Polynomial bounds for chromatic number VII. Disjoint holes

Maria Chudnovsky ${ }^{1}$
Princeton University, Princeton, NJ 08544
Alex Scott ${ }^{2}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{3}$
Princeton University, Princeton, NJ 08544
Sophie Spirkl ${ }^{4}$
University of Waterloo, Waterloo, Ontario N2L3G1, Canada

November 1, 2021; revised February 17, 2022

[^0]
Abstract

A hole in a graph G is an induced cycle of length at least four, and a k-multihole in G is a set of pairwise disjoint and nonadjacent holes. It is well known that if G does not contain any holes then its chromatic number is equal to its clique number. In this paper we show that, for any k, if G does not contain a k-multihole, then its chromatic number is at most a polynomial function of its clique number. We show that the same result holds if we ask for all the holes to be odd or of length four; and if we ask for the holes to be longer than any fixed constant or of length four. This is part of a broader study of graph classes that are polynomially χ-bounded.

1 Introduction

A function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ is a binding function for a graph G if $\chi(G) \leq \phi(\omega(G))$, where $\chi(G), \omega(G)$ denote the chromatic number of G and the size of the largest clique of G, respectively. A class \mathcal{C} of graphs is hereditary if for every $G \in \mathcal{C}$, every graph isomorphic to an induced subgraph of G also belongs to \mathcal{C}. A hereditary class \mathcal{C} is χ-bounded if there is a function ϕ that is a binding function for each $G \in \mathcal{C}$, and if so, we call ϕ a binding function for the class; if there exists a polynomial binding function, we say that \mathcal{C} is poly- χ-bounded (see [11] for a survey on χ-bounded classes, and [8] on poly- χ-bounded classes). While many classes are known to be χ-bounded, the proofs frequently give quite fast-growing functions, and it is natural to ask whether this is necessary. A remarkable conjecture of Louis Esperet [5] asserted that every χ-bounded hereditary class is poly- χ-bounded. But this was recently disproved by Briański, Davies and Walczak [2]. So the question now is: which hereditary classes are poly- χ-bounded?

A hereditary graph class is defined by excluding some induced subgraphs. A graph is H-free if it has no induced subgraph isomorphic to H, and $\left\{H_{1}, H_{2}\right\}$-free means both H_{1}-free and H_{2}-free. There is a mass of results on χ-bounded classes where one of the excluded graphs is a forest, but in this paper we consider some classes where every excluded graph has a cycle. A hole is an induced cycle of length at least four, and odd-hole-free means containing no odd hole. A four-hole means a hole of length four. Let us say a k-multihole of a graph G is an induced subgraph with k components, each a cycle of length at least four. We denote the k-vertex path by P_{k} and the k-vertex cycle by C_{k}.

Graphs with no 1-multihole are chordal and hence perfect. The class of graphs with no k-multihole in which all the cycles have odd length, is shown in [9] to be χ-bounded, but it contains the class of $\left\{P_{5}, C_{5}\right\}$-free graphs, and we cannot yet prove it is poly- χ-bounded (see [15] for the best current bounds). If we replace "odd" by "long", the same applies: it is shown in [10] that for every $\ell \geq 0$, the class of graphs with no k-multihole in which all the cycles have length at least ℓ is χ-bounded (and we cannot yet prove it is poly- χ-bounded, for the same reason). But we can if we permit cycles of length four to be components of the multiholes we are excluding. We will show:
1.1 For each integer $k \geq 0$, let \mathcal{C} be the class of all graphs G with no k-multihole in which every component either has length four or odd length. Then \mathcal{C} is poly- χ-bounded.

If we change "odd" to "long", it also works:
1.2 For all integer $k \geq 0$ and $\ell \geq 4$, let \mathcal{C} be the class of all graphs G with no k-multihole in which every component either has length four or length at least ℓ. Then \mathcal{C} is poly- χ-bounded.

This second one we can make stronger (we could not prove the corresponding strengthening of the first):
1.3 For all integers $k, s \geq 0$, and $\ell \geq 4$, let \mathcal{C} be the class of all graphs G such that no induced subgraph of G has exactly k components, each of which is either isomorphic to $K_{s, s}$ or a cycle of length at least ℓ. Then \mathcal{C} is poly- χ-bounded.
(In general, $K_{s, t}$ denotes the complete bipartite graph with parts of cardinality s and t.) Both these results derive from a theorem about $K_{s, s}$, which we will explain in the next section.

2 Excluding a disjoint union, and self-isolation

If $A \subseteq V(G), G[A]$ denotes the subgraph of G induced on A; and we write $\chi(A)$ for $\chi(G[A])$ and $\omega(A)$ for $\omega(G[A])$. Two disjoint subsets of $V(G)$ are anticomplete if there are no edges between them, and complete if every vertex of the first subset is adjacent to every vertex of the second. A graph G contains a graph H if some induced subgraph of G is isomorphic to H, and such a subgraph is a copy of H. A function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ is non-decreasing if $\phi(x) \leq \phi(y)$ for all $x, y \in \mathbb{N}$ with $x \leq y$.

Let us say a graph H is self-isolating if for every non-decreasing polynomial $\psi: \mathbb{N} \rightarrow \mathbb{N}$, there is a polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For every graph G with $\chi(G)>\phi(\omega(G))$, there exists $A \subseteq V(G)$ with $\chi(A)>\psi(\omega(A))$, such that either

- $G[A]$ is H-free, or
- G contains a copy H^{\prime} of H such that $V\left(H^{\prime}\right)$ is disjoint from and anticomplete to A.

Self-isolation is of interest in considering polynomial χ-boundedness for the class of H-free graphs, where H is a forest. Say a forest H is good if the class of H-free graphs is polynomially χ-bounded. It might be true that every forest is good (strengthening the Gyárfás-Sumner conjecture [6, 16] from χ-boundedness to polynomial χ-boundedness), but this has only been proved for a few simple kinds of tree H, and some (not all) of the forests that are disjoint unions of these trees. It is not known that if trees H_{1}, H_{2} are good, then the disjoint union of H_{1} and H_{2} is good. For instance, trees of diameter three are good [14], but disjoint unions of them might not be as far as we know. But self-isolation helps here: if H_{1} and H_{2} are good forests, and one of them is self-isolating, then the disjoint union of H_{1} and H_{2} is good. Some good trees are known to be self-isolating (namely, stars and four-vertex paths), so we can happily take disjoint unions with them and preserve goodness.

Which graphs are self-isolating? We know very little at the moment: there are very few graphs that we know to have the property, and none that we know not to have the property. (Could it be that all graphs are self-isolating? Certainly, if we change the definition of self-isolating, replacing the polynomials ϕ, ψ by general functions, it is easy to show that all graphs have the property, by induction on $\omega(G)$.) A graph is self-isolating if all its components are self-isolating, but the only connected graphs that we know are self-isolating are complete graphs (proved below), paths of arbitrary length (proved in [4]), and complete bipartite graphs (proved in the next section). The main result of [13] was that stars are self-isolating, so our result that complete bipartite graphs are self-isolating generalizes this. The last takes up the main part of this paper, and is most of what we need to prove 1.1 and 1.3.

