Polynomial bounds for chromatic number VI. Adding a four-vertex path

Maria Chudnovsky ${ }^{1}$
Princeton University, Princeton, NJ 08544
Alex Scott ${ }^{2}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{3}$
Princeton University, Princeton, NJ 08544
Sophie Spirkl ${ }^{4}$
University of Waterloo, Waterloo, Ontario N2L3G1, Canada

November 1, 2021; revised February 21, 2023

[^0]
Abstract

A hereditary class of graphs is χ-bounded if there is a function f such that every graph G in the class has chromatic number at most $f(\omega(G))$, where $\omega(G)$ is the clique number of G; and the class is polynomially χ-bounded if f can be taken to be a polynomial. The Gyárfás-Sumner conjecture asserts that, for every forest H, the class of H-free graphs (graphs with no induced copy of H) is χ-bounded. Let us say a forest H is good if it satisfies the stronger property that the class of H-free graphs is polynomially χ-bounded.

Very few forests are known to be good: for example, the goodness of the five-vertex path is open. Indeed, it is not even known that if every component of a forest H is good then H is good, and in particular, it was not known that the disjoint union of two four-vertex paths is good. Here we show the latter (with corresponding polynomial $\omega(G)^{16}$); and more generally, that if H is good then so is the disjoint union of H and a four-vertex path. We also prove an even more general result: if every component of H_{1} is good, and H_{2} is any path (or broom) then the class of graphs that are both H_{1}-free and H_{2}-free is polynomially χ-bounded.

1 Introduction

A class of graphs is hereditary if it is closed under taking induced subgraphs; a hereditary class is χ-bounded if there is a function f such that every graph G in the class has chromatic number at most $f(\omega(G))$, where $\omega(G)$ is the clique number of G; and the class is polynomially χ-bounded if f can be taken to be a polynomial. A graph is H-free if it has no induced subgraph isomorphic to H.

The Gyárfás-Sumner conjecture $[4,14]$ asserts:
1.1 Conjecture: For every forest H, the class of H-free graphs is χ-bounded.

There has been a great deal of recent progress on χ-bounded classes (see [9] for a survey), although the Gyárfás-Sumner conjecture remains open. In most cases, proofs of χ-boundedness give fairly fastgrowing functions, so it is interesting to ask: when do we get the stronger property of polynomial χ-boundedness?

A provocative conjecture of Louis Esperet [3] asserted that every χ-bounded hereditary class is polynomially χ-bounded, but this was recently disproved by Briański, Davies and Walczak [1]. So the question now is: which hereditary classes are polynomially χ-bounded? In particular, can 1.1 be strengthened to polynomial χ-boundedness? Let us say a graph H is good if the class of H-free graphs is polynomially χ-bounded. Perhaps every forest is good, but the only trees currently known to be good are those not containing the five-vertex path P_{5} [11]. It is not known whether P_{5} is good (although see [12] for the best current bounds for $H=P_{5}$; and see [13] for the case when H is a general tree of radius two).

In the case of χ-boundedness, it is not hard to show that a forest H satisfies the Gyárfás-Sumner conjecture if and only if all its components do. But it has not been shown that if every component of a forest H is good then H is good. Indeed, only some very restricted forests are known to be good $[8,10]$. One outstanding case was when H is the forest $2 P_{4}$, the disjoint union of two copies of the four-vertex path P_{4}; and this was particularly annoying since the P_{4}-free graphs are very well-understood and rather trivial. We will prove that $2 P_{4}$ is good, and indeed:
1.2 If G is $2 P_{4}$-free, then $\chi(G) \leq \omega(G)^{16}$.

More generally, we will prove the following:
1.3 If H is a good forest, then the disjoint union of H and P_{4} is also good.
1.3 is a consequence of the next result, about brooms. A (k, d)-broom is a tree obtained from a k-vertex path with one end v by adding d new vertices adjacent to v, and a broom is a tree that is a (k, d)-broom for some k, d. It is known that $(3, d)$-brooms are good [6,11$]$, but this is not known for larger brooms (all of which contain P_{5}). We will show the following, which implies 1.3:
1.4 Let H_{1} be a forest such that every component of H_{1} is good, and let H_{2} be either a broom, or the disjoint union of a good forest and a number of paths. Then there is a polynomial ϕ such that $\chi(G) \leq \phi(\omega(G))$ for every $\left\{H_{1}, H_{2}\right\}$-free graph G.
($\left\{H_{1}, H_{2}\right\}$-free means both H_{1}-free and H_{2}-free.) To deduce 1.3 from 1.4, let H be a good forest, let $H_{1}=H_{2}$ be the disjoint union of H and P_{4}, and apply 1.4.

Some notation and terminology: if G is a graph and $X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced on X, and we sometimes write $\chi(X)$ for $\chi(G[X])$ and $\omega(X)$ for $\omega(G[X])$. Two disjoint
subsets $A, B \subseteq V(G)$ are complete if every vertex in A is adjacent to every vertex of B, and anticomplete if there is no edge between A, B; and we say a vertex v is complete to B if $\{v\}$ is complete to B, and so on. A graph G contains a graph H if some induced subgraph of G is isomorphic to H, and such a subgraph is a copy of H. The cone of a graph H is obtained from H by adding a new vertex adjacent to every vertex of H.

