Polynomial bounds for chromatic number
VI. Adding a four-vertex path
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Abstract

A hereditary class of graphs is y-bounded if there is a function f such that every graph G in the
class has chromatic number at most f(w(G)), where w(G) is the clique number of G; and the class
is polynomially x-bounded if f can be taken to be a polynomial. The Gyarfas-Sumner conjecture
asserts that, for every forest H, the class of H-free graphs (graphs with no induced copy of H) is
x-bounded. Let us say a forest H is good if it satisfies the stronger property that the class of H-free
graphs is polynomially y-bounded.

Very few forests are known to be good: for example, the goodness of the five-vertex path is open.
Indeed, it is not even known that if every component of a forest H is good then H is good, and in
particular, it was not known that the disjoint union of two four-vertex paths is good. Here we show
the latter (with corresponding polynomial w(G)'%); and more generally, that if H is good then so is
the disjoint union of H and a four-vertex path. We also prove an even more general result: if every
component of Hp is good, and Hs is any path (or broom) then the class of graphs that are both
Hi-free and Hs-free is polynomially y-bounded.



1 Introduction

A class of graphs is hereditary if it is closed under taking induced subgraphs; a hereditary class is

x-bounded if there is a function f such that every graph G in the class has chromatic number at

most f(w(G)), where w(G) is the clique number of G; and the class is polynomially x-bounded if f

can be taken to be a polynomial. A graph is H-free if it has no induced subgraph isomorphic to H.
The Gyarfias-Sumner conjecture [4, 14] asserts:

1.1 Conjecture: For every forest H, the class of H-free graphs is x-bounded.

There has been a great deal of recent progress on x-bounded classes (see [9] for a survey), although
the Gyarfas-Sumner conjecture remains open. In most cases, proofs of y-boundedness give fairly fast-
growing functions, so it is interesting to ask: when do we get the stronger property of polynomial
x-boundedness?

A provocative conjecture of Louis Esperet [3] asserted that every x-bounded hereditary class is
polynomially x-bounded, but this was recently disproved by Briainski, Davies and Walczak [1]. So
the question now is: which hereditary classes are polynomially y-bounded? In particular, can 1.1
be strengthened to polynomial x-boundedness? Let us say a graph H is good if the class of H-free
graphs is polynomially y-bounded. Perhaps every forest is good, but the only trees currently known
to be good are those not containing the five-vertex path P [11]. It is not known whether P5 is good
(although see [12] for the best current bounds for H = Ps; and see [13] for the case when H is a
general tree of radius two).

In the case of y-boundedness, it is not hard to show that a forest H satisfies the Gyarfas-Sumner
conjecture if and only if all its components do. But it has not been shown that if every component
of a forest H is good then H is good. Indeed, only some very restricted forests are known to be
good [8, 10]. One outstanding case was when H is the forest 2Py, the disjoint union of two copies
of the four-vertex path Pj; and this was particularly annoying since the Py-free graphs are very
well-understood and rather trivial. We will prove that 2P, is good, and indeed:

1.2 If G is 2P;-free, then x(G) < w(G)S.
More generally, we will prove the following:
1.3 If H is a good forest, then the disjoint union of H and Py is also good.

1.3 is a consequence of the next result, about brooms. A (k,d)-broom is a tree obtained from a
k-vertex path with one end v by adding d new vertices adjacent to v, and a broom is a tree that is
a (k,d)-broom for some k,d. It is known that (3, d)-brooms are good [6, 11], but this is not known
for larger brooms (all of which contain P5). We will show the following, which implies 1.3:

1.4 Let Hy be a forest such that every component of Hi is good, and let Hy be either a broom, or
the disjoint union of a good forest and a number of paths. Then there is a polynomial ¢ such that
X(G) < ¢(w(Q)) for every {Hy, Ha}-free graph G.

({H1, Ha}-free means both Hi-free and Ha-free.) To deduce 1.3 from 1.4, let H be a good forest, let
H, = Hs be the disjoint union of H and Py, and apply 1.4.

