in ¥; U ¥, so that C bounds an open disc region r. By choosing an O-arc
F; C %, disjoint from the drawing (¢ = 1,2), with F; N7 = 0, and adding to ¥; U X, a
cylinder with boundary F; U F,, we obtain an embedding of G in 3} so that C bounds an

open disc region. Thus we may assume (4).

Take an embedding (T', @) of G in 3. By (4), U(a(C)) is null-homotopic in ¥, and so
by [3, theorem (1.7)], there is a disc A C ¥ bounded by U(a(C)). If A—bd(A) is a region
of T we are done, and so we suppose not. If U(ca(B,;)) meets A — bd(A) then since B, is a
bridge it follows that U(c(B;)) C A. In that case it follows that B, UC is planar, and can

be drawn in a sphere so that C' bounds a region; and by (3), B; UC is a component of G.
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Take an embedding of G\V(B; U C) in %, choose a closed disc A’ C ¥ disjoint from the
drawing, and embed B, U C in A’ so that C bounds a region. This gives an embedding
of G in ¥ satisfying the theorem. We may therefore assume that U(a(B;)) N A C bd(A).
By (3), any bridge B of C in G with U(a(B)) N A € bd(A) satisfies V(BN C) = 0§, and
hence is a planar component of G (because U(ca(B)) C A); and we may therefore change

the embedding (T, @) so that B is not drawn inside A. The result follows. |

We deduce

(2.2) Let ¥,%' be surfaces, where ¥ has complezity g. Let G be a drawing in ¥', let
e € E(G), and suppose there are g + 2 disjoint circuits of G\e, all bounding discs in ¥’

which include e. If G\e can be drawn in ¥ then so can G.

Proof. Let C4i,...,C412 be the disjoint circuits of G\e, bounding discs Ay, ..., Agis in
¥ respectively, where Agis € Ay € ... € Aq. Let G’ be obtained from G by deleting
all vertices and edges in Ayi2 — bd(Ay42) (and in particular, deleting e). Let A = G'NAy;
then (A, C1,...,Cyt2) is a (g4 2)-nest in G’. If G\ e can be embedded in X, then so can &,
and by (2.1) there is an embedding of G' in ¥ so that C,;2 bounds an open disc region.
Then the remainder of G can be drawn in this region, and so G can be embedded in 3,

as required. [

3. TANGLES AND DISTANCE

A separationin a graph G is a pair of subgraphs (A, B) with AUB = G and E(ANB) =
0; its orderis |[V(AN B)|. Let § > 1 be an integer. A tangle of order § in a graph G is a

set 7 of separations of G, all of order < 6§, such that

(i) 7 contains one of (4, B), (B, A), for every separation (A4, B) of G of order < §



(ii) if (A;, B;) € T(6 = 1,2,3) then A, U A, U A3 £ G
(iii) if (4, B) € T then V(A) # V(G).

Intuitively, a tangle in G describes a piece of G that is in some sense -connected. For
instance, there is a 1-1 correspondence between the tangles of order 1 and the components
of G, between the tangles of order 2 and the loopless blocks of G, and between the tangles
of order 3 and the non-trivial constituents of Tutte’s decomposition of G into 3-connected

pieces. Tangles were introduced and studied in [7].

Let T be a drawing in a surface ¥. We say X C ¥ is [-normal if X N U(T") C V(T).
Let 7T be a tangle of order § > 1 in I'. We say that 7 is respectful if for every I'-normal
O-arc F in ¥ with |[FF N V(T")| < 6, there is a closed disc A C ¥ bounded by F such that

(TNA,TNY-A)eT.

If there is such a disc A, it is necessarily unique, and we denote it by tns(F). A curve
in ¥ is a continuous function ¢ : S* — 3, where S! is the unit circle. We denote
{¢(z) : z € S*} by ¢. It is T-normal if ¢ is I-normal, and its length (with respect to T')
is the cardinality of the set {z € S : #(z) € U(T')}. If T is a respectful tangle of order 6
in T', and ¢ is a [-normal curve with length < 6, we define ins(¢) to be the union of ¢
and ins(F) taken over all O-arcs F C ¢. The atoms of ' are the regions of T', the edges
of I', and the sets {v} (v € V(I')), and the set of atoms is denoted by A(T"). Let 7 be a
respectful tangle in T, and let a,b € A(T"). If a = b we define d(a,b) = 0. If a # b and
there is a T-normal curve ¢ of length < 8 with a Nins($) # 0 # bNins(¢p), we define
d(a,b) to be the minimum length of such a curve. If a # b and there is no curve ¢ as in
(ii), we define d(a, b) = 0. It is shown in [8, theorem (9.1)] that d is a metric if I" is 2-cell.
We call d the metric of 7.

We need the following, from [9, theorem (9.2)].



(3.1) Let T be a 2-cell drawing in a surface ¥, and let T be a respectful tangle of or-
der 6 in I', with metric d. Let z € A(T"), and let k be an integer with 2 < k < 0 —3. Then
there is a closed disc A C % with bd(A) C U(T'), such that

(i) d(z,z) < k + 2 for every z € A(T") with z C A

(ii) d(z,z) > k for every z € A(T") with z € A — bd(A).