First, complete isolation:

2.1 Every complete graph is self-isolating.

Proof. (This proof was derived from a similar proof in [7].) Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial, and let H be a k-vertex complete graph. Let ϕ be the polynomial $\phi(x)=(x+1)^{k} \psi(x)+x$ for $x \in \mathbb{N}$. Now let G be a graph with chromatic number more than $\phi(\omega(G))$, and let K be a clique of G with cardinality $\omega(G)$. If $\omega(G)<k$, then the first bullet in the definition of self-isolating holds, so we assume that $\omega(G) \geq k$. For each $X \subseteq K$ with $|X|=k$, let A_{X} be the set of vertices in $V(G) \backslash K$ that are nonadjacent to every vertex in X; and for every $Y \subseteq K$ with $|Y|=k-1$, let B_{Y} be the set of vertices in $V(G) \backslash K$ that are adjacent to every vertex in $K \backslash Y$. Thus $V(G) \backslash K$ is the union of
the $\binom{\omega(G)}{k}$ sets A_{X} and the $\binom{\omega(G)}{k-1}$ sets B_{Y}; and since

$$
\binom{\omega(G)}{k}+\binom{\omega(G)}{k-1}=\binom{\omega(G)+1}{k} \leq(\omega(G)+1)^{k}
$$

and $\chi(G \backslash K)>(\omega(G)+1)^{k} \psi(\omega(G))$, one of the sets A_{X} or B_{Y} has chromatic number more than $\psi(\omega(G))$. If $\chi\left(A_{X}\right)>\psi(\omega(G))$ for some X, then $G[X]$ is a copy of H anticomplete to A_{X}, and since $\psi(\omega(G)) \geq \psi\left(\omega\left(A_{X}\right)\right)$, the second bullet in the definition of self-isolating holds. If $\chi\left(B_{Y}\right)>\psi(\omega(G))$ for some Y, then since $|K \backslash Y|=\omega(G)-k+1$ and B_{Y} is complete to $K \backslash Y$, it follows that $\omega\left(B_{Y}\right)<k$ and so $G\left[B_{Y}\right]$ is H-free, and the first bullet in the definition of self-isolating holds. This proves 2.1.

3 Complete bipartite isolation

We turn to the proof that

3.1 Every complete bipartite graph is self-isolating.

We will in fact prove something a little stronger. Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be some non-decreasing function. An induced subgraph H of a graph G is ψ-nondominating if there exists a set $A \subseteq V(G)$ disjoint from and anticomplete to $V(H)$, with $\chi(A)) \geq \psi(\omega(A))$. If $\psi: \mathbb{N} \rightarrow \mathbb{N}$ is a non-decreasing function and $q \geq 0$ is an integer, a (ψ, q)-sprinkling in a graph G is a pair (P, Q) of disjoint subsets of $V(G)$, such that

- $\chi(P)>\psi(\omega(P))$; and
- $\chi(Q)>\psi(\omega(Q))+q r$, where r is the maximum over $v \in P$ of the chromatic number of the set of neighbours of v in Q.
(This is closely related to what was called a " (ψ, q)-scattering" in [4].) We will prove:
3.2 Let $s, q \geq 0$ be integers, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial. Then there is a polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For every graphs G with with $\chi(G)>\phi(\omega(G))$, either:
- there is a ψ-nondominating copy of $K_{s, s}$ in G, or
- there is $a(\psi, q)$-sprinkling in G.

Proof of 3.1, assuming 3.2. Let $s, s^{\prime} \geq 0$ be integers, where $s^{\prime} \leq s$. We will show that $K_{s, s^{\prime}}$ is self-isolating. (It is not enough to show this when $s=s^{\prime}$, because we do not know that every induced subgraph of a self-isolating graph is self-isolating.) Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial, let $q=s+s^{\prime}$, and let ϕ satisfy 3.2 . Let G be a graph with $\chi(G)>\phi(\omega(G))$. We claim that either there is a ψ-nondominating copy of $K_{s, s^{\prime}}$ in G, or there exists $A \subseteq V(G)$ with $\chi(A)>\psi(\omega(A))$ such that $G[A]$ is $K_{s, s^{\prime}}$-free. If there is a ψ-nondominating copy of $K_{s, s}$ in G, then there is also one of $K_{s, s^{\prime}}$, so by 3.2 , we may assume that there is a (ψ, q)-sprinkling (P, Q) in G. If $G[P]$ is $K_{s, s^{\prime}}$-free, the claim holds, so we assume that there is a copy H of $K_{s, s^{\prime}}$ in $G[P]$. Thus $|H|=q$. Let r be the maximum over $v \in P$ of the chromatic number of the set of neighbours of v in Q. The set of vertices in Q with a neighbour in $V(H)$ has chromatic number at most $|H| r=q r$; and $\chi(Q)>\psi(\omega(Q))+q r$ from the definition of a (ψ, q)-sprinkling. Consequently H is ψ-nondominating, and hence $K_{s, s^{\prime}}$ is self-isolating.

To prove 3.2 we will need the following lemma:
3.3 For every graph G that is not a complete graph, there is a vertex v such that the set of vertices different from and nonadjacent to v has chromatic number at least $\chi(G) / \omega(G)$.

Proof. Let X be a maximum clique of G, and for each $x \in X$, let D_{x} be the set of vertices of G different from and nonadjacent to x. Since G is nonnull, it follows that $X \neq \emptyset$. But $V(G)$ is the union of the sets $D_{x} \cup\{x\}$ over $x \in X$, because of the maximality of X; and so there exists $v \in X$ such that $\chi\left(D_{v} \cup\{v\}\right) \geq \chi(G) / \omega(G)$. Choose such a vertex v with $D_{v} \neq \emptyset$ if possible. If $D_{v} \neq \emptyset$, then $\chi\left(D_{v} \cup\{v\}\right)=\chi\left(D_{v}\right)$, since there are no edges between v and D_{v}, and so the theorem holds. Thus we may assume (for a contradiction) that $D_{v}=\emptyset$, and so $1=\chi\left(D_{v} \cup\{v\}\right) \geq \chi(G) / \omega(G)$. Since $\chi(G) / \omega(G) \geq 1$, equality holds, and so $\chi\left(D_{x} \cup\{x\}\right) \geq \chi(G) / \omega(G)$ for every $x \in X$; and so $D_{x}=\emptyset$ for all $x \in X$, from the choice of v. Consequently $V(G)=X$, and G is a complete graph, a contradiction. This proves 3.3.

