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Abstract

The Gyárfás-Sumner conjecture says that for every forest H and every integer k, if G is H-free and
does not contain a clique on k vertices then it has bounded chromatic number. (A graph is H-free
if it does not contain an induced copy of H.) Kierstead and Penrice proved it for trees of radius at
most two, but otherwise the conjecture is known only for a few simple types of forest. More is known
if we exclude a complete bipartite subgraph instead of a clique: Rödl showed that, for every forest
H, if G is H-free and does not contain Kt,t as a subgraph then it has bounded chromatic number.
In an earlier paper with Sophie Spirkl, we strengthened Rödl’s result, showing that for every forest
H, the bound on chromatic number can be taken to be polynomial in t. In this paper, we prove a
related strengthening of the Kierstead-Penrice theorem, showing that for every tree H of radius two
and integer d ≥ 2, if G is H-free and does not contain as a subgraph the complete d-partite graph
with parts of cardinality t, then its chromatic number is at most polynomial in t.



1 Introduction

The Gyárfás-Sumner conjecture [7, 16] says:

1.1 Conjecture: For every forest H there is a function f such that χ(G) ≤ f(ω(G)) for every
H-free graph G.

(G is H-free if no induced subgraph of G is isomorphic to H; and χ(G), ω(G) denote the chromatic
number and the size of the largest clique of G, respectively.)

This is open in general, although it is known to hold [12] for graphs that do not contain any
induced subdivision of H, and has been proved for a few special kinds of forest. Notably, Kierstead
and Penrice [10] proved:

1.2 For every tree H of radius two, there is a function f such that χ(G) ≤ f(ω(G)) for every H-free
graph G.

These statements can also be phrased in terms of χ-bounded classes. A class of graphs is hereditary
if it is closed under taking induced subgraphs; and a hereditary class G of graphs is χ-bounded if there
is a function f such that χ(G) ≤ f(ω(G)) for every graph G ∈ G. Thus conjecture 1.1 says that, for
every forest H, the class of H-free graphs is χ-bounded; and 1.2 says that the class of H-free graphs
is χ-bounded when H is a tree of radius two.

There has been a great deal of recent progress on χ-bounded classes (see [13] for a survey). In
most cases, the proofs give bounds on the chromatic number that grow relatively quickly (often
superexponentially) in the clique number. However, a striking conjecture of Esperet [6] asserts that
this is not necessary, and that for every χ-bounded class, the function f can be taken to be polynomial.
Esperet’s conjecture has been shown to be false in its full generality [2], but remains open for classes of
graphs excluding a forest; and in that case, the Gyárfás-Sumner conjecture and Esperet’s conjecture
would together give the following:

1.3 Conjecture: For every forest H, there is a polynomial f such that χ(G) ≤ f(ω(G)) for every
H-free graph G.

While the conjectures 1.1 and 1.3 remain open, more is known if we exclude a complete bipartite
graph rather than a clique. Rödl (see [9, 11]) proved that:

1.4 For every forest H and integer t ≥ 2, there exists k such that if G is H-free and does not contain
Kt,t as a subgraph then χ(G) ≤ k.

It will be helpful to define one piece of notation. For a graph G, and integer d ≥ 1, let τd(G)
denote the largest t such that G has a subgraph (not necessarily induced) isomorphic to the complete
d-partite graph with each part of cardinality t. Thus τ1(G) = |G|, and τ2(G) is the largest t such that
G contains Kt,t as a subgraph, and 1.4 says that for every forest H there is a function f such that
every H-free graph G satisfies χ(G) ≤ f(τ2(G)). It is natural to ask whether f can be taken to be
a polynomial in Rödl’s result. When H is a path, this was proved by Bonamy, Bousquet, Pilipczuk,
Rzążewski, Thomassé and Walczak [1]. We proved the general case with Sophie Spirkl in [14]:

1.5 For every forest H, there exists c > 0 such that χ(G) ≤ τ2(G)c for every H-free graph G.
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Note that this is a special case of 1.3, as τ2(G) ≥ bω(G)/2c. 1.3 would also imply that the same is true
for τd(G) instead of τ2(G) for any fixed value of d ≥ 2 (except if τd(G) ≤ 1) since τd(G) ≥ bω(G)/dc.
This has not been proved in general – indeed, proving it for a forest H would show that H also
satisfies the Gyárfás-Sumner conjecture – but in this paper we prove it when H is a tree of radius
two. Our main result is the following extension of 1.2:

1.6 For every tree H of radius two, and every integer d ≥ 1, there is a polynomial f such that
χ(G) ≤ f(τd(G)) for every H-free graph G.

A referee suggests two further open questions on these lines:

• (Extending 1.6 to other trees H that we know satisfy 1.1.) Is it true that if H is a path, then
for every integer d ≥ 1, there is a polynomial f such that χ(G) ≤ f(τd(G)) for every H-free
graph G?

• (An analogue of Esperet’s (false) conjecture for τd(G).) Let C be a hereditary class of graphs,
and d ≥ 1. Suppose that there is a function f such that χ(G) ≤ f(τd(G)) for each G ∈ C. Can
we always choose f to be a polynomial? What if d = 2?

We note that conjecture 1.3 when H is the five-vertex path P5 would imply that P5 satisfies the
Erdős-Hajnal conjecture [4, 5] (P5 is currently the smallest open case of the Erdős-Hajnal conjecture,
after C5 was recently proved in [3]). Since P5 is a tree of radius two, it would be very nice if the
function f in 1.6 had polynomial dependence on d. But the function f we prove in this paper has
doubly-exponential dependence on d. Incidentally, if we take t = 1 in 1.6, we have proved that
χ(G) ≤ f(ω(G)) for every H-free graph G, where f is doubly-exponential in ω(G). While this is
admittedly fast-growing, the bound is much smaller than that of Kierstead and Penrice [10].

We use standard notation. For a graph G, we denote the number of vertices by |G|. When
X ⊆ V (G), G[X] denotes the subgraph induced on X. We write χ(X) for χ(G[X]) when there is
no ambiguity. If v ∈ V (G), a non-neighbour of v in G means a vertex u of G different from v and
nonadjacent to v.