We use (3.1) to prove the following.

(3.2) Let ¥ be a surface of complezity g, and let t > 0 and k > 2 be integers. Let T
be a drawing in X, and let R be a set of regions of I' with |R| < t. If T has a tan-
gle of order > 2(g + 1)(t + g + 1)(3k + 4) then there is an edge e of ' and k disjoint

circuits of T'\e, all bounding closed discs in % including e and including no member of R.

Proof. We proceed by induction on |[V(T')| + g. Now by [11, theorem (2.11)], some
component IV of T' has a tangle of order > 2(¢g + 1) (¢t + g + 1) (3k + 4), and if the result
holds for IV then it holds for I'. We may therefore assume that I' is connected. Let
6=2(t+1)(3k+4).

Suppose first that there is a I-normal O-arc F' with |F N V(T')| < 6 which is non-
null-homotopic. Let F N V(T') = Z; then by [7, theorem (8.5)], ['\Z has a tangle of

order

229+ 1)(t+g9+1)(Bk+4)—0=29((t+2)+(g—1)+1)(3k +4).

Let ¥! be the 2-manifold obtained from ¥ by cutting along F. By pasting discs on the

(one or two) components of bd(¥'), we obtain either

(i) a surface ¥y of complexity < g, or



(ii) two disjoint surfaces ¥, Y, with complexity g1 and gs, such that g1,92 < ¢
and g1 + g2 = g.

In the first case, ['\Z is a drawing in X;; let R; be the set of regions of I'\Z in ¥; that
either are in R or are not regions of I in ¥ (there are at most two of the latter, at most one
for each of the discs pasted onto ¥'). Hence |R1| < ¢ + 2. From the inductive hypothesis
the result holds for I'\Z and Xi; let Ay, ..., Ag be the corresponding closed discs in ¥;.
Since each A; includes no member of R; it follows that each A; is a subset of X, and so

the result holds for I' and ¥, as required.

In the second case, let I'; = (I'\Z)N %, (¢ = 1,2). Now (I'1,I'y) is a separation of I'\ Z
of order 0. By [11, theorem (2.11)], one of I';, 'y has a tangle of order > 2¢((¢ +2)+ (g —
1)+ 1)(3k +4), say I'1. Let Ry be the set of regions of I'; in ¥; that are either in R or

not regions of I' in ¥; then |R4| < ¢+ 1, and the result follows as in the first case.

We may therefore assume that every I'-normal O-arc FF C ¥ with |[FN V()| < 6
is null-homotopic. In particular, since § > 1 every O-arc F with F N U(T') = 0 is null-

homotopic, and since I' is connected and non-null it follows that I' is 2-cell.

We claim that I" has a respectful tangle of order 8. If ¥ is a sphere this is true, since
g = 0 and therefore I" has a tangle of order > 2(¢ + 1) (3k + 4) = 6 and hence has one of
order @ (take all members of the first tangle which have order < 6), and since every tangle
in a drawing in a sphere is respectful. If ¥ is not a sphere, then the claim follows from
[8, theorem (4.1)] since I' is 2-cell and every I'-normal O-arc F C ¥ with [F N V(T")| < 6
is null-homotopic. This proves our claim that I' has a respectful tangle, 7 say, of order

8. Let d be its metric.

Choose ey € E(I'). By [8, theorem (8.12)] there is an edge eg of I' with d(eo, €5) = 6.
Since G is connected, there is a path P of I' with first edge eo and last edge es. For
0 <1< 6, let e; be the last edge e of P with d(eg,e) <. If f is the next edge of P, then
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d(eo, f) > ¢+ 1 and d(e;, f) < 4, and so by the triangle inequality, d(eg,e;) > ¢ — 3. (If
there is no such f, then e; = ey and hence d(eg,e;) =0 > ¢ — 3.)
Let 7 € R. We claim there are at most 6k + 8 values of 7 with 0 < 7 < § and with

d(r,e;) < 3k + 2. For suppose there are > 6k + 9. Then there are two, say 7 and j, such

that 7 —2 > 6k 4+ 8. But then
7—3 < d(eo,e;) < d(eo, )+ d(ei,e;) <i+ de;,e,)
< i+d(r,e) +d(r,e;) <i+2(3k +2),

a contradiction. Thus there are at most 6k + 8 such values of 7. Since |R| <t and there
are § +1 > t(6k + 8) values of 7 altogether, it follows that for some ¢ with 0 < 7 <
6,d(r,e;) >3k +2forallr € R. Let e =¢;.