Let us say a graph is 0 -bad if it is good; and a graph J is β-bad, where $\beta \geq 1$ is an integer, if either J is the disjoint union of two $(\beta-1)$-bad graphs, or J is the cone of a $(\beta-1)$-bad graph, or J is $(\beta-1)$-bad. In general, cones are not forests, so they are not good. Nevertheless, we will prove the following strengthening of 1.4:
1.5 Let $\beta \geq 0$, let H_{1} be a β-bad graph, and let H_{2} be either a broom, or the disjoint union of a good forest and a number of paths. Then there is a polynomial ϕ such that $\chi(G) \leq \phi(\omega)(G))$ for every $\left\{H_{1}, H_{2}\right\}$-free graph G.

This implies several results that were previously known. For instance, in [7] it is proved that:

1.6 Let H_{1} be either

- the disjoint union of a complete graph and a good graph, or
- the disjoint union of some complete graphs, or
- the cone of the disjoint union of some complete graphs.

Let H_{2} be a path. Then there is a polynomial ϕ such that $\chi(G) \leq \phi(\omega(G))$ for every $\left\{H_{1}, H_{2}\right\}$-free graph G.

Some other results of $[7,8]$ are also special cases of 1.5 .

2 Finding a disjoint union

Suppose that H is the disjoint union of good forests H_{1}, H_{2}. Choose c_{1}, c_{2} such that for $i=1,2$, every H_{i}-free graph G satisfies $\chi(G) \leq \omega(G)^{c_{i}}$. Thus, if G is H-free, we know that there do not exist disjoint, anticomplete subsets $P, Q \subseteq V(G)$ with $\chi(P)>\omega(P)^{c_{1}}$ and $\chi(Q)>\omega(Q)^{c_{2}}$; because then $G[P]$ is not H_{1}-free, and $G[Q]$ is not H_{2}-free, and the union of a copy of H_{1} in $G[P]$ and a copy of H_{2} in $G[Q]$ gives a copy of H, which is impossible.

But we do not really need P, Q to be anticomplete. It is enough that $\chi(P)>\omega(P)^{c_{1}}$, and $\chi(Q)>\left|H_{1}\right| r+\omega(Q)^{c_{2}}$, where r denotes the maximum over $v \in P$ of the chromatic number of the set of neighbours of v in Q; because then if we choose a copy H_{1}^{\prime} of H in $G[P]$, the chromatic number of the set of vertices in Q with no neighbours in $V\left(H_{1}^{\prime}\right)$ is at least $\chi(Q)-\left|H_{1}\right| r>\omega(Q)^{c_{2}}$, and so this set contains a copy of H_{2}, a contradiction. In the proof to come later in the paper, this is the only way we will ever use that G is H-free; and so we might as well prove a stronger theorem, replacing the hypothesis that G is H-free with the weaker hypothesis that there is no suitable pair (P, Q) in G.

Thus we will be excluding pairs of disjoint sets P, Q where $\chi(P)$ is at least some power of $\omega(P)$, and for each vertex in P, its set of neighbours in Q has chromatic number at most some r that is small compared with the chromatic number of Q.

In our proof, it happens that when we find a suitable pair (P, Q), it comes equipped with an extra vertex v that is complete to P and anticomplete to Q; so we might as well prove that there is a "suitable triple" (v, P, Q). Such a thing will also allow us to handle cones.

We denote the set of nonnegative integers by \mathbb{N}, and say a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ is non-decreasing if $\phi(x) \leq \phi\left(x^{\prime}\right)$ for all $x, x^{\prime} \in \mathbb{N}$ with $x \leq x^{\prime}$.

Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, and let $q \geq 0$ be an integer. We say a (ψ, q)-scattering in a graph G is a triple (v, P, Q) where:

- P, Q are disjoint subsets of $V(G)$, and $v \in V(G) \backslash(P \cup Q)$;
- $\{v\}$ is complete to P and anticomplete to Q;
- $\chi(P)>\psi(\omega(P))$; and
- $\chi(Q)>q r+\psi(\omega(Q))$, where r is the maximum, over $u \in P$, of the chromatic number of the set of neighbours of u in Q.

Thus we will replace the hypothesis in 1.5 that G is H_{1}-free and H_{1} is β-bad, with the hypothesis that G contains no (ψ, q)-scattering, for appropriate ψ, q. We will show:
2.1 Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial and let $q \in \mathbb{N}$. Let H_{2} be either a broom, or the disjoint union of a good forest and a number of paths. Then there is a polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that if $\chi(G)>\phi(\omega(G))$ and G contains no (ψ, q)-scattering, then G contains H_{2}.

Proof of 1.5, assuming 2.1. We proceed by induction on β. Let H_{1} be β-bad, and let H_{2} be either a broom, or the disjoint union of a good forest and a number of paths.

If H_{1} is good, the result is true, so we assume that H_{1} is not good, and therefore $\beta \geq 1$. Thus either H_{1} is the disjoint union of two $(\beta-1)$-bad graphs J_{1}, J_{2}, or the cone of a $(\beta-1)$-bad graph J_{1} (and in this case let J_{2} be the null graph). From the inductive hypothesis on β, for $i=1,2$ there is a non-decreasing polynomial ϕ_{i} such that if G is H_{2}-free and J_{i}-free then $\chi(G) \leq \phi_{i}(\omega(G))$, and by replacing ϕ_{1}, ϕ_{2} by $\phi_{1}+\phi_{2}$ we may assume that $\phi_{1}=\phi_{2}$.

Let $q=\left|J_{1}\right|$. By 2.1, there is a non-decreasing polynomial ϕ such that if $\chi(G)>\phi(\omega(G))$ and contains no $\left(\phi_{1}, q\right)$-scattering, then G contains H_{2}. We claim that ϕ satisfies 1.5.

