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Suppose  we expect  the re  to be  p(ab) phone  calls be tween locat ions a and  b, for all choices of  
a, b f rom some  set L of locations.  We wish to design a ne twork  to op t imal ly  handle  these  calls. 
More precisely, a " rout ing  tree" is a tree T wi th  set of  leaves L, in which every o ther  ver tex  has  
valency 3. It has  "congest ion" < k if for every edge e of  T,  the re  are fewer t h a n  k calls which 
will be  rou ted  along e, t h a t  is, be tween locat ions  a, b in different componen t s  of  T \ e .  Deciding if 
the re  is a rou t ing  t ree  wi th  congest ion < k is NP -ha rd ,  bu t  if t he  pairs  ab with  p(ab) > 0 form the  
edges of a p lanar  g r aph  G, the re  is an  efficient, s t rong ly  po lynomia l  a lgor i thm.  

Th i s  is because  t he  p rob lem is equivalent  to deciding if a r a tca tcher  can  corner  a ra t  loose 
in the  walls of  a house  wi th  floor p lan  G, where  p(ab) is a th ickness  of  the  wall ab. The  ra tca tcher  
carries a no i semaker  of  power k, and  the  ra t  will not  move  t h r o u g h  any  wall in which  the  noise 
level is too  h igh  (de te rmined  by the  to ta l  th ickness  of  t he  in te rvening  walls be tween this  one and  
the  noisemaker) .  

It follows t h a t  b r anch -wid th  is po lynomia l ly  compu tab l e  for p lanar  g raphs  - -  t ha t  too is 
N P - h a r d  for general  graphs .  

1. I n t r o d u c t i o n  

Let G be a graph (all graphs in this paper  are finite, and may have loops or 
multiple edges) and for every edge e of G let p(e) > 0 be an integer. A routing tree 
is a tree T with V(G) C_ V(T), such that  every v E V(G) has valency 1 in T and 
every v E V(T) - V(G) has valency 3 in T. (V(G) denotes the vertex set of G.) If 
k _> 0 is an integer, we say that  T has congestion < k if ~p(e) < k for every f E 
E(T), where the sum is taken over all e EE(G) with ends in different components 
of T \ f .  (E(G) denotes the edge set of G, and we use \ for deletion.) As explained 
in the abstract ,  the problem of deciding if there is a routing tree of congestion < k 
is relevant to telephone network design. 

Our main result is that  there is a strongly polynomial algorithm with running 
t ime O(m2),  which, with input G, p and k as above with G planar and [v(G)I + 
IE(G)I = m, decides if there is a routing tree with congestion < k. We shall also 
show that  for general graphs G the problem is NP-hard,  even if p(e) = 1 for all 
edges e. 

It is convenient to work with "carvings" rather  than with routing trees. These 
are related objects, and are defined as follows. Let V be a finite set with IV I _> 2. 
Two subsets A, BC_V cross if AraB, A - B ,  B - A ,  V - ( A u B )  are all non-empty. 
A carving in V is a set ~ of subsets of V such that  

(i) ~, V r  
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(ii) no two members of ~ cross, and 
(iii) ~ is maximal subject to (i) and (ii). 

It is sometimes helpful to view a carving as arising from a tree, as follows. 
leaves of a tree are its vertices of valency 1.) 

(The 

(1.1) Let V be a finite set with IVI _> 2, let T be a tree in which every vertex has 
valency 1 or 3, and let ~- be a bijection from V onto the set of leaves ofT.  For each 
edge e o f T  let Tl (e), T2(e) 5e the two components ofT\e;  and let 

= { { v  e v : : e E ( T ) ,  i = 1, 2 } .  

Then ~ is a carving in V. Conversely, every carving in V arises from some tree T 
and bijection T in this way. 

We omit the proof, which is easy. 
Now let G be a graph. For A C_ V(G), we denote by 5(A) or 5G(A ) the set of 

all edges with an end in A and an end in V(G) - A. For each e ~ E(G),  let p(e) _> 
0 be an integer. For XC_E(G) we denote ~ p(e) by p(X) ,  and if IV(G)[_>2 we 

e ~ X  

define the p-carving-width of G to be the minimum, over all carvings ~ in V(G), 
of the maximum, over all A ~ ~, of p(5(A)). It  is easy to see, via (1.1), that  G has 
p-carving-width < k if and only if G has a routing tree of congestion < k and so our 
basic problem may be reformulated in terms of carvings. The carving-width of G 
is the p-carving-width of G where p(e) = 1 for every edge e. It  is easy to see that  in 
general, the p-carving-width of G equals the carving-width of the graph obtained 
from G by replacing each edge e by p(e) parallel edges; but we do not use this 
reduction at this stage because we wish to design an algorithm which is strongly 
polynomial. 

Again, let G be a graph. For A CC E(G) we denote by O(A) or OG(A) the set 
of all v E V(G) incident with an edge in A and with an edge in E(G) - A .  The 
branch-width of G is the minimum, over all carvings g in E(G),  of the maximum, 
over all A E g, of I O(A)I (or zero, if I E ( a )  L _< 1). Branch-width has been investigated 
in other papers, particularly [4], and is closely connected with "tree-width". We 
shall show that  one can compute the branch-width of a planar graph in polynomial 
time, but computing it for general graphs is NP-hard.  

Our method for branch-width is simply to prove that  for a connected planar 
graph G, its branch-width is half the carving-width of a derived planar graph called 
the medial gruph of G; and so we can use our carving-width algorithm. On the 
other hand, our method for computing the carving-width of a planar graph is quite 
indirect. We do not search for a low width carving, but for an obstruction to its 
existence called an antipodality. (Antipodalities are escape strategies for the rat, 
while low width carvings are search strategies for the ratcatcher,  in a ratcatching 
game played on the graph which we discuss in section 3.) This is easy to search for; 
but proving that  G has carving-width < k if and only if G has no antipodali ty of 
"range" k is difficult, and uses some hard theorems from the "Graph Minors" series 
of papers of Robertson and Seymour. Fortunately, this means that  the algorithm. 
for computing carving-width is easy; it is only the proof of its correctness that  is 
difficult. 
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2. Antipodalities 

A walk in a graph G is a sequence vo,el,Vl,e2,...  ,ek,vl~ , where vO,Vl,... ,v k �9 
V(G), e l , . . . ,  ek �9 F,(G), and {vi - ] ,  vi} is the set of ends of el(1 < i < k). It  is closed 
if vo = vk. Let E be a sphere, and let G be a graph drawn in E. We denote the 
set of regions of the drawing by R(G). (Each region is an open set.) An edge e is 
incident with a region r if e G ~ (for X C E, X denotes the closure of X).  Now let 
G be non-null and connected, and let G* be a dual graph also drawn in E, in the 
usual sense of geometric duality. For each v �9 V(G) there is a unique r �9 R(G*) 
with v Er ,  and we define v* = r .  Similarly, for r E R(G), r*E V(G*) is the unique 
vertex of G* in r; and for eEE(G),  e* is the unique edge of G* crossing e. 

Let p: E(G)--+ Z+ (the set of non-negative integers). A walk 

VO, e l ,  V l ,  e 2 ,  �9 � 9  , ek ,  v k 

in G* has p-length P(fl)  +. . .  +P(f~) ,  where e i = f/* (1 < i < k). An antipodality in 
G of p-range >_ k is a function a with domain E(G) UR(G),  such that  for all e E 
E(G), a(e)  is a non-null subgraph of G, and for all r �9 R(G),  a ( r )  is a non-empty 
subset of V(G), satisfying: 

(A1) If eCE(G) then no end of e belongs to V(c~(e)), 

(A2) If e E E(G) ,  r �9 R(G), and e is incident with r, then a ( r ) C  V(a(e)),  and every 
component of c~(e) has a vertex in c~(r), 

(A3) If eEE(G) and f e E ( a ( � 9  then every closed walk of G* using e* and f* has 
p-length > k. 

For example, let G be the graph of the octahedron (that i s , / (6  with a perfect 
matching deleted), drawn in the plane. For each region r, let a ( r )  be the three 
vertices not incident with r, and for each edge e, let c~(e) be the graph obtained 
from G by deleting the ends of e. Then a is an antipodali ty of p-range 6 in G 
(where p_= 1). 

The main result of this paper  is that  a connected planar graph with > 2 vertices 
has p-carving-width _> k if and only if either it has an antipodality of p-range > 
k or p(5(v)) >> k for some v �9 V(G). (We write 5(v) for 5({v}).) In other words, 
the minimum k such that  there is a carving $ of G with p(5(A)) >>_ k for all A �9 

equals the maximum k such that  G has either an antipodali ty of p-range _> k 
or a vertex v with p(6(v)) > k. This is quite a difficult theorem, but it provides 
a simple algorithm to determine p-carving-width, because one can test easily if G 
has an antipodality of p-range > k. Explaining how to do so is the objective of this 
section. 

Let N be a simple graph, with vertex set I say. Let M be a simple graph, and 
let (Xi :i �9 I) be a parti t ion of V(M),  such that  if u �9 Xi, v �9 Xj  are adjacent in 
M then i ~ j  and i, j are adjacent in N.  A set R C V ( M )  is round if for all i, j � 9  
I adjacent in N,  every vertex in XiMR is adjacent to some vertex in X j n R .  We 
need to be able to test if there exists a non-null round set. To do so, we use the 
following lemma. 

(2.1) Let R C  V(M)  be round, and let R C S C  V(M).  Suppose that u E S M X i  has 
no neighbour in S N Xj,  and yet i and j are adjacent in N. Then R c S - {u}. 
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Proof. If u E R then since R is round, u has a neighbour in R N X j  C Sf~Xj ,  a 
contradiction. Hence u ~ R. I 

Because of (2.1) there is a greedy algorithm to test if there exists a non-null 
round set. Initially we set S = V(H), and in general we will have some subset S q 
V(M) which is guaranteed to include every round set. We check if for some i, j 
adjacent in N, some uESMXi  has no neighbours in S•Xj .  If so, we replace S by 
S - { u }  and repeat; this is still guaranteed to include all round sets, by (2.1). If 
there is no such n then S itself is round. If S # 0 then there is a non-empty round 
set, and if S = 0  there isn't. 