The proof of 3.2 will be by examining the largest "template" in G. With s fixed, let us say that, for all integers $t, k \geq 0$, a (t, k)-template in G is a sequence (A_{1}, \ldots, A_{k}) of pairwise disjoint subsets of $V(G)$, each of cardinality t, such that for $1 \leq i<j \leq k$, and for every stable set $S \subseteq A_{j}$ with $|S|=s$, every vertex in A_{i} has a neighbour in S. The next result will enable us to find a ($t, 2$)-template. If $v \in V(G)$, we denote the set of neighbours of a vertex v by $N(v)$ or $N_{G}(v)$.
3.4 Let $s, q, t \geq 0$ be integers, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial. Let G be a graph with

$$
\begin{aligned}
& \chi(G)>\omega(G)^{s}\left(\left(s+t^{s}\right) \psi(\omega(G))+t\right) \text { and } \\
& \chi(G) \geq q^{s} t+\left(2+q+q^{2}+\cdots+q^{s-1}\right) \psi(\omega(G))+2 .
\end{aligned}
$$

Then either

- there is a ψ-nondominating copy of $K_{s, s}$ in G, or
- there is a (ψ, q)-sprinkling in G, or
- G contains a ($t, 2$-template.

Proof. We may assume that $s, t \geq 1$. Define $p=\psi(\omega(G))$. For $0 \leq i \leq s$, define

$$
\begin{aligned}
m_{i} & =\omega(G)^{s-i}\left(t^{s} p+t\right)+\left(1+\omega(G)+\cdots+\omega(G)^{s-i-1}\right) p \\
n_{i} & =q^{s-i} t+\left(1+q+q^{2}+\cdots+q^{s-i-1}\right) p .
\end{aligned}
$$

Thus $m_{s}=t^{s} p+t$, and $m_{i}=\omega(G) m_{i+1}+p$ for $0 \leq i<s$; and $n_{s}=t$ and $n_{i}=q n_{i+1}+p$ for $0 \leq i<s$. By hypothesis, $\chi(G)>m_{0}$ and $\chi(G)>n_{0}+p+1$.
(1) There is a vertex v_{1} such that $\chi\left(N\left(v_{1}\right)\right)>n_{1}$ and $\chi\left(M\left(v_{1}\right)\right)>m_{1}$, where $M\left(v_{1}\right)=V(G) \backslash$ $\left(N\left(v_{1}\right) \cup\left\{v_{1}\right\}\right)$.

Let S be the set of all vertices v with $\chi(N(v)) \leq n_{1}$. If $\chi(S)>p$, choose a subset $P \subseteq S$ with $\chi(P)=p+1$, and let $Q=V(G) \backslash P$. Then

$$
\chi(Q) \geq \chi(G)-(p+1)>n_{0}=p+q n_{1}
$$

and so (P, Q) is a (ψ, q)-sprinkling. We therefore assume that $\chi(S) \leq p$. Let $R=V(G) \backslash S$. Thus

$$
\chi(R) \geq \chi(G)-p>m_{0}-p=\omega(G) m_{1} \geq \omega(G)
$$

and so R is not a clique. By 3.3, there exists $v_{1} \in R$ such that the set of vertices in R different from and nonadjacent to v_{1} has chromatic number at least $\chi(R) / \omega(G)>m_{1}$, and so $\chi\left(M\left(v_{1}\right)\right)>m_{1}$. This proves (1).

Choose a stable set $S \subseteq V(G)$ with $|S| \leq s$, maximal such that $\chi(N(S))>n_{|S|}$ and $\chi(M(S))>$ $m_{|S|}$, where $N(S)$ denotes the set of all vertices in $V(G) \backslash S$ that are adjacent to every vertex in S, and $M(S)$ denotes the set of all vertices in $V(G) \backslash S$ that are nonadjacent to every vertex in S. From (1), $|S| \geq 1$. Now there are two cases, $|S|<s$ and $|S|=s$.

Suppose first that $|S|<s$. Let A be the set of all vertices $v \in M(S)$ such that the set of neighbours of v in $N(S)$ has chromatic number at most $n_{|S|+1}$. Since $\chi(N(S))>n_{|S|}=q n_{|S|+1}+p$, we may assume that $\chi(A) \leq p$, because otherwise $(A, N(S))$ is a (ψ, q)-sprinkling. Hence

$$
\chi(B) \geq \chi(M(S))-p>m_{|S|}-p=\omega(G) m_{|S|+1}
$$

where $B=M(S) \backslash A$. Since $m_{|S|+1} \geq 1$ (because $t \geq 1$), it follows that B is not a clique, and so from 3.3, there is a vertex $v \in B$ such that the set of vertices in B, different from and nonadjacent to v, has chromatic number at least $\chi(B) / \omega(G)>m_{|S|+1}$. But then adding v to S contradicts the maximality of S.

Now suppose that $|S|=s$. Since $\chi(N(S))>n_{s}=t$, we may choose $T \subseteq N(S)$ with $|T|=t$. Let A be the set of vertices in $M(S)$ that have s non-neighbours in T that are pairwise nonadjacent, and let $B=M(S) \backslash A$. For each stable set $S^{\prime} \subseteq T$ with $\left|S^{\prime}\right|=s$, we may assume that the set of vertices in $M(S)$ with no neighbour in S^{\prime} has chromatic number at most p, because otherwise $G\left[S \cup S^{\prime}\right]$ is a ψ-nondominating copy of $K_{s, s}$. The number of such sets S^{\prime} is at most t^{s}, and so $\chi(A) \leq t^{s} p$. Hence

$$
\chi(B) \geq \chi(M(S))-t^{s} p>m_{s}-t^{s} p=t
$$

and so there exists $M \subseteq B$ with $|M|=t$. But then (M, T) is a $(t, 2)$-template. This proves 3.4.
We also need the following version of Ramsey's theorem (proved for instance in [13]).
3.5 For all integers $s \geq 1$ and $r \geq 2$, if a graph G has no stable subset of size s and no clique of size more than r, then $|V(G)|<r^{s}$.

Now we use 3.4 to prove 3.2, which we restate in a strengthened form:
3.6 Let $s, q \geq 0$ be integers, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial. Let $\phi, \phi^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ be the polynomials defined by

$$
\begin{aligned}
& \phi^{\prime}(x)=x^{s}\left(s \psi(x)+(s+1)^{s} x^{s(s+1)} \psi(x)+(s+1) x^{s+1}\right) \\
& \quad+q^{s}(s+1) x^{s+1}+\left(2+q+q^{2}+\cdots+q^{s-1}\right) \psi(x)+2 \\
& \phi(x)=(s+1)^{2 s} x^{2+2 s(s+1)} \psi(x)+(s+1)^{s} x^{1+s(s+1)} \phi^{\prime}(x)+(x+1)(s+1) x^{s+1}
\end{aligned}
$$

for all $x \in \mathbb{N}$. Let G be a graph with $\chi(G)>\phi(\omega(G))$. Then either:

- there is a ψ-nondominating copy of $K_{s, s}$ in G, or
- there is a (ψ, q)-sprinkling in G.

Proof. Let $t=(s+1) \omega(G)^{s+1}$. Thus

$$
\chi(G)>\omega(G)^{2} t^{2 s} \psi\left(\omega(G)+\omega(G) t^{s} \phi^{\prime}(\omega(G))+(\omega(G)+1) t .\right.
$$

We claim we may assume that:
(1) If $A \subseteq V(G)$ with $\chi(A)>\phi^{\prime}(\omega(G))$ then $G[A]$ contains a $(t, 2)$-template.