By (3.1), taking z = e and k = 3,6, ..., 3k, there are closed discs Ay, ..., Ax C ¥ such
that for 1 <1<k
(1) bd(A;) C U(T); let C; be the circuit I' N bd(A;)
(ii) d(e,z) < 31+ 2 for every z € A(T') with z C A,
(iii) d(e,z) > 31 for every z € A(T") with ¢ € A; — bd(A,).
From (iii) it follows that e C A; — bd(A;) for each . Moreover, C4, ..., Cy are mutually
disjoint; for if 1 < ¢ < j < k and v € V(C; N C;) say, then d(e, {v}) < 37 4 2 since

{v} C A, and d(e, {v}) > 37 since {v} € A, — bd(4;), a contradiction. Finally, since
d(e,7) > 3k + 3 for each r € R, it follows from (ii) that each A; includesnor e R. M

A tree-decomposition of a graph G is a pair (T,(X; :t € V(T'))) where T is a tree and
each X; is a subset of V(G), such that
(i) U(X;:t € V(T)) = V(G), and for every edge e of G there exists t € V(T') so

that X; contains both ends of e
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(ii) if ¢,¢',t" € V(T') and ¢’ lies on the path of T' between ¢t and t" then X; N Xy C
Xy,

It has width < w if | X¢| < w+ 1 for all ¢t € V(T); and the tree-width of G is the minimum

width of a tree-decomposition. From (3.2) we deduce

(3.3) Let ¥ be a surface of complezity g. Let G be a graph that cannot be embedded
in X, such that G\e can be embedded in % for every edge e. Then G has tree-width

< 3(g+3)*(3g + 16) — 3.

Proof. Choose f € E(G); then G\f can be embedded in ¥, and so G has a drawing
' in a surface ¥’ of complexity ¢’ < g + 2 (add a handle to ¥ appropriately and draw the
edge f running along the handle). By (2.2), for each edge e of G, there do not exist g + 2
disjoint circuits of G\ e all bounding discs in ¥’ including e. By (3.2) (with ¥,¢,¢, &k, T, R
replaced by X', ¢’,0,¢9' + 2,T',0), G has no tangle of order > 2(g + 3)?(3¢ + 16). By [7,
theorem (5.2)], G has tree-width at most

3
5(2(g+3)°(3g +16) — 1) — 1
as required. [

4. FROM TREE-WIDTH TO SIZE

Now we come to the second half of the proof. Our objective here is to prove the

following.

(4.1) Let ¥ be a surface of complezity g, and let G be an ezcluded minor for ¥, with
tree-width < w. Then [V(G)| < (2w + 29)P where p = [l1<pcw (12(g +h —1))!
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From (4.1) and (3.3), our main result (1.1) follows after some arithmetic, which we

leave to the reader.

To prove (4.1), first we need the following. For X C V(G), a bridge of X in G means
a bridge of H in G, where H is the subgraph of G with V(H) = X and E(H) = 0.

(4.2) Let ¥ be a surface of complezity g, let G be a drawing in ¥, and let X C V(G).
Let B be the set of non-trivial bridges of X in G, and suppose that for each B € B with
| XNV (B)| <2,B cannot be drawn in a disc with X NV (B) drawn in the boundary. Then
|B| < 2|X|+2g —1 unless |V(G)| =g = 0.

Proof. We proceed by induction on |V(G)| + |E(G)| 4+ g. We may assume that

(1) XNV(C)#D0 for every circuit C of G with U(C) non-null-homotopic.

Subproof. Suppose that C is a circuit of G\X and U(C) is non-null-homotopic. Let
D be the component of G\ X containing C. Then G\V(D) is a drawing in the 2-manifold
¥’ obtained by cutting ¥ along U(C). By pasting discs on the components of bd(¥'), we

obtain either

(i) a surface ¥ of complexity of g; < g, or

(ii) two disjoint surfaces Y1, ¥y of complexity of g; and gs, such that 0 < g1,92 < ¢
and g1 + g2 = g.

Suppose that (i) holds. Since G\V(D) is a drawing in ¥, it follows from the inductive
hypothesis that X has at most

maz(2|X|+ 291 — 1,0) < 2|X|+2g — 2
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bridges in G\V(D), and hence at most 2| X|+2g — 1 bridges in G, and so the result holds.

Now suppose that (ii) occurs. For 1 = 1,2, let G, = (G\V(D)) N %;, let X; = X NE;
and let B; be the set of bridges of X; in G;. From the inductive hypothesis, since g1, g2 # 0,
|B;| <2|X;|+2g; — 1 for 2 =1,2. Since |B| = |Bi| + |B2| + 1 and g = g1 + g2, we deduce
that |B| < 2|X| + 29 — 1, as required. This proves (1).

We may assume that

(2) G is simple, and no edge has both ends in X, and |V(B)N X| < 3 for each B € B,
and for B € B, if |V(B)NX| =3 then |V(B) — X| = 1.

Subproof. If there is an edge e which is a loop, or which is parallel to another edge,
or with both ends in X, or with one end in X and with e € E(B) for some B € B with
|[V(B) N X| > 4, then the result follows from the inductive hypothesis applied to G\e.
Also, if there exists B € B with |V(B)N X| =3 and |V(B) — X| > 2, let e be an edge
of B with both ends in V(B) — X; then the result follows from the inductive hypothesis
applied to G/e. This proves (2).