We see that the algorithm finds a round set which includes all other round sets. 
That  such a set always exists is clear, because the union of any two round sets is 
round, and so there is a unique maximal round set. 

This process is obviously polynomially-bounded, but it is important for us to 
do it very quickly, and so we give a more careful description. Let H be the bipartite 
graph with vertex set V(M)UI,  in which for all i, j E I  adjacent in N, every v GXi 
is adjacent in H to j .  We refer to the edges of H as pairs vj. 

(2.2) Algorithm. 
Input: Graphs M, N, H and a partition (X i :i E I) as above; and for all vj E E(H), 
the number d(vj) of vertices in Xj  adjacent to v in M. 
Output: The maximal round subset of V( M). 
Running time: O(IE(H)] + bV(M)l + IE(M)t). 
Description: 

Step 1. Construct a stack L of all vertices v E V(M) such that d(vj) = 0 for some 
j E I, without repetition. In G, label every vertex occurring in L "observed", and 
the remainder "unobserved". 

Since we are given the numbers d(vj) we can construct L and the labelling in 
time O([E(H)]). 

Step 2. Set S = V ( M ) .  Set c(vj)=d(vj)  for all v jEE(H) .  

Now we begin a recursion. At the beginning of the ith iteration, S will have 
cardinality V ( M ) -  i +  1, and will include the maximal round subset of V(M).  For 
v E S and vj E E(H), the number c(vj) will be the number of neighbours of v 
in S M Xj,  and L will consists precisely of all v E S such that c(vj) = 0 for some 
vj E E(H), without repetition. Every vertex of S will be labelled "observed" or 
"unobserved", and the former will be those which occur in L. The purpose of the 
labels is to avoid adding a vertex to L more than once; once a vertex is added to 
L we label it "observed", to warn ourselves not to add it again. The ith iteration 
proceeds as follows. 

Step 3. If L is empty, output S and stop. 

This works because if L is empty then S is round, and hence is the maximal 
round subset. 

Step 4. If L is non-empty, select u C L. Let u E Xi where i c I. Find the set Y C 
S of all neighbours of u in S. Remove u from L; remove u from S; for each v E Y 
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labelled "unobserved", ff c(vi)= 1, change the label of v to "observed" and add v 
to L; and for each v E Y,  reduce e(vi) by 1. Return for the next iteration. 

It is easy to check that  this algorithm outputs what it claims. For its running 
time, we observe that  there are at most [V(M)]+I  iterations, since in each iteration 
IS[ is reduced by 1. The time spent in the ith iteration is ~kl+k2d(u) ,  where u is 
the vertex chosen in step 4, d(u) is the valency of u in M, and kl, k2 are constants. 
Thus the total time spent in step 4 is 

< klIV(M)I + 2k2IE(M)I 

and hence the algorithm has running time O(]E(H)] + IV(M)I + IE(M)]). I 

Let us see how to use (2.2) to test if a connected planar graph has an antipo- 
dality of p-range > k. We need the following. 

(2.3) Let G be a non-null connected planar graph with a dual graph G*, let p : 
E(G) --*Z+, and let k>O be an integer. For each eEE(G)  let r be the subgraph 
of G consisting of all vertices of G except the ends of e, and ali edges f such that f 
is incident with no end ore and no dosed walk of G* of p-length < k contains both 
e* and f*. If  there is an antipodality in G of p-range > k, then there is one, a say, 
such that ~(e) is a union of components ore (e )  for each eE E(G). 

Proof. Let fl be an antipodality of p-range > k. Then  for all e E E(G), fl(e) is a 
subgraph of r by (h l )  and (A3). Let c~(e) be the union of all components of 
r which intersect fl(e), for each eEE(G),  and for each rER(G)  let ~(r)=fl(r):  
Clearly c~ satisfies (A1) and (A3). For (A2), let eEE(G)  be incident with rER(G) .  
Then c~(r) = fl(r) G V(fl(e)) C V(ct(e)); and every component of ~(e) includes a 
component of fl(e) and hence intersects fl(r) = a( r ) .  Thus, a is an antipodality of 
p-range _> k, as required. I 

We use (2.2), (2.3) for the following. 

(2.4) Algorithm. 
Input: A non-null connected planar graph G, a dual graph G*, a function p: E(G) -4 
Z+, and an integer s 
Output: Decides whether there is an antipodality in G of p-range >_ k. 
Running time: O(m 2) where m =  IV(C)l + IE(G)I, if  arithmetic operations can be 
performed in unit time. 
Descrip tion: 

Step 1. For all u, v E V(G*), compute d*(u, v), the minimum p-length of all paths 
G* between u and v. 

This can be done using the algorithm of [2]. 
If e, f E E ( G )  are distinct and e*, f*  have ends Ul, u2 and Vl, v2 say in G*, 

then there is a closed walk of G* of p-length < k using e* and f* if and only if either 
d*(ul,Vl) + d*(u2,v2) < k -p ( e )  - p ( f )  or d*(ul,v2) + d*(u2,vl) < k - p ( e )  - P ( f i .  
Thus we can use the numbers d* (u, v) computed in step 1 to perform 

Step 2. Compute the graph r of (2.3), for each e E E(G). Compute the set Ce 
of components of r 

For each e E E(G), let Xe be the set of all pairs {(e ,C):CE Ce}. For each r E 
R(G), let Xr be the set of all pairs {(r ,v ) :vEV(G)} .  Let Z = E ( a ) U R ( a ) :  
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Step 3. Construct the graph M with vertex set U ( x i  :i �9 I) ,  in which (e,C) �9 Xe 
is adjacent to (r,v) in Xr  if  e � 9  r�9 e is incident with r, and v � 9  
and construct the partition (Xi :i �9 I)  of V ( M) .  

Step 4. Construct the graph N with vertex set E ( G ) U R ( G ) =  I, in which e � 9  E(G)  
is adjacent to r �9 R(G) if  e is incident with r in G. 

Step 5. Construct the graph H with vertex set V ( M ) U V ( N ) ,  in which if  e � 9  E(G)  
and r �9 R(G) are adjacent in N then e is adjacent in H to every vertex in Y r  and 
r is adjacent in H to every vertex in Xe. 

Step 6. For each edge vj  of H, set 

IV(C)l i f  j �9 R ( a )  and v = (e, C) for some e �9 E(G)  and C �9 Ce 
1 i f j  �9 E ( a  ) and ~ : (~, ~) rot some ~ �9 R(G) and ~ �9 V ( a ) ,  

d(vj) = where u is not an end of j 
0 i f j  �9 E(G) and v = (r,u) for some r �9 R(G) and u �9 V(G),  

where u is an end of j .  

Step 7. Use (2.2) to decide if  V ( M )  has a non-empty round subset. Output  "yes" 
or "no" accordingly. Stop. 

Step 7 is permissible because, by our definition of d(vj)  in step 7, M, N, H,  the 
numbers d(vj)  and the sets Xi ( iE  I) satisfy the hypothesis of (2.2). The algorithm 
works correctly because V ( M )  has a non-empty round subset if and only if G has 
an antipodality of p-range _>/~, as we show as follows. Let R C V(M);  then for e E 
E(G) we may corresPondingly define a(e) to be the union of all C C Ce such that 
(e, C) C R, and for r �9 R(G) define a ( r )  to be 

{v �9 v ( a ) :  v) �9 R}. 

For any choice of R the function c~ satisfies (A1) and (A3); it satisfies (A2) if and 
only if R is round; and the selected a(e),  a ( r )  are non-null (one is non-null if and 
only if they all are, ~by (A2)) if and only if R 7! ~. Since by (2.3) if there is an 
antipodality of p-range _> k then there is one arising in this way from some choice 
of R, we deduce tha t /V(M)  has a non-empty round subset if and only if G has an 
antipodality of p-range >_ k. Thus the algorithm works correctly. 

To estimate rumfing time, let m = IV(G)I + IE(G)I. Then IV(G*L < m, by 
Euler's formula. Steps 1-6 each take time O(m2). Step 7 takes time O(IE(H)I + 
IV(M)I + bE(M)I)<_O(m2). Thus, the whole algorithm takes time <O(m2).  I 

3. Ratcatching 

An antipodality is nothing more than an escape strategy in a certain searching 
game, and in this section we discuss the game. This is not relevant to the algorithm, 
or to the proof of i ts  correctness, and is included for its own interest. 

Let G be a connected planar graph drawn in a sphere E, with dual graph G*, 
and let p:E(G)----*Z+ be a function. We regard G as the floor-plan of a one-storey 
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house; its region are rooms,  its edges are walls, and its vertices are corners. For 
each e ~ E(G), the wall e has thickness p(e). Here is a full-knowledge game for 
two players (ratcatcher  and rat).  An  integer k _> 0 is fixed, the ra tca tcher  selects a 
room, and the rat select a corner, and the first move begin. The  ra tca tcher  moves 
first, and the players move in turn,  unless the ra teatcher  wins when the game stops. 
W h e n  it is the ra tca tcher ' s  turn,  if he is current ly in a room, he moves to an incident 
wall; or if he is current ly in a wall (the walls have doorways) he moves to the room 
incident with the wall on the other  side from which he entered the wall. (In other  
words, once the ra tca tcher  moves to a doorway out of a room, he has to go th rough  
it in his next tu rn  to the next room; he cannot  move to the doorway and then 
change his mind and re turn  to the first room.) W h e n  it is the ra t ' s  turn,  and it is 
current ly in a corner v, it moves to a corner u (possibly u =  v) such tha t  there is a 
pa th  P of G with ends u, v, and every edge of P is current ly "quiet".  We say an 
edge e of G is quiet if there is no closed walk in G* of p-length < k using e* and r* 
if the ra teatcher  is in room r, or using e* and f*  if the ra tcatcher  is in wall f .  (In 
terms of ratcatching,  the rat runs from corner to corner inside the walls; but  the 
ra tcatcher  has a noise-maker, and the rat only moves along walls in which the noise 
level is acceptable.) The  ra tca tcher  wins if the rat  is in a corner v with p(6(v)) < k, 
and the ra tcatcher  is in a room incident with v. The ra t ' s  objective is to stop the 
ra tca tcher  winning. 