Suppose not. Let $G^{\prime}=G[A]$. Since $\chi(A)>\phi^{\prime}(\omega(G))$ and ψ is nondecreasing, it follows that

$$
\chi\left(G^{\prime}\right)>\omega\left(G^{\prime}\right)^{s}\left(t^{s} \psi\left(\omega\left(G^{\prime}\right)\right)+t\right)+s \omega\left(G^{\prime}\right)^{s} \psi\left(\omega\left(G^{\prime}\right)\right)
$$

and $\chi\left(G^{\prime}\right) \geq q^{s} t+\left(2+q+q^{2}+\cdots+q^{s-1}\right) \psi\left(\omega\left(G^{\prime}\right)\right)+2$. By 3.4 applied to G^{\prime}, either

- there is a ψ-nondominating copy of $K_{s, s}$ in G^{\prime} (and hence in G), or
- there is a (ψ, q)-sprinkling in G^{\prime} (and hence in G), or
- G^{\prime} contains a $(t, 2)$-template.

We may assume that neither of the first two bullets hold, so the third holds. This proves (1).
For $2 \leq k \leq \omega(G)+1$, define $t_{k}=(s+1) \omega(G)^{s+1}-s(k-2) \omega(G)^{s}$. Thus $t_{2}=t$, and $0 \leq t_{k} \leq t$ for $2 \leq k \leq \omega(G)+1$. By (1) applied to G, there is a $\left(t_{2}, 2\right)$-template in G. Choose an integer k with $2 \leq k \leq \omega(G)+1$, maximum such that there is a $\left(t_{k}, k\right)$-template in G, and let $\left(A_{1}, \ldots, A_{k}\right)$ be such a template.
(2) $k \leq \omega(G)$.

Suppose that $k=\omega(G)+1$. Inductively for $i=1, \ldots, k$, suppose that vertices a_{1}, \ldots, a_{i-1} are defined, and define a_{i} as follows. For $1 \leq h<i$, the non-neighbours of a_{h} in A_{i} do not include a stable set of cardinality s, from the definition of a $\left(t_{k}, k\right)$-template. Hence by 3.5 (taking $r=\omega(G)$), there are at most $\omega(G)^{s}$ vertices in A_{i} nonadjacent to a_{h}, and hence at most $\omega(G)^{s+1}$ vertices in A_{i} that are nonadjacent to at least one of a_{1}, \ldots, a_{i-1}. Since

$$
\left|A_{i}\right|=t_{k} \geq(s+1) \omega(G)^{s+1}-s(\omega(G)-1) \omega(G)^{s}>\omega(G)^{s+1},
$$

some vertex $a_{i} \in A_{i}$ is adjacent to all of a_{1}, \ldots, a_{i-1}. This completes the inductive definition. But then $\left\{a_{1}, \ldots, a_{\omega(G)+1}\right\}$ is a clique in G, a contradiction. This proves (2).

Let $Z=V(G) \backslash\left(A_{1} \cup \cdots \cup A_{k}\right)$. For $1 \leq i \leq k$, let \mathcal{S}_{i} be the set of all stable sets contained in A_{i} with cardinality s. For each $S \in \mathcal{S}_{i}$, let D_{S} be the set of vertices in Z with no neighbour in S, and let Y_{i} be the union of the sets D_{S} over $S \in \mathcal{S}_{i}$.
(3) $\left|Z \backslash\left(Y_{1} \cup \cdots \cup Y_{k}\right)\right|<t_{k+1}$.

Suppose not, and choose $A \subseteq Z \backslash\left(Y_{1} \cup \cdots \cup Y_{k}\right)$ with $|A|=t_{k+1}$. For $1 \leq i \leq k$, choose $B_{i} \subseteq A_{i}$ with $\left|B_{i}\right|=t_{k+1}$. Then $\left(A, B_{1}, B_{2}, \ldots, B_{k}\right)$ is a $\left(t_{k+1}, k+1\right)$-template, contrary to the maximality of k. This proves (3).

For each $v \in Y_{1} \cup \cdots \cup Y_{k}$, choose $i \in\{1, \ldots, k\}$ minimum such that $v \in Y_{i}$, and choose $S \in \mathcal{S}_{i}$ such that $v \in D_{S}$. We call S the home of v.
(4) Let $1 \leq i \leq k$, and let $S \in \mathcal{S}_{i}$. The set of vertices in D_{S} with home S has chromatic number at most $\omega(G) t^{s} \psi(\omega(G))+\phi^{\prime}(\omega(G))$.

Let F be the set of vertices in D_{S} with home S. By 3.5 , as in the proof of (2), for $i+1 \leq j \leq k$ there are at most $s \omega(G)^{s}$ vertices in A_{j} with a non-neighbour in S, and since $\left|A_{j}\right|=t_{k}=t_{k+1}+s \omega(G)^{s}$, there exists $B_{j} \subseteq A_{j}$ with $\left|B_{j}\right|=t_{k+1}$ complete to S. For $1 \leq h<i$, choose $B_{h} \subseteq A_{h}$ with $\left|B_{h}\right|=t_{k+1}$ arbitrarily. Let F^{\prime} be the set of vertices $v \in F$ such that v has no neighbour in S^{\prime} for some $j \in\{i+1, \ldots, k\}$ and some $S^{\prime} \in \mathcal{S}_{j}$. For $i+1 \leq j \leq k$, and each $S^{\prime} \in \mathcal{S}_{j}$, the chromatic number of the set of vertices in F with no neighbour in S^{\prime} is at most $\left.\psi(\omega)(G)\right)$, since the copy of $K_{s, s}$ induced on $S \cup S^{\prime}$ is not ψ-nondominating; and so $\chi\left(F^{\prime}\right) \leq \omega(G) t^{s} \psi(\omega(G))$, since there are at most $\omega(G) t^{s}$ choices for the pair $\left(j, S^{\prime}\right)$. Let $F^{\prime \prime}=F \backslash F^{\prime}$. If $G\left[F^{\prime \prime}\right]$ contains a $(t, 2)$-template, then it contains a $\left(t_{k+1}, 2\right)$-template $\left(C_{1}, C_{2}\right)$ say; and then

$$
\left(C_{1}, C_{2}, B_{1}, \ldots, B_{i-1}, B_{i+1}, \ldots, B_{k}\right)
$$

is a $\left(t_{k+1}, k+1\right)$-template in G, from the definition of a home, a contradiction. Thus $G\left[F^{\prime \prime}\right]$ contains no such template, and so $\chi\left(F^{\prime \prime}\right) \leq \phi^{\prime}(\omega(G))$ by (1). Hence $\chi(F) \leq \omega(G) t^{s} \psi(\omega(G))+\phi^{\prime}(\omega(G))$. This proves (4).