A Kuratowski subgraph of G is a subgraph that is a subdivision of K5 or K33. From
(1) it follows that

(3) If K is a Kuratowski subgraph of G then |[V(K)N X| > 2.

Subproof. Suppose that |[V(K)N X| < 1. Since K is non-planar there is a circuit C
of K such that U(C) is non-null-homotopic, and so |[V(K)NX| =1, V(K)NX = {z} say.
By (1), there is no circuit C of K\z such that U(C) is non-null-homotopic, and so by [5,
theorem (11.10)] there is a closed disc A C ¥ with U(K\z) C A. Let C be a circuit of
K\z, chosen so that the disc A’ in A bounded by U(C) is maximal. Now there are four
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cases, depending whether K is a subdivision of K5 or of K33, and whether z has valency
2 or > 2 in K. In each case it is easy to check that however K\z is drawn in A, some
neighbour of z belongs to A’ — U(C). Hence z € A’ — U(C), and so U(K) C A’, which

is impossible since K is non-planar. This proves (3).

Let B € Bwith [V(C)nX| <2 If |V(B)NX| <1 then from (3) and Kuratowski’s
theorem, B is planar contrary to hypothesis. Thus |V(B)NX| =2, V(B)NX = {1, z2}
say. Let Bt be obtained from B by adding a new edge f to B with ends z;,z,. By
hypothesis, BT is non-planar, and so by Kuratowski’s theorem, B™ has a Kuratowski
subgraph K. By (3), {z1,22} C V(K), and we may choose K so that K\{z,z,} is
connected. If E(B) € E(K), the result follows from the inductive hypothesis applied to
the graph obtained from G by deleting all vertices and edges of B not in K. We may
assume therefore that E(B) C E(K), and so E(K) = E(B) or E(B)U{f}. If some vertex
v of K has valency 2 in K, let e € E(B) be incident with v; then the result follows from
the inductive hypothesis applied to G/e. We may therefore assume that K is isomorphic
to Ky or to K33. If K is isomorphic to K, then z;, z, are adjacent in K, and so f € E(K)
since z1, 2 are not adjacent in B. In this case, B has three vertices different from z1, z,,
and they are mutually adjacent and are all adjacent to both z; and z,; and we say B is
of type 1. In this case, define [(e) for each edge e of B by: [(e) = 2 if e has an end in X,
and I(e) = 4 if e has no end in X.

The second possibility is that K is isomorphic to K33, and then possibly f € E(K)
and possibly f ¢ E(K). If f € E(K), we say B is of type 2; B has four vertices a, b, c,d
different from z1,z,, and eight edges ab, bc, cd, da, az1, cz1, bzy, dzs. For e € E(B), we
define I(e) = 1 if e has an end in X, and I(e) = 3 if e has no end in X. If f ¢ E(K),
we say B is of type 3; B has four vertices a, b, ¢, d different from z,, z5, and nine edges

az1, by, cz1, aza, by, cx2, ad, bd, cd. For e € E(B), we define [(e) = 2.

Thus, there are altogether three types of bridges B with |[V(B)NX|=2. f B € B
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with |[V(B)N X| # 2, then by (2) [V(B)NX| =3, V(B)N X = {z1, 22,23} say, and B
has only one vertex a # z1, 2y, z3, and has just three edges azq, azs, azs. In this case we

say B has type 4, and we define I(e) = 2 for each edge of B.

Since every edge of G belongs to E(B) for some (unique) B € B by (2), we have
defined [(e) for each e € E(B). Let there be g; members of B of type ¢ for ¢+ = 1,2,3,4.
Then

\V(G)| = |X|+3q+ 492+ 493+ g4

|E(G)] = 9¢1 + 8¢2+ 9¢3 + 3qa.

But we may assume that G is non-null, and so by Euler’s formula, if G has p regions,
then
V(G) - E(G)+p=2—4

(Note that equality need not hold here since G may not be 2-cell.) On substitution, we

obtain

(HYp>2—g— |X|+6¢1 + 492 + 5g3 + 24a.

In particular, if p < 1 then by (4),

IBl=qg1+¢+q3+91<6q1 +4g2+ 593 +2¢s < |X|+9—1<2|X|+29—1

as required, and so we may assume that |[R| =p > 2.

Now let B € B of type 1 or 2, and let Cp be the circuit B\(V(B) N X). By (1),
U(CB) is null-homotopic, and so by [3, theorem (1.7)] there is a closed disc A C ¥
with bd(A) = U(Cg). Let G’ = G\V(C3), Gy = G'N(E —A), X; = X N (T — A),
Gy = G'NA and X, = XNA, and let B; be the set of bridges of X, in G; (+ = 1,2). Then
|B = |B1| + |B2]| + 1. Since B has type 1 or 2, not both vertices in X N V(B) are drawn

16



within A, and so V(G;) # 0. If also V(G;) # 0, then from the inductive hypothesis,
IB| < 2|X:1]+2g —1 and |B2| <2|X; — 1, and so |B] < 2|X| + 2g — 1 as required. We
may therefore assume that V(G,) = 0, and so U(Cp) bounds a region of G.