Some notation and terminology: if G is a graph and X C V(G), we denote by G[X] the subgraph
of G induced on X, and we sometimes write x(X) for x(G[X]) and w(X) for w(G[X]). Two disjoint



subsets A, B C V(G) are complete if every vertex in A is adjacent to every vertex of B, and anti-
complete if there is no edge between A, B; and we say a vertex v is complete to B if {v} is complete
to B, and so on. A graph G contains a graph H if some induced subgraph of G is isomorphic to H,
and such a subgraph is a copy of H. The cone of a graph H is obtained from H by adding a new
vertex adjacent to every vertex of H.

Let us say a graph is 0-bad if it is good; and a graph J is S-bad, where § > 1 is an integer, if
either J is the disjoint union of two (5 — 1)-bad graphs, or J is the cone of a (5 — 1)-bad graph, or
J is (B — 1)-bad. In general, cones are not forests, so they are not good. Nevertheless, we will prove
the following strengthening of 1.4:

1.5 Let 8 > 0, let Hy be a B-bad graph, and let Hy be either a broom, or the disjoint union of a
good forest and a number of paths. Then there is a polynomial ¢ such that x(G) < ¢(w(G)) for every
{H1, Hy}-free graph G.

This implies several results that were previously known. For instance, in [7] it is proved that:
1.6 Let Hy be either

e the disjoint union of a complete graph and a good graph, or

e the disjoint union of some complete graphs, or

e the cone of the disjoint union of some complete graphs.

Let Hy be a path. Then there is a polynomial ¢ such that x(G) < ¢(w(Q)) for every {Hy, Ha}-free
graph G.

Some other results of [7, 8] are also special cases of 1.5.

2 Finding a disjoint union

Suppose that H is the disjoint union of good forests Hi, Ho. Choose c¢1,co such that for ¢ = 1,2,
every H;-free graph G satisfies x(G) < w(G)%. Thus, if G is H-free, we know that there do not exist
disjoint, anticomplete subsets P,Q C V(G) with x(P) > w(P)® and x(Q) > w(Q)?; because then
G|P] is not Hj-free, and G[Q)] is not Ha-free, and the union of a copy of H; in G[P] and a copy of
H, in G[Q)] gives a copy of H, which is impossible.

But we do not really need P,@Q to be anticomplete. It is enough that x(P) > w(P)“, and
X(Q) > |Hy|r + w(Q)2, where r denotes the maximum over v € P of the chromatic number of the
set of neighbours of v in @; because then if we choose a copy H] of H in G[P)], the chromatic number
of the set of vertices in @ with no neighbours in V(H}) is at least x(Q) — |Hi|r > w(Q)“2, and so this
set contains a copy of Hs, a contradiction. In the proof to come later in the paper, this is the only
way we will ever use that G is H-free; and so we might as well prove a stronger theorem, replacing
the hypothesis that G is H-free with the weaker hypothesis that there is no suitable pair (P, Q) in
G.

Thus we will be excluding pairs of disjoint sets P, Q where x(P) is at least some power of w(P),
and for each vertex in P, its set of neighbours in ) has chromatic number at most some r that is
small compared with the chromatic number of Q.



In our proof, it happens that when we find a suitable pair (P, Q), it comes equipped with an
extra vertex v that is complete to P and anticomplete to @); so we might as well prove that there is
a “suitable triple” (v, P, Q). Such a thing will also allow us to handle cones.

We denote the set of nonnegative integers by N, and say a function ¢ : N — N is non-decreasing
if ¢p(z) < ¢p(a’) for all z,2" € N with = < 2/.

Let 1) : N — N be non-decreasing, and let ¢ > 0 be an integer. We say a (v, q)-scattering in a
graph G is a triple (v, P, Q) where:

e P,(Q are disjoint subsets of V(G), and v € V(G) \ (PUQ);

{v} is complete to P and anticomplete to Q;

X(P) > (w(P)); and

X(Q) > qr + ¥(w(Q)), where r is the maximum, over u € P, of the chromatic number of the
set of neighbours of u in Q.