Let G be $\left\{H_{1}, H_{2}\right\}$-free, and suppose that $\chi(G)>\phi(\omega(G))$. Since G is H_{2}-free, it follows from the choice of ϕ that G contains a $\left(\phi_{1}, q\right)$-scattering (w, P, Q) say. Let r be the maximum, over $v \in P$, of the chromatic number of the set of neighbours of v in Q. Since $\chi(P)>\phi_{1}(\omega(P))$, there is an induced subgraph of $G[P]$ isomorphic to J_{1}, say J_{1}^{\prime}. Hence G contains the cone of J_{1}, so we may assume that H_{1} is the disjoint union of J_{1}, J_{2}. The set of vertices in Q with a neighbour in $V\left(J_{1}^{\prime}\right)$ has chromatic number at most $r\left|J_{1}\right|$, and since

$$
\chi(Q)>\left|J_{1}\right| r+\phi_{2}(\omega(Q))
$$

it follows that the set (say Q^{\prime}) of vertices in Q that are anticomplete to J_{1}^{\prime} has chromatic number more than $\phi_{2}(\omega(Q))$. From the choice of ϕ_{2}, and since G is H_{2}-free, it follows that $G\left[Q^{\prime}\right]$ is not J_{2}-free; but then, combining this copy of J_{2} with J_{1}^{\prime}, we find a copy of H_{1} in G, a contradiction. This proves 1.5.

Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function. We say a subgraph P of a graph G is σ nondominating if there is a set $X \subseteq V(G) \backslash V(P)$, anticomplete to $V(P)$, with $\chi(X)>\sigma(\omega(X))$. Next we will show that to prove 2.1 it suffices to prove the following:
2.2 Let $\psi, \sigma: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing polynomials, and let $q \geq 0$ an integer. Let H be a broom, and let J be a path. Then there is a non-decreasing polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that if G is a graph, and $\chi(G)>\phi(\omega(G))$, and G contains no (ψ, q)-scattering, then G contains H and a σ-nondominating copy of J.

Proof of 2.1, assuming 2.2. Let ψ, q, H_{2} be as in 2.1. If H_{2} is a broom, then 2.1 follows immediately from 2.2 (setting $H=H_{2}$ and setting J to be some path, for instance the one-vertex path). Thus we assume that H_{2} is the disjoint union of a good forest J_{1} and a forest J_{2} that is a disjoint union of paths. Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function such that every J_{1}-free graph G has chromatic number at most $\sigma(\omega(G))$; and choose a path J such that J_{2} is an induced subgraph of J. By 2.2 (setting H to be some broom, for instance with one vertex) there is a non-decreasing polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that if $\chi(G)>\phi(\omega(G))$ and G contains no (ψ, q)-scattering, then G contains a σ-nondominating copy J^{\prime} of J.

We claim that ϕ satisfies 2.1. Thus we must show that if G is H_{2}-free and contains no (ψ, q) scattering then $\chi(G) \leq \phi(\omega(G))$. Suppose not. By the choice of f, and since G contains no (ψ, q) scattering, it follows that G contains a copy J^{\prime} of J, such that there is a set $X \subseteq V(G)$ with $\chi(X)>\sigma(\omega(X))$ anticomplete to $V\left(J_{1}^{\prime}\right)$. But since $\chi(X)>\sigma(\omega(X))$, it follows that $G[X]$ contains J_{1}, and since J contains J_{2}, and $V(J)$ is anticomplete to X, it follows that G contains H_{2}. This proves 2.1.

We remark that there is an appealing possible strengthening of 2.2 , that we could not prove:
2.3 Conjecture: Let $\psi, \sigma: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing polynomials, let $q \geq 0$ an integer, and let H be a broom. Then there is a non-decreasing polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that if G is a graph, and $\chi(G)>\phi(\omega(G))$, and G contains no (ψ, q)-scattering, then G a σ-nondominating copy of H.

Let us say a graph H is self-isolating if for every non-decreasing polynomial $\psi: \mathbb{N} \rightarrow \mathbb{N}$, there is a polynomial $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property: for every graph G with $\chi(G)>\phi(\omega(G))$, there exists $A \subseteq V(G)$ with $\chi(A)>\psi(\omega(A))$, such that either

- $G[A]$ is H-free, or
- G contains a copy H^{\prime} of H such that $V\left(H^{\prime}\right)$ is disjoint from and anticomplete to A.

Which graphs are self-isolating? It is proved in [10] that stars are self-isolating, and we will show in [2] that complete graphs and complete bipartite graphs are self-isolating. Let us observe that 2.2 implies that:

2.4 Every path is self-isolating.

Proof. Let J be a path, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing polynomial. Choose ϕ satisfying 2.2 with $H=J$ and $\sigma=\psi$ and $q=|J|$, and let G be a graph with $\chi(G)>\phi(\omega(G))$. We claim that either there is a ψ-nondominating copy of J in G, or there exists $A \subseteq V(G)$ with $\chi(A)>\psi(\omega(A))$ such that $G[A]$ is J-free. By 2.2 we may assume that there is a (ψ, q)-scattering (w, P, Q) in G. If
$G[P]$ is J-free, the claim holds, so we assume that there is a copy J^{\prime} of J in $G[P]$. Thus $\left|J^{\prime}\right|=q$. Let r be the maximum over $v \in P$ of the chromatic number of the set of neighbours of v in Q. The set of vertices in Q with a neighbour in $V\left(J^{\prime}\right)$ has chromatic number at most $\left|J^{\prime}\right| r=q r$; and $\chi(Q)>\psi(\omega(Q))+q r$ from the definition of a (ψ, q)-scattering. Consequently J^{\prime} is ψ-nondominating, and hence J is self-isolating. This proves 2.4.