For each region r of G, let [(r) denote the sum of [(e), taken over all edges e of G
incident with » and counting twice those edges e incident with no other region. Now
every circuit C' of G satisfies > .cp(c)l(e) > 8, from the definition of I. Moreover, ¥ is
connected and p > 2, and so for every region r there is a circuit C of G such that every
edge of C is incident with r. Consequently [(r) > 8 for every region 7 of G, and I(r) > 12
for at least g1 + g2 regions of G, namely those bounded by U(Cp) where B € B has type
1 or 2. Thus, denoting the set of all regions by R,

D U(r) >8R+ 4(q1 + g2) > 8(2 — g — | X|) + 52¢1 + 36g2 + 40g3 + 164

r€ER
by (4). Now for each B € B, > .cg(p)l(e) = 24,16,18 or 6 depending whether B has type
1, 2, 3 or 4; and so

> l(e) = 24q; + 16g, + 18g3 + 64a.
e€cE(G)

But 3, ez I(r) = 23X ccp(e) l(e); and on substitution we deduce that

8(2 — g — |X]) +4q1 + 49> + 493 + 494 <O,
that is, |B| < 2|X| + 2g — 4, as required. |
(4.3) Let ¥ be a surface of complezity g, let G be an ezcluded minor for ¥, and let

X CV(G). If B is a non-triwial bridge of X in G with |V(B)N X| < 2 then B cannot be
drawn in a closed disc with V(B)N X on the boundary.

Proof. Let A = G\(V(B) — X), and let AT = Aif [ X NV(B)| < 1, and let AT be
obtained from A by adding an edge joining the two vertices in X NV(B) if there are two
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such vertices. Now A% is isomorphic to a proper minor of G, and so can be drawn in 3.
If B can be drawn in a disc with V(B)NX on the boundary, we may convert the drawing

of At to one of G, a contradiction. The result follows. [

(4.4) Let L be a drawing in a surface ¥ of complezity g. Suppose that |E(L)| > 2
and L 1s simple. Then
[E(L)] < 3(IV(L)[ + 9 —2).

Proof. Let L have p regions. Since L is simple and |E(L)| > 2, every region is inci-
dent with > 3 edges (counting an edge twice if the region is incident with it on both

sides). Hence 3p < 2|E(L)|. But by Euler’s formula,
V(D)= E(L)[+p=2—g
(equality need not hold since L may not be 2-cell), and so
V(L) - 3B 22~ .
The result follows. |

We need to look at several different kinds of drawings in a surface ¥, but in each case
we say two such drawings are equivalent if there is a homeomorphism of X to itself taking

one to the other.

(4.5) Let ¥ be a surface; and let n > 1,m > 0 be integers. There are at most

(2m)!

21—71.‘—
(m —n+ 1)

equivalence classes of pairs (I', ) where I' is a 2-cell drawing in ¥ with n vertices and m

edges, and 7 is a linear order of V(T').
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Proof. The number v; of equivalence classes of pairs (I',7) as in the theorem is at most
the number v of equivalence classes of triples (I',w, T') where I', 7 are as before and T is

a spanning tree of I', because every 2-cell drawing is connected.

Given some (I', 7, T') as above, we may regard 7 as a bijection from V(G) into {1, ..., n}.
Let vg € V(@) with 7(vo) = n. For every edge e of T, define n(e) = 7(v) where v is the
end of e in the component of T'\e not containing vg. Thus 7 yields a bijection from E(T)

to {1,...,n—1}.

Given some (I',7,T) and vg as above, we define its signature as follows. Choose a
closed disc A C ¥ with U(T) C A — bd(A) so that e € A and |e N bd(A)| = 2 for
every e € E(I') — E(T). Let H be the drawing with U(H) = U(T') N A and V(H) =
V(T)U (U(T) N bd(A)); then H is a tree drawn in A. Choose a closed walk W of H
following the boundary of the unique region of H in X, starting at vo; thus, every edge
of H occurs twice in W. Let S; be the sequence of edges in W. Every edge of H that is
not an edge of T' occurs in two consecutive positions in S;. Let S, be obtained from 5
by deleting the first occurrence of each edge of H not in E(T') and replacing its second
occurrence by the edge of I' including it. Then every edge of I' occurs exactly twice in S,.
Take a bijection u : E(T') — E(T) — {n,...,m}. Let S; be ey, ..., eam. For 1 <17 < 2m, if
e; € E(T) let oy = 7(e;). If e; & E(T) let o; = p(e;) if the unique O-arc in U(T) U {e;}
is orientation-preserving, and o; = —pu(e;) if it is orientation-reversing. The sequence

ai, ..., Oy is a signature of (I', T, ).