Thus we will replace the hypothesis in 1.5 that G is Hi-free and H; is 8-bad, with the hypothesis
that G' contains no (1, ¢)-scattering, for appropriate 1, q. We will show:

2.1 Let ¢ : N —= N be a non-decreasing polynomial and let ¢ € N. Let Hy be either a broom, or the
disjoint union of a good forest and a number of paths. Then there is a polynomial ¢ : N — N such
that if x(G) > ¢(w(@)) and G contains no (¢, q)-scattering, then G contains Hs.

Proof of 1.5, assuming 2.1. We proceed by induction on 5. Let H; be -bad, and let Hy be
either a broom, or the disjoint union of a good forest and a number of paths.

If Hy is good, the result is true, so we assume that H; is not good, and therefore 5 > 1. Thus
either H; is the disjoint union of two (5 — 1)-bad graphs Ji, J2, or the cone of a (f — 1)-bad graph
J1 (and in this case let Jy be the null graph). From the inductive hypothesis on 3, for i = 1,2 there
is a non-decreasing polynomial ¢; such that if G is Ha-free and J;-free then x(G) < ¢;(w(G)), and
by replacing ¢1, ¢2 by ¢1 + ¢o we may assume that ¢ = ¢o.

Let ¢ = |Ji|. By 2.1, there is a non-decreasing polynomial ¢ such that if x(G) > ¢(w(G)) and
contains no (¢1, q)-scattering, then G contains Ho. We claim that ¢ satisfies 1.5.

Let G be {H1, Ha}-free, and suppose that x(G) > ¢(w(G)). Since G is Ha-free, it follows from
the choice of ¢ that G contains a (¢1, q)-scattering (w, P, Q) say. Let r be the maximum, over v € P,
of the chromatic number of the set of neighbours of v in Q. Since x(P) > ¢1(w(P)), there is an
induced subgraph of G[P] isomorphic to Ji, say J;. Hence G contains the cone of .Ji, so we may
assume that Hp is the disjoint union of Ji, Jo. The set of vertices in @ with a neighbour in V(J])
has chromatic number at most r|J;|, and since

X(Q) > |ilr + ¢a(w(@)),

it follows that the set (say Q') of vertices in @ that are anticomplete to J| has chromatic number
more than ¢9(w(Q)). From the choice of ¢2, and since G is Ha-free, it follows that G[Q'] is not
Jo-free; but then, combining this copy of Jo with Jj, we find a copy of H; in G, a contradiction.
This proves 1.5. |



Let 0 : N — N be a non-decreasing function. We say a subgraph P of a graph G is o-
nondominating if there is a set X C V(G) \ V(P), anticomplete to V(P), with x(X) > o(w(X)).
Next we will show that to prove 2.1 it suffices to prove the following:

2.2 Let ¢,0 : N = N be non-decreasing polynomials, and let ¢ > 0 an integer. Let H be a broom,
and let J be a path. Then there is a non-decreasing polynomial ¢ : N — N such that if G is a graph,
and x(G) > ¢(w(G)), and G contains no (1, q)-scattering, then G contains H and a o-nondominating

copy of J.

Proof of 2.1, assuming 2.2. Let ¢,q, Hy be as in 2.1. If Hy is a broom, then 2.1 follows
immediately from 2.2 (setting H = H, and setting J to be some path, for instance the one-vertex
path). Thus we assume that Hs is the disjoint union of a good forest J; and a forest J that is a
disjoint union of paths. Let ¢ : N — N be a non-decreasing function such that every Ji-free graph G
has chromatic number at most o(w(G)); and choose a path J such that Jy is an induced subgraph
of J. By 2.2 (setting H to be some broom, for instance with one vertex) there is a non-decreasing
polynomial ¢ : N — N such that if x(G) > ¢(w(G)) and G contains no (¢, q)-scattering, then G
contains a o-nondominating copy J' of J.