We claim that :  

(3.1) I f  ]V(G)I >_ 2, then the ratcatcher has a winning strategy if and only if 
p(6(v)) < k for every v E V(G) and there is no ~ntipodality of p-range >_ k. 

Proof.  Certainly if p(5(v)) > k for some v, the rat  can survive by remaining at v, 
and so we assume tha t  there is no such v. If  c~ is an ant ipodal i ty  of p-range > k, 
the rat  can survive by obeying the following rules: 
(1) Initially, if the ra tcatcher  selects room r, the rat  selects a corner in a ( r )  
(2) In general, if the ra tcateher  moves from a room r to a doorway in a wall e, 

incident with rooms r and s, the rat  moves into a(s) .  
(3) If  the ra tca tcher  moves from a doorway in a wall to a room, the rat  remains 

still. 
I t  is possible to obey these rules, because in (2) the rat  is current ly in a ( r )  and 
hence in some component  C of a(e);  and every edge of C is quiet, and some vertex 
of C is in c~(s). Moreover, it follows from (A1), (A2) tha t  the ra tca tcher  does not  
win if the rat  obeys these rules. 

Conversely, suppose the rat has an escape strategy. We may  assume tha t  the 
rat  only moves when the ra tcateher  is in a doorway; for when the ra teatcher  is in a 
doorway and is about  to move into room s, the rat knows which room the ra tca tcher  
is about  t o  enter, and every edge which will be quiet when the ra tcateher  is in s is 
quiet already, and so there is nothing to be gained by waiting to move. For each 
room r, define a ( r )  to be the set of all corners v such tha t  the rat  can guarantee  
to survive if the game starts  with ra tcatcher  in r and rat  in v, with ra tca tcher  
to move. For each wall e, incident with rooms r, s, let H be the subgraph of G 
with vertex set V(G) and edges the current ly quiet edges of G, and let a (e)  be the 
union of those components  of H which meet  a ( r )  and c~(s). We claim tha t  c~ is an 
ant ipodal i ty  of p-range _> k. Now (A1) holds since p(6(v)) < k for all v E V(G), and 
(A3) fi'om the definition of H.  To see (A2), let e E E(G) be incident with r,s E 
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R(G). Certainly every component of c~(e) meets c~(r) from the definition of c~(e). 
Let v E c~(r), and suppose that  the rat is in v, and the ratcatcher moves from r to 
e. By definition of c~(r), the rat can still guarantee to survive, and so there is a 
path of H (defined as before) from v to a vertex in a(s). Hence v E V(t~(e)), and so 
(A2) holds. Finally, c~(r)r (~ for each r E R(G) since otherwise the ratcatcher wins 
by moving to r; and consequently each a(e) is non-null, by (A2). | 

4. Slopes 

The next three sections are devoted to proving the following. (IN denotes the 
set of positive integers.) 

(4.1) Let G be a connected planar graph with IV(G)l >2, let p:E(G) --*N, and let 
k > 0 be an integer. Then G has p-carving-width >_ k if and only if either p(f(v)) >_ 
k for some vertex v, or G has an antipodality of p-range >_ k. 

In this section we prove "only if". The proof is in several steps. We shall need 
the following theorem; it is [4, theorems (3.5) and (3.6)] in the case when od = {{v}: 
v E V}, rephrased in terms of carvings via (1.1). 

(4.2) Let V be a finite set with IVl >-2, and for each X C_V let ~(X) be an integer, 
such that 

(i) ~(X)=~;(V-  X)  for all X C_V 
(ii) ~(X O Y) + ~;(X N Y) <_ ~(X) + ~(Y) for all X, Y C_ V 
(iii) ~(X)_<0 for a11 XC_V with IXI=I .  

Then exactly one of the following holds: 
(a) there is a carving ~ in V such that ~(X)<_0 for all X E~ 
(b) there is a set of if3 of subsets of V, such that 

(i) for X c_ V, ~ contains one of X,  V - X if and only if ~(X) <_ 0 
(ii) if X,  Y,  Z r  then X U Y U Z r  

(iii) X E~ for all X CV with Ixl--1. 
Let G be a graph, and p : E ( G ) ~ N  a function. Let us say a tilt in G of p-order 

k is a collection N of subsets of V(G) such that 
(B1) for X C_ V(G), if3 contains one of X, V ( G ) - X  if and only if p( f (X) )< k 
(B2) if X, Y, Z E N  then X U Y U Z r  
(B3) XEff3 for all XC_V(G) with IXI=I .  

From (4.2), we deduce 

(4.3) Let G be a graph with IV(C) > 2, let p: E( G) --~ IN, and let k >- 1 be an integer, 
such that p(~(v)) < k for all v E V(G). Then G has p-carving-width >_ k if and only 
if G has a tilt of p-order It. 

Proof. For each X C_ V(G), let ~ (X)=p( t~ (X) -  s  1. Thus s ( X ) < 0  if and only if 
p(f(X))  < L  Then ~; satisfies the hypothesis (i), (ii), (iii) of (4.2). By (4.2), exactly 
one of (4.2)(a), (4.2)(b) hold. But (4.2)(a) holds if and only if G has p-carving- 
width <k ,  and (4.2)(b) holds if and only if G has a tilt of p-order/c. | 

Now let G be a graph drawn in a sphere N, and let k >_ 1 be an integer. A slope 
in G of order k/2 is a function ins which assigns to every circuit C of G of length 
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< k a closed disc ins(C) _C E that  is one of the two closed discs bounded by C in 
the drawing, such that  

($1) if C, C t are circuits of length < k, and C is drawn within i n s (C)  then 
i n s ( c )  c_ i n s ( d )  

($2) If P1, P2, P3 are three paths of G joining the same pair u, v of distinct 
vertices but otherwise disjoint, and the three circuits P1 UP2, P2 UP3, P3 UP1 all 
have length < k, then 

ins(P1 U P2 ) U ins(P2 U P3 ) U ins(P3 U P1) • E. 

A slope is uniform if for every r E R(G) there is a circuit C of G with length < k 
such that r C ins(C). If X C V(G) we denote by G [ X  the subgraph of G induced 
by X, that  is, G \ ( V ( G ) - X ) .  If G is connected, and X,  YC_V(G) are disjoint with 
union V(G), and G IX, G IY are both non-null and connected, we call 5(X) a bond 
of G. 

Let G be a graph drawn in E and let e be an edge of G, with ends u, v. If we 
select t points of E from the open line segment of the drawing representing e, and 
declare them to be vertices, we obtain a drawing of a new graph in which the edge 
e has been replaced by a (t + 1)-edge path. This process is called subdividing e t 
times. 

(4.4) Let G be a non-null connected graph drawn in a sphere E, and let G* be a 
dual graph. Let p : E(G) --~ N, and let G ~ be obtained from G* by subdividing e* 
p(e) - 1 times, for each e E E(G). Let s >_ 1 be an integer, such that p(6(v)) < k for 
all v c V(G). If  G has a tilt of p-order k, then G I has a uniform slope of order k/2. 

Proof. Let 5~ be a tilt in O of p-order k. For each circuit C of G / of length 
< k, let A1, A2 be the two closed discs bounded by C in the drawing. Then 
p(6(V(G) n Ai)) = IE(C) I < k (i = 1, 2), and so exactly one of V(G) N 51, V(G) n A2 
belongs to 2 ,  say V(G)NA] .  We define ins (C)=A1.  It is easy to see that  ins is 
a slope in G / of order k/2, because of (B1), (B2). To see that  ins is uniform we 
proceed as follows. Let r E R(G');  then r E R(G*), and r = v* for some v E V(G). 
Now {v} E 2  (by(B3)) and G l{v} is connected. Choose X E ~  maximal such that 
v E X  and G [ X  is connected. Let Y = V ( G ) - X ,  and let Y1,...,Yt be the vertex 
sets of the components of G[Y. We shall show that  t = 1. Now for 1 < i < f, GIXUYi 
is connected, because G IX and G J~  are both connected and 5 ( ~ ) ~  0 (since G is 
connected), and ~(~)  C_ ~(X) (since ~ is the vertex set of a component of G I Y). 
From the maximality of X it follows that  XU]~ ~J3. But 5(XUY/)_C~(X), and so 
p((~(XUYi)) <k;  and hence 

Y - Y~ = v ( a )  - ( x  u ~ )  c 2 ,  

from (B1). If t > 2  then Y - Y 1 ,  Y - Y 2 ,  X E 2 ,  and ( Y - Y 1 ) U ( Y - Y 2 ) U X =  
V(G), contrary to (B3). Thus t_<l, and t r  by (B2). Hence G[Y is non-null and 
connected, and so g(X) is a bond of G. It follows that  {e* :eEh(X)}  is the edge-set 
of a circuit C of G*. Let C ~ be the corresponding circuit of Gt; then [E(C')[ < k, 
and r C_ ins(C), since X E ~.  Thus ins is uniform, as required. I 

We shall need the following theorem, which follows from [5, theorems (8.7) and 
(8.9)]. 
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(4.5) Let G be a graph drawn in a sphere E, let k >_ 1 be an integer, let ins be a 
slope in G of order k/2, and let x E E. Let Nx be the set of all y C E such that 
there is a closed walk in G of length < k capturing x and y. Then either E - Nx is 
an open disc or Nx=O; and if  ins is uniform then Nxr  

(A walk W captures x E E if either it passes through x, or there is a circuit C of 
length < k every edge of which belongs to W, with x E ins(C).)  