2 Some Ramsey-type lemmas

We will use the following well-known version of Ramsey’s theorem, proved (for instance) in [15]:

2.1 Let x ≥ 2 and y ≥ 1 be integers. For a graph G, if |G| ≥ xy, then G has either a clique of
cardinality x+ 1, or a stable set of cardinality y.

We also need the next result:

2.2 Let s ≥ 2 and t ≥ 1 be integers, and let G be a graph with τd+1(G) < t. Let L1, . . . , Ls2d+2

be pairwise disjoint subsets of V (G), each of cardinality at least 2s
2d+2

tds+s2+s. Then there exist
I ⊆ {1, . . . , s2d+2} with |I| = s, and a subset Xi ⊆ Li for each i ∈ I, where

⋃
i∈I Xi is a stable set,

and |Xi| ≥ s for each i ∈ I.

For inductive purposes, we will prove the following stronger (but messier) form: 2.2 follows from
it by substituting a = b = c = s.
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2.3 Let a ≥ 2 and t ≥ 1 be integers. For all integers b, c, d ≥ 0 with b ≤ a and c ≥ 1, define

kb,c,d =


(ac)d+1 if b = a

b(ac)d + (a(c− 1))d+1 + 1 if b < a and d > 0

1 if b < a and d = 0

Define pb,c,d = 2kb,c,dta(c+d)+b. Now let b, c, d ≥ 0 be integers with b ≤ a, and let G be a graph with
τd+1(G) < t. Let L1, . . . , Lkb,c,d be pairwise disjoint subsets of V (G), each of cardinality at least pb,c,d.
Then there exist I ⊆ {1, . . . , kb,c,d} with |I| = c, and a stable subset X ⊆ L1 ∪ · · · ∪ Lkb,c,d , where
|X ∩ Li| ≥ a for each i ∈ I \ {1}, and |X ∩ L1| ≥ b if 1 ∈ I.

Proof. We proceed by induction on (a + 1)(c + d) + b (the numbers a, t are fixed throughout the
proof). If d = 0 then τd+1(G) = |G|, so |G| < t ≤ pb,c,d, and there is no choice of L1 satisfying the
hypothesis, and therefore the theorem holds. So we may assume that d ≥ 1.

Suppose that c = 1. Since G has no clique of cardinality (d + 1)t (because t > τd+1(G)), 2.1
implies that every set of ((d+1)t)b vertices of G includes a stable set of cardinality b. Thus it suffices
to show that pb,c,d ≥ ((d+ 1)t)b when c = 1, that is, we must show that

2kb,1,dta(1+d)+b ≥ ((d+ 1)t)b.

Since ta(1+d)+b ≥ tb, it is enough to show that 2kb,1,d ≥ (d + 1)b. But kb,1,d ≥ bad, so it suffices to
show that 2bad ≥ (d + 1)b, that is, ad ≥ log2(d + 1). Since a ≥ 2, and 2d ≥ log2(d + 1), this is true,
so we may assume that c ≥ 2.

Suppose that b = 0, and therefore kb,c,d = ka,c−1,d + 1. By applying the inductive hypoth-
esis to L2, . . . , Lkb,c,d , with b, c, d replaced by a, c − 1, d respectively, we deduce that there exist
I ′ ⊆ {2, . . . , kb,c,d} with |I ′| = c − 1, and a stable subset X ⊆ L2 ∪ · · · ∪ Lkb,c,d , where |X ∩ Li| ≥ a
for each i ∈ I ′. Then setting I = I ′ ∪ {1} satisfies the theorem. Thus we may assume that b ≥ 1.

(1) The following inequalities hold:

kb,c,d − kb−1,c,d ≥ ka,c,d−1
pb,c,d ≥ 2(d+ 1)2t2

pb,c,d ≥ 2(d+ 1)tpb−1,c,d

pb,c,d ≥ 2kb,c,dt

pb,c,d ≥ tpb−1,c,d + pa,c,d−1.

The first is clear (and holds with equality) if b < a, so we assume that b = a. Since

1− 1/c > (1− 1/c)d+1

(because c ≥ 2 and d ≥ 1), we have

(ac)d+1 > a(ac)d + (a(c− 1))d+1,

and so
ka,c,d ≥ a(ac)d + (a(c− 1))d+1 + 1 = ka−1,c,d + ka,c,d−1,
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and the first inequality follows.
For the second, we must show that 2kb,c,dta(c+d)+b ≥ 2(d+1)2t2. Since ta(c+d)+b ≥ t2, it suffices to

show that 2kb,c,d ≥ 2(d+1)2, and this is true since kb,c,d ≥ (ac)d +1 ≥ 2d +1, and 22
d+1 ≥ 2(d+1)2.

This proves the second inequality.
For the third, we must show that

2kb,c,dta(c+d)+b ≥ 2(d+ 1)t2kb−1,c,dta(c+d)+b−1,

that is,
kb,c,d − kb−1,c,d ≥ 1 + log2(d+ 1).

But (using the first inequality if b = a), kb,c,d − kb−1,c,d ≥ (ac)d ≥ 2d ≥ 1 + log2(d+ 1) as required.
For the fourth, we must show that 2kb,c,dta(c+d)+b ≥ 2kb,c,dt, which is clear. Finally, for the fifth,

we must show that

2kb,c,dta(c+d)+b ≥ t2kb−1,c,dta(c+d)+b−1 + 2kb,c,d−1ta(c+d−1)+b,

that is,
2kb,c,d ≥ 2kb−1,c,d + 2kb,c,d−1t−a.

Since t ≥ 1, it suffices to show that 2kb,c,d ≥ 2 ·2kb−1,c,d and 2kb,c,d ≥ 2 ·2kb,c,d−1 , that is, kb,c,d > kb−1,c,d
and kb,c,d > kb,c,d−1, which are both true (since ac ≥ 2). This proves (1).

Choose a clique Y ⊆ L1, maximal such that at most |Y |pb,c,d/(2(d + 1)t) vertices in L1 have a
non-neighbour in Y . (Possibly Y = ∅.) Let N be the set of vertices in L1 \ Y that are adjacent to
every vertex in Y . Then:

(2) |N | ≥ pb,c,d/2, and every vertex v ∈ N has more than pb,c,d/(2(d+ 1)t) non-neighbours in N .