We claim that ¢ satisfies 2.1. Thus we must show that if G is Hs-free and contains no (1, q)-
scattering then x(G) < ¢(w(G)). Suppose not. By the choice of f, and since G contains no (¢, q)-
scattering, it follows that G contains a copy J' of J, such that there is a set X C V(G) with
X(X) > o(w(X)) anticomplete to V(Jj). But since x(X) > o(w(X)), it follows that G[X] contains
J1, and since J contains Jo, and V(J) is anticomplete to X, it follows that G contains Hs. This
proves 2.1. |

We remark that there is an appealing possible strengthening of 2.2, that we could not prove:

2.3 Conjecture: Let y,0: N — N be non-decreasing polynomials, let ¢ > 0 an integer, and let H
be a broom. Then there is a non-decreasing polynomial ¢ : N — N such that if G is a graph, and
X(G) > ¢(w(@)), and G contains no (1, q)-scattering, then G a o-nondominating copy of H.

Let us say a graph H is self-isolating if for every non-decreasing polynomial ¢ : N — N, there is
a polynomial ¢ : N — N with the following property: for every graph G with x(G) > ¢(w(G)), there
exists A C V(G) with x(A) > ¥ (w(A)), such that either

e G[A] is H-free, or
e G contains a copy H' of H such that V(H’) is disjoint from and anticomplete to A.

Which graphs are self-isolating? It is proved in [10] that stars are self-isolating, and we will show
in [2] that complete graphs and complete bipartite graphs are self-isolating. Let us observe that 2.2
implies that:

2.4 Every path is self-isolating.

Proof. Let J be a path, and let ¢ : N — N be a non-decreasing polynomial. Choose ¢ satisfying
2.2 with H = J and 0 = ¢ and ¢ = |J|, and let G be a graph with x(G) > ¢(w(G)). We claim that
either there is a 1-nondominating copy of J in G, or there exists A C V(G) with x(A) > ¥ (w(A4))
such that G[A] is J-free. By 2.2 we may assume that there is a (¢, ¢)-scattering (w, P,@) in G. If



G|P] is J-free, the claim holds, so we assume that there is a copy J' of J in G[P]. Thus |J'| = q.
Let r be the maximum over v € P of the chromatic number of the set of neighbours of v in Q.
The set of vertices in @ with a neighbour in V(J’) has chromatic number at most |J'|r = ¢r; and
X(Q) > ¥(w(Q)) +qr from the definition of a (1, ¢)-scattering. Consequently J’ is »-nondominating,
and hence J is self-isolating. This proves 2.4. |

3 Constructing a horn

Let d > 0 be an integer. If A, B C V(G) are disjoint, we say that A is d-dense to B if for every
vertex v € A, the set of non-neighbours of v in B has chromatic number at most d. Let us say a
(d, z)-horn in a graph G is a triple (v, A, B) where

e A, B are disjoint subsets of V(G), and v € V(G) \ (AU B);
e v is complete to A and anticomplete to B; and
e there isno Z C AU B with x(Z) < z such that A\ Z is d-dense to B\ Z.

We will need a (d, z)-horn (v, A, B) where z is at least some large function of the clique number
of AU B, and this section produces such a horn. We show in 3.5 that if G has sufficiently large
chromatic number (and, for convenience, all its proper induced subgraphs have smaller chromatic
number), then either G' contains both a (k, s)-broom and a o-nondominating k-vertex path, or G
contains a (d, z)-horn. To complete the proof of 2.2, it therefore suffices to handle graphs G that
contain (d, z)-horns, for suitably chosen values of d, z, and we will do so in the next section.

We will use the following well-known version of Ramsey’s theorem, proved (for instance) in [10]
(|G| denotes the number of vertices of G):

3.1 Let x > 2 and y > 1 be integers. For a graph G, if |G| > z¥, then G has either a clique of
cardinality x 4+ 1, or a stable set of cardinality y.

If v € V(G), we denote by N(v) or Ng(v) the set of all neighbours of v in G. First, we need a
result of Gyarfas [5] (we give the well-known proof, because it is so pretty.)