An antipodality c~ is connected if c~(e) is connected for all edges e. From (4.5) 
we deduce the following. 

(4.6) Let G, G*, G ~, p, k be as in (4.4). f i g  ~ has a uniform slope of order ~/2 then 
G has a connected antipodality of p-range >_ k. 

Proof. For each x E E let Nx be as in (4.5) (with G replaced by G~). For r E R(G) 
let c~(r) = {v E V(G) :  v* c_ E - N;} .  For e E E(G),  we define c~(e) as follows. Let 
x(e) be the point of intersection of the edges e, e* in E. Let c~(e) be the subgraph 
of G consisting of all v E V(G) with v* C_ E - Nx(e) and all f E E(G) with f* C 
E -  Nx(e). (This is a subgraph, for if f C E(G)  is incident with v c V(G)  and f* _C_ 
E - N z ( e )  then v*_C_ E-Nx(e ) . )  Since Nz(e) is an open disc by (4.5), it follows that  
a(e) is a non-null connected subgraph of G. We claim that a is an antipodality of 
range > k. To see (A1), let e E E(G),  and let v be an end of e in G. Since ins is 
uniform, there is a circuit C of G' of length < k with v'C_ ins(C),  and hence with 
e* C_ins(C). Thus there is a closed walk of G r with length < k capturing each point 
of v* and capturing x(e), and so v* C_Nx(e). Hence v ~ V(c~(e)). This verifies (A1). 

For (A2), let e ~ E(G) be incident with r E R(G).  Then e* is incident with 
r* in G*, and so Nz(e) C_ N / ,  for any walk of G ~ capturing r also captures r*. 
Thus E - N r *  C E - N z ( e )  , and so c~(r)C_ V(c~(e)). Since c~(r) is non-null and c~(e) 
is connected, this proves (A2). 

For (A3), let e~E(g) and let fEE(c~(e)) .  No closed walk of G' of length < k  
captures both z(e) and z ( f ) ,  and in particular no closed walk of G* of p-length < 
k contains both e* and f*.  This proves (A3), as required, l 

In summary, then, we have shown the following, by (4.3), (4.4) and (4.6). 

(4.7) Let G be a connected graph with IV(G)I >_ 2, drawn in a sphere E, let G* 
be a dual graph, let p : E(G)  ~ N, and let k > 1 be an integer. Then each of the 
following statements implies the next; 

(i) p(~(v) ) < ]c for every vertex v, and G has p-carving-width >_ k 
(ii) p(5(v)) < k for every vertex v, and G has a t i I t  of p-order k 
(iii) G I has a uniform slope of order k/2, where G I is obtained from G* by 

subdividing e* p(e) - 1 times, for each e E E(G)  
(iv) G has a connected antipodality of p-range > k 
(v) G has an antipodality of p-range > to. 

In particular, since ( i )~ (v)  we see the "only if" part of (4.1) holds. 
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5. B o n d  c a r v i n g s  

Now we begin the proof of the "if" part of (4.1); it will be completed in the 
next section. Let G be a connected graph. A carving ~ in V(G) is a bond carving 
if 6(X) is a bond for all X E ~. The main result of this section is the following. 

(5.1) Let G be a 2-connected graph with [V(G)I _> 2 and with p-carving-width <k, 
where p: E(G) --* N. Then there is a bond carving ~ in V(G) such that p(6(X)) < k 
for a1I X C ~. 

Let us say that  X C_ V(G) is connected if G IX is connected. Then a carving 
in V(G) is a bond carving if and only if each X E ~ is connected. We shall need 

the following easy lemma (implied by (1.1)), the proof of which we omit. 

(5.:~) If ~ is a carving in a set V then 
(i) i f X c ~  then V - X c ~  
(ii) if X E ~ and IX[ Z 2 then there is a unique choice of Y, Z E ~ such that 

Y U Z = X  and Y n Z = ~ .  

If X, Y C_ V(G) are disjoint we denote by 8(X,Y) the set of all edges of G 
with one end in X and the other in Y. Thus f i (X,V(G)-X)=6(X) .  Now let G be 
connected; then if X, Y, Z c V(G) are mutually disjoint and nonempty, and have 
union V(G), then at most one of 6(X, Y), 6(Y, Z) 6(Z, X) is empty. If 8(X, Y) = 
we define #({X,Y,Z})= I Z [ -  1, and similarly if 8(Y,Z)={~ or 5(Z,X)=0. If none 
of the three is empty we define #({X,Y,Z})=0. 

Let ~ be a carving in V(G). A triad of g is a set {X,Y,Z} of three members 
of ~, mutually disjoint and with union V(G). By (5,2) (ii), every member X of 
is in at most one triad of 6, exactly one if and only if IX] _< IV(G) [ -2 .  We define 
#(C) to be E#({X,Y,Z}), the sum being taken over all triads {X,Y,Z} of ~. We 
need the following lemma. 

(5.3) Let G be a connected graph with [V(G)I >_ 2, and let ~ be a carving in V(G). 
Let A1, A2, B1, B2 c ~ be mutually disjoint, with union V(G), and with A1UA2 E 
6. Let 5(A1,B1)r162 and let 8(A1,A2)={~. Let ~' be the c~rving 

~' = (~ - {A1 U A2, B1 U B2}) U {A1 U B1, A2 U B2}. 

Then 

Proof. Clearly ~P is a carving, and 

/~(~) -- ]Z(~ p) = ~ ( {A 1 U A2, B1, B2} ) q- ]~({A1, A2 ,81  cI B2} ) -  
- / z ( {A 1 U B1, A2, B2}) -/~({A1, B1, A2 U B2} ). 

Moreover, #({A1,A2,B1 U B 2 } ) =  ] B I U B 2 1 - 1  since 5(A1,A2)= 0, and we may 
therefore assume, for a contradiction, that  
(1) #({A1UB1, A2, B2 }) q-# ({A1, B1, A2 UB2 }) _> #({A1UA2, B1, B2 }) -bIB1 UB2[-  1. 

In particular, from (1) it follows that  

#({A1 UBI,A2,Bg.}) - ( IB21-  1) +#({A1,Bz,A2 UB2}) - ( I B l l -  1) > 0 
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and so from the symmetry between AI U BI and A2 U B2, we may assume without 
loss of generality that 

p({A1,BI, A2 uB2}) > ]Bll- 1. 
We deduce that 5(A1, A2 UB2) 7s ~; but since ~(A1, B1) 7s (~ by hypothesis, it follows 
that  #({A1, B1, A2 U B2}) -- JAi l  - 1 and 6(B1, A2 U B2) = (~. Since 

~(Bi, B2) c_ ~(B1, A2 u B2) = 0 
we deduce that #({A1 UA2,B1,B2})= IAi UA2[-  1. From (1), we find that  

#({A1 U B1, A2, B2}) + I&l - 1 > [A1 u A2[ - 1 + IBx o B2I - 1, 

and hence 

p,({A1 U Bi, As, B2}) :> IA2 u B1 U B s i -  I > max(IA2]- 1, IB21- 1). 
But since 6(A2,B2)r it follows that  #(A1UB1,A2,B2) is one of IA2t-1, IB2I-1, 
0. This is a contradiction, as required. | 

Proof of (5.1). Choose a carving ~ in V(G) such that  
(1) p(8(X))<k [or all XE~,  and 
(2) subject to (1), , ( ~ )  is minimum. 

We claim that  ~ is a bond carving. Suppose not; then some X E ~ is not 
connected, and we may choose such an X, minimal. Then IxI > 1, and by (5.2) 
there exist X1, X2 E ~ with X1 A X2 = (~ and X1 U X2 = X. From the minimality 
of X it follows that X1, X2 are both connected, and hence 8(Xi,X2) = 0. Now 
{V(G)-X,  Xl,  2(2 } is a triad of ~, and we may therefore choose a triad {A1, d2, B} 
of ~ such that  
(3) ~(A1,A2)=0, and 
(4) subject to (3), IBI is minimum. 

Since V(G)-  B is not connected and G is 2-connected, it follows that  1t31 > 2. 
By (5.2), there exist B1, B2 E $ with Bt N B2 = O and B1 U B2 = B. 
(5) For i = 1 , 2  at least one of 8(A1,Bi), 8(A2,Bi) is non-empty. 

This is because {B1,Ai UA2,B2} is a triad of ~ and IBil < IBI, and so from 
(4), 5(A1UA2,B2) 7s and similarly 8(A1UA2,B1) r 
(6) If 8(Ai,B1), 8(A2,B2) are both non-empty then p(8(A1 UBi))_>]~. 

To see this, define ~' as in (5.3). By (5.3), #(~') < #(~), and so by (2), 
p(8(X) ) >_ k for some X E $'. Since 8(A1 U B1) = 8(A2 U B2), the claim follows. 

Similarly, 
(7) If  8(A2, B2), ~(A2, B1) are both non-empty then p(6(A2 O B2)) >_ ~. 

Now since G is connected and 6(A1,A2) = ~, at least one of 6(Ai,B1), 
~(Ai,B2) is non-empty, for i = 1,2. From (5) we may therefore assume that  
8(A1,Bi),8(A2,B2) are both non-empty. From (6), p(8(Ai U B1)) Z k. But 
p(6(B1)) < k, and so 8(Ai U B1) ~ 8(B]), and hence 8(Ai,B2) 7 s ~. Similarly, 
since 8(A2 U B2) ~ 8(B1), it follows that  8(A2, Bi) r ~. From (7), p(8(A1 U B2)) _> k. 
Consequently, 

2]r _< p(~(A1 U B1) ) + p(6(Ai U B2)) 

= p(~(A1, B2)) -F p(e~(d2, B1)) + p(6(B1, g2) )+  

+ p(8(A], B1)) + p(8(d2, B2)) + p(d(B1, B2)) 

= p(~(B~)) + p(~(B~)) < ~ 
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a contradiction. Thus f is a bond carving, as required. 
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| 

6. Carvings and antipodalities 

The main result of this section is the following. 