Since t > τd+1(G), it follows that G has no clique of cardinality (d + 1)t, and so |Y | < (d + 1)t.
Let M = L1 \ (N ∪ Y ). Thus |M | ≤ |Y |pb,c,d/(2(d+ 1)t) from the choice of Y , and so

|Y ∪M | ≤ |Y |
(
1 +

pb,c,d
2(d+ 1)t

)
≤ ((d+ 1)t− 1)

(
1 +

pb,c,d
2(d+ 1)t

)
= (d+ 1)t− 1 +

pb,c,d
2
−

pb,c,d
2(d+ 1)t

≤
pb,c,d
2

since 2(d+1)2t2 ≤ pb,c,d by (1). Consequently |N | ≥ pb,c,d/2. This proves the first assertion. For the
second, if some vertex v ∈ N has at most pb,c,d/(2(d + 1)t) non-neighbours in N , then adding v to
Y gives a set Y ′ such that at most |Y ′|pb,c,d/(2(d + 1)t) vertices in L1 have a non-neighbour in Y ′,
contrary to the maximality of Y . This proves (2).

We may assume that

(3) For each v ∈ N , there are fewer than kb−1,c,d values of i ∈ {2, . . . , kb,c,d} such that v has at
least pb−1,c,d non-neighbours in Li.
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Suppose that there exists I ′ ⊆ {2, . . . , kb,c,d} with |I ′| = kb−1,c,d, such that for each i ∈ I ′ there
is a set L′i ⊆ Li of non-neighbours of v with |L′i| ≥ pb−1,c,d. Let L′1 be the set of non-neighbours
of v in N ; then |L′1| ≥ pb−1,c,d by (2), since pb,c,d/(2(d + 1)t) ≥ pb−1,c,d by (1). From the inductive
hypothesis applied to L′i (i ∈ I ′ ∪ {1}), with b, c, d replaced by b− 1, c, d respectively, it follows that
there exist I ⊆ I ′ ∪ {1} with |I| = c, and a stable subset X ⊆

⋃
i∈I L

′
i, where |X ∩ L′i| ≥ a for each

i ∈ I \ {1}, and |X ∩ L′1| ≥ b− 1 if 1 ∈ I. If 1 /∈ I then the theorem holds. If 1 ∈ I, then by adding
v to X we see that again the theorem holds. This proves (3).

For each v ∈ N , let Iv be the set of values of i ∈ {2, . . . , kb,c,d} such that v has fewer than pb−1,c,d
non-neighbours in Li. Thus |Iv| ≥ kb,c,d− kb−1,c,d for each v, by (3). Since there are at most 2kb,c,d−1

choices of the set Iv, and |N | ≥ pb,c,d/2 ≥ 2kb,c,d−1t by (1), there exists T ⊆ N with |T | = t such that
the sets Iv (v ∈ T ) are all equal, and equal to some I ′ say. For each i ∈ I ′, since each v ∈ T has at
most pb−1,c,d non-neighbours in Li, it follows that there are at most tpb−1,c,d vertices in Li that have
a non-neighbour in T . Since |Li| ≥ pb,c,d ≥ tpb−1,c,d + pa,c,d−1 by (1), there is a subset L′i ⊆ Li with
|L′i| ≥ pa,c,d−1, such that every vertex in T is adjacent to every vertex of L′i. Since τd+1(G) < t, it
follows that τd(G′) < t, where G′ = G[

⋃
i∈I′ L

′
i]. Since |I| ≥ kb,c,d − kb−1,c,d ≥ ka,c,d−1, the inductive

hypothesis (on c + d) applied to L′i (i ∈ I ′), with b, c, d replaced by a, c, d − 1 respectively, implies
that there exist I ⊆ I ′ with |I| = c, and a stable subset X ⊆

⋃
i∈I L

′
i, where |X ∩ L′i| ≥ a for each

i ∈ I. This proves 2.3.

If v ∈ V (G) and B ⊆ V (G) with v /∈ B, we say v is complete to B if v is adjacent to every vertex
in B, and v is anticomplete to B if v has no neighbours in B. If A,B are disjoint subsets of V (G), we
say A is complete to B if every vertex in A is complete to B, and A is anticomplete to B if there are
no edges between A and B. The result just proved will be used in combination with the following:

2.4 Let G be a graph, let A,B be disjoint subsets of V (G), and let k, `, t ≥ 1 be integers. Suppose
that

• for each T ⊆ A with |T | = t, the set of vertices in B complete to T has chromatic number at
most `;

• every vertex in B has at least tk−1 neighbours in A; and

• χ(B) > k|A|2k−1`.

Then there exist distinct a1, . . . , ak ∈ A, and disjoint subsets L1, . . . , Lk ⊆ B, each with chromatic
number more than `, such that for all i, j ∈ {1, . . . , k} and all v ∈ Lj, ai is adjacent to v if and only
if i = j.

Proof. We proceed by induction on k. Suppose first that k = 1. Since each vertex in B has a
neighbour in A, and χ(B) > |A|`, there is a vertex a1 ∈ A such that the set L1 of neighbours of a1
in B has chromatic number more than `, and so the theorem holds. Thus we may assume that k ≥ 2
and the theorem holds for k − 1. Since B 6= ∅, and each vertex in B has at least tk−1 neighbours in
A, it follows that |A| ≥ tk−1.

For each v ∈ B, let Nv be the set of neighbours of v in A. Since |Nv| > 0, there are at most |A|
possibilities for |Nv|; and so there exist C ⊆ B with

χ(C) ≥ χ(B)/|A| > k|A|2k−2`
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such that the sets Nv(v ∈ C) all have the same cardinality. For each v ∈ C, let Sv be the set of all
u ∈ C with |Nu \Nv| ≥ tk−2.

(1) χ(Sv) > (k − 1)|A|2k−2` for each v ∈ C.