3.2 Let k > 1 and x > 0 be integers. Let G be a connected graph such that x(N(v)) < x for every
vertex v. Let H be a connected induced subgraph of G, and let v € V(G) \ V(H) with a neighbour
in V(H). If x(H) > (k — 2)z, there is an induced k-vertex path of G with one end v and all other
vertices in V(H).

Proof. We proceed by induction on k. The result is clear for k < 2, so we assume that k£ > 3. Let
J be obtained from H by deleting all vertices in N(v); thus x(J) > (k — 3)z > 0, and so there is
a component H' of J with chromatic number more than (k — 3)z. Let v € N(v) N V(H) with a
neighbour in V(H’). From the inductive hypothesis applied to v’, H', there is an induced (k — 1)-
vertex path of G with one end v' and all other vertices in V(H’). Appending v to this path proves
3.2. |



We deduce:

3.3 Let 0 : N — N be non-decreasing, let k,x > 1 be integers, and let G be a graph. If x(N(v)) < x
for every v € V(G), and x(G) > kx + o(w(G)), then there is a o-nondominating k-vertex induced
path P in G.

Proof. We may assume that G is connected; choose v € V(G). Since x(G\v) > kx —1 > (k —2)x,
3.2 (applied to v and to a component of G'\ v of maximum chromatic number) implies that G contains
a k-vertex induced path P. The set of vertices of G with a neighbour in V(P) has chromatic number
at most kx, and the result follows. This proves 3.3. |

The next result is also essentially due to Gyérfds (mentioned in [5]):

3.4 Let H be a (k,s)-broom, and suppose that G is H-free, and x(N(v)) < x for every v € V(Q).
Then
x(G) < max(w(G)*, (25 + 1)(z + 1) + (k — 2)z).

Proof. Suppose that x(G) > max(w(G)%, (2s + 1)(t + 1) + (k — 2)z). We may assume that G is
connected. If every vertex of G has degree less than w(G)?® then x(G) < w(G)?®, a contradiction, so
some vertex v has at least w(G)?* neighbours. By 3.1 applied to G[N(v)], there is a stable set S of
neighbours of v, with |S| = 2s. Let M be the set of all vertices of G that do not belong to SU{v} and
have a neighbour in SU{v}. Thus x(M) < (2s+1)z. Let H be a component of G\ (M USU{v}) of
maximum chromatic number; then x(H) > x(G)—(2s+1)(z+1) > (k—2)z. Choose u € MUSU{v}
with a neighbour in V(H). Since no vertex of S U {v} has a neighbour in V(H), from the definition
of M, it follows that u € M. By 3.2 applied to u, H, there is an induced k-vertex path P of G with
one end u and all other vertices in V/(H). Thus w is the only vertex of P with a neighbour in SU{v}.
If u is adjacent to at least s vertices in S, then the subgraph induced on V(P) and some s of these
neighbours is a (k, s)-broom, a contradiction. Thus there exists S” C S with |S’| = s, such that all
vertices in S’ are nonadjacent to u. If u is adjacent to v, the subgraph induced on V(P) U S U {v}
is a (k + 1, s)-broom, a contradiction. Thus u is adjacent to some w € S\ S’, and nonadjacent to v.
But then the subgraph induced on V(P) U S" U {v,w} is a (k + 2, s)-broom, a contradiction. This
proves 3.4. |

3.5 Let 0 : N — N be non-decreasing. Let k,s,d,z > 0 and ¢ > 2s be integers. Let G be a graph
such that

X(G) > w(G)%
X(G") < w(G") for every induced subgraph G’ of G with G' # G;
w(G)° > (w(G) = 1) + 2+ dw(G) + 2;
w(@)°>2s+1)(z+1)+ (k—2)2; and
w(G)¢ > kz + o(w(Q@)).