3 Constructing a horn

Let $d \geq 0$ be an integer. If $A, B \subseteq V(G)$ are disjoint, we say that A is d-dense to B if for every vertex $v \in A$, the set of non-neighbours of v in B has chromatic number at most d. Let us say a (d, z)-horn in a graph G is a triple (v, A, B) where

- A, B are disjoint subsets of $V(G)$, and $v \in V(G) \backslash(A \cup B)$;
- v is complete to A and anticomplete to B; and
- there is no $Z \subseteq A \cup B$ with $\chi(Z) \leq z$ such that $A \backslash Z$ is d-dense to $B \backslash Z$.

We will need a (d, z)-horn (v, A, B) where z is at least some large function of the clique number of $A \cup B$, and this section produces such a horn. We show in 3.5 that if G has sufficiently large chromatic number (and, for convenience, all its proper induced subgraphs have smaller chromatic number), then either G contains both a (k, s)-broom and a σ-nondominating k-vertex path, or G contains a (d, z)-horn. To complete the proof of 2.2 , it therefore suffices to handle graphs G that contain (d, z)-horns, for suitably chosen values of d, z, and we will do so in the next section.

We will use the following well-known version of Ramsey's theorem, proved (for instance) in [10] $(|G|$ denotes the number of vertices of $G)$:
3.1 Let $x \geq 2$ and $y \geq 1$ be integers. For a graph G, if $|G| \geq x^{y}$, then G has either a clique of cardinality $x+1$, or a stable set of cardinality y.

If $v \in V(G)$, we denote by $N(v)$ or $N_{G}(v)$ the set of all neighbours of v in G. First, we need a result of Gyárfás [5] (we give the well-known proof, because it is so pretty.)
3.2 Let $k \geq 1$ and $x \geq 0$ be integers. Let G be a connected graph such that $\chi(N(v)) \leq x$ for every vertex v. Let H be a connected induced subgraph of G, and let $v \in V(G) \backslash V(H)$ with a neighbour in $V(H)$. If $\chi(H)>(k-2) x$, there is an induced k-vertex path of G with one end v and all other vertices in $V(H)$.

Proof. We proceed by induction on k. The result is clear for $k \leq 2$, so we assume that $k \geq 3$. Let J be obtained from H by deleting all vertices in $N(v)$; thus $\chi(J)>(k-3) x>0$, and so there is a component H^{\prime} of J with chromatic number more than $(k-3) x$. Let $v^{\prime} \in N(v) \cap V(H)$ with a neighbour in $V\left(H^{\prime}\right)$. From the inductive hypothesis applied to v^{\prime}, H^{\prime}, there is an induced $(k-1)$ vertex path of G with one end v^{\prime} and all other vertices in $V\left(H^{\prime}\right)$. Appending v to this path proves 3.2.

We deduce:
3.3 Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, let $k, x \geq 1$ be integers, and let G be a graph. If $\chi(N(v)) \leq x$ for every $v \in V(G)$, and $\chi(G)>k x+\sigma(\omega(G))$, then there is a σ-nondominating k-vertex induced path P in G.

Proof. We may assume that G is connected; choose $v \in V(G)$. Since $\chi(G \backslash v)>k x-1 \geq(k-2) x$, 3.2 (applied to v and to a component of $G \backslash v$ of maximum chromatic number) implies that G contains a k-vertex induced path P. The set of vertices of G with a neighbour in $V(P)$ has chromatic number at most $k x$, and the result follows. This proves 3.3.

The next result is also essentially due to Gyárfás (mentioned in [5]):
3.4 Let H be a (k, s)-broom, and suppose that G is H-free, and $\chi(N(v)) \leq x$ for every $v \in V(G)$. Then

$$
\chi(G) \leq \max \left(\omega(G)^{2 s},(2 s+1)(x+1)+(k-2) x\right) .
$$

Proof. Suppose that $\chi(G)>\max \left(\omega(G)^{2 s},(2 s+1)(t+1)+(k-2) x\right)$. We may assume that G is connected. If every vertex of G has degree less than $\omega(G)^{2 s}$ then $\chi(G) \leq \omega(G)^{2 s}$, a contradiction, so some vertex v has at least $\omega(G)^{2 s}$ neighbours. By 3.1 applied to $G[N(v)]$, there is a stable set S of neighbours of v, with $|S|=2 s$. Let M be the set of all vertices of G that do not belong to $S \cup\{v\}$ and have a neighbour in $S \cup\{v\}$. Thus $\chi(M) \leq(2 s+1) x$. Let H be a component of $G \backslash(M \cup S \cup\{v\})$ of maximum chromatic number; then $\chi(H) \geq \chi(G)-(2 s+1)(x+1)>(k-2) x$. Choose $u \in M \cup S \cup\{v\}$ with a neighbour in $V(H)$. Since no vertex of $S \cup\{v\}$ has a neighbour in $V(H)$, from the definition of M, it follows that $u \in M$. By 3.2 applied to u, H, there is an induced k-vertex path P of G with one end u and all other vertices in $V(H)$. Thus u is the only vertex of P with a neighbour in $S \cup\{v\}$. If u is adjacent to at least s vertices in S, then the subgraph induced on $V(P)$ and some s of these neighbours is a (k, s)-broom, a contradiction. Thus there exists $S^{\prime} \subseteq S$ with $\left|S^{\prime}\right|=s$, such that all vertices in S^{\prime} are nonadjacent to u. If u is adjacent to v, the subgraph induced on $V(P) \cup S \cup\{v\}$ is a ($k+1, s$)-broom, a contradiction. Thus u is adjacent to some $w \in S \backslash S^{\prime}$, and nonadjacent to v. But then the subgraph induced on $V(P) \cup S^{\prime} \cup\{v, w\}$ is a $(k+2, s)$-broom, a contradiction. This proves 3.4.
3.5 Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing. Let $k, s, d, z \geq 0$ and $c \geq 2 s$ be integers. Let G be a graph such that