Since |Nv| ≥ tk−1, there exist pairwise disjoint subsets T1, . . . , Ttk−2 of Nv, each of cardinality t.
If u ∈ C \ Sv, then since Nu, Nv have the same cardinality, it follows that |Nv \Nu| < tk−2, and so u
is complete to one of the sets T1, . . . , Ttk−2 . For 1 ≤ i ≤ tk−2, the set of vertices in C complete to Ti
has chromatic number at most ` by hypothesis; and since C \ Sv is the union of tk−2 of these sets, it
follows that χ(C \ Sv) ≤ tk−2`. Since χ(C) > k|A|2k−2`, and |A| ≥ tk−1 ≥ t, we deduce that

χ(Sv) > k|A|2k−2`− tk−2` ≥ (k − 1)|A|2k−2`.

This proves (1).

Let a1, . . . , ak ∈ A be distinct. A feathering for the sequence (a1, . . . , ak) is a sequence (L2, . . . , Lk)
of pairwise disjoint subsets of C, each with chromatic number more than `, such that for all i ∈
{1, . . . , k}, all j ∈ {2, . . . , k}, and all u ∈ Bj , ai is adjacent to u if and only if i = j. For each v ∈ B,
let us say a tail for v is a sequence (a1, . . . , ak) of distinct vertices in A, such that v is adjacent to a1
and nonadjacent to a2, . . . , ak, and there is a feathering for (a1, . . . , ak).

(2) For each v ∈ B, there is a tail for v.

Since every u ∈ Sv has a non-neighbour in Nv, and χ(Sv) > (k−1)|A|2k−2`, there exists a1 ∈ Nv such
that the set B′ of vertices in Sv nonadjacent to a1 has chromatic number more than (k− 1)|A|2k−3`.
From the inductive hypothesis on k, applied with A,B, k replaced by A \Nv, B′, k − 1 respectively,
there exist distinct a2, . . . , ak ∈ A \ Nv, and disjoint subsets L2, . . . , Lk ⊆ B′, each with chromatic
number more than `, such that for all i ∈ {2, . . . , k}, ai is complete to Li and anticomplete to all the
other Lj . Since a1 has no neighbours in B′, it follows that (a1, . . . , ak) is a tail for v. This proves (2).

For every sequence (a1, . . . , ak) of distinct vertices in A, let M(a1, . . . , ak) be the set of v ∈ C
such that (a1, . . . , ak) is a tail for v. By (2), C is the union of the sets M(a1, . . . , ak) over all
choices of (a1, . . . , ak); and since there are at most |A|k such sequences (a1, . . . , ak), it follows that
χ(M(a1, . . . , ak)) ≥ χ(C)|A|−k for some choice of (a1, . . . , ak). Let L1 =M(a1, . . . , ak); then χ(L1) >
`, since χ(C)|A|−k > (k − 1)|A|k−2` ≥ `. Let (L2, . . . , Lk) be a feathering for a1, . . . , ak. (The latter
exists since M(a1, . . . , ak) 6= ∅ and so a1, . . . , ak is a tail for some v ∈ C.) Since every vertex in L1 is
adjacent to a1, and the vertices in L2, . . . , Lk are all nonadjacent to a1, it follows that L1, . . . , Lk are
pairwise disjoint. Then a1, . . . , ak and L1, . . . , Lk satisfy the theorem. This proves 2.4.

3 Cores and their neighbourhoods

For each integer s ≥ 1, let Hs be the tree with 1 + s+ s2 vertices, in which some vertex has degree s
and all its neighbours have degree s + 1. Every tree of radius two is an induced subgraph of Hs for
some choice of s ≥ 2, and so to prove 1.6 in general, it suffices to prove it in the case that H = Hs
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for some s ≥ 2. Thus, we need to show that for every integer s ≥ 2 and every integer d ≥ 2, there
is a polynomial f such that χ(G) ≤ f(τd(G)) for every Hs-free graph G. We might as well assume
that f is increasing, that is, f(y) ≥ f(x) for all y ≥ x ≥ 0, and integral, that is, all its coefficients are
integers. (It is tempting to assume further that f is of the form f(x) = xc for some c, but we cannot,
because τd(G) might be zero or one.)

To prove 1.6, we will proceed by induction on d, with s fixed. When d = 1, the result is trivial,
and when d = 2 it follows from 1.5, so we assume that d ≥ 2 and the result holds for d, and we will
prove that it holds for d+ 1. In summary, then, we have:

3.1 Hypothesis A:

• s, d ≥ 2 are integers.

• f is an increasing integral polynomial such that χ(G) ≤ f(τd(G)) for every Hs-free graph G,
and f(t) ≥ t for all integers t ≥ 1.

(We may assume the statement f(t) ≥ t without loss of generality, and it will be convenient later.)
We must show that there is a polynomial (and therefore there is an increasing integral polynomial)
f ′ such that if G is Hs-free then χ(G) ≤ f ′(τd+1(G)); or equivalently, that there is a polynomial f ′′

such that if G is Hs-free and t > τd+1(G) is an integer, then χ(G) ≤ f ′′(t). Thus, to complete the
proof of 1.6, we will prove:

3.2 Assuming Hypothesis A, there is a polynomial f1 such if G is Hs-free and t > τd+1(G) is an
integer, then χ(G) ≤ f1(t).

We need the following, a special case of theorem 3.2 of [14]:

3.3 Let s ≥ 2 be an integer. If G is an Hs-free graph, and t > τ2(G) is an integer, then

χ(G) ≤ (s(s2 + s+ 1)t)120(s
2+s+1).

For integers w, d ≥ 1, a subgraph C of G is a (w, d)-core if V (C) is the disjoint union of d sets
that are stable in C (but not necessarily stable in G), each of cardinality w and pairwise complete in
C. We call these sets the parts of the core. A core is stable if each of its parts is stable in G.

3.4 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer and let w ≥ 1
be an integer. If G′ is an induced subgraph of G with

χ(G′) > f
((
s(s2 + s+ 1)t

)120(s2+s+1)
w
)

then G′ has a stable (w, d)-core.