Then either

e G contains a (d,z)-horn; or



e G contains a (k,s)-broom, and a o-nondominating k-vertex path.
Proof. Suppose that x(N(v)) < z for every vertex v € V(G). By 3.4, and since
X(G) > w(G)° > max(w(G)?, (25 + 1)(z 4+ 1) + (k — 2)2)

(because ¢ > 2s), it follows that G contains a (k, s)-broom. By 3.3, since x(G) — kz > o(w(Q)),
there is a o-nondominating k-vertex induced path P in G, and so the second bullet holds.

Thus we assume that y (NN (v)) > z for some vertex v. Let A be the set of neighbours of v, and
B = V(G)\ (AU{v}). We claim that (v, A, B) is a (d,z)-horn. Suppose not; then there exists
Z C AU B with x(Z) < z, such that A\ Z is d-dense to B\ Z. Let P C A\ Z be a clique with
cardinality p = w(A\ Z). Then p > 1, since x(Z) < z < x(A); and p < w(G) since otherwise adding
v would give a clique of cardinality w(G)+1. For each u € P, the set of vertices in B\ Z nonadjacent
to w has chromatic number at most d, since A \ Z is d-dense to B\ Z; and so the set of vertices in
B with a non-neighbour in P has chromatic number at most pd < dw(G). The set of vertices in B
complete to P has clique number at most w(G) — p and so has chromatic number at most (w — p)©.
Hence x(B\ Z) < pd + (w(G) — p)¢, and so

X(G) <X(2) +x(A\ Z) + x(B\ Z) + 1 < 2+ p° + dw(G) + (w(G) —p)° + 1.
Since 1 <p <w(G) -1, p°+ (w(G) — p)¢ < (w(G) — 1)+ 1, and so
w(@)° < x(G) < 24 dw(G) + (w(G) — 1) + 2,

a contradiction. This proves 3.5. |

4 Making taller horns

In this section we prove 2.2, and hence complete the proofs of 2.1, 1.5, 1.4, and therefore 1.3. Because
of 3.5, we may assume that G contains a (d, z)-horn, for some suitable values of d, z; and now we
will show that, provided that G does not contain the proscribed scattering, we can use this horn
to make a “k-tall” (d’,z')-horn, which is a horn with a k-vertex path appended to its distinguished
vertex. From such a horn, it is easy to obtain a (k, s)-broom and a o-nondominating k-vertex path,
to satisfy 2.2. The main step is therefore to convert an ¢-tall horn to an (¢ + 1)-tall horn, and for
that we need the next result.

If d,z,w > 0 are integers, a graph G is (d, z,w)-unsplittable if there is no partition (A, B, Z) of
V(G) such that x(Z) < z, and x(A), x(B) > dw, and A is d-dense to B. We begin with:

4.1 Ifd,z > 0 are integers, every graph G admits a partition (Do, D1, ..., Dy) of its vertex set with
k < w(G) such that x(Do) < zw(G) and G[D;] is (d, z,w(G))-unsplittable for 1 <i < k.

Proof. We may assume that G is not (d,z,w(G))-unsplittable, and so it admits a partition
(Do, D1, D3) such that x(Dg) < z, x(D1),x(D2) > dw(G), and Dy is d-dense to Dy. Hence we
may choose k > 2 maximum such that there is a sequence Dg, D1, ..., Dy, of pairwise disjoint subsets
of V(G) with union V(G), and with the following properties:



e X(Dg) <(k—1)z
e D;is d-dense to D; for 1 <i < j <k; and
o X(D;) > dw(G) for 1 < i <k.

We claim:
(1) k <w(G).

Suppose that k& > w(G), and define d; € D; for 1 < i < w(G) + 1 inductively as follows. Let
1 <i <w(G)+ 1, and suppose that di,...,d;—1 have been defined, all pairwise adjacent. The set of
vertices in D; that have a non-neighbour among dy, ..., d;—; has chromatic number at most

(1 —1)d < dw(G) < x(D;),

and so some vertex d; € D; is adjacent to all of dy,...,d;—1. This completes the inductive defini-
tion. But then {dy, ..., d,)+1} is a clique of G, contradicting the definition of w((). This proves (1).