Now every vertex in $Y_{1} \cup \cdots \cup Y_{k}$ has a home, and there are only at most $\omega(G) t^{s}$ choices of a home; so by (4), $\chi\left(Y_{1} \cup \cdots \cup Y_{k}\right) \leq \omega(G)^{2} t^{2 s} \psi(\omega(G))+\omega(G) t^{s} \phi^{\prime}(\omega(G))$. Hence

$$
\begin{aligned}
\chi(G) & \leq \omega(G)^{2} t^{2 s} \psi(\omega(G))+\omega(G) t^{s} \phi^{\prime}(\omega(G))+\left|Z \backslash\left(Y_{1} \cup \cdots \cup Y_{k}\right)\right|+\left|A_{1} \cup \cdots \cup A_{k}\right| \\
& \leq \omega(G)^{2} t^{2 s} \psi(\omega(G))+\omega(G) t^{s} \phi^{\prime}(\omega(G))+(\omega(G)+1) t
\end{aligned}
$$

a contradiction. This proves 3.6.

4 Odd holes

Now we deduce 1.2. Let us say a hole in G is special if its length is either four or odd. We need a result proved in [9], the following:
4.1 Let $x \in \mathbb{N}$, and let G be a graph such that $\chi(N(v)) \leq x$ for every vertex $v \in V(G)$. If C is a shortest odd hole in G, the set of vertices of G that belong to or have a neighbour in $V(C)$ has chromatic number at most $21 x$.

We deduce:
4.2 Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be some non-decreasing polynomial, let $n \in \mathbb{N}$, and let G be a graph such that $\chi(N(v)) \leq n$ for every vertex $v \in V(G)$. If $\chi(G)>\max (\omega(G), 21 n+\psi(\omega(G)))$ then G contains a ψ-nondominating special hole.

Proof. Since $\chi(G)>\omega(G), G$ is not perfect, and so contains either a four-hole or an odd hole (by the strong perfect graph theorem [3], since odd antiholes of length at least seven contain four-holes). Let C be either a four-hole, or a shortest odd hole of G. Let A be the set of vertices in $V(G) \backslash V(C)$ that have no neighbour in $V(C)$, and $B=V(G) \backslash A$. If C has length four then $\chi(B) \leq 4 n$, and if C is a shortest odd hole of G, then $\chi(B) \leq 21 n$ by 4.1. Consequently $\chi(A)>\psi(\omega(G)) \geq \psi(\omega(A))$, and so C is a ψ-nondominating special hole. This proves 4.2.

We also need:
4.3 Let G be a graph containing no four-hole, let $n \in \mathbb{N}$, and let $X \subseteq V(G)$ be the set of all $v \in V(G)$ with $\chi(N(v))>n$. If $\chi(X)>\omega(G)$, then there exist disjoint sets $A, B \subseteq V(G)$, anticomplete, with $\chi(A), \chi(B)>n / 2-\omega(G)$.
Proof. Let us say an edge $x y$ of G is rich if $\chi(N(x) \backslash N(y))>n / 2-\omega(G)$ and $\chi(N(y) \backslash N(x))>$ $n / 2-\omega(G)$. Since there is no four-hole, it is enough to prove that there is a rich edge.

Since $\chi(X)>\omega(G)$, the graph $G[X]$ is not perfect, and so contains a four-vertex induced path with vertices $v_{1}-v_{2}-v_{3}-v_{4}$ in order. Let

$$
\begin{aligned}
& A_{1}=N\left(v_{1}\right) \backslash\left(N\left(v_{3}\right) \cup N\left(v_{4}\right)\right) \\
& A_{2}=N\left(v_{2}\right) \backslash\left(N\left(v_{4}\right) \cup\left(N\left(v_{1}\right) \cap N\left(v_{3}\right)\right)\right) \\
& A_{3}=N\left(v_{3}\right) \backslash\left(N\left(v_{1}\right) \cup\left(N\left(v_{2}\right) \cap N\left(v_{4}\right)\right)\right) \\
& A_{4}=N\left(v_{4}\right) \backslash\left(N\left(v_{2}\right) \cup N\left(v_{1}\right)\right) .
\end{aligned}
$$

Since there is no four-hole, $N\left(v_{1}\right) \cap N\left(v_{3}\right)$ is a clique, and so is $N\left(v_{1}\right) \cap N\left(v_{4}\right)$, and therefore $\chi\left(A_{1}\right)>n-2 \omega(G)$. Since $N\left(v_{2}\right) \cap N\left(v_{4}\right)$ and $N\left(v_{1}\right) \cap N\left(v_{3}\right)$) are cliques, it also follows that $\chi\left(A_{2}\right)>n-2 \omega(G)$, and similarly $\chi\left(A_{i}\right)>n-2 \omega(G)$ for $1 \leq i \leq 4$.

Now v_{2} is anticomplete to $A_{1} \backslash A_{2}$, and v_{1} is anticomplete to $A_{2} \backslash A_{1}$, so if $\chi\left(A_{1} \cap A_{2}\right) \leq n / 2-\omega(G)$, then $\chi\left(A_{1} \backslash A_{2}\right)>n / 2-\omega(G)$ and $\chi\left(A_{2} \backslash A_{1}\right)>n / 2-\omega(G)$, and so the edge $v_{1} v_{2}$ is rich.

Thus we may assume that $\chi\left(A_{1} \cap A_{2}\right)>n / 2-\omega(G)$, and similarly $\chi\left(A_{3} \cap A_{4}\right)>n / 2-\omega(G)$. But $A_{1} \cap A_{2} \subseteq N\left(v_{2}\right) \backslash N\left(v_{3}\right)$, and $A_{3} \cap A_{4} \subseteq N\left(v_{3}\right) \backslash N\left(v_{2}\right)$, and so the edge $v_{2} v_{3}$ is rich. This proves 4.3.

We put 4.2 and 4.3 together to prove the following:
4.4 Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be some non-decreasing polynomial. If G is a C_{4}-free graph with

$$
\chi(G)>85 \omega(G)+43 \psi(\omega(G))
$$

then G contains a ψ-nondominating odd hole.
Proof. Let G be a C_{4}-free graph with $\chi(G)>85 \omega(G)+43 \psi(\omega(G))$. Define $n=4 \omega(G)+2 \psi(\omega(G))$.
Let A be the set of all vertices v of G such that $\chi(N(v)) \leq n$, and $B=V(G) \backslash A$. By 4.2 applied to $G[A]$, we may assume that

$$
\chi(A) \leq \max (\omega(A), 21 n+\psi(\omega(A)))=21 n+\psi(\omega(A)) \leq 84 \omega(G)+43 \psi(\omega(G))
$$

and so $\chi(B) \geq \chi(G)-\chi(A)>\omega(G)$. By 4.3 there exist disjoint sets $X, Y \subseteq V(G)$, anticomplete, with $\chi(X), \chi(Y)>n / 2-\omega(G) \geq \omega(G)+\psi(\omega(G))$. Since $\chi(X)>\omega(G) \geq \omega(X), G[X]$ is not perfect and so contains a special hole C, and hence an odd hole since G has no four-holes. Since $V(C)$ is anticomplete to Y, and $\chi(Y)>\psi(\omega(G)) \geq \psi(\omega(Y)), C$ is ψ-nondominating. This proves 4.4.

This in turn is used to prove:
4.5 Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be some non-decreasing polynomial. Then there is a non-decreasing polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that if $\chi(G)>\phi(\omega(G))$ then G contains a ψ-nondominating special hole.