$$
\begin{aligned}
\chi(G) & >\omega(G)^{c} ; \\
\chi\left(G^{\prime}\right) & \leq \omega\left(G^{\prime}\right)^{c} \text { for every induced subgraph } G^{\prime} \text { of } G \text { with } G^{\prime} \neq G ; \\
\omega(G)^{c} & \geq(\omega(G)-1)^{c}+z+d \omega(G)+2 ; \\
\omega(G)^{c} & \geq(2 s+1)(z+1)+(k-2) z ; \text { and } \\
\omega(G)^{c} & \geq k z+\sigma(\omega(G)) .
\end{aligned}
$$

Then either

- G contains a (d,z)-horn; or
- G contains a (k, s)-broom, and a σ-nondominating k-vertex path.

Proof. Suppose that $\chi(N(v)) \leq z$ for every vertex $v \in V(G)$. By 3.4, and since

$$
\chi(G)>\omega(G)^{c} \geq \max \left(\omega(G)^{2 s},(2 s+1)(z+1)+(k-2) z\right)
$$

(because $c \geq 2 s$), it follows that G contains a (k, s)-broom. By 3.3, since $\chi(G)-k z>\sigma(\omega(G))$, there is a σ-nondominating k-vertex induced path P in G, and so the second bullet holds.

Thus we assume that $\chi(N(v))>z$ for some vertex v. Let A be the set of neighbours of v, and $B=V(G) \backslash(A \cup\{v\})$. We claim that (v, A, B) is a (d, z)-horn. Suppose not; then there exists $Z \subseteq A \cup B$ with $\chi(Z) \leq z$, such that $A \backslash Z$ is d-dense to $B \backslash Z$. Let $P \subseteq A \backslash Z$ be a clique with cardinality $p=\omega(A \backslash Z)$. Then $p \geq 1$, since $\chi(Z) \leq z<\chi(A)$; and $p<\omega(G)$ since otherwise adding v would give a clique of cardinality $\omega(G)+1$. For each $u \in P$, the set of vertices in $B \backslash Z$ nonadjacent to u has chromatic number at most d, since $A \backslash Z$ is d-dense to $B \backslash Z$; and so the set of vertices in B with a non-neighbour in P has chromatic number at most $p d \leq d \omega(G)$. The set of vertices in B complete to P has clique number at most $\omega(G)-p$ and so has chromatic number at most $(\omega-p)^{c}$. Hence $\chi(B \backslash Z) \leq p d+(\omega(G)-p)^{c}$, and so

$$
\chi(G) \leq \chi(Z)+\chi(A \backslash Z)+\chi(B \backslash Z)+1 \leq z+p^{c}+d \omega(G)+(\omega(G)-p)^{c}+1 .
$$

Since $1 \leq p \leq \omega(G)-1, p^{c}+(\omega(G)-p)^{c} \leq(\omega(G)-1)^{c}+1$, and so

$$
\omega(G)^{c}<\chi(G) \leq z+d \omega(G)+(\omega(G)-1)^{c}+2,
$$

a contradiction. This proves 3.5.

4 Making taller horns

In this section we prove 2.2 , and hence complete the proofs of 2.1, 1.5, 1.4, and therefore 1.3. Because of 3.5 , we may assume that G contains a (d, z)-horn, for some suitable values of d, z; and now we will show that, provided that G does not contain the proscribed scattering, we can use this horn to make a " k-tall" $\left(d^{\prime}, z^{\prime}\right)$-horn, which is a horn with a k-vertex path appended to its distinguished vertex. From such a horn, it is easy to obtain a (k, s)-broom and a σ-nondominating k-vertex path, to satisfy 2.2 . The main step is therefore to convert an ℓ-tall horn to an $(\ell+1)$-tall horn, and for that we need the next result.

If $d, z, \omega \geq 0$ are integers, a graph G is (d, z, ω)-unsplittable if there is no partition (A, B, Z) of $V(G)$ such that $\chi(Z) \leq z$, and $\chi(A), \chi(B)>d \omega$, and A is d-dense to B. We begin with:
4.1 If $d, z \geq 0$ are integers, every graph G admits a partition $\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ of its vertex set with $k \leq \omega(G)$ such that $\chi\left(D_{0}\right) \leq z \omega(G)$ and $G\left[D_{i}\right]$ is $(d, z, \omega(G))$-unsplittable for $1 \leq i \leq k$.