Proof. Let T =
(
s(s2 + s+ 1)t

)120(s2+s+1)
w. Since χ(G′) > f(T ), it follows that G′ has a (T, d)-

core C. Let A1, . . . , Ad be the parts of C. For 1 ≤ i ≤ d, since t > τd+1(G), and the parts of C all
have cardinality at least t, it follows that τ2(G[Ai]) < t, and so by 3.3,

χ(Ai) ≤ (s(s2 + s+ 1)t)120(s
2+s+1).

Hence there is a stable subset Bi of Ai of cardinality w, since T ≥ (s(s2 + s+ 1)t)120(s
2+s+1)w. But

then B1 ∪ · · · ∪Bd induces a stable (w, d)-core. This proves 3.4.
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3.5 Assuming Hypothesis A, let G be an Hs-free graph, let w, d ≥ 1 be integers, and let t > τd+1(G)
be an integer. Let C be a stable (w, d)-core, and let P be the set of all vertices in G that have at least
ts−1 neighbours in some part of C and have a non-neighbour in V (C). (Thus V (C) ⊆ P .) Then

χ(P ) ≤ sd2w2s(f(t) + 2s
2d+2

tds+s2+s).

Proof. Define q(t) = f(t) + 2s
2d+2

tds+s2+s. Now let G,C, P, t be as in the theorem. Every vertex in
P has at least ts−1 neighbours in some part of C, and a non-neighbour in some part of C, and we
may choose these two parts to be different. Since there are only d2w choices of a part of C and a
vertex in a different part, there is a part A of C, and a vertex v0 of a different part of C, such that
χ(B) ≥ χ(P )/(d2w), where B is the set of vertices in P that are nonadjacent to v0 and have at least
ts−1 neighbours in A. (Thus A ∩ B = ∅, since A is stable.) For each T ⊆ A with |T | = t, the set of
vertices in B that are complete to T contains no (t, d)-core (since G contains no (t, d+ 1)-core), and
so has chromatic number at most f(t) ≤ q(t).

Suppose for a contradiction that

χ(B) > s|A|2s−1q(t).

Then by 2.4, taking ` = q(t), there exist distinct a1, . . . , ak ∈ A, and disjoint subsets L1, . . . , Lk ⊆ B,
each with chromatic number more than q(t) and hence with cardinality at least 2s2d+2

tds+s2+s, such
that for all i, j ∈ {1, . . . , k} and all v ∈ Lj , ai is adjacent to v if and only if i = j. By 2.2, there exist
I ⊆ {1, . . . , k} with |I| = s, and a subset Xi ⊆ Li for each i ∈ I, where

⋃
i∈I Xi is a stable set, and

|Xi| = s for each i ∈ I. But then the subgraph induced on {v0} ∪
⋃

i∈I({ai} ∪Xi) is isomorphic to
Hs, a contradiction.

This proves that χ(B) ≤ s|A|2s−1q(t), and since |A| = w and χ(B) ≥ χ(P )/(d2w), it follows that
χ(P ) ≤ sd2w2sq(t). This proves 3.5.

4 Templates

Our proof of 1.6 follows the “template” approach used by Kierstead and Penrice in [10], but modified
to make the numbers polynomial. Assuming Hypothesis A, let w, t ≥ 1 be integers, and let us define
a (w, t)-template in a graph G to be a pair (C,P ) such that

• C is a stable (w, d)-core in G;

• P ⊆ V (G) with V (C) ⊆ P ;

• for every vertex v ∈ P \ V (C) there is a part A of C such that v has at least sts−1 neighbours
in A; and

• for every vertex v ∈ P \V (C) there is a part A of C such that v has at least bw/tc non-neighbours
in A.

A (w, t)-template sequence in G is a sequence (Ci, Pi) (i ∈ I) of (w, t)-templates, where I is a set
of integers, such that the sets Pi (i ∈ I) are pairwise disjoint, and for all i, j ∈ I with i < j, every
vertex of Pj either has fewer than sts−1 neighbours in each part of Ci, or has fewer than bw/tc
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non-neighbours in each part of Ci (that is, adding this vertex to Pi would violate the definition of a
template).

The method of proof is, we will let w be some appropriately large polynomial, and assume that G
isHs-free and t > τd+1(G); and greedily choose a (w = w(t), d)-template sequence (Ci, Pi) (1 ≤ i ≤ n)
in G, where each Pi is as large as possible among the set of vertices that have so far not been used,
and with n maximum. It follows that the set of vertices not in any of the templates of the sequence
has bounded chromatic number, and so it remains to bound the chromatic number of the union of the
templates. Each template has bounded chromatic number by 3.5, but we need to control the edges
between templates in the sequence, to bound the chromatic number of their union. Let us assume that
G has very large chromatic number. If we partition the template sequence into a bounded number
of other sequences, one of them will induce a subgraph that still has very large (not quite so large)
chromatic number. By this process we can make successively nicer template sequences, still inducing
large chromatic number, until eventually we will obtain a contradiction (we will obtain a template
sequence in which for each template, each of its vertices has only a bounded number of neighbours
in other templates of the sequence.)

If (Ci, Pi) (i ∈ I) is a (w, t)-template sequence in a graph G, its vertex set is
⋃

i∈I Pi; its support
is the subgraph of G induced on its vertex set; and its chromatic number is the chromatic number of
its support.

We will often use the following lemma:

4.1 Let D be a directed graph in which every vertex has out-degree at most d. Then V (D) can be
partitioned into 2d+ 1 stable sets.

Proof. Every non-null subgraph H has at most d|H| edges, and so has a vertex v such that the sum
of its indegree and outdegree is at most 2d. Hence the undirected graph underlying D has degeneracy
at most 2d, and so is (2d+ 1)-colourable. This proves 4.1.

Let us say a (w, t)-template sequence (Ci, Pi) (i ∈ I) with vertex set U in a graph G is

• 1-nice if for each i ∈ I, there is no vertex v ∈ U \ V (Ci) that has fewer than bw/tc non-
neighbours in each part of Ci.

• 2-nice if it is 1-nice and for each v ∈ U , there are fewer than s values of i ∈ I such that
v /∈ V (Ci) and v has at least s3ts−1 neighbours in some part of Ci.

• 3-nice if it is 2-nice and for all distinct i, j ∈ I, every vertex in Ci has fewer than s3ts−1

neighbours in each part of Cj .