Proof. Let $\psi^{\prime}(x)=85 x+43 \psi(x)$ for $x \in \mathbb{N}$, and let ϕ satisfy 3.2 with ψ replaced by ψ^{\prime}, taking $s=2$ and $q=4$. We claim that ϕ satisfies 4.5 . Thus, let G be a graph with $\chi(G)>\phi(\omega(G))$. By 3.2, either there is a ψ^{\prime}-nondominating four-hole in G, or there is a $\left(\psi^{\prime}, 4\right)$-sprinkling in G. In the first case, this four-hole is also ψ-nondominating, since $\psi(x) \leq \psi^{\prime}(x)$ for $x \in \mathbb{N}$, so we assume the second case holds. Let (P, Q) be a $\left(\psi^{\prime}, 4\right)$-sprinkling in G, and let r be the maximum chromatic number over $v \in P$ of the set of neighbours of v in Q. Thus $\chi(Q)>4 r+\psi^{\prime}(\omega(Q))$, from the definition of a $\left(\psi^{\prime}, 4\right)$-sprinkling. If $G[P]$ has a four-hole H, the set of vertices in Q with a neighbour in $V(H)$ has chromatic number at most $4 r$, and so there is a subset of Q with chromatic number more than $\psi^{\prime}(\omega(Q)) \geq \psi(\omega(Q))$ anticomplete to H, and so H is ψ-nondominating. Thus we may assume that $G[P]$ has no four-hole. By 4.4, $G[P]$, and hence G, contains a ψ-nondominating odd hole. This proves 4.5.

We deduce 1.1, which we restate:
4.6 For each integer $k \geq 0$, let \mathcal{C} be the class of all graphs G with no k-multihole in which every component is special. Then \mathcal{C} is poly- χ-bounded.

Proof. Let us say a k-multihole is special if each of its components is a special hole. We proceed by induction on k. The result is true when $k=1$, because graphs containing no special hole are perfect; so we assume that $k \geq 2$, and there is a polynomial binding function $\psi: \mathbb{N} \rightarrow \mathbb{N}$ for the class of all graphs with no special $(k-1)$-multihole \mathcal{C}_{k-1} (and we may assume ψ is non-decreasing). Let ϕ satisfy 4.5; we claim that ϕ is a binding function for the class of all graphs with no special k-multihole. Thus, let G be a graph with $\chi(G)>\phi(\omega(G))$; we must show that G contains a special k-multihole. By the choice of ϕ, G contains a ψ-nondominating special hole H say. Choose $A \subseteq V(G) \backslash V(H)$, anticomplete to $V(H)$, such that $\chi(A)>\psi(\omega(A))$. From the inductive hypothesis, $G[A]$ contains a special $(k-1)$-multihole, and so G contains a special k-multihole. This proves 4.6.

5 Long holes

In this section we will prove 1.3. The proof is similar to that of 1.1. Fix an integer $\ell \geq 4$, and we say a hole is long if its length is at least ℓ. Let $\tau(G)$ denote the largest integer t such that G contains $K_{t, t}$ as a subgraph. We need a result proved in [1] (see also [12]), the following:
5.1 There exists an integer $c>0$ such that $\chi(G) \leq \tau(G)^{c}+1$ for every graph G with no long hole.

We deduce:
5.2 Let $s \in \mathbb{N}$; then the class of $K_{s, s}$-free graphs with no long hole is poly- χ-bounded.

Proof. Let $c \geq 1$ be as in 5.1, and let ϕ be the polynomial $\phi(x)=x^{c s}$ for $x \in \mathbb{N}$. Let G be a $K_{s, s}$-free graph with no long hole. We will show that ϕ is a binding function for G. Suppose that $\tau(G) \geq \omega(G)^{s}$, and let A, B be disjoint subsets of $V(G)$, both of cardinality at least $\omega(G)^{s}$ and complete to each other. By 3.5, there exist stable sets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ both of cardinality s; but then $G\left[A^{\prime} \cup B^{\prime}\right]$ is a copy of $K_{s, s}$, a contradiction. So $\tau(G)<\omega(G)^{s}$. By 5.1,

$$
\chi(G) \leq\left(\omega(G)^{s}-1\right)^{c}+1 \leq \omega(G)^{c s}=\phi(\omega(G))
$$

and so ϕ is a binding function for G, and hence for the class of $K_{s, s}$-free graphs with no long hole. This proves 5.2.

Next we need an analogue of 4.2, the following:
5.3 Let $n \in \mathbb{N}$, and let G be a graph such that $\chi(N(v)) \leq n$ for every vertex $v \in V(G)$. If C is a shortest long hole in G, the set of vertices of G that belong to or have a neighbour in $V(C)$ has chromatic number at most $(\ell+1) n$.
Proof. Let C have vertices $c_{1}-c_{2}-\cdots-c_{k}-c_{1}$ in order. Let P be the path $c_{1}-c_{2}-\cdots-c_{\ell-3}$, and let Q be the path $C \backslash V(P)$.
(1) If $v \in V(G) \backslash V(C)$ has no neighbour in $V(P)$, then all neighbours of v in $V(Q)$ belong to a three-vertex subpath of Q.

Suppose not, and choose i, j minimum and maximum respectively such that $c_{i}, c_{j} \in V(Q)$ are neighbours of v. Thus $j-i \geq 3$, and so

$$
c_{1^{-}} c_{2^{-}} \cdots-c_{i}-v-c_{j}-c_{j+1^{-}} \cdots-c_{k^{-}} c_{1}
$$

is a long hole (because $j \geq \ell-2$) that is shorter than C, a contradiction. This proves (1).
For $1 \leq i \leq k$, let A_{i} be the set of vertices in $V(G) \backslash V(C)$ that are adjacent to c_{i} and to none of c_{1}, \ldots, c_{i-1}.
(2) A_{i} is anticomplete to A_{j} for $\ell-2 \leq i<j \leq k$ with $j-i \geq 4$.

Suppose that $u \in A_{i}$ and $v \in A_{j}$ are adjacent. Choose $j^{\prime} \geq j$ maximum such that $c_{j^{\prime}}$ is adjacent to v; thus $j^{\prime} \geq j \geq i+4$, and so by (1), u is non-adjacent to $c_{j^{\prime}}, \ldots, c_{k}$. Hence

$$
c_{1}-c_{2^{-}} \cdots-c_{i}-u-v-c_{j^{\prime}}-c_{j^{\prime}+1^{-}} \cdots-c_{k^{-}}-c_{1}
$$

is a long hole shorter than C, a contradiction. This proves (2).
For $t=1,2,3,4$ let I_{t} be the set of all integers $i \in\{\ell-2, \ldots, k\}$ such that $i-t$ is divisible by four. Thus $I_{1}, I_{2}, I_{3}, I_{4}$ form a partition of $\{\ell-2, \ldots, k\}$. Moreover, for all $t \in\{1, \ldots, 4\}$, and all distinct $i, j \in I_{t}$, there is no edge between $A_{i} \cup\left\{c_{i+1}\right\}$ and $A_{j} \cup\left\{c_{j+1}\right\}$, by (2); and so $\bigcup_{i \in I_{t}} A_{i} \cup\left\{c_{i+1}\right\}$ has chromatic number at most n. Hence the set of all vertices in $V(G)$ that belong to or have a neighbour in $V(C)$ has chromatic number at most $(\ell+1) n$, since those that belong to or have a neighbour in P have chromatic number at most $(\ell-3) n$, and the others have chromatic number at most $4 n$. This proves 5.3.