(6.1) Let G be a connected planar graph with IV(G)]_>2, drawn in a sphere E, let 
G* be a dual graph and let p: E( G) ~ N. Let l~ >_ 0 be an integer, and let a be an 
antipodality in G of p-range >_ k. Then G has 

Proof. Let us say a limb of G is a pair (P,v), 
V(c~(e)) N P r  (~ for some edge e incident with 
V(G) then v is a cutvertex of G.) 

p-carving-width >_ k. 

where v E P C V(G), f(P) C (v), and 
v. (Thus if (P,v) is a limb and P ~  

(1) I f  (P,v) is a limb then V(a(e ) )n (P-{v} ) r  for every edge e incident with v. 
To prove this, let e l , . . . , e t  be the edges of G incident with v, in their cyclic 

order in the drawing (any loops incident with v occur twice in this sequence). We 
may assume that  V(a (e l ) )N  P r 0. Suppose that there exists i_> 1, minimum such 
that  V(a(ei))NP = ~. S ince  i >  1 we deduce that  V(a(ei_l))NP r ~. Let H be a 
component of c~(e/-1) with V(H)NPr Since v~V(H)  by (11), and (~(P)C_a(v), 
and H is connected, it follows that V(H)C_ P. Let r E R(G) be incident with ei-1 
and ei. Then V(H)As(r)  r  by (A2), and by (A2) again, a ( r )  C_ V(t~(ei)). Hence 

r v(Lr) e c_ e n _c p n 

contrary to the choice of i. Thus there is no such i and so V(g(ei))NPr for 1_< 
i<t.  But v~g(a(ei)) by ( a l ) ,  and so (1) holds. 

Now (V(G),v) is a limb, for any v E V(G), because v has valency _> 1 in G. 
Hence we may choose a limb (P, v) with P minimal. 
(2) P - { v }  is connected. 

Suppose not; then there exist/:'1, P2 C_P such that  P 1 U P 2 = P ,  P1NP2 ={v},  
~ ( P t -  {v} ,P2-  {v})=  0, and P1, P2 r P.  Choose e E E(G) incident with v, such 
that  PNV(c~(e))r Then one of P1 N V(c~(e)), /)2 N V(c~(e)) is non-empty and so 
one of (Pl , s ) ,  (P2,v) is a limb, contrary to the choice of (P,v). This proves (2). 

Since (P,v) is a limb it follows that  V(c~(e)) N ( P -  {v}) r 0 for some edge 
incident with v, and so P C  {v}. Since 5(P)C_5(v) it follows that  (~(P-{v},  {v}) r  
~. Let B be a maximal 2-connected subgraph of G containing v and a neighbour of 
v in P.  (A single edge and its ends form a 2-connected subgraph.) Then V(B) C_ 
P, because _c 
(3) Every neighbour of v in P belongs to V(B). 

To see this, certainly some neighbour Ul E P of • belongs to V(B). Let u2 be 
another neighbour of v in P. By (2), there is a circuit C of G IP such that  v, ul,  
u2 E V(C) and hence Iv(BnC)[ > 2. Consequently B u C  is 2-connected, and so 
B U C = B  from the maximality of B. Hence n2 E V(B), and so (3) holds. 

For X C_ V(B), let 2 be the unique subset of V(G) satisfying X N V ( B ) = X  and 
5(2) =a(X ,V(B) -X) .  It is easy to see that  i f v ~ X  then ~2CP-{v}.  We suppose, 
for a contradiction, that  B has p-carving-width < k. Since t3 is 2-connected, there 
is by (5.1) a bond carving g in V(B) such that  for all X E g ,  p ( 5 ( X , V ( B ) - X ) ) <  
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k. Hence p(6(2))  < k for all X E ~. Let ~ C_ ~ be the set of all X E ~ such that  v 
X and V(c~(e))r32~O for some eE6(2).  
(4) f '  # 0. 

To see this, let X = V(B) - {v}; then X E f ,  since f is a carving in V(B) 
and IV(B)I >_ 2. By (3), 2 = P -  {v}. Choose e E E(B) incident with v; then 
V(a(e)) MX # 0 by (1), and since e E 6(3f) it follows that  X E f ' .  Hence f '  ~ 0, as 
required. 

Choose X E f ' ,  minimal. 
(5) IXI#I .  

Suppose that  X = {~} say. Then ~(2)  c ~(~), and V(~(e)) n 2  r 0 for some 
e E 6 ( 2 )  because X E ~ ' ,  and so (X,u) is a limb. But 2cP-{v} contrary to the 
choice of (P,v). This proves (5). 

By (5.2) there exist X1, X2 E ~  with X I U X 2  = X  and XzNX2=O.  By the 
minimality of X, neither X1 nor X2 belongs to ~ .  
(6) E(a(e)) M (6(21) U 6 ( 2 2 )  ) = 0 for all e E 5(21) U 6(22). 

To see this, e , f  E 6(21)U6(X2). Then one of 6(2),  6(21), 6(22), say D, 
contains both e and f .  Since ~ is a bond carving of B it follows that  D is a bond 
of G, and hence 

{f: g D} : E(c) 
f* E(C) and C has p-length p(D) < k, we for some circuit C of G*. Since e*, E 

deduce from (Aa) that  f q~E(c~(e)). This proves (6). 
(7) v( (e))n21:0 an ee6(2). 

To see this, let 5 ( 2 ) = { e l , . . . , e t } ,  such that  for 1 < i < t  there is a region r{ of 
G incident with e/-1, ei (where e0 means e j .  Such a numbering is possible since 
6(2)  is a bond of B and hence of G, and so {e* :e c 6(2)} is the edge-set of a 
circuit of G*. Since V ( B ) - X 2  is connected (because V(B) - X 2  E ~) it follows that  
6(21) N 6 ( X ) #  0, and so we may choose the numbering so that  e] E 6(21). Since 
X1 } ~ it follows that V(a(eJ)  N 21 = 0. If possible, choose i > 1 minimum such 
that V(c~(ei))r)21 #0. Then i >  1, and V(a(e/-1))nX1 = 0. Let H be a component 
of a(ei) with V (H)N21  # O. Since ei E 6(X)C_ 6(21)u6(22), it follows from (6) 
that E ( H ) N 6 ( 2 1 ) = 0 .  Since H is connected we deduce that  V(H)CX1.  By (A2), 
V(H) Ma(r/) # 0, and hence a(ri) MX1 # 0. By (A2), a(ri) c_ V(a(e/_l)) ,  and so 
V(a(ei_J)NX1 # 0, a contradiction. Thus there is no such i, and the result follows. 

Similarly, V(a(e))MX 2 =0  for all e E 6(2).  Since 21 U X2 = 2 it follows that  
V(a(e)) a 2 = 0 for all e E 6(2),  a contradiction, since X E ~'. 

We deduce that  B has p-carving-width > k; and hence so does G, because B 
is a subgraph of G. l 

We deduce: 

(6.2) Let G be a connected planar graph with IV(G)] _> 2, drawn in a sphere, let 
G* be a dual graph, let p : E(G) ~ N, and let k > 0 be an integer. Suppose that 
p(5(v) ) < k for all v E V(G). Then the following are equivalent: 

(i) G has p-carving-width >_ k 
(ii) G has a tilt of p-order k 
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(iii) G' has a uniform slope of order k/2, where G' is obtained from G* by 
subdividing e* p(e) - 1 times, for each e c E(G) 

(iv) G has a connected antipodality of p-range -> k 
(v) G has an antipodality of p-range >_ k. 

Proof. Since p(a(v)) < k for all v < V(G), and V(G) • ~, it follows that  k > 1. Hence 
( i ) ~ ( i i ) ~ ( i i i ) ~ ( i v ) ~ ( v )  by (4.7). But (v )~( i )  by (6.1). | 

P roof  of (4.1). We have already proved the "only if" part of (4.1), as a corollary of 
(4.7). For the "if" half, let G be a connected planar graph with IV(G)_>2. Since G 
has p-carving-width _> 0, we may assume that  k _> 1. If p(8(v)) >_ k some v E V(G) 
then G has p-carving-width _> k since {v} C $ for every p-carving $ in V(G), as 
required. We may assume then that  p(5(v)) < k for all v C V(G), a n d t h a t  G has 
an antipodality of p-range _> k. But then by (6.2), G has p-carving-width -> k, as 
required. | 

From (4.1), we obtain an algorithm for p-carving-width in planar graphs, as 
follows. 

(6.3) Algorithm. 
Input: A planar graph G with Iv(G) I _> 2, a function p:E(G) --~ Z+, and an integer 
k>>_l. 

Output: Decides whether G has p-carving-width -> k. 
Running time: < O(m2), where m = IV(G) + IE(G)[, i f  arithmetic operations can 
be performed in unit time. 
Description: 

Step 1. Delete every edge e of G with p(e )=0 ,  forming G I. 

Such edges have no effect on the p-carving-width. 

Step 2. Compute all the components, G1 ..... , Gt say, of G ~ which have -> 2 vertices. 

Step 3. Test i f  some vertex v of G1 U.. .  U Gt has p(6(v)) > k. / f  so, output "yes" 
and stop. 

This is correct because by (4.1), if v ff V(Gi) has p(~(v)) _> k then Gi, and 
hence G, has p-carving-width _> k. 