Proof. We may assume that G is not $(d, z, \omega(G))$-unsplittable, and so it admits a partition $\left(D_{0}, D_{1}, D_{2}\right)$ such that $\chi\left(D_{0}\right) \leq z, \chi\left(D_{1}\right), \chi\left(D_{2}\right)>d \omega(G)$, and D_{1} is d-dense to D_{2}. Hence we may choose $k \geq 2$ maximum such that there is a sequence $D_{0}, D_{1}, \ldots, D_{k}$ of pairwise disjoint subsets of $V(G)$ with union $V(G)$, and with the following properties:

- $\chi\left(D_{0}\right) \leq(k-1) z$
- D_{i} is d-dense to D_{j} for $1 \leq i<j \leq k$; and
- $\chi\left(D_{i}\right)>d \omega(G)$ for $1 \leq i \leq k$.

We claim:
(1) $k \leq \omega(G)$.

Suppose that $k>\omega(G)$, and define $d_{i} \in D_{i}$ for $1 \leq i \leq \omega(G)+1$ inductively as follows. Let $1 \leq i \leq \omega(G)+1$, and suppose that d_{1}, \ldots, d_{i-1} have been defined, all pairwise adjacent. The set of vertices in D_{i} that have a non-neighbour among d_{1}, \ldots, d_{i-1} has chromatic number at most

$$
(i-1) d \leq d \omega(G)<\chi\left(D_{i}\right),
$$

and so some vertex $d_{i} \in D_{i}$ is adjacent to all of d_{1}, \ldots, d_{i-1}. This completes the inductive definition. But then $\left\{d_{1}, \ldots, d_{\omega(G)+1}\right\}$ is a clique of G, contradicting the definition of $\omega(G)$. This proves (1).
(2) For $1 \leq i \leq k, G\left[D_{i}\right]$ is $(d, z, \omega(G))$-unsplittable.

Suppose that (A, B, Z) is a partition of D_{i} such that $\chi(Z) \leq z$, and $\chi(A), \chi(B)>d \omega(G)$, and A is d-dense to B. Then the sequence

$$
\left(D_{0} \cup Z, D_{1}, \ldots, D_{i-1}, A, B, D_{i+1}, \ldots, D_{k}\right)
$$

contradicts the maximality of k. This proves (2).
From (1), (2), this proves 4.1.
Let (v, A, B) be a (d, z)-horn in a graph G, and let $k \geq 1$ be an integer. We say that (v, A, B) is k-tall if there is an induced path R in G with k vertices, with one end v, such that $V(R) \backslash\{v\}$ is disjoint from and anticomplete to $A \cup B$. Thus every (d, z)-horn is 1 -tall. We use 4.1 to prove a result which is the heart of the paper:
4.2 Let G be a graph, let $d, z, d^{\prime}, z^{\prime}, q \geq 0$ be integers, and let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, satisfying:

$$
\begin{aligned}
& z \geq\left(2 \psi(\omega(G))+(1+q) z^{\prime}+q d^{\prime} \omega(G)\right) \omega(G) \\
& d \geq\left(z^{\prime}+d^{\prime} \omega(G)\right) \omega(G) .
\end{aligned}
$$

Let (v, A, B) be an ℓ-tall (d, z)-horn in a graph G, for some $\ell \geq 1$. Then either

- there exist $P \subseteq A$ and $Q \subseteq B$ such that (v, P, Q) is a (ψ, q)-scattering; or
- there exist $v^{\prime} \in A$ and disjoint subsets A^{\prime}, B^{\prime} of B such that $\left(v^{\prime}, A^{\prime}, B^{\prime}\right)$ is an $(\ell+1)$-tall (d^{\prime}, z^{\prime})-horn.

Proof. Let $p=\psi(\omega(G))$. By 4.1, B admits a partition $\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ with $k \leq \omega(G)$ such that $\chi\left(D_{0}\right) \leq z^{\prime} \omega(G)$ and $G\left[D_{i}\right]$ is $\left(d^{\prime}, z^{\prime}, \omega(G)\right)$-unsplittable for $1 \leq i \leq k$. For $1 \leq i \leq k$, if $\chi\left(D_{i}\right) \leq q\left(z^{\prime}+d^{\prime} \omega(G)\right)+p$ let $P_{i}=\emptyset$, and if $\chi\left(D_{i}\right)>q\left(z^{\prime}+d^{\prime} \omega(G)\right)+p$ let P_{i} be the set of vertices $a \in A$ such that $\chi(U) \leq z^{\prime}+d^{\prime} \omega(G)$, where U is the set of neighbours of a in D_{i}. Let $P=P_{1} \cup \cdots \cup P_{k}$.

Suppose that $\chi\left(P_{i}\right)>p$, for some $i \in\{1, \ldots, k\}$. Consequently $P_{i} \neq \emptyset$, and so

$$
\chi\left(D_{i}\right)>q\left(z^{\prime}+d^{\prime} \omega(G)\right)+p \geq q\left(z^{\prime}+d^{\prime} \omega(G)\right)+\psi\left(\omega\left(D_{i}\right)\right)
$$

and for each $a \in P_{i}, \chi(U) \leq z^{\prime}+d^{\prime} \omega(G)$, where U is the set of neighbours of a in D_{i}. It follows that $\left(v, P_{i}, D_{i}\right)$ is a (ψ, q)-scattering and the first bullet of the theorem holds. Thus we may assume that $\chi\left(P_{i}\right) \leq p$ for $1 \leq i \leq k$, and consequently $\chi(P) \leq p \omega(G)$.