• 4-nice if it is 3-nice and for each v ∈ U , there are fewer than (dt)s values of i ∈ I such that
v /∈ Pi and v has a neighbour in V (Ci).

• 5-nice if it is 4-nice and for all distinct i, j ∈ I, there are no edges between V (Ci) and V (Cj).

• 6-nice if it is 5-nice and for all v ∈ U , there are fewer than 2(dt)2s + (dt)s values of i ∈ I such
that v /∈ Pi and v has a neighbour in Pi.

• 7-nice if it is 6-nice and for all i ∈ I, there are fewer than 60dws(dt)5s values of j ∈ I \ {i}
such that some v ∈ Pi has at least (dt)s neighbours in Pj .
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• 8-nice if it is 7-nice and for all i ∈ I and v ∈ Pi, v has fewer than 3(dt)3s neighbours in U \Pi.

We will show that if G has large chromatic number, then so does some 1-nice template sequence.
Then for i = 2, . . . , 8 in turn, we will deduce that some i-nice template sequence has large chromatic
number; and finally, we will show by applying 3.5 that when i = 8, this is impossible. It will follow
that G has bounded chromatic number. We begin with:

4.2 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. If every 1-nice (w, d)-template sequence in G has chromatic number at most k, then

χ(G) ≤ f
((
s(s2 + s+ 1)t

)120(s2+s+1)
w
)
+ 2kt.

Proof. We observe first:

(1) Let C be a (w, d)-core in G, and let Q be the set of vertices v ∈ V (G)\V (C) that have fewer than
bw/tc non-neighbours in each part of C. Then |Q| < t.

Suppose not; then there is a set T of t vertices of G, with T ∩ V (C) = ∅, such that every ver-
tex in T has fewer than bw/tc non-neighbours in each part of C. Let A be a part of C; then at most
(w/t− 1)t vertices of A have a non-neighbour in T , and since |A| = w, there are t vertices in A that
are complete to T . Since this is true for each part of C, it follows that G contains a (t, d + 1)-core,
contradicting that t > τd+1(G). This proves (1).

Choose an integer n ≥ 0, maximum such that there is a sequence C1, P1, C2, P2, . . . , Cn, Pn with
the following properties:

• C1, C2, . . . , Cn are stable (w, d)-cores of G, and P1, . . . , Pn are subsets of V (G);

• the sets P1, P2, . . . , Pn are pairwise disjoint, and V (Ci) ⊆ Pi for 1 ≤ i ≤ n;

• for 1 ≤ i ≤ n, Pi consists of V (Ci) together with all vertices v of G \ (P1 ∪ · · · ∪Pi−1) such that
v has at least sts−1 neighbours in some part of Ci and v has at least bw/tc non-neighbours in
some part of Ci.

It follows that (Ci, Pi) (i ∈ {1, . . . , n}) is a (w, t)-template sequence in G. Let its vertex set be U .
From the maximality of n, there is no stable (w, d)-core in G \ U , and so

χ(G \ U) ≤ f
((
s(s2 + s+ 1)t

)120(s2+s+1)
w
)

by 3.4. Let D be the digraph with vertex set {1, . . . , n}, in which for distinct i, j ∈ {1, . . . , n}, j is
adjacent from i if some vertex of Pj has fewer than bw/tc non-neighbours in each part of Ci. By (1),
every vertex of D has outdegree at most t− 1, and so by 4.1, V (D) can be partitioned into 2t stable
sets I1, . . . , I2t. For 1 ≤ j ≤ 2t, (Ci, Pi) (i ∈ Ij) is a (w, t)-template sequence in G, and it is 1-nice
from the definition of D. Consequently each such template sequence has chromatic number at most
k, from the hypothesis; and so χ(U) ≤ 2kt. Hence

χ(G) ≤ χ(U) + χ(G \ U) ≤ 2kt+ f
((
s(s2 + s+ 1)t

)120(s2+s+1)
w
)
.

This proves 4.2.
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We observe:

4.3 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. Let (Ci, Pi) (i ∈ I) be a 1-nice (w, t)-template sequence in a graph G. Then

• for all i, j ∈ I with i < j, every vertex of Pj has fewer than sts−1 neighbours in each part of Ci.

• for all distinct i, j ∈ I, every vertex of Pj has at least bw/tc non-neighbours in some part of Ci.

Proof. Let i, j ∈ I be distinct, and let v ∈ Pj . Since the sequence is 1-nice, v has at least bw/tc
non-neighbours in some part of Ci; and if i < j, then from the definition of a template sequence, v
has fewer than sts−1 neighbours in each part of Ci. This proves 4.3.

4.4 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let
w ≥ (s+ 1)t+ s3ts be an integer. Then every 1-nice (w, d)-template sequence in G is 2-nice.

Proof. Let (Ci, Pi) (i ∈ I) be a 1-nice (w, d)-template sequence in G that is not 2-nice, with vertex
set U , suppose that v ∈ U and I ′ ⊆ I such that |I ′| = s, and for each i ∈ I ′, v /∈ V (Ci) and v has at
least s3ts−1 neighbours in some part of Ci.

For each i ∈ I ′, there is a part Ai of Ci such that v has at least s3ts−1 neighbours in Ai, and
a part Bi of Ci such that v has at least bw/tc non-neighbours in Bi; and since Ci has at least two
parts, all with the same cardinality, we may choose Ai, Bi distinct.

We define ai ∈ Ai and Yi ⊆ Bi with |Yi| = s for i ∈ I ′ inductively as follows. Assume that
i ∈ I ′, and aj and Yj are defined for all j ∈ I ′ with j > i. Let X =

⋃
j∈I′, j>i{aj} ∪ Yj . Thus

|X| ≤ (s − 1)(s + 1). For all j ∈ I ′ with j > i, every vertex in V (Cj) has fewer than sts−1

neighbours in Ai, and since v has at least s3ts−1 > (s − 1)s(s + 1)ts−1 neighbours in Ai, there is
a neighbour ai of v in Ai that is nonadjacent to every vertex in X. Similarly, since v has at least
bw/tc ≥ s + (s − 1)s(s + 1)ts−1 non-neighbours in Bi, there is a set Yi ⊆ Bi of s vertices each
nonadjacent to v and each with no neighbours in X. This completes the inductive definition. But
then the subgraph induced on v together with all the sets {ai} ∪ Yi (i ∈ I ′) is isomorphic to Hs, a
contradiction. This proves 4.4.