Step 4. For 1 < i < t, find a drawing of Gi in a sphere, and a dual graph. Test i f  any 
of G1, . . . ,  Gt has an antipodality of p-range _> s using (2.4). I f  so, output "yes"; 
and otherwise output "no", and stop. 

This is correct because if some G i has an antipodality of p-range _> ]~ then it 
and hence G has p-carving-width > k by (4.1). Otherwise, by (4.1), each Gi haS 
p-carving-width < k. Since the one-vertex components of G ~ have no effect on p,  
carving-width, it follows easily that  G ~ has p-carving-width < k, and hence so doe~ 
G, as required. 

To estimate running time, we see that steps 1-3 can be performed in time 
O(m). If 77~ i = IV(Gi)I + ]E(Gi)I, then the application of (2.4) to Gi in step 4 takes 
time < O(m~), and since ~m/2  < m 2 it follows that the total running time is < 
O(m2). ! 
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7. Branch-wid th  and carv ing-width  

In this section we describe how to compute the branch-width of a planar graph. 
In fact our method applies equally well to "planar hypergraphs ' ,  and since in any 
case we shall need to discuss hypergraph branch-width in the next section, we have 
expressed our results in terms of hypergraphs. Thus, a hypergraph G consists of 
a finite set V(G) of vertices, a finite set E(G) of edges, and an incidence relation 
between them. The vertices incident with an edge e are called the ends of e. For 
X C_ E(G) we define O(X) = OG(X) to be the set of all v E V(G) incident with 
an edge in X and with an edge in E(G) - X ;  and the branch-width of G is the 
minimum, over all carvings ~ in E(G), of the maximum, over all X G ~, of 10(X)I 
(or zero, if IE(G)I ~ 1). If the hypergraph G is a graph (that is, if each edge has 
one or two ends) th~  coincides with our previous definition. 

A hypergraph H is a subhypergraph of a hypergraph G if V(H) ~_ V(G), E(H) C 
E(G),  and every edge of H has the same ends in H and in G. If HI,  H2 are 
subhypergraphs of H,  then so are H1 NH2, Hi  OH2 defined in the natural way. A 
separation of G is a pair (A,B) of subhypergraphs with A O B = G  and E(ANB)= 
@; and its order is IV(AMB)I. Let k~_l be an integer. A tangle in G of order k is 
a set J of separations of G, such that  

(i) for any separation (A,B) of G, J contains one of (A,B),  (B,A) if and only 
if (A,B) has order < k  

(ii) if (Ai, Bi) E J (i = 1,2, 3) then A10 A20 A3 % G 
(iii) if (A ,B)EJ  then V(A) 7~V(G). 

We define 7(G) to be the maximum, over all e e E(G), of the number of ends of e 
(or 7 ( G ) = 0  if E(G)=0). We shall need the following [4, theorem (4.3)]. 

(7.1) Let G be a hypergraph with 7(G) > 0 and let k >_ 1 be an integer. Then G 
has a tangle of order k if and only if either 7(G) _> k or G has branch-width > k. 

Let G be a hypergraph; then I(G), the incidence graph of G, is the simple 
bipartite graph with vertex set V(G)0 E(G), in which v E V(G) is adjacent to e E 
E(G) if and only if v is an end of e in G. We see that G is determined b y / ( G ) ;  
and if G is a graph, then [(G) is obtained from G (up to isomorphism) by replacing 
every edge of G by thvo edges in series. Thus, if G is a graph then G is planar if 
and only if I(G) is planar; and that  motivates the definition that a hypergraph G 
is said to be planar if I(G) is planar. (It is easy to see that  this coincides with the 
usual definition of planarity for hypergraphs, where edges are represented by closed 
discs in a sphere, and their ends by points in the boundaries of the discs.) 

Take a drawing of I(G) in a sphere. Let M be a graph with vertex set E(G), 
and let Cv (v E V(G):) be circuits of M, with the following properties: 

(i) the circuits Cv (v E V(G)) are mutually edge-disjoint and have union M 
(ii) for each v ~ g (G) ,  let the neighbours of v in I(G) be Xl, . . .  ,xt, enumerated 

according to the cyclic order of the edges vzl , . . .  ,vxt in the drawing of I(G);  then 
Cv has vertex set {x t , . . . , x t} ,  and in Cv x i - i  is adjacent to xi (1 _< i_< t), where x0 
means xt. 
In these circumstances M is called a medial graph of G. A hypergraph G is connected 
if I(G) is connected. It is easy to see that  every connected planar hypergraph G 
with E(G) r (~ has a medial graph, and every medial graph is planar. We shall show 
the following. 
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(7.2) Let G be a connected planar hypergraph with ]E(G)I >2, and let M be the 
medial graph of G. Then the branch-width of G is half the carving-width of M. 

Proof. Let Cv (v c V(G)) be circuits of M as in the definition of "medial graph". 
Let G have branch-width/3,  and let M have carving-width ~;. We must show that  
/3 = ~/2. First, we prove tha t /3  < ~/2. For let ~ be a carving in V(M) such that  
16re(X)] _< ~ for all X �9 ~. Since V(M) = E(G) it follows that  ~ is a carving in 
E(G). Moreover, for all X �9 $, 

]OG(X)] = ]{v �9 V(G) :v is incident in G with an edge in X 

and an edge in E(G) - X}] 

= ]{v �9 V ( G ) :  in I(G), v has a neighbour in X 

and in E ( a )  - X } l  

= I{v �9 V ( G ) :  X n V(Cv) # 0 and (E(G) - X) ~ V(Cv) # •}l 

< ~ ]E(Cv) ~ (~M(X)I/2 =- I(~M(X)I/2 < 1~//2. 
v~v(a) 

We deduce tha t /3  < ~/2. 
For the reverse inequality, suppose first that  some v �9 V(G) is an end of exactly 

one edge e of G. Let G I be the hypergraph with E(G ~) =E(G)  and V(G I) = 
V(G) - {v}, in which u �9 V(G') and f �9 E(G') are incident if and only if they 
are incident in G. It  is easy to see that  G and G ~ have the same branch-width. 
Moreover, Cv is a 1-edge circuit of M,  and a medial graph M ~ for G ~ can be obtained 
from M by deleting the loop in E(Cv). Clearly M and M / have the same carving- 
width, because loops do not affect carving-width. Hence it suffices to show that  
G ~ has branch-width half the carving-width of M ~. By repeating this process, it 
follows that  we may assume that  
(1) There is no v �9 V(G) incident with exactly one edge of G. 

We may also assume that  ~ > 1, for otherwise/3 > ~/2 as required. Consequently 
E(M) # ~. We claim that  we may assume that  
(2) Each edge of G has < ~/2 ends in G. 

Suppose that  e �9 E(G) has > s / 2  ends in G. Now {e} �9 $ for every carving 
in E(G). Since 10a({e})l _> ~/2 by (1), we deduce tha t /3  > ~/2 as required. Hence 
we may assume that  (2) holds. 

Now M has carving-width ~ and is planar and connected and E(M) # ~, 
and so from (4.3) and (4.4), either IfM(e)[ _> ~ for some e �9 V(M), or M* has a 
uniform slope of order s /2 ,  where M* is a dual graph of M. In the first case, since 
M = U(Cv :v �9 V(G)) and each E(Cv) includes at most two edges in fM(e), it 
follows that  e �9 V(Cv) for at least ~/2  values of v �9 V(G); that  is, e has _> ~/2 
ends in G, contrary to (2). We deduce that  M* has a uniform slope of order ~/2. 
Consequently, by [5,theorems (6.1) and (6.5)], G has a tangle of order _ ~/2 (for 
in the terminology of [5], M* is the graph of a "radial drawing" of G). I f  7 ( G ) = 0  
then because G is connected and E(G)# ~, it follows that  IE(G)[ = 1 and V ( G ) ~ ,  
and so M has carving-width 0, a contradiction. Thus 7(G) > 0. By (7.1) and (2), 
G has branch-width > ~/2, as required. . |  

(7.2) yields the following. 
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(7.3) Algorithm. 
Input: A planar hypergraph G, and an integer k >_ 1. 
Output: Decides whether G has branch-width >_ k. 
Running time: O(m 2) where m =  IV(G)I + IE(G)[. 
Description: 

Step 1. Compute I(G) and find its components, H1,...,He say. 

There correspond connected subhypergraphs G1, . . . , ,Gt  of G with union G, 
with V(GiNGj)=O=E(GiNGj)  ( i t  j), and where Hi=I(G) ( l_<i<t) .  

Step 2. For 1 < i < t, if V(Hi) contains at least two members of E(G), find a 
drawing of Hi in a sphere, and compute the corresponding medial graph Mi of Gi. 

Step 3. For each media/graph Mi, test if Mi has carving-width >_ 2h. If  some Mi 
has carving-width > 2h, output "yes", and otherwise output "no"; and stop. 

This is correct because if some M i has carving-width _> 2k, then by (7.2) Gi 
has branch-width _> k, and hence so does G. If no Mi has carving-width > 2/~, then 
each corresponding G i has branch-width < k by (7.2). Since every other G i has at 
most one edge, it follows that  G l , . . . , G t  all have branch-width < k, and hence so 
does G. 

Since (summing over all i with IV(Hi)N E(G)I >_ 2) 

~(IE(Mdl + IV(M{)L) 2 ~ (~ IE(M{)I + Im(Mdl) 2 
i { 

<_ ( ~  IE(&)I § IE(Oi)l) 2 <_ (IE(I(G))I + If(G)l) 2 
i :  

and since IE(I(G))I< 2(IV(C)I+ IE(G)I)- 3 because I(C) is planar and simple and 
has IV(G))I + IE(G)I vertices) we deduce that  the algorithm has running time <_ 
O(m2), as claimed. | 

8. Some NP-comple teness  results 

We have seen that  for planar graphs and hypergraphs, one can compute branch- 
width and carving-width in polynomial time. In this section we show that for 
general graphs both problems are NP-hard. We begin with the following result of 
Garey , Johnson and Stockmeyer [3]. 