Now we need an analogue of 4.3 , the following:
5.4 Let $s \in \mathbb{N}$, let G be a $K_{s, s}$ free graph, with no long hole of length at most 2 s . Let $n \in \mathbb{N}$, and let $B \subseteq V(G)$ be the set of vertices v of G such that $\chi(N(v))>n$. If $G[B]$ contains a long hole, then there exist disjoint sets $X, Y \subseteq B$, anticomplete, with $\chi(X), \chi(Y)>n-(2 s \ell)^{s} \omega(G)^{s}$.

Proof. We may assume that $G[B]$ has a hole of length more than $2 s \ell$, and so contains an induced path P with $2 s \ell-1$ vertices. Let the vertices of P be $p_{1}-p_{2}-\cdots-p_{r}$ in order, where $r=2 s \ell-1$. For each stable subset $S \subseteq V(P)$ with $|S|=s$, let D_{S} be the set of vertices in $V(G) \backslash V(P)$ that are adjacent to every vertex in S. Since G is $K_{s, s^{-}}$free, it follows from 3.5 that $\left|D_{S}\right| \leq \omega(G)^{s}$. Let D be the set of vertices in $V(G) \backslash V(P)$ that have s pairwise nonadjacent neighbours in $V(P)$. Since there are at most $(2 s \ell)^{s}$ choices of S, it follows that $\chi(D) \leq(2 s \ell)^{s} \omega(G)^{s}$. Let $F=V(G) \backslash(V(P) \cup D)$.
(1) For each $v \in F$, if i, j are minimum and maximum such that v is adjacent to p_{i}, p_{j}, then $j-i \leq(s-2)(\ell-2)+1$.

Let $v \in F$. Choose $t \geq 0$ maximum such that there exist $1 \leq i_{1}<\cdots<i_{t} \leq r$ satisfying:

- i_{1} is the least i such that v is adjacent to p_{i};
- v is adjacent to $p_{i_{k}}$ for $1 \leq k \leq t$;
- $i_{k+1} \geq i_{k}+2$ for $1 \leq k \leq t-1$;
- v is nonadjacent to p_{j} for $1 \leq k \leq t-1$ and for each $j \in\left\{i_{k}+2, \ldots, i_{k+1}-1\right\}$.

Since $\left\{p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{t}}\right\}$ is a stable set, and $v \in F$, it follows that $t<s$. Moreover, for $1 \leq k<t, v$ is nonadjacent to each p_{j} for each $j \in\left\{i_{k}+2, \ldots, i_{k+1}-1\right\}$; so one of

$$
\begin{gathered}
v-p_{i_{k}}-p_{i_{k}+1^{-}}-\cdots-p_{i_{k+1}} \\
v-p_{i_{k}+1}-p_{i_{k}+2^{-}} \cdots-p_{i_{k+1}}
\end{gathered}
$$

is an induced cycle. This cycle has length at most $2 s \ell$, since P has only $r=2 s \ell-1$ vertices; and so the cycle has length less than ℓ, since G has no long hole of length at most $2 s \ell$. Consequently $i_{k+1}-i_{k} \leq \ell-2$, and so $i_{t}-i_{1} \leq(s-2)(\ell-2)$. ¿From the maximality of t, v is nonadjacent to p_{j} for all $j \geq i_{t}+2$. This proves (1).

Let X be the set of neighbours of p_{1} in $V(G) \backslash D$, and let Y be the set of neighbours of p_{r} in $V(G) \backslash D$.

(2) X is disjoint from and anticomplete to Y.

Since $r-1>(s-2)(\ell-2)+1,(1)$ implies that $X \cap Y=\emptyset$. Suppose that $u \in X$ and $v \in Y$ are adjacent. Choose $i \in\{1, \ldots, r\}$ maximum such that u is adjacent to p_{i}, and choose $j \in\{1, \ldots, r\}$ minimum such that v is adjacent to p_{j}. By $(1), i-1 \leq(s-2)(\ell-2)+1$, and $r-j \leq(s-2)(\ell-2)+1$. Hence $i-1+r-j \leq 2((s-2)(\ell-2)+1)$, and so

$$
j-i \geq(r-1)-2((s-2)(\ell-2)+1)=4 \ell+4 s-12
$$

But then $u-p_{i}-p_{i+1}-\cdots-p_{j}-v-u$ is a hole of length at least $4 \ell+4 s-9 \geq \ell$ and at most $2 s \ell$, a contradiction. This proves (2).

But $\chi\left(N\left(p_{1}\right)\right) \geq n$, and so $\chi(X) \geq n-\chi(D) \geq n-(2 s \ell)^{s} \omega(G)^{s}$, and the same for Y. This proves 5.4.

Next, combining 5.3 and 5.4, we have an analogue of 4.4:
5.5 Let $s \in \mathbb{N}$, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be some non-decreasing polynomial. There is a non-decreasing polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. If G is a $K_{s, s}$-free graph with no long hole of length at most $2 s \ell$, and no ψ-nondominating long hole, then $\chi(G) \leq \phi(\omega(G))$.

Proof. By 5.2 , there is a non-decreasing polynomial $\theta: \mathbb{N} \rightarrow \mathbb{N}$ that is a binding function for the class of $K_{s, s}$-free graphs with no long hole. Define ϕ by

$$
\phi(x)=2 \theta(x)+\psi(x)+(\ell+1)\left((2 s \ell)^{s} x^{s}+\theta(x)+\psi(x)\right)
$$

We claim that ϕ satisfies 5.5. Thus, let G be a $K_{s, s}$-free graph with no long hole of length at most $2 s \ell$, and no ψ-nondominating long hole. Let

$$
n=(2 s \ell)^{s} \omega(G)^{s}+\theta(\omega(G))+\psi(\omega(G))
$$

Let A be the set of vertices $v \in V(G)$ such that $\chi(N(v)) \leq n$, and $B=V(G) \backslash A$.
(1) $\chi(A) \leq \theta(\omega(G))+\psi(\omega(G))+(\ell+1) n$.

Suppose not. Then by $5.2, G[A]$ has a long hole; let C be a shortest long hole of $G[A]$. By 5.3 applied to $G[A]$, the set of vertices of A that belong to or have a neighbour in $V(C)$ has chromatic number at most $(\ell+1) n$, and so there is a subset of $A \backslash V(C)$ anticomplete to $V(C)$ with chromatic number more than $\chi(A)-(\ell+1) n \geq \psi(\omega(G))$. Hence C is ψ-nondominating, a contradiction. This proves (1).
(2) $\chi(B) \leq \theta(\omega(G))$.