Let Z be the union of P, D_{0}, and all the sets D_{i} with $1 \leq i \leq k$ such that

$$
\chi\left(D_{i}\right) \leq q\left(z^{\prime}+d^{\prime} \omega(G)\right)+p
$$

Consequently

$$
\chi(Z) \leq 2 p \omega(G)+z^{\prime} \omega(G)+q\left(z^{\prime}+d^{\prime} \omega(G)\right) \omega(G) \leq z
$$

Since (v, A, B) is a (d, z)-horn, it follows that $A \backslash Z$ is not d-dense to $B \backslash Z$; and so there exists $v^{\prime} \in A \backslash P$ such that the set of vertices in $B \backslash Z$ that are nonadjacent to v^{\prime} has chromatic number more than d. Since $B \backslash Z$ is the union of the sets D_{i} with $\chi\left(D_{i}\right)>q\left(z^{\prime}+d^{\prime} \omega(G)\right)+p$, there exists $i \in\{1, \ldots, k\}$ with $\chi\left(D_{i}\right) \geq q\left(z^{\prime}+d^{\prime} \omega(G)\right)+p$ such that the set B^{\prime} of vertices in D_{i} nonadjacent to v^{\prime} has chromatic number more than $d / \omega(G)$. Since $v^{\prime} \notin P$, the set A^{\prime} of neighbours of v^{\prime} in D_{i} has chromatic number more than $d^{\prime} \omega(G)+z^{\prime}$.

Let $Z^{\prime} \subseteq D_{i}$ with $\chi\left(Z^{\prime}\right) \leq z^{\prime}$. Thus $\chi\left(A^{\prime} \backslash Z^{\prime}\right) \geq \chi\left(A^{\prime}\right)-\chi\left(Z^{\prime}\right)>d^{\prime} \omega(G)$; and $\chi\left(B^{\prime} \backslash Z^{\prime}\right)>$ $d / \omega(G)-z^{\prime} \geq d^{\prime} \omega(G)$. Since $G\left[D_{i}\right]$ is $\left(d^{\prime}, z^{\prime}, \omega(G)\right)$-unsplittable, it follows that $A^{\prime} \backslash Z^{\prime}$ is not d^{\prime}-dense to $B^{\prime} \backslash Z^{\prime}$. This proves that $\left(v^{\prime}, A^{\prime}, B^{\prime}\right)$ is a $\left(d^{\prime}, z^{\prime}\right)$-horn.

Since (v, A, B) is ℓ-tall, there is an ℓ-vertex induced path R of G with one end v, such that $V(R) \backslash\{v\}$ is disjoint from and anticomplete to $A \cup B$. Then $R^{\prime}=G\left[V(R) \cup\left\{v^{\prime}\right\}\right]$ is an $(\ell+1)$ vertex path, and since $V(R)$ is anticomplete to B and hence to $A^{\prime} \cup B^{\prime}$, it follows that $\left(v^{\prime}, A^{\prime}, B^{\prime}\right)$ is $(\ell+1)$-tall, and so the second bullet of the theorem holds. This proves 4.2.

Now we prove 2.2 , which we restate:
4.3 Let $k, s \geq 1$ and $q \geq 0$ be integers, and let $\psi, \sigma: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing polynomials. Then there exists an integer $c \geq 0$ such that if G is a graph with $\chi(G)>\omega(G)^{c}$, and G contains no (ψ, q)-scattering, then G contains a (k, s)-broom and a σ-nondominating k-vertex path.

Proof. Let $\zeta_{k}: \mathbb{N} \rightarrow \mathbb{N}$ be the polynomial defined by $\zeta_{k}(x)=\sigma(x)+x^{s}$, and let $\delta_{k}(x)=0$. For $i=k-1, \ldots, 1$, define polynomials $\zeta_{i}, \delta_{i}: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\begin{aligned}
\zeta_{i}(x) & =2 x \psi(x)+(1+q) x \zeta_{i+1}(x)+q x^{2} \delta_{i+1}(x) \\
\delta_{i}(x) & =x \zeta_{i+1}(x)+x^{2} \delta_{i+1}(x)
\end{aligned}
$$

Choose an integer $c \geq 2 s$ such that

$$
\begin{aligned}
& x^{c} \geq(x-1)^{c}+\zeta_{1}(x)+x \delta_{1}(x)+2 \\
& x^{c} \geq(2 s+1)\left(\zeta_{1}(x)+1\right)+(k-2) \zeta_{1}(x), \text { and } \\
& x^{c} \geq k \zeta_{1}(x)+\sigma(x)
\end{aligned}
$$

for all integers $x \geq 2$. We claim that c satisfies 4.3. To see this, let G be a graph with $\chi(G)>\omega(G)^{c}$, and suppose that G contains no (ψ, q)-scattering. We must show that G contains a (k, s)-broom and a σ-nondominating k-vertex path. We show this by induction on $|G|$. If there is an induced subgraph G^{\prime} of G with $G^{\prime} \neq G$ and $\chi\left(G^{\prime}\right)>\omega\left(G^{\prime}\right)^{c}$, then G^{\prime} contains no (ψ, q)-scattering, and from the inductive hypothesis, G^{\prime} contains a (k, s)-broom and a σ-nondominating k-vertex path, and hence so does G, as required. We may assume then that there is no such G^{\prime}. Since $\chi(G)>\omega(G)^{c}$, it follows that $\omega(G) \geq 2$, and so the five displayed inequalities of 3.5 hold with z, d replaced by $\zeta_{1}(\omega(G)), \delta_{1}(\omega(G))$ respectively. From 3.5 , we may assume that G contains a $\left(\delta_{1}(\omega(G)), \zeta_{1}(\omega(G))\right)$ horn, which is therefore 1-tall.