(8.1) The following problem is NP-complete. 
Instance: A graph G, two vertices s, t of G, and an integer k>O. 
Question: Is there a partition (A,B) of V(G) with IA I = IBI, s ~ A, t r B and 

We deduce 



C A L L  R O U T I N G  A N D  T H E  R A T C A T C H E R  235  

(8.2) The following problem is NP-complete. 
Instance: A graph G, and an integer k > O. 
Question: is there a partition (A,B) of V(G) with IAI--IB[ and I~(A)l_<k7 

Proof. We shall reduce the problem of (8.1) to that of (8.2). For let G, s, t, k be as 
in (8.1). Let [V(G)[ =2n.  We may assume that  n is an integer. Let G' be obtained 
from G by adding k+  1 parallel edges joining u, v for every unordered pair {u, v} 
{s,t} of distinct vertices. Let k' = n 2 ( k +  1 ) -  1. Let (A,B) be a partition of V(G) 
with 1A[ = 1BI. We claim that 
(1) I~G,(A)I <_ k' if  and only if A contains exactly one of s, t and I~c(A) I _< k. 

To show this, there are two cases. If A contains exactly one of s, t then 

lha,(d)l = (n2 _ 1)(k + 1) + I~G(a)l 

and so IfG,(A)[ <k '  if and only if ]6G(A)I <k. If A contains both or neither of s, t, 
then 

15G,(A)I = n2(k + 1) + 16G(A)] > k'. 
The claim follows. 

From (1) we see that  the problem of (8.1) is polynomially reducible to that  of 
(8.2), and so the result follows from (8.1). | 

Actually, the proof given in [3] of (8.1) can also serve as a proof of (8.2). 

(8.3) The following problem is NP-complete. 
Instance: A graph G, and an integer h >_ O. 
Question: Is there a partition (A,B,C) of V(a)  with IAI = IBI = IcI such that 
I~(A)I, I~(B)I, 16(C)p<_k? 

Proof. We shall reduce (8.2) to (8.3). Let G, k be as in (8.2), with Iv(a)l = 2~. 
We may assume that  n is an integer. Let H be a graph obtained from a complete 
graph Kn by replacing each edge by k + 1 parallel edges. Let G' be the disjoir~t 
union of G and H. 
(1) There is a partition (A,B) of V(G) with IA[ =]B I and Iaa(A)l <k ,  i f  and only 
if there is a partition (A,B,C) of V(G') with [AI=iBI=ICI and [~a,(A)l, Iaa,(B), 
16a,(c)l _<k. 

Certainly, given (A,B), we may take C =  V(H). Conversely, given A, B, C, 
since 15a'(A)l, [Sa,(B)l, Ira'(C)[ _< k it follows that no two vertices of H belong 
to distinct members of {A,B,C}; that is, we may assume that V(H) C_ C. Since 
IV(HDI=n=ICI we deduce that V(H)=C,  and so 15G(ADI_<k. This proves (1). 

The result follows from (1) and (8.3). l 

(8.4) The following problem is NP-complete. 
Instance: A graph G with [V(G)[_>2, and an integer k_>O. 
Question Does G have carving-width ~_ k ? 

Proof. We shall reduce (8.3) to (8.4). Let G, k be as in (8.3); and let Iv(G)I = 
3n. We may assume that  n is an integer, and n_> 1. Also we may assume that k < 
]E(G)I (for otherwise the partition exists). Let m =  IE(G)I , and let G' be obtained 
from G by adding m parallel edges joining every pair of distinct vertices. Hence 
(1) For X CV(G), [6G,(X)I = ISG(X)[ +mJXl(3n-[Xt) .  
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Let k ~ = 2ran 2 + k. 
(2) If  there is a partition (A,B,C) of V(G) with Idl = IBI = tel such that 15G(A)I, 
I~a(B)l, I~a(C)l _< k, then a '  has carving-width < k'. 

To see this, let g0 = {A,B,C,  A U B , A U C ,  BUC} ,  and let ~ be a carving in 
V(G) with g0 C_ ~. Now for each X r ~, either X is a subset of one of A, B, C or 
X is a superset of one of AUB, AUC, BUC, and so in either case IXI (3n-IXl)__ 
2n 2, with strict inequality unless X E g0. This if X c ~ - g0 then by (1), 

I~a,(X)l = lea(X)l +miNI  (3n - I X l )  _< 6a(X) + m ( 2 n  2 - 1) < 2ran 2 <_ k' 

because 15c(X)l <_m. Since 15G(X)I <_k and hence lha,(X)l <_k' for all X E ~ 0 ,  we 
deduce that  15G,(X)<_ k ~ for all X E~, as required. 
(3) I f  G ~ has carving-width < k ~ then there is a partition (A,B,C) of V(G) with 
IAI = IBI = IC{ such that 15a(A) l, I@(BDI, Ida(C) l < _ k. 

To show this, let ~ be a carving in V(G') such that 16a, (x)l  _< k' for all X �9 ~. 
Since n_> 1 and hence C r  0, there exists A �9 ~ with IAI < 2n, by (5.2)(i). Choose 
A � 9  with IAI < 2 n  such that  IAI is maximum. From (1), we deduce that  

15G(A)I + mlA I ( 3 n - I A I )  = I~G,(A)I < k' = 2ran 2 + k < m(2n 2 + 1) 

and so Idl ( 3 n - l A [ )  < 2n2+1-  Since I d l < 2 n ,  we deduce that  I A ] < n .  Thus 
IV(G)-  A I > 2n > 2, and so by (5.2)(ii), there exist B, C �9 g with B N C = ~ and 
B U C = V ( G ) - A .  Now A U B  � 9  and IAUBI > IAI, and so IAUB I > 2n from the 
choice of A. Consequently ICl = 3 n - I A U B  I <n, and similarly IBI <n .  Since IAI < 
n and IAUBUCI=3n,  it follows that  IAI=IBI=ICI=n. But as we showed above, 

15G(A)[ + m l d l  ( 3 n -  Igl) _< 2ran 2 + t~, 

and since IAl=n, we deduce that  I@(A)I <_k; and similarly [hG(B)I, I@(C)I <_k. 
This proves (3). 

From (2), (3):and (8.3), the results follows. | 

We remark that  in (8.4) G is not constrained to be simple; but even if G is 
constrained to be simple the problem is still NP-complete. To see this, let G, k be 
an input to (8.4); We may assume that  k > 2  and G is loopless. Let G ~ be obtained 
from G by subdividing each edge once. It easy to see that  G has carving-width < 
k if and only if G ~ does. 

Now we turn to branch-width. From (8.4) we have immediately the following 
(for given G as i~ (8.4), let H be the hypergraph with E ( H ) =  V(G) and V(H)=  
E(G), in which v e  V(G), c �9 E(G) are incident if and only if they are incident in 
G; then the bran@-width of H equals the carving-width of G). 

(8.5) The following problem is NP-eomplete. 
Instance: A hypergraph G, and an integer s > O. 
Question: Does G have branch-width <_k ? 

We would like to prove (8.5) for graph instead of hypergraphs. Our method 
is, given a hypergraph G, to construct a graph with the same branch-width. One 
might try replacing each edge of G by a complete graph, but that  does not work. 
(For instance, if IV(G)] = n .and ]E(G)I = 2, and both edges are incident with 
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every vertex, then G has branch-width n. But if we replace both edges by cliques 
we obtain a graph with branch-width about ~-n.) Instead, we shall replace each 
edge of G, with ends Ul , . . . , u t  say, by a complete bipartite graph with vertex set 
{Hi,.. . ,  ut, v l , . . . ,  vt} (where Vl, . . . ,  vt are new vertices) in which each ni is adjacent 
to each vj. We shall see that  this produces a graph with the same branch-width as 
G except in trivial cases. To show this, it is convenient to replace one edge of G 
at a time; and instead of working directly with branch-width, we use tangles and 
(7.1). 

Let us say a separation (d', D) of a hypergraph is special if ]V(C)I = 2IV(CaD) l, 
and 6" is a (simple) complete bipartite graph with bipartition (V(CND),  V ( C ) -  
V(D)). 

A separation (C, D) of a hypergraph G is titanic for every triple (X, Y, Z) of 
subhypergraphs of C such that  X U Y U Z = C  and E(X),  E(Y) ,  E(Z)  are mutually 
disjoint, at least one of the following so-called "titanic inequalities" holds: 

IV((X U Y) O Z)[ _> ]V((X U Y) n D)I 

IV((Y u z) n x) l  >_ [v((Y u z) N D)[ 

Iv((z u x )  NY)I > IV((Z U X) n D)[. 

We need the following lemma. 

(8.6) Let (C, D) be a separation of a hypergraph G. If  either 
(i) [E (C) I= I ,  E(C)= {e} say, and V(C) is the set of ends ore, or 
(ii) (C,D) is special 

then (C, D) is titanic. 

Proof. Let X, Y, Z be as in the definition of "titanic". If (i) holds, we may assume 
e E E(X) ,  and hence every end of e is a vertex of X. Hence V(C) C_ V(X),  and so 
X = C .  But then 

[V((Y u Z) n X)] = IV(Y u Z)l _> IV((Y u Z) n D)I 

and so one of the titanic inequalities holds, as required. We assume then that (ii) 
holds. 
(1) We m a y  a s s u m e  tha t  V ( C )  - V(D) C_ V(Y U Z). 

To see this, suppose that  a E V (C) - V (D) and a ~ v ( Y  u z) .  Then a E V ( X). 
Since for all b E V ( C N D )  there is an edge of C with ends a, b, and this edge does 
not belong to Y or Z since a r V(Y) ,  V(Z),  it follows that  this edge belongs to X 
and in particular bE V(X).  Hence V(CND)_C V(X),  and so 

[V((Y u Z) n x ) l  > ]V((Y u z) o C n D)I = [V((Y u z) n D)I; 

and a titanic inequality holds, as required. 
(2) We may assume that V ( Y U Z ) = V ( C ) .  