Since there are (m—n-+1)! choices for p, it follows that (', 7, T') has at least (m—n+1)!
signatures. But from a knowledge of a signature (and n) one can reconstruct (I',n,T)
up to equivalence, as we can see as follows. By taking the subsequence of the signature
consisting of those terms which are non-negative and at most n—1, we obtain the sequence

of edges of W, where the edges are named by their values under n. From this we can

19



reconstruct (7', 7) up to equivalence. But from the signature we can also reconstruct the
cyclic order around v of the edges of I' incident with each vertex v, corresponding to
some fixed orientation of A. Since we know which edges e in E(I') — E(T') give rise to
orientation - reversing circuits in 7' 4 e, we may reconstruct the entire “rotation scheme”

of I' and hence reconstruct I, since it is 2-cell.

We deduce that (m —n + 1)lvy < v3, where v3 is the number of sequences of length

2m in which every term is equal to exactly one other term, and every term lies in
{1,2,...m}U{-m,1 —m, ..., —n},

and for 7 > n not both ¢ and —% occur in the sequence. There are 2'7"(2m)! such

sequences, and so v3 < 217"(2m)!. Hence

V3 2177 (2m)!
v vy < <
(m—n+1)! = (m—n+1)!

as required. [

A template in ¥ is a triple (I', 7, R), where I' is a drawing in ¥( not necessarily 2-cell),
7 is a linear order of V(I'), and R is a subset of the set of regions of I', and every edge of

I’ is incident with two distinct regions.

(4.6) Let ¥ be a surface of complezity g, and let n > 1,p > 1 be integers. There are at
most (2n + 2p + 2g)! — 2 equivalence classes of templates (I', 7, R) such that |V(I')| = n

and I' has < p regions.

Proof. Let A; be the set of all templates (I', 7, R) such that |V(T')] = n and I' has
exactly ¢ regions, and let A; be the union of ); equivalence classes. Let (I', 7, R) € A;. By
adding edges to I' we may obtain a 2-cell drawing I in ¥ with ¢ regions; and the edges of
IV not in I" are precisely the edges of [ incident with only one region. Since for each I, 7

there are 2' choices for R, it follows that A; < 2'y; where p; is the number of equivalence
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classes of pairs (I', 7), where I is a 2-cell drawing in ¥ with n vertices and 7 regions, and

7 is a linear order of V(I'). By Euler’s formula, |[E(T')| =n + g + ¢ — 2. By (4.5),

i < 21_n(2n—|—29 + 27 — 4)!
T (g +i— 1)

and so

(2n + 2g + 21 — 4)!

)"i < 21—|—'i—n :
B (g+i—1)

It follows easily that
D N<(2n+2p+29) -2

1<2<p

as required. (The —2 is for later convenience.) [

Let I' be a drawing in a surface X, and let X C V(T'). A drawing H separates I at X
if

(i) VH) =X and U H)NU(T) =X
(ii) every region of H intersects exactly one bridge of X in I', and

(iii) every edge of H is incident with two distinct regions of H.

(4.7) Let T be a 2-cell drawing in % with E(T') #£ 0, and let X C V(T'). Then there is a
drawing H that separates ' at X.

Proof. Certainly there is a drawing K in ¥ with V(K) = X and U(K)NU(T") = X, such
that every region of I' U K is incident with an edge of T'; for taking U(K) = V(K) = X
is one such drawing, since E(I') # 0. For any such K the drawing I' U K has at most
2|E(T")| regions, since each is incident with an edge of I' and every edge of I is incident
with < 2 such regions. Consequently, by Euler’s formula, |E(K)| is bounded above by a
function of I' and ¥. We may therefore choose K maximal with the properties specified

above.

21



We claim that for every region s of K, s N U(B) # 0 for exactly one bridge B of X
in I'. If s is a region of 'UK it is not incident with any edge of I, a contradiction. Thus
s is not a region of I' U K, and so s includes a vertex or edge of I'. Hence sNU(B) #
for at least one bridge B of X in I'. Suppose that there is more than one such bridge. It
follows that there is a region r of I' U K with » C s, and two edges e, f of I' both incident
with r, belonging to different bridges of X in I'. Now I' is 2-cell and hence so is I' U K,

and therefore r is an open disc; let
Vo, €1,V1,€2, ..., €k, U = Vg

be a closed walk of I' U K following the perimeter of ». We may assume that e; = e and
ex = f, say, where 1 <17 < k. Consequently one, p say, of vg,v1,...,v;_1 belongs to X
and so does one, q say, of v;,v;11,...,Uk_1, since e and f belong to different bridges of X
inI'. Add to K an edge with ends p, ¢ drawn in 7, forming a drawing K’ so that one of
the two new regions of K’ is incident with e and the other with f. This contradicts the
maximality of K, and proves our claim that every region of K meets exactly one bridge

of X in I.

Delete every edge of K that is incident with only one region, forming H; then H
separates I' at X, as required. [

(4.8) Let ¥ be a surface of complezity g, and let G be an excluded minor for ¥. Let
(A1, By), ..., (Ak, Br) be a sequence of separations of G, all distinct and of the same order
n say, such that

(ii) for 1 <1 < k there are n disjoint paths of B; N A;41 between V(A; N B;) and
V(A'i—l—l N B,L'_|_1), and
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(iii) for 1 <14 < k, no two vertices in V(A; N B;) are adjacent in B;.

Then k < (12(n + g))!