From 4.2, it follows that for $i=2, \ldots, k, G$ contains an i-tall $\left(\delta_{i}(\omega(G)), \zeta_{i}(\omega(G))\right)$-horn, and so contains a k-tall $(0, z)$-horn (v, A, B) say, where $z=\zeta_{k}(\omega(G))$. Since this horn is k-tall, there is a k-vertex induced path R of G with one end v, such that $V(R) \backslash\{v\}$ is disjoint from and anticomplete to $A \cup B$. From the definition of a $(0, z)$-horn, $\chi(A), \chi(B)>z$. Since $\chi(A)>z \geq \omega(A)^{s}, 3.1$ implies that there is a stable set $S \subseteq A$ with $|S|=s$, and so $G[V(R) \cup S]$ is a (k, s)-broom. Since $\chi(B)>z>\sigma(\omega(B))$, and $V(R)$ is anticomplete to B, R is σ-nondominating. This proves 4.3.

Finally, we will go through the calculations of the proof of 4.3 , to prove 1.2 , which we restate:

4.4 If G is $2 P_{4}$-free, then $\chi(G) \leq \omega(G)^{16}$.

Proof. Let α be the polynomial where $\alpha(x)=x$ for all x. If G is $2 P_{4}$-free, then G contains no $(\alpha, 4)$-scattering, and contains no α-nondominating 4 -vertex path; so we will follow the proof of 4.3, taking $k=q=4, s=1$, and $\psi=\sigma=\alpha$.

Thus, from the definitions, we have that for all $x \geq 0$:

$$
\begin{aligned}
& \zeta_{4}(x)=2 x \\
& \delta_{4}(x)=0 \\
& \zeta_{3}(x)=12 x^{2} \\
& \delta_{3}(x)=2 x^{2} \\
& \zeta_{2}(x)=2 x^{2}+60 x^{3}+8 x^{4} \\
& \delta_{2}(x)=12 x^{3}+2 x^{4} \\
& \zeta_{1}(x)=2 x^{2}+10 x^{3}+300 x^{4}+88 x^{5}+8 x^{6} \\
& \delta_{1}(x)=2 x^{3}+60 x^{4}+20 x^{5}+2 x^{6} .
\end{aligned}
$$

Then we must choose an integer $c \geq 2$ such that

$$
\begin{aligned}
& x^{c} \geq(x-1)^{c}+2+2 x^{2}+10 x^{3}+302 x^{4}+148 x^{5}+28 x^{6}+2 x^{7} \\
& x^{c} \geq 3+10 x^{2}+50 x^{3}+1500 x^{4}+440 x^{5}+40 x^{6}, \text { and } \\
& x^{c} \geq x+8 x^{2}+40 x^{3}+1200 x^{4}+352 x^{5}+32 x^{6} .
\end{aligned}
$$

for all integers $x \geq 2$. Thus we may take $c=16$. This proves 4.4.

References

[1] M. Briański, J. Davies and B. Walczak, "Separating polynomial χ-boundedness from χ boundedness", arXiv:2201.08814.
[2] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. VII. Disjoint holes", J. Graph Theory, to appear, arXiv:2202.09118.
[3] L. Esperet, Graph Colorings, Flows and Perfect Matchings, Habilitation thesis, Université Grenoble Alpes (2017), 24, https://tel.archives-ouvertes.fr/tel-01850463/document.
[4] A. Gyárfás, "On Ramsey covering-numbers", in Infinite and Finite Sets, Vol. II (Colloq., Keszthely, 1973), Coll. Math. Soc. János Bolyai 10, 801-816.
[5] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413-441.
[6] X. Liu, J. Schroeder, Z. Wang and X. Yu, "Polynomial χ-binding functions for t-broom-free graphs", arXiv:2106.08871.
[7] I. Schiermeyer, "On the chromatic number of (P_{5}, windmill)-free graphs", Opuscula Math. $\mathbf{3 7}$ (2017), 609-615.
[8] I. Schiermeyer and B. Randerath, "Polynomial χ-binding functions and forbidden induced subgraphs: a survey", Graphs and Combinatorics 35 (2019), 1-31.
[9] A. Scott and P. Seymour, "A survey of χ-boundedness", J. Graph Theory 95 (2020), 473-504, arXiv:1812.07500.
[10] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. II. Excluding a star forest", J. Graph Theory, 101 (2022), 318-322, arXiv:2107.11780.
[11] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. III. Excluding a double star", J. Graph Theory, 101 (2022), 323-340, arXiv:2108.07066.
[12] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. IV. A near-polynomial bound for excluding the five-vertex path", Combinatorica, to appear, arXiv:2110.00278.
[13] A. Scott and P. Seymour, "Polynomial bounds for chromatic number. V. Excluding a tree of radius two and a complete multipartite graph", submitted for publication, arXiv:2202.05557.
[14] D. P. Sumner, "Subtrees of a graph and chromatic number", in The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley \& Sons, New York (1981), 557-576.

[^0]: ${ }^{1}$ Supported by NSF DMS-EPSRC grant DMS-2120644.
 ${ }^{2}$ Research supported by EPSRC grant EP/V007327/1.
 ${ }^{3}$ Supported by AFOSR grants A9550-19-1-0187 and FA9550-22-1-0234, and NSF grant DMS-2154169.
 ${ }^{4}$ We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].