Suppose not. Then $G[B]$ has a long hole by 5.2 . By 5.4 , there exist disjoint sets $X, Y \subseteq B$, anticomplete, with $\chi(X), \chi(Y)>n-(2 s \ell)^{s} \omega(G)^{s}$. Since $\chi(X) \geq \theta(\omega(G)), G[X]$ has a long hole, and it is ψ-nondominating since $\chi(Y) \geq \psi(\omega(G))$, a contradiction. This proves (2).
¿From (1) and (2), it follows that

$$
\chi(G) \leq 2 \theta(\omega(G))+\psi(\omega(G))+(\ell+1) n
$$

This proves 5.5.

This implies:
5.6 Let $s \in \mathbb{N}$, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be some non-decreasing polynomial. Then there is a nondecreasing polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that if $\chi(G)>\phi(\omega(G))$ then G contains either a ψ nondominating copy of $K_{s, s}$, or a ψ-nondominating long hole.

Proof. By 5.5, there is a non-decreasing polynomial $\psi^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. If G is a $K_{s, s}$-free graph with no long hole of length at most $2 s \ell$, and $\chi(G)>\psi^{\prime}(\omega(G))$, then G contains a ψ-nondominating long hole.

Let ϕ satisfy 3.2 with ψ replaced by ψ^{\prime}, taking $q=2 s \ell$. We claim that ϕ satisfies 5.6. Thus, let G be a graph with $\chi(G)>\phi(\omega(G))$. By 3.2, either there is a ψ^{\prime}-nondominating copy of $K_{s, s}$ in G, or there is a ($\psi^{\prime}, 2 s \ell$)-sprinkling in G. In the first case, this copy of $K_{s, s}$ is also ψ-nondominating, since $\psi(x) \leq \psi^{\prime}(x)$ for $x \in \mathbb{N}$, so we assume the second case holds. Let (P, Q) be a ($\left.\psi^{\prime}, 2 s \ell\right)$-sprinkling in G, and let r be the maximum chromatic number over $v \in P$ of the set of neighbours of v in Q. Thus $\chi(Q)>2 s \ell r+\psi^{\prime}(\omega(Q))$, from the definition of a $\left(\psi^{\prime}, 2 s \ell\right)$-sprinkling. If $G[P]$ contains H where H is either a copy of $K_{s, s}$ or a long hole of length at most $2 s \ell$, the set of vertices in Q with a neighbour in $V(H)$ has chromatic number at most $|H| r \leq 2 s \ell r$, and so there is a subset of Q with chromatic number more than $\psi^{\prime}(\omega(Q)) \geq \psi(\omega(Q))$ anticomplete to H; and therefore H is ψ-nondominating. Thus we may assume that $G[P]$ is $K_{s, s}$-free and has no long hole of length at most $2 s \ell$. By $5.5, G[P]$, and hence G, contains a ψ-nondominating long hole. This proves 5.6.

Finally, we prove 1.3, which we restate:
5.7 For all integers $k, s \geq 0$ and $\ell \geq 4$, let \mathcal{C} be the class of all graphs G such that no induced subgraph of G has exactly k components, each of which is either a copy of $K_{s, s}$ or a cycle of length at least ℓ. Then \mathcal{C} is poly- χ-bounded.
Proof. (The proof is just like that of 4.6.) Let us say an induced subgraph H of a graph G is a k-object if it has exactly k components, and each is either a copy of $K_{s, s}$ or a cycle of length at least ℓ. Thus \mathcal{C}_{k} is the class of graphs with no k-object. We prove by induction on k that \mathcal{C}_{k} is poly- χ bounded. The result is true when $k=1$, by 5.2 , so we assume that $k \geq 2$, and there is a polynomial binding function $\psi: \mathbb{N} \rightarrow \mathbb{N}$ for \mathcal{C}_{k-1} (and we may assume ψ is non-decreasing). Let ϕ satisfy 5.6; we claim that ϕ is a binding function for \mathcal{C}_{k}. Thus, let G be a graph with $\chi(G)>\phi(\omega(G))$; we must show that G contains a k-object. By the choice of c, G contains a ψ-nondominating induced subgraph H, where H is either a copy of $K_{s, s}$ or a long hole. Choose $A \subseteq V(G) \backslash V(H)$, anticomplete to $V(H)$, such that $\chi(A)>\psi(\omega(A))$. From the inductive hypothesis, $G[A]$ contains a ($k-1$)-object, and so G contains a k-object. This proves 5.7.

References

[1] M. Bonamy, N. Bousquet, M. Pilipczuk, P. Rzazewski, S. Thomassé and B. Walczak, "Degeneracy of P_{t}-free and $C_{\geq t}$-free graphs with no large complete bipartite subgraphs", arXiv:2012.03686.
[2] M. Briański, J. Davies and B. Walczak, "Separating polynomial χ-boundedness from χ boundedness", arXiv:2201.08814.
[3] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, "The strong perfect graph theorem", Annals of Math. 164 (2006), 51-229.
[4] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. VI. Adding a four-vertex path", in preparation.
[5] L. Esperet, Graph Colorings, Flows and Perfect Matchings, Habilitation thesis, Université Grenoble Alpes (2017), 24, https://tel.archives-ouvertes.fr/tel-01850463/document.
[6] A. Gyárfás, "On Ramsey covering-numbers", in Infinite and Finite Sets, Vol. II (Colloq., Keszthely, 1973), Coll. Math. Soc. János Bolyai 10, 801-816.
[7] I. Schiermeyer, "On the chromatic number of (P_{5}, windmill)-free graphs", Opuscula Math. $\mathbf{3 7}$ (2017), 609-615.
[8] I. Schiermeyer and B. Randerath, "Polynomial χ-binding functions and forbidden induced subgraphs: a survey", Graphs and Combinatorics 35 (2019), 1-31.
[9] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. VII. Gyárfás' complementation conjecture" J. Combinatorial Theory, Ser. B 142 (2020), 43-55, arXiv:1701.06301.
[10] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. X. Holes of specific residue", Combinatorica 39 (2019), 1105-1132, arXiv:1705.04609.
[11] A. Scott and P. Seymour, "A survey of χ-boundedness", J. Graph Theory 95 (2020), 473-504, arXiv:1812.07500.
[12] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. I. Excluding a biclique and an induced tree", submitted for publication, arXiv:2104.07927.
[13] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. II. Excluding a star forest", submitted for publication, arXiv:2107.11780.
[14] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. III. Excluding a double star", submitted for publication, arXiv:2108.07066.
[15] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. IV. A near-polynomial bound for excluding the five-vertex path", submitted for publication, arXiv:2110.00278.
[16] D. P. Sumner, "Subtrees of a graph and chromatic number", in The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley \& Sons, New York (1981), 557-576.

[^0]: ${ }^{1}$ Supported by NSF grant DMS-2120644.
 ${ }^{2}$ Research supported by EPSRC grant EP/V007327/1.
 ${ }^{3}$ Supported by AFOSR grant A9550-19-1-0187.
 ${ }^{4}$ We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].