Proof. First suppose that n = 0. By (4.2) and (4.3) with X = 0,G has < 29 — 1

components. Hence £ < 29 < (12g)! — 1 as required. Thus we may assume that n > 1.

For 1 <: <k, let V(A;N B;) = {v},...,v"}, numbered so that for 1 < ¢ < k there are
n disjoint paths of B; N A;y; with ends UZ:”ZH for 1 <j <n. Forl <1<k, let 4; be the
set of all templates (I', m, R) in ¥ such that |V(I')| = n and B; can be drawn in ¥ within

V(I'YUU{r : r € R} in such a way that for 1 < j < n, the jth term of = represents vf
(1) For1 <1<k, A, C A, 44.

Subproof. Let (I'ym,R) € A;, and take a drawing of B; as above. Let Pi,..., P, be
disjoint paths of B; N A;;; where P; has ends UZ:”ZH for 1 < 7 < n. By contracting
the edges of Py, ..., P, and deleting all other vertices and edges of B; N A;,1, we obtain a
drawing of B;;; within V(I') UU{r : » € R} such that the jth term of 7 represents vf_l_l
for 1 <j <n. Hence (I',7,R) € A;41.

(2) For1 <1<k, A, # Ai41.

Subproof. Suppose that A; = A;1;. Let Pi,..., P, be disjoint paths of B; N A;q,
where P; has ends UZ:”ZH for 1 < 57 < n. Let G' be obtained from G by contract-
ing all edges in P, ..., P, and deleting all other vertices and edges in B; N A;4;. Since
(A;, B;) # (A1, Biy1) it follows that G’ is not isomorphic to G, and so G’ can be drawn
in ¥. Let I' be a drawing of G’ in . It follows that there is a separation (I'1,T';) of
I' with V(I'1 N Ty) = {z1,...,z,} say, such that there is an isomorphism a : 4, —» I’y
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with a(vf) = z; (1 < j < n), and an isomorphism S : B;y; — I'; with ﬁ(vf_l_l) = x;
(1 <j<n). Let X = {z1,...,zn}. We claim that there are at most 5(n + g) bridges of
X in I'. For if C is a non-trivial bridge of X in I', then C is a non-trivial bridge of X in
one of I';, 'y, and therefore is isomorphic to either a non-trivial bridge of V(A4; N B;) in
G or of V(A,11 N By1) in G. 1t follows from (4.3) that if |V(C)N X| < 2 then C cannot
be drawn in a closed disc with V(C) N X on the boundary. By (4.2), there are at most
2n + 29 — 1 non-trivial bridges of X in I'. Let us bound the number of trivial bridges.
Let L be the restriction of I' to X. From hypothesis (iii) and the fact that G is simple, it
follows that L is simple. From (4.4),

|E(L)| <maz(1,3(n+g—2)) <3n+3g+1.
Consequently there are at most 5(n + g) bridges of X in I', as claimed.

By (4.5) there is a drawing H that separates I' at X. Since every region of H meets
a bridge B of X in I, and hence includes U(B) — X, it follows that H has < 5(n + g)
regions. Let 7 be the linear order zi,2,,...,z, of V(H), and let R be the set of regions
of H that meet U(T'y). Then (H,n, R) is a template, and (H, 7, R) € A;;1 by definition
of A; since I'; is a drawing of B;y1. Since A; = A, it follows that (H, 7, R) € A,,
and so there is a drawing I}, of B; in ¥ and an isomorphism g’ : B; — I', such that
U(T,) C XUlU(r:r € R) and ﬁ'(vf) =z; (1 <7 <n). Weclaim that U(T'; )NU(TY) = X
forify € U(T'1) NU(TY) — X, then y belongs to a bridge of X in I'y, and hence y € rg
for some region 7o of H which meets a bridge of X in I';. Since rg meets only one bridge
of X, it follows that rq ¢ R, contradicting that U(I',) C X UU(r : r € R). This proves
that U(I'1)NU(T}) = X, and so I = (U(T';) U U(TY), V(I'1) U V(I'Y)) is a drawing in X.
But let &/(z) = a(z) for z in A;, and &/'(z) = f'(z) for z in B;; then &' is an isomorphism

between G and IV, a contradiction since G cannot be drawn in . This proves (2).

Now for each i,.4; is a union of equivalence classes of templates (H, 7, R) such that

|V(H)| = n and H has < 5(n+g) regions. There are, by (4.6), at most (12(n+g))!—2 such
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equivalence classes; and from (1) and (2) we deduce that £ < (12(n+g))!—1 as required. W

(4.9) Letn > 0, and let z1,...,zx be a sequence of integers with 0 < z; < n for each i.
For1 < h <mnletk, >0 be an integer, and suppose that for all h with 0 < h < n there

do not exist 71,72 with 1 < 71 < 72 < k such that

(i) z; > h for all i with 31 <t < j5, and

(ii) @; = h for at least ky, values of i with j; <1 < 75.

Then k < kokl...kn.