(2) For 1 <i <k, G[D;] is (d, z,w(G))-unsplittable.

Suppose that (A, B, Z) is a partition of D; such that x(Z) < z, and x(A),x(B) > dw(G), and
A is d-dense to B. Then the sequence

(D(] Uz, Dy,....,D;—1,A, B, D11, ... ,Dk)
contradicts the maximality of k. This proves (2).
From (1), (2), this proves 4.1. |

Let (v, A, B) be a (d, z)-horn in a graph G, and let £ > 1 be an integer. We say that (v, A, B)
is k-tall if there is an induced path R in G with k vertices, with one end v, such that V(R) \ {v}
is disjoint from and anticomplete to AU B. Thus every (d, z)-horn is 1-tall. We use 4.1 to prove a
result which is the heart of the paper:

4.2 Let G be a graph, let d,z,d',z,q > 0 be integers, and let 1 : N — N be non-decreasing,
satisfying:

(20 (w(G)) + (1 +q)2' + qd'w(G)) w(G)

(2 + dw(G)) w(G).

A\VARAVS

z
d
Let (v, A, B) be an {-tall (d, z)-horn in a graph G, for some £ > 1. Then either

e there exist P C A and Q C B such that (v, P,Q) is a (1, q)-scattering; or

e there exist v/ € A and disjoint subsets A', B' of B such that (v, A", B") is an (£ + 1)-tall
(d', 2")-horn.



Proof. Let p = ¢(w(G)). By 4.1, B admits a partition (Dy, Dy,...,Dy) with £ < w(G) such

that x(Do) < 2’w(G) and G[D;] is (d',2',w(G))-unsplittable for 1 < ¢ < k. For 1 < i < k, if

X(D;) < q(z' +dw(G)) +plet P, =0, and if x(D;) > q(z' + dw(G)) + p let P; be the set of vertices

a € A such that x(U) < 2’+d'w(G), where U is the set of neighbours of a in D;. Let P = PyU- - -UP.
Suppose that x(P;) > p, for some i € {1,...,k}. Consequently P; # (), and so

X(Ds) > q(2" + dw(G)) +p > q(2' + dw(G)) + ¥ (w(Dy));

and for each a € P;, x(U) < 2’ 4+ d'w(G), where U is the set of neighbours of a in D;. It follows that
(v, P;, D;) is a (v, q)-scattering and the first bullet of the theorem holds. Thus we may assume that
X(P;) <pfor1<i<k, and consequently x(P) < pw(G).

Let Z be the union of P, Dy, and all the sets D; with 1 <4 < k such that

X(D5) < q(2' + d'w(G)) + p.

Consequently
X(Z) < 2pw(G) + 7'w(G) + q(' + dw(G))w(G) < 2.

Since (v, A, B) is a (d, z)-horn, it follows that A\ Z is not d-dense to B\ Z; and so there exists
v € A\ P such that the set of vertices in B\ Z that are nonadjacent to v’ has chromatic number
more than d. Since B\ Z is the union of the sets D; with x(D;) > ¢(z' + d'w(QG)) + p, there exists
ie{l,...,k} with x(D;) > q(z' + dw(G)) + p such that the set B’ of vertices in D; nonadjacent to
v" has chromatlc number more than d/w(G). Since v’ ¢ P, the set A’ of neighbours of v’ in D; has
chromatic number more than d'w(G) + 2.

Let Z' C D; with x(Z') < 2/. Thus x(A'\ Z') > x(A") — x(Z') > dw(G); and x(B'\ Z') >
d/w(G) -7z > dw(G). Since G[D;] is (d', 2/, w(G))-unsplittable, it follows that A"\ Z’ is not d’-dense
to B\ Z'. This proves that (v, A, B') is a (d’, 2’)-horn.