4.5 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. If every 3-nice (w, d)-template sequence in G has chromatic number at most k, then
every 2-nice (w, d)-template sequence in G has chromatic number at most 2sdwk.

Proof. Let (Ci, Pi) (i ∈ I) be a 2-nice (w, d)-template sequence in G. Let D be the digraph with
vertex set I, in which for distinct i, j ∈ I, there is an edge of D from i to j if some vertex of V (Ci)
has at least s3ts−1 neighbours in some part of Cj . Since |Ci| = dw, and the sequence is 2-nice, it
follows that every vertex of D has outdegree at most dw(s− 1), and so V (D) can be partitioned into
2dw(s− 1) + 1 ≤ 2sdw stable sets. Each gives a 3-nice (w, d)-template sequence in G, and therefore
has chromatic number at most k, and so (Ci, Pi) (i ∈ I) has chromatic number at most 2sdwk. This
proves 4.5.
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4.6 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let
w ≥ (s − 1)s2ts−1 + s4ts−1 + s be an integer. Then every 3-nice (w, d)-template sequence in G is
4-nice.

Proof. Let (Ci, Pi) (i ∈ I) be a 3-nice (w, d)-template sequence in G, with vertex set U , let v ∈ U ,
and suppose that there exists I ′ ⊆ I with |I ′| ≥ (dt)s such that for each i ∈ I ′, v /∈ Pi and v has
a neighbour in V (Ci). Since ω(G) ≤ dt, 2.1 implies that there exists I ′′ ⊆ I ′ with |I ′′| = s, such
that for each i ∈ I ′, v has a neighbour ai ∈ V (Ci), where the vertices ai (i ∈ I ′′) are pairwise
nonadjacent. For 1 ≤ i ≤ s let Bi be a part of Ci that does not contain ai. Inductively for each i ∈ I ′′
we choose Yi ⊆ Bi of cardinality s as follows. Assume that i ∈ I ′′ and Yj has been defined for all
j ∈ I ′′ with j > i. Let X =

⋃
j∈I′′,j>i Yj . Thus |X| ≤ (s− 1)s. Each vertex in X has at most sts−1

neighbours in Bi, and v and each vertex aj (j ∈ I ′′ \ {i}) has at most s3ts−1 neighbours in Bi. Since
w − (s − 1)s2ts−1 − s4ts−1 ≥ s, there exist a set Yi of s distinct vertices in Bi that are nonadjacent
to every vertex in X, and nonadjacent to v, and nonadjacent to each vertex aj (j ∈ I ′′ \ {i}). This
completes the inductive definition. But then the subgraph induced on {v} ∪

⋃
i∈I′′({ai} ∪ Yi) is

isomorphic to Hs, a contradiction. This proves 4.6.

4.7 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. If every 5-nice (w, d)-template sequence in G has chromatic number at most k, then
every 4-nice (w, d)-template sequence in G has chromatic number at most 2dw(dt)sk.

Proof. Let (Ci, Pi) (i ∈ I) be a 4-nice (w, d)-template sequence in G, with vertex set U , and let D
be the digraph with vertex set I, in which for distinct i, j ∈ I, j is adjacent from i if some vertex
in V (Ci) has a neighbour in V (Cj). Since |Ci| = wd and the sequence is 4-nice, it follows that D
has maximum outdegree less than wd(dt)s. By 4.1, V (D) is the union of 2wd(dt)s stable sets, each
forming a 5-nice sequence, and therefore with chromatic number at most k. This proves 4.7.

4.8 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. Then every 5-nice (w, d)-template sequence in G is 6-nice.

Proof. Let (Ci, Pi) (i ∈ I) be a 5-nice (w, d)-template sequence in G, with vertex set U , and let
v ∈ U , and suppose that there are at least 2(dt)2s + (dt)s values of i ∈ I such that v /∈ Pi and v
has a neighbour in Pi. Since the sequence is 4-nice, there are fewer than (dt)s values of i ∈ I such
that v /∈ Pi and v has a neighbour in V (Ci); so there exists I1 ⊆ I with |I1| = 2(dt)2s such that for
each i ∈ I1, v /∈ Pi, and v has a neighbour ai in Pi, and v has no neighbour in V (Ci). Let D be the
digraph with vertex set I1, in which for distinct i, j ∈ I1, j is adjacent from i if ai has a neighbour in
V (Cj). Since the sequence is 4-nice, D has maximum outdegree at most (dt)s − 1, and so by 4.1, I1
can be partitioned into 2(dt)s sets that are stable in D. One of these stable sets has cardinality at
least (dt)s, since |I1| = 2(dt)2s; so there exists exists I2 ⊆ I1 with |I2| ≥ (dt)s, such that for all i ∈ I2,
v /∈ Pi, and v has a neighbour ai in Pi, and v has no neighbour in V (Ci); and for all distinct i, j ∈ I2,
ai has no neighbour in V (Cj). By 2.1, there exists I3 ⊆ I2 with |I3| = s, such that the vertices
ai (i ∈ I3) are pairwise nonadjacent. For each i ∈ I3, since ai ∈ Pi, there is a part of Ci such that ai
has at least sts−1 ≥ s neighbours in this part, and so there exist b1i , . . . , b

s
i ∈ V (Ci), distinct, pairwise

nonadjacent, and all adjacent to ai. But then the subgraph induced on {v} ∪
⋃

i∈I3{ai, b
1
i , . . . , b

s
i} is

isomorphic to Hs, a contradiction. This proves 4.8.
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4.9 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. Then every 6-nice (w, d)-template sequence in G is 7-nice.