Proof. We proceed by induction on n. If n = 0 then z; = ... = zx = 0 and so since
(i), (ii) do not hold with A = 0, j; = 1 and j» = k, it follows that k£ < ko as required.
We assume then that n > 1. From the inductive hypothesis applied to the subsequence
of z1,...,zx consisting of all terms < n, we deduce that there are at most ¢ — 1 such
terms where t = kok;...k,_1. By an interval we mean a set {j1,j1 + 1,71 + 2, ..., 72} with

1 <71 <75 <k such that
(i) z; = n for all ¢ with 73 <@ <7,
11) either 31 =1 or z; 1 < n, and
J a )
(iii) either jo =n or zj,41 < n.

Between any two intervals there is a term with value < n, and so there are < ¢ intervals.
Since (i), (ii) do not hold with A = n, it follows that j, — 71 < k, — 1 for every interval
{71, ..., 72} But every term with value n belongs to an interval, and so there are at most

t(kn — 1) such terms. Since there are <t — 1 with value < n it follows that
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as required. [

Proof of (4.1)

Now G has tree-width < w, and so it has a tree-decomposition (T, (X; : t € V(T)))
such that |X;| < w for all T € V(T'). Choose to € V(T). For every e € E(T), let T., T*®
be the two components of T\e where tqo € V(T,). Let X, = U(X; : t € V(T.)) and
define X° similarly. Let A. be the subgraph of G with vertex set X, and edges all edges
of G with both ends in X.; and let B, be the subgraph of G with vertex set X° and
edges all edges of G with an end in X® — X,. Then (A, B.) is a separation of G with
V(A.N B.) = X, N X°. Now by the theorem of [12], we may choose (T, (X;:t € V(T)))
and tg so that the following holds:

(1) () |X:| <w for all t € V(T).

(i) Ife,f € E(T) and f lies on the path of T between to and e, and |V (A, N B.)| =
\V(A; N B;)| = n say, then either there are n disjoint paths of BN A, between V(A.N B)
and V(As N By), or there is an edge g of T, in the path of T between e and f, so that
V(4,0 B,)| < n.

Choose (T, (X : t € V(T))) and ¢, satisfying (1) with |V(T)| minimum. It follows that

(2) Ae # G for every e € E(T).

Subproof. If A = G then (T.,(X; : ¢t € V(Te))) is a tree-decomposition of G, still
satisfying (1), with |V(T.)| < |V(T')|, contrary to the choice of T'.

(3) Ife f € E(T) are distinct and f lies on the path of T between ty and e, then
(A67BE) 7£ (Af7Bf)'
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Subproof. Suppose that (Ae, B.) = (Ay, By). Construct T’ from T° U Ty by adding
an edge joining the end of e in V(T) to the end of f in V(T%); then (T, (X : ¢t € V(T")))
still satisfies (1) and |V(T")| < |V(T)|, a contradiction. This proves (3).

(4) For each e € E(T), (Ae, Be) has order < w.

Subproof. Let e have ends ti,ts, where t; is between ¢ and ¢t;. Then V(4. N B.) =
X.NXe =X, NXy,. But by (3), Xi, # X3, and so | Xy, N Xy, | < w, since | Xy, |, | Xe,| < w.
This proves (4).

(5) Every vertez of T has valency < 2w + 2g.

Subproof. Let t € V(T). For each edge e € E(T) incident with ¢ and not in the path
between ¢y and ¢, A. # G by (2), and so X, # V(G). Consequently there is a non-trivial
bridge C. of X; in G with V(C.) N X* € X;. If e, f € E(T) are distinct and both in-
cident with ¢ and are not in the path between ¢, and ¢, then C. # Cy, for otherwise
C\(X:NV(C.)) is a connected subgraph of G meeting both X® and X¢ and not meeting
X: which is impossible. Thus all the bridges C. are distinct. By (4.2), t has valency
< 2|X|+ 29 < 2w + 2g. This proves (5).

(6) Every path of T starting from to has < [li<h<w(12(g + 2 — 1))! edges.

Subproof. Let P be a path of T starting from ¢y, with k£ edges ey, ...,e; in order. For
1 <1<k, let A, = A.;,B; = B, and z; = |[V(A;N B;)|. For 0 < h < w—1, let
kn = (12(g + h))!. By (4.8) and (1)(ii) the sequence @1, ..., z; satisfies the hypothesis of
(4.9) (taking n = w — 1). It follows from (4.9) that k& < [locphcw—1 (12(g + A))!. This
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proves (6).

Let d = 2w + 2g and p = [l;1<p<yy(12(g + h — 1))!. Since G is non-planar and has
tree-width < w, it follows that w > 4, and hence d > 8 and p > 36! Now every vertex

has valency < d and every path starting from ¢y has < p edges, and so
V(T <1+d+dd—1)+..+d(d—1)P2
Since p > 4 and d > 3, we deduce that

V(T)| < 14+d((d—1P"'—1)(d-2)"'<d(d—1Pd-2)""

< Pd-2)(d-1)P*Hd-2)" <P

Consequently |V(G)| < w|V(T)| < d?, as required. [
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