Since (v, A, B) is (-tall, there is an {-vertex induced path R of G with one end v, such that
V(R) \ {v} is disjoint from and anticomplete to AU B. Then R’ = G[V(R) U {v'}] is an (£ + 1)-
vertex path, and since V(R) is anticomplete to B and hence to A’ U B, it follows that (v', A’, B) is
(¢ + 1)-tall, and so the second bullet of the theorem holds. This proves 4.2. |

Now we prove 2.2, which we restate:

4.3 Let k,s > 1 and g > 0 be integers, and let ¥,0 : N — N be non-decreasing polynomials. Then
there exists an integer ¢ > 0 such that if G is a graph with x(G) > w(G)¢, and G contains no
(1, q)-scattering, then G contains a (k,s)-broom and a o-nondominating k-vertez path.

Proof. Let (; : N — N be the polynomial defined by (x(x) = o(z) + z°, and let d;(z) = 0. For
i=k—1,...,1, define polynomials ¢;,d; : N — N by

Gi(x) = 20(x) + (1 + q)aCira () + g0 (2)

51(1’) = -TCi—&-l(x) + $25i+1($).
Choose an integer ¢ > 2s such that

¢ > (x—1)°+ Gi(z) + xdi(x) +2

a¢ = (25 + 1)(Cu(x) +1) + (k = 2)¢i(2), and

¢ > kG (x) + o(x)



for all integers x > 2. We claim that c satisfies 4.3. To see this, let G be a graph with x(G) > w(G)¢,
and suppose that G contains no (¢, q)-scattering. We must show that G contains a (k, s)-broom
and a o-nondominating k-vertex path. We show this by induction on |G|. If there is an induced
subgraph G’ of G with G’ # G and x(G') > w(G')¢, then G’ contains no (v, q)-scattering, and
from the inductive hypothesis, G’ contains a (k, s)-broom and a o-nondominating k-vertex path, and
hence so does G, as required. We may assume then that there is no such G’. Since x(G) > w(G)¢,
it follows that w(G) > 2, and so the five displayed inequalities of 3.5 hold with z,d replaced by
(1 (w(@)), 01(w(@)) respectively. From 3.5, we may assume that G contains a (1 (w(G)), (1(w(G)))-
horn, which is therefore 1-tall.

From 4.2, it follows that for i« = 2,...,k, G contains an i-tall (6;(w(G)), (;(w(G)))-horn, and so
contains a k-tall (0, z)-horn (v, A, B) say, where z = (;(w(G)). Since this horn is k-tall, there is a
k-vertex induced path R of G with one end v, such that V/(R)\ {v} is disjoint from and anticomplete
to AU B. From the definition of a (0, z)-horn, x(A),x(B) > z. Since x(4) > z > w(A4)*, 3.1
implies that there is a stable set S C A with |S| = s, and so G[V(R) U S] is a (k, s)-broom. Since
X(B) > z > o(w(B)), and V(R) is anticomplete to B, R is o-nondominating. This proves 4.3. |

Finally, we will go through the calculations of the proof of 4.3, to prove 1.2, which we restate:
4.4 If G is 2Py-free, then x(G) < w(G)°.

Proof. Let o be the polynomial where a(x) = z for all z. If G is 2Py-free, then G contains no
(ar, 4)-scattering, and contains no a-nondominating 4-vertex path; so we will follow the proof of 4.3,
taking k=q¢q=4,s=1,and Y =0 = a.

Thus, from the definitions, we have that for all x > 0:

Cu(z) =2z

04(z) =0

G3(z) = 1222

03(z) = 222

(o(x) = 22° + 602° + 8z

o) = 122° + 22

G1(2) = 22% +102® + 3002* + 882° + 82°
61(x) = 223 + 60z + 202° 4 225.

Then we must choose an integer ¢ > 2 such that

2¢ > (x —1)° + 2+ 222 + 1023 + 3022 + 14825 + 2825 + 227
z¢ > 3+ 1022 4 502 + 1500z + 4402° + 402°, and
z¢ > x + 822 4 4023 + 1200z* + 3522° + 3225,

for all integers z > 2. Thus we may take ¢ = 16. This proves 4.4. |
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