Proof. Let (Ci, Pi) (i ∈ I) be a 6-nice (w, d)-template sequence in G, with vertex set U , and suppose
that h ∈ I, and there exists I1 ⊆ I \{h} with |I1| ≥ 60dws(dt)5s such that for each i ∈ I1 there exists
ai ∈ Ph that has at least (dt)s neighbours in Pi. Let D be the digraph with vertex set I1, where for
distinct i, j ∈ I1, j is adjacent from i if ai has a neighbour in Pj . Since the sequence is 6-nice, D
has maximum outdegree less than 2(dt)2s + (dt)s ≤ 3(dt)2s, and so by 4.1, there is a subset I2 ⊆ I1
with |I2| ≥ |I1|/(6(dt)2s) ≥ 10dws(dt)3s, such that for all distinct i, j ∈ I2, ai has no neighbour in Pj .
Since for each i ∈ I2, ai has a neighbour in Pi, it follows that the vertices ai (i ∈ I2) are all distinct.
Since |Ch| = dw, there exists I3 ⊆ I2 with |I3| ≥ |I2|−dw ≥ 9dws(dt)3s such that ai ∈ Ph \V (Ch) for
each i ∈ I3. For each i ∈ I3, ai has a neighbour in V (Ch), and since |Ch| = dw, there exists I4 ⊆ I3
and c ∈ V (Ch) such that |I4| ≥ |I3|/(dw) ≥ 9s(dt)3s and ai is adjacent to c for each i ∈ I4.

There are at most 3(dt)2s values of i ∈ I4 such that c has a neighbour in V (Ci)∪Pi, so there exists
I5 ⊆ I4 with |I5| = |I4|−3(dt)2s ≥ 6s(dt)3s such that c has no neighbour in V (Ci)∪Pi for each i ∈ I5.
For each i ∈ I5, since ai has (dt)s neighbours in Pi, 2.1 implies that there is a stable subset Yi ⊆ Pi

with |Yi| = s such that ai is complete to Yi. Let D′ be the digraph with vertex set I5, in which for
distinct i, j ∈ I5, j is adjacent from i if some vertex of Yi has a neighbour in Yj . Since each vertex in
Yi has a neighbour in Pj for fewer than 3(dt)2s values of j, it follows that D′ has maximum outdegree
less than 3s(dt)2s, and so by 4.1, there exists I6 ⊆ I5 with |I6| ≥ |I5|/(6s(dt)2s) ≥ (dt)s such that for
all distinct i, j ∈ S6, there are no edges between Yi and Yj . Since |I6| ≥ (dt)s, 2.1 implies that there
exists I7 ⊆ I6 with |I7| = s such that the set of ai with i ∈ I7 is stable in G. But then the subgraph
induced on {c} ∪

⋃
i∈I7({ai} ∪ Yi) is isomorphic to Hs, a contradiction. This proves 4.9.

4.10 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. If every 8-nice (w, d)-template sequence in G has chromatic number at most k, then
every 7-nice (w, d)-template sequence in G has chromatic number at most 120dws(dt)5sk.

Proof. Let (Ci, Pi) (i ∈ I) be a 7-nice (w, d)-template sequence in G, with vertex set U . Let D be
the digraph with vertex set I, in which for distinct i, j ∈ I, j is adjacent from i if some vertex in
Pi has more than (dt)s neighbours in Pj . Since the sequence is 7-nice, D has maximum outdegree
less than 60dws(dt)5s, and so by 4.1, I is the union of 120dws(dt)5s subsets each stable in D. We
observe that if I1 ⊆ I is stable in D, then for each i ∈ I1 and each v ∈ Pi, there is no j ∈ I1 \ {i}
such that v has at least (dt)s neighbours in Pj ; and so, since v has neighbours in Pj for at most
2(dt)2s +(dt)s ≤ 3(dt)2s values of j 6= i, it follows that v has fewer than 3(dt)3s neighbours in U \Pi,
and so the sequence (Ci, Pi) (i ∈ I1) is 8-nice. This proves 4.10.

To finish this chain of reductions, we have:

4.11 Assuming Hypothesis A, let G be an Hs-free graph, let t > τd+1(G) be an integer, and let w ≥ 1
be an integer. Then every 8-nice (w, d)-template sequence in G has chromatic number at most

3sd3s+2w2s−1t3s(f(t) + 2s
2d+2

tds+s2+s).
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Proof. Let (Ci, Pi) (i ∈ I) be an 8-nice (w, d)-template sequence in G, with vertex set U . Let
G1, G2 be the subgraphs of G, both with vertex set U , where G1 is the union of the subgraphs
G[Pi] (1 ≤ i ≤ n) and G2 contains precisely those edges of G[U ] that do not belong to G1. By 3.5,

χ(G1) ≤ sd2w2s(f(t) + 2s
2d+2

tds+s2+s),

and χ(G2) ≤ 3(dt)3s since G2 has maximum degree less than 3(dt)3s (because the sequence is 8-nice).
Taking the product colouring shows that

χ(U) ≤ 3sd3s+2w2s−1t3s(f(t) + 2s
2d+2

tds+s2+s).

This proves 4.11.

Now we can complete the proof of 1.6, by proving 3.2, which we restate:

4.12 Assuming Hypothesis A, there is a polynomial f1 with the following property. Let G be an
Hs-free graph, and let t > τd+1(G) be an integer. Then χ(G) ≤ f1(t).

Proof. Define

w(t) = s4ts + s

f8(t) = 3sd3s+2w2s−1t3s(f(t) + 2s
2d+2

tds+s2+s)

f5(t) = f6(t) = f7(t) = 120sd5s+1wt5sf8(t)

f3(t) = f4(t) = 2ds+1wtsf5(t)

f2(t) = 2sdwf3(t)

f1(t) = f
((
s(s2 + s+ 1)t

)120(s2+s+1)
w
)
+ 2tf2(t).

Thus, w, f8, f7, . . . , f1 are all polynomials in t, since d, s are constants and f is a polynomial by
Hypothesis A. By 4.11, every 8-nice (w, d)-template sequence in G has chromatic number at most
f8(t). For i = 7, 6, . . . , 1 in turn, it follows that every i-nice (w, d)-template sequence in G has
chromatic number at most fi(t), by applying 4.10, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4 respectively. By 4.2,
χ(G) ≤ f1(t). This proves 4.12.
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