To see this, suppose that  b E V(C n D) and b ~ V ( Y  U Z). Then every edge 
of C incident with b belongs to X,  and so V ( C ) -  V(D) C_ V(X) .  But by  (1), 
V(C) - V(D) C_ V ( Y  U Z), and so 

[V((Y U Z) O X) > IV(C) - V(D)] = IV(CA D)[ >_ [V((Y U Z) O D)]; 
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and a titanic inequality holds, as required. Thus we may assume that  V(CND)G 
V(YUZ), and hence V(YUZ)=V(C)  from (1). 

Similarly we may assume that  V(X UY) = V(X U Z) = V(C). Hence we may 
assume that  IV(X)I > 1/21V(C)1. But V(YUZ)=V(C),  and so 

lv((Y u z )  n x ) l  : Iv (x )  >_  /2iv(c)t : l v ( c  n D)I _> tV((Y u Z) n D)i 

as required�9 | 

We shall also need the following lemma. 

(8.7) Let (C, D) be a special separation of a hypergraph G, of order t. Let Y be a 
tangle in G of order k > max(t, 2). Then (C, D) E Y. 

Proof. Suppose that (C,D) ~Y. Since (C,D) has order t<k it follows that  (D,C) E 
9". Choose (A, B) C Y with D C_ A and B G C, such that  IV(A)I + IE(A)t - IV(B)I- 
[E(B)I is maximum. Evidently for all (A',B') E Y, if A C_ A' and B'  _C B then 
(A',B') = (A,B). Since B C_ C it follows that  B is a graph. By [4, theorem (2.8)], 
we deduce 
(1) (A,B) has order k - l ,  and for any separation (Bx,B2) of B such that B1,B2# 
B, 

IV(B1 n B2) I > min(IV(A n B1), [V(A n B2)[). 
In particular, B is connected and every edge of B has an end in V ( B ) -  V(A). 

Consequently there is no separation (B1,B2) of B with B1, B2 # B and such 
that  B1 N B2 C_ A; and so B\V(AN B) is connected. Since V(D) meets every edge 
of C and hence V(A) meets every edge of B, it follows that  II/(B)-V(A)I <_ 1. But 
V(A)7~V(G) since (A,B)EJ,  and so V ( B ) - V ( A ) = { v } ,  for some vertex v. Then 
v e V(C)-V(D),  since V(B)-V(A) c V(C)-V(D). By (1), V(B) C_ V(CND)U{v}. 
By (1) again, IV(B)nV(CnD)I<_I, and so (A,B) has order <1,  By (1), k - l _ < l ,  
a contradiction. | 

The following is [4, theorem (8.3)]. 

(8.8) Let (C,D) be a separation of a hypergraph G, and let (C',D) be a separation 
of a hypergraph G', with C A D = C A D .  Let Y be a tangte in G of order k>_2 with 
(C,D) eY, and let (C',D) be titanic. Let Y' be the set of all separations (A',B') of 
G' of order < k such that there exists (A, B) E Y with E (A N D) = E(A' O D). Then 
Y' is a tangle in G' of order k. 

Let c be an edge of a hypergraph G, and let G\e denote the subhypergraph 
with vertex set V(G) and edge set E(a)-{e}. Let G' be a hypergraph with g\ec_ 
G', and let (C,G\e)  be a special separation of G'. In these circumstances we say 
that  G' is obtained from G by ezpandin 9 e. 

(8.9) Let G' be obtained from a hypergraph G by expanding an edge e, and let 
k>max(2,~/(G)) be an integer. Then G has branch-width <;c if and only if G' has 
branch-width < k. 

Proof. If 7(G) = 0 then 7(G t) = 01 and G, G ~ both have branch-width 0. Thus we 
may assume that  7(G) > 0, and hence that 7(G ~) > 0. Let e have t ends. Let C 
be the hypergraph formed by e and its ends, let D = G\e, and let ( C , D )  be the 
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special separation of G'. Both (C,D) and (C ' ,D)  are titanic by (8.6), and both 
have order t. 

Suppose that G has branch-width _ k. Since 7(G) > 0, it follows from (7.1) 
that  G has a tangle 5 of order k. Since (D,C)  ~ J (because V(D) = V(G)) and 
(C,D) has order t < k ,  it follows that  (C,D)c3". By (8.8) we deduce that  G'  has a 
tangle of order k. Since ~/(G')<max(2,~/(G))<k,  it follows from (7.1) that  G' has 
branch-width > k, as required. 

For the converse, suppose that  G ~ has branch-width > k. Since 7(G ~) > 0, it 
follows from (7.1) that G ~ has a tangle 3"~ of order k. By (8.7), ( C , D )  ~ 3". By 
(8.8), G has a tangle of order k. Since 7(G) < k it follows from (7.1) that G has 
branch-width _> k, as required. | 

We deduce 

(8.10) The following problem is NP-complete. 
Instance: A simple graph G, and an integer k >_ O. 
Question: Does G have branch-width < h ? 

Proof. We shall reduce the problem of (8.5) to that  of (8.10). Let G, k be as in 
(8.5). We may assume that  k _> 2 (for it is easy to test if G has branch-width < 
0 or _< 1). Suppose that  v E V(G) is an end of exactly one edge e C E(G). It is 
easy to see that G and G' have the same branch-width, where V(G' )=  V ( G ) - { v } ,  
E(G') = E(G), and each f C E(G') is incident with u E V(G') if and only if they are 
incident in G. By repeating this process we reduce the problem of testing if G has 
branch-width _< k to testing if some hypergraph H has branch-width _< k, in which 
no vertex is incident with just one edge. In other words, we may assume that  no 
vertex of G is incident with just one edge of G. 

We may assume that  ~/(G) < k, for if ~(G) > h then G does not have branch- 
width _< k. Now let G ~ be obtained from G by expanding each edge in turn. Then 
G ~ is a simple graph, and it has branch-width _< h if and only if G has branch-width 
_< k, by (8.9). The result follows. | 

9. R e m a r k s  

We have seen that we can test in polynomial time if a planar graph has carving- 
width _< k, but our algorithm does not find the corresponding carving if it exists. 
This can be overcome at some addition cost in running time, as follows. 

(9.1) Algorithm 
Input: A planar graph G, a function p : E( G)-~Z+, and an integer k ~_O. 
Output: A carving ~ in V(G) such that p(~(X)) < k for all X E ~, if such a carving 
exists. 
Running time: O(m4), where m =  IV(G)] + [E(G)], if  arithmetic operations can be 
performed in unit time. 

Deseriptlom If we find a carving for each block of G, it is easy to assemble them 
using (1.1) to find the desired carving in G. Thus, we may assume that G is 2- 
connected and loopless. We check, using (6.3), whether G has p-carving-width < k, 
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and we may assume the answer is yes. By (5.1) there is a bond carving ~ in V(G) 
such that  p(~(X)) < k for all X E ~. Since we may assume that  IV(G)I >_ 3 and 
hence there exist distinct u, v E V(G) with {u, v} E ~, it follows that  
(1) There exist distinct u, v ~ V(G), such that 

(i) u, v are adjacent in G 
(ii) G\{u,v} is connected, and 
(iii) the graph G' obtained from G by contracting all edges with ends {u, v} 

has p-carving-width < k. 
Hence we may find such a pair u, v, by testing all adjacent pairs u, v to see if 

(ii) and (iii) above are satisfied (we test (iii) using (6.3)). 
But given u, v as in (1), and given a carving ~, in V(G ~) such tha t  p(hg,(X ) < 

k for all X E ~ ,  it is easy to construct the desired carving in V(G) (for p(5(u)), 
p(5(v)) < k since G has p-carving-width < k). Thus it sumees to find the carving in 
V(G'). But G' is loopless and Z-connected (because Gk{u,v} is connected) and so 
we may continue the process. 

The algorithm then, for a loopless 2-connected graph G, is as follows. Set Gi  = 
G. Iteratively, for 1 < i <  Iv(G)l-z, we find ui, vi E V(Gi) as in (1), and let Gi+l 
be obtained from Gi by contracting all edges between ui and vi. Now we find a 
bond carving $i for V(Gi) such that  p(~(X)) < k for all X E $i, for i =  Iv(g)l- 1, 
V ( G ) 1 - 2 , . . . ,  1 in turn; and then ~ l  is the required output.  I 

Secondly, it is natural  to ask, what about computing the cut-width of a planar 
graph? A graph G has cut-width <_ k if there is an ordering Vl,. . .  ,Vn of V(G) such 
that  for 1 < i < n - 1 ,  

I(~({Vl,.  - .  ,Vi})l ~_ ~. 
For trees, cut-width is computable in polynomial t ime [6], and for general graphs it 
is NP-complete [3], but for planar graphs it remains open. I t  is tempting to t ry  and 
adapt  the methods of the present paper  to compute cut-width for planar graphs, 
but there are difficulties. One is that  there appears to be no analogue of (5.1), and 
another is that  we have been unable to formulate an analogue of 'antipodality" so 
that  there is an appropriate version of (4.1). Nevertheless, there is an analogue 
of (4.3) and (4.4) (see [1] for related material),  and so there may be some hope. 
Our feeling, however, is that  computing cut-width is probably NP-hard for planar 
graphs. 

Lastly, an open problem. In practice, it seems that  if a planar graph has an 
antipodali ty of range _>/~ then one can find a drawing of it on a sphere {(x,y,z): 
x 2 + y2 + z 2 = 1} and an antipodali ty a of range _> k such that  a(e)  tends to be 
opposite e in the drawing, that  is, close to the reflection through the origin of the 
line segment representing e. Does this have any theoretical basis? 
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