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Abstract. A graph is perfect if for every induced subgraph, the chromatic number is equal to the maximum
size of a complete subgraph. The class of perfect graphs is important for several reasons. For instance, many
problems of interest in practice but intractable in general can be solved efficiently when restricted to the class
of perfect graphs. Also, the question of when a certain class of linear programs always have an integer solution
can be answered in terms of perfection of an associated graph.

In the first part of the paper we survey the main aspects of perfect graphs and their relevance. In the second
part we outline our recent proof of the Strong Perfect Graph Conjecture of Berge from 1961, the following: a
graph is perfect if and only if it has no induced subgraph isomorphic to an odd cycle of length at least five, or
the complement of such an odd cycle.
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1. Introduction

In this paper graphs are finite and simple; that is, they have no loops or multiple edges.
Let G be a graph. A hole in G is an induced cycle of length at least four. An antihole
in G is an induced subgraph isomorphic to the complement of a hole. (The complement
of a graph G is the graph with vertex-set V (G) and edge-set consisting precisely of all
distinct pairs of vertices that are not adjacent in G.) A clique in G is a set X ⊆ V (G) of
pairwise adjacent vertices, and a stable set is a set of pairwise non-adjacent vertices. The
size of a maximum clique of a graph G is denoted by ω(G) and the size of a maximum
stable set is denoted by α(G). The chromatic number of G, denoted by χ(G), is the least
number of colors needed to color the vertices of G in such a way that adjacent vertices
receive different colors. In other words, χ(G) is the minimum number k such that the
vertex-set V (G) of G can be partitioned into k stable sets. Clearly χ(G) ≥ ω(G) for
every graph G, but equality need not hold. For instance, if G is an odd hole (i.e., a hole
with an odd number of vertices), then χ(G) = 3 > 2 = ω(G). Similarly, if G is an odd
antihole, say on 2k + 1 vertices, then χ(G) = k + 1 > k = ω(G).

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G; that is,
the chromatic number of H is equal to the maximum size of a clique of H . Thus odd
holes and odd antiholes are not perfect, and neither is any other graph that has an odd
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hole or an odd hole antihole.Are there any other imperfect graphs? Berge [1] conjectured
in 1961 that there are not, and a proof of that is our main result:

1.1. A graph is perfect if and only if it has no odd hole and no odd antihole

In the second half of the paper we will outline our proof. The first part is devoted to
discussing the relevance of perfect graphs. This survey is not intended to be exhaustive
– we concentrate on the aspects of perfect graphs that we find the most interesting. The
subject is much broader than can be covered in our short survey. We refer the reader to
the excellent book by Ramı́rez Alfonsı́n and Reed [34] for further reading.

2. Examples of perfect graphs

A graph B is bipartite if its vertex-set V (B) can be partitioned into two disjoint sets X, Y

in such a way that every edge of B has one end in X and the other end in Y . In other
words, B is bipartite if and only if χ(B) ≤ 2. It follows immediately that every bipartite
graph is perfect.

Now let G be the complement of a bipartite graph B, in symbols G = B. We claim
that G is perfect. Since every induced subgraph of G is the complement of an appro-
priate subgraph of B, it suffices to show that χ(G) = ω(G). But ω(G) = α(B), the
maximum size of a stable set of B, and χ(G) is equal to the minimum number of cliques
of B covering the vertices of B. Thus the statement χ(G) = ω(G) is equivalent to the
assertion that the vertices of the bipartite graph B can be covered by α(B) edges and
vertices. The latter is a classical result of König [23] and can be found in almost every
graph theory textbook.

Another two classes of perfect graphs can be obtained from bipartite graphs by means
of line graphs. Let G be a graph. The line graph of G is the graph L(G) with vertex-set
E(G) in which e, f ∈ E(G) are adjacent if they share an end in G. Now if B is a
bipartite graph, then G = L(B) is perfect. To see this, it again suffices to show that
χ(G) = ω(G). Now ω(G) is equal to the maximum degree of B, and χ(G) is equal to
the edge-chromatic number of B, the minimum number of colors needed to color the
edges of B in such a way that adjacent edges receive different colors. The latter two
numbers are equal in any bipartite graph B by a well-known theorem of König [23].

Similarly, if B is a bipartite graph, then G = L(B), the complement of L(B), is per-
fect. To see this it again suffices to show that χ(G) = ω(G). But χ(G) is the minimum
number of cliques of L(B) that cover the vertices of L(B), which in turn is equal to the
minimum number of vertices of B that meet all the edges of B. On the other hand, ω(G)

is the size of a maximum stable set in L(B), which is equal to the maximum size of a
matching of B. But the maximum size of a matching in a bipartite graph is equal to the
minimum number of vertices meeting all the edges of B by another classical theorem
of Egerváry [13] and König [24].

Thus we have seen four classes of perfect graphs. The perfection of the first class
is easy, and for the other three classes their perfection is equivalent to an old and well-
known result in graph theory. By now many more classes have been discovered; by the
last count there are 96 known classes of perfect graphs.



Progress on perfect graphs 407

3. The perfect graph theorem

Notice that in the above examples of perfect or imperfect graphs it was always the case
that a graph is perfect if and only if so is its complement. This is not a coincidence, due
to the following theorem of Lovász [26], originally conjectured by Berge [1].

3.1 (Perfect Graph Theorem) A graph is perfect if and only if its complement is per-
fect.

For the proof we will need two lemmas. The first is easy.

3.2 A graph G is perfect if and only if every induced subgraph H of G has a stable set
that intersects every maximum clique of H .

The second lemma we need is due to Lovász [26].

3.3 (Replication Lemma) Let G be a perfect graph, and let v ∈ V (G). Define a graph
G′ by adding a new vertex v′ and joining it to v and all the neighbors of v. Then G′ is
perfect.

Proof. By (3.2) it suffices to prove that G′ itself has a stable set that intersects every
maximum clique of G′. Since G is perfect, it has a coloring using ω(G) colors; let S be
the color class containing v. Then S is as desired. ��

In the proof of (3.1) we will give another characterization of perfect graphs in terms
of certain polytopes associated with graphs. Let G be a graph. The stable set polytope of
G, also known as the vertex packing polytope of G, denoted by STAB(G), is the convex
hull in RV (G) of all incidence vectors of stable sets of G. A related polytope is the frac-
tional stable set polytope or fractional vertex packing polytope QSTAB(G) ⊆ RV (G)

defined by the constraints

xv ≥ 0 for every v ∈ V (G), (1)

∑

v∈V (K)

xv ≤ 1 for every clique K in G. (2)

Since the incidence vector of every stable set satisfies (1) and (2), we have STAB(G) ⊆
QSTAB(G). The following theorem, which also incorporates results of Chvátal [2] and
Fulkerson [14, 15], implies the Perfect Graph Theorem. Our treatment follows [28].

3.4 For any graph G, the following conditions are equivalent.

(i) G is perfect,
(ii) STAB(G) =QSTAB(G),

(iii) G is perfect,
(iv) STAB(G) =QSTAB(G).
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Proof. (i) ⇒ (ii). Let x satisfy (1) and (2). By rational approximation we may assume
that x is rational. Take an integer N such that y = Nx is an integer vector. By (1), yv ≥ 0
for all v ∈ V (G). Let Yv (v ∈ V (G)) be disjoint sets with |Yv| = yv , and let H be the
graph with vertex–set

⋃
v∈V (G) Yv in which a vertex of Yv is adjacent to a vertex of Yu

if and only if either v = u or v is adjacent to u in G. By a repeated application of the
Replication Lemma (3.3) the graph H is perfect. By (2) we have ω(H) ≤ N , and hence
V (H) can be covered by N disjoint stable sets of H . Let q1, q2, . . . , qN be the incidence
vectors of the corresponding stable sets of G. Then x = 1

N
(q1 + q2 + · · · + qN), as

desired.
(ii) ⇒ (iii) Since condition (ii) is inherited by induced subgraphs of G, by (3.2)

it suffices to prove that G has a clique that intersects every maximum stable set of
G. We prove this assertion by induction on |V (G)|. We may assume that every vertex
belongs to a maximum stable set of G, for otherwise we may delete such vertex and
proceed by induction. Let X be the subset of STAB(G) consisting of all vectors x with∑

v∈V (G) xv = α(G). Then X is a face of QSTAB(G), and hence one of the inequalities
(1), (2) is satisfied with equality for every vector in X. Since every vertex of G belongs
to a maximum stable set of G, it follows that none of the inequalities (1) is satisfied with
equality for all x ∈ X, and hence one of the inequalities (2) is. Thus there exists a clique
of G which meets every maximum stable set of G, as desired.

The remaining two implications follow by applying the previous arguments to the
complement of G. ��

4. Integrality of polyhedra

Let A be a 0, 1-matrix and consider the following linear program:

max c · x subject to x ≥ 0 and Ax ≤ 1. (3)

For which matrices A is it true that for every objective function c, the linear program
has integral optimum solution? This is an important question, because solving inte-
ger programs is an NP-hard problem, whereas efficient algorithms exist to solve linear
programs. It turns out that the answer to our question leads directly to perfect graphs.

We say that the ith row of a matrix A = (aij ) is undominated if there is no row index
j 	= i such that ail ≤ ajl for all l. Let G be a graph with V (G) = {v1, v2, . . . , vn}, and
let K1, K2, . . . , Km be its (inclusion-wise) maximal cliques. We define the maximal
clique versus vertex incidence matrix of G to be the m × n matrix A = (aij ), where
aij = 1 if vj ∈ Ki , and aij = 0 otherwise. The following is a result of Chvátal [2].

4.1 The linear program (3) has an integral optimum solution for every objective func-
tion c if and only if the undominated rows of A form the maximal clique versus vertex
incidence matrix of a perfect graph.

Proof. To prove “only if" let A = (aij ) be an m × n matrix, and assume that (3) has an
integral optimum for every nonnegative objective function c. We may assume that A has
no dominated rows (by deleting them). Let G be the graph with vertex-set {1, 2, . . . , n}
in which i is adjacent to j if and only if ali = alj = 1 for some row index l. We first
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show that A is a maximal clique versus vertex incidence matrix of G. Indeed, if that
were not the case, then G has a clique K such that no row of A has ones in the positions
corresponding to the vertices of K and possibly elsewhere. Choose such K with |K|
minimal. Then clearly |K| ≥ 3 by construction. By the minimality of K , for every v ∈ K

there exists a row with ones in columns corresponding to K −{v}. Let c be the incidence
vector of K . Then c · x ≤ 1 for every integral vector x ∈ RV (G) satisfying x ≥ 0 and
Ax ≤ 1, for such x must be the incidence vector of a stable set. Now let y ∈ RV (G)

be the vector whose coordinates are 1
|K|−1 in positions corresponding to elements of K ,

and all other coordinates are 0. Then Ay ≤ 1, and yet c ·y = |K|
|K|−1 > 1, a contradiction.

This proves that A is a maximal clique versus vertex incidence matrix of G, and hence
the polyhedron {x ∈ RV (G) : x ≥ 0 and Ax ≤ 1} is precisely QSTAB(G). Now the
integrality of optima implies that every vertex of QSTAB(G) is integral, and hence is
a characteristic vector of a stable set. Thus STAB(G) = QSTAB(G), and hence G is
perfect by (3.4).

To prove the “if" part, let G be perfect. We may assume that A itself is the maximal
clique versus vertex incidence matrix of G. By (3.4) the linear program (3) is equiva-
lent to maximizing c · x subject to x ∈ STAB(G), which clearly attains its optimum at
a characteristic vector of a stable set, and hence has an integral optimum solution, as
desired. ��

5. Berge’s motivation: Shannon capacity

Let us go back in history and review what motivated Berge to introduce perfect graphs.
Let us consider the transmission of symbols from some finite input alphabet � through
a discrete memoryless channel. Certain symbols may be confused during transmission,
and we are interested in how many n-symbol error-free messages there are.

To be more precise, with every a ∈ � we associate symbols a1, a2, . . . of some
output alphabet. The meaning of this is that when a is sent through the channel, one
of a1, a2, . . . is received, say according to some probability distribution. However, in
this model we are interested in transmissions that are 100% error-free, and so we define
confoundability as follows. Let a ∈ � be as above, and let b ∈ � have b1, b2, . . . as the
corresponding members of the output alphabet. We say that a and b are confoundable
if ai = bj for some i, j , and otherwise we say that they are unconfoundable. Finally,
we say that two words x, y ∈ �t of length t are unconfoundable if for at least one
coordinate i the corresponding entries xi and yi are unconfoundable.

As an example, let � = {a, b, c, d, e}, where the confoundable pairs are precisely
ab, bc, cd, de, ea. In that case the symbols a, c may be sent without danger of confusion,
and hence there are at least 2nn-symbol error-free messages obtained by taking all n-ele-
ment sequences of the symbols a and c. But we can do better. The 2-symbol messages
ab, bd, ca, dc, ee are pairwise unconfoundable (for instance a may be confused with b,
but b cannot be confused with d , and hence the pairs ab and bd are unconfoundable),
and by forming arbitrary words composed of those two-letter words we see that there are
at least 5
n/2� n-symbol error-free messages, an improvement over the earlier bound. An
asymptotic study of the bit-per-symbol error-free transmission rate leads to the notion
of Shannon capacity of a graph [39], as follows.
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Let G be the graph with vertex-set � and edge-set all pairs of unconfoundable ele-
ments of �. Thus we are interested in maximum cliques of Gt , where Gt is the graph
with vertex-set all t-tuples of vertices of G in which two such t-tuples are adjacent if and
only if for some coordinate the corresponding entries are adjacent in G. The Shannon
capacity of G is defined as

lim
n→∞

1

n
log ω(Gn).

It is easy to see that the limit exists. Moreover, we have the following inequalities:
ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G). Thus it follows that if χ(G) = ω(G), then the
Shannon capacity is equal to the logarithm of this value. This raises the question of
what are the minimal graphs that do not satisfy χ(G) = ω(G), and that lead Berge to
formulate his influential conjectures.

The Shannon capacity is a notoriously difficult parameter to compute. For instance,
a celebrated result of Lovász [27] says that the Shannon capacity of the cycle of length
five is 1

2 log 5. The lower bound follows from our discussion two paragraphs above, but
the upper bound is a deep result. Lovász’ proof uses a new parameter, based on geomet-
ric representation of graphs, the so-called theta function of graphs. The theta function
played a crucial role in the theory of Grötschel, Lovász and Schrijver that we discuss in
the next section.

Incidentally, the Shannon capacity is not known for many small graphs. For instance,
it is not known for odd cycles of length at least seven.

6. Miscellaneous connections

Grötschel, Lovász and Schrijver [19] developed a general theory of geometric optimi-
zation based on the ellipsoid method [22]. One consequence of this theory is that an
optimal coloring and a maximum clique of a perfect graph can be found in polynomial
time. More generaly, the theory provided the first theoretically efficient algorithm for
semi-definite programming. Semi-definite programs are linear programs over the cones
of semi-definite matrices. Practitioners have been formulating and solving semi-definite
programs for decades, although they knew of no theoretically efficient algorithm to solve
them. As pointed out in [35], algorithms to solve semi-definite programs grew out of the
theory of perfect graphs.

An application of perfect graphs to municipal services is described in [41] and
[42]. A more recent application area of perfect graphs has been investigated by Gerke,
McDiarmid and Reed [16–18, 31, 32]. Motivated by the radio channel assignment prob-
lem they introduced and studied a new parameter, called the imperfection ratio. There
are several equivalent definitions, but the easiest for us to state is the following: the
imperfection ratio of a graph, denoted by imp(G), is the minimum number t such that
QSTAB(G) ⊆ tSTAB(G). Thus by (3.4) imp(G) = 1 if and only if G is perfect.
Furthermore, imp(G) = imp(G), generalizing (3.1). We refer to [31] for more details,
including background on the channel assignment problem.
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7. Graph entropy

Körner [25] studied the following problem. Let G be a graph, and let P = (pv : v ∈
V (G)) be a probability distribution on V (G). We will think of V (G) as a finite alphabet
whose elements are being emitted by a discrete memoryless and stationary information
source according to the probability distribution P .Adjacency in G is interpreted as distin-
guishability. Two t-tuples of vertices of G are distinguishable if they are distinguishable
in at least one coordinate, and are indistinguishable otherwise.

We wish to examine the performance of a best possible encoding. Here for ε > 0 an
ε-encoding is a mapping from V (G)t → M , where M is some set, such that there is a set
� ⊂ V (G)t of probability (in the product space) at least 1 − ε such that every two dis-
tinguishable t-tuples from � are mapped onto different elements of M . The rate of this
encoding is defined as log |M|

t
. Let R(G, P, t, ε) denote the smallest possible rate over

all possible ε-encodings. Of interest is the value lim infε→0 lim inf t→∞ R(G, P, t, ε).
This is the graph entropy H(G, P ), introduced by Körner [25]. Körner gave several
descriptions of H(G, P ), including the following.

7.1 Let G be a graph, and let P be a probability distribution on V (G). Then H(G, P ) =
minx∈STAB(G)

∑
v∈V (G) pv log 1

pv
.

If G is the complete graph, then H(G, P ) specializes to the classical notion of entropy
of a probability distribution, namely H(P ) = ∑n

i=1 pi log 1
pi

. From an information the-

ory point of view it is interesting to study graphs for which H(G, P )+H(G, P ) = H(P )

for every probability distribution P . By a theorem of Cziszár, Körner, Lovász, Marton
and Simonyi [12] this holds if and only if G is perfect. Simonyi [40] recently general-
ized this by showing that maxP

(
H(G, P ) + H(G, P ) − H(P )

) = log imp(G), where
imp(G) is the imperfection ratio mentioned earlier.

Finally, let us mention that graph entropy and perfection played important roles in
the sorting algorithm of Kahn and Kim [21].

8. Outline of the proof

We now come to the second part of the paper. In the remainder of the text we will outline
our proof of (1.1). It is customary to call a graph Berge if it has no odd hole and no odd
antihole. Thus in order to prove (1.1) we must show that every Berge graph is perfect. We
use a strategy originated by Conforti, Cornuéjols and Vušković. They conjectured that
every Berge graph either belongs to one of the four classes introduced in Section 2, or
has a separation of one of two kinds. This is a reasonable plan, because similar approach
was successful for many other graph theory problems, for instance [29, 30, 36, 37, 43],
and many others. We were able to prove this conjecture, but to deduce (1.1) we needed
to prove a minor modification of it. Let us first introduce the two kinds of separation.
A 2-join in G is a partition (X1, X2) of V (G) so that there exist disjoint nonempty sets
Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2, every vertex of B1 is adjacent
to every vertex of B2, and there are no other edges between X1 and X2,
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• for i = 1, 2, every component of G|Xi meets both Ai and Bi , and
• for i = 1, 2, if |Ai | = |Bi | = 1 and G|Xi is a path joining the members of Ai and

Bi , then it has odd length ≥ 3.

Cornuéjols and Cunningham [11] (see also [10]) proved that no minimal counterexample
to (1.1) has a 2-join. More precisely, they proved:

8.1 No minimally imperfect graph has a 2-join.

Moreover, 2-joins afford a decomposition into two smaller graphs such that the
original graph is Berge if and only if both the new graphs are Berge, and the same holds
for perfection. By (3.1) it follows that the complement of a minimal counterexample to
(1.1) also has no 2-join.

Let us discuss skew partitions now. A set X ⊆ V (G) is connected if G|X is con-
nected or if X is empty; and anticonnected if G|X is connected.A skew partition in G is a
partition (A, B) of V (G) so that A is not connected and B is not anticonnected. Chvátal
[3] conjectured that no minimal imperfect graph has a skew partition. This follows from
(1.1): by (1.1) the only minimal imperfect graphs are odd holes and odd antiholes, and
it is easy to check that those graphs have no skew partition. But in order to be able to use
Chvátal’s conjecture we would need a proof from first principles, and we were unable to
find one. However, it turned out that for our purposes a restricted class of skew partitions
sufficed, what we call even skew partitions.

An antipath is a subgraph whose complement is a path. The length of a path is the
number of edges in it and the length of an antipath is the number of edges in its com-
plement. A skew partition (A, B) is even if every induced path of length at least two
with ends in B and with interior in A is even, and every induced antipath of length at
least two with ends in A and with interior in B is even. The significance of even skew
partitions is that we can prove a variant of Chvátal’s skew partition conjecture for them.
Let us say a minimum imperfect graph is a Berge graph G such that G is not perfect, but
every Berge graph H with |V (H)| < |V (G)| is perfect.

8.2 No minimum imperfect graph has an even skew partition.

We give a proof of (8.2) at the end of this section. Our main result is a version of
the conjecture of Conforti, Cornuéjols and Vušković, with skew partitions replaced by
even skew partitions. It turns out that if we do that, then we need another basic class, the
following.

Let H be a bipartite graph, with bipartition (A, B). For each vertex v ∈ V (H) take
two new vertices sv, tv , and make a graph G with V (G) = {sv, tv : v ∈ V (H)}. The
edges of G are as follows:

• for v ∈ V (H), sv is adjacent to tv if v ∈ A, and sv is nonadjacent to tv if v ∈ B.
• for distinct u, v ∈ A, there are no edges between su, tu and sv, tv
• for distinct u, v ∈ B, both su, tu are adjacent to both sv, tv .
• for u ∈ A and v ∈ B, there are exactly two edges joining one of su, tu to one of

sv, tv; if uv ∈ E(H) then susv and tutv are edges of G, and otherwise sutv and tusv
are edges of G.



Progress on perfect graphs 413

We call such a graph G a double split graph. Let us say a graph G is basic if either G or
G is bipartite or is the line graph of a bipartite graph, or is a double split graph. (Note
that if G is a double split graph then so is G.) It is easy to see that all double split graphs
are perfect, and thus all basic graphs are perfect by the results discussed in Section 2.

If X, Y ⊆ V (G) are disjoint, we say X is complete to Y (or the pair (X, Y ) is com-
plete) if every vertex in X is adjacent to every vertex in Y ; and we say X is anticomplete
to Y if there are no edges between X and Y . An M-join in G is a partition of V (G) into
six nonempty sets, (A, B, C, D, E, F ), so that:

• every vertex in A has a neighbor in B and a nonneighbor in B, and vice versa
• the pairs (C, A), (A, F ), (F, B), (B, D) are complete, and
• the pairs (D, A), (A, E), (E, B), (B, C) are anticomplete.

M-joins are closely related to “homogenous sets" of Chvátal and Sbihi [4], and it follows
from their work that no minimally imperfect graph has an M-join. Our main result is as
follows.

8.3 For every Berge graph G, either G is basic, or one of G, G admits a 2-join, or G

admits an M-join, or G admits an even skew partition.

The introduction of double split graphs is necessary, because, in general, even though
double split graphs have skew partitions, they do not have even ones. The first author
has shown in her PhD thesis [5] that M-joins are not needed in the sense that the above
theorem remains true if we omit the outcome that G has an M-join. However, to prove
this strengthening required an amount of effort comparable to the proof of (8.3) itself.
By (8.1), (8.2) and the preceding discussion, theorem (8.3) implies (1.1).

In the remainder of this section we prove (8.2). In fact, we prove something seem-
ingly stronger. Let us say a skew partition (A, B) in a graph G is rigid if there exists a
maximal anticonnected set B1 ⊆ B such that the graph obtained from G by adding a
new vertex joined precisely to all the vertices in B1 is Berge. It follows that (A, B) is
rigid if and only if every induced path of length at least two with both ends in B1 and
interior in A is even, and every induced antipath of length at least two with both ends in
A and interior in B1 is even. Thus every even skew partition is rigid, and hence (8.2) is
implied by the following. Our proof incorporates results of Chvátal [3] and Hoàng [20].

8.4 No minimum imperfect graph has a rigid skew partition.

Proof. Suppose for a contradiction that G is a minimum imperfect graph with a rigid
skew partition (A, B), and let B1 be as in the definition of rigid. If one component of A

has only one vertex, then by considering the vertex-set of that component we find that
(B, A) is a rigid skew partition of G. Thus we may assume that if some component of
A has only one vertex, then |B1| = 1.

Let A1 be the vertex-set of a component of G|A, and let A2 = A − A1. For i = 1, 2
let Gi be the subgraph of G induced by Ai ∪ B. Let k = ω(G) and s = ω(B1). (For
Z ⊆ V (G) we define ω(Z) to be the size of a largest clique contained in Z.) We need
the following claim.

Claim. For i = 1, 2 there exists a set Xi ⊆ V (Gi) such that Xi ∩ B = B1, ω(Xi) = s

and ω(Gi\Xi) ≤ k − s.
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It suffices to prove the claim for i = 1. Assume first that |B1| = 1. Since G1 is
perfect by the minimality of G, it has a coloring using k colors. Let X1 be the color class
containing the unique element of B1. Then X1 is as desired, because B1 is complete to
B − B1. Thus we may assume that |B1| > 1, and hence by the choice of (A, B) above
we have |A1| ≥ 2 and |A2| ≥ 2.

Let G′
1 be the graph obtained from G1 by adding a vertex z joined to precisely the

vertices of B1. Then G′
1 is Berge by the rigidity of (A, B), and hence is perfect by the

minimality of G and the fact that |A2| ≥ 2. Let G′′
1 be obtained from G′

1 by replacing
z by a clique K of size k − s, all of whose vertices are adjacent to B1 and to no other
vertex of G1. Then G′′

1 is perfect by (3.3). We have ω(G′′
1) ≤ k by construction, and

hence G′′
1 has a coloring using k colors. Exactly k − s of those colors appear on K , and

hence exactly s colors appear on vertices of B1. Let X1 be the set of all vertices of G1
colored using one of those s colors. Since B1 is complete to B − B1, it follows that X1
is as desired. This proves the claim.

Now let X1 and X2 be as in the claim. It follows that ω(X1∪X2) = s and ω(G\(X1∪
X2)) ≤ k − s. Thus G|(X1 ∪ X2) can be colored using s colors, and G\(X1 ∪ X2) can
be colored using k − s colors, because both those graphs are perfect by the minimality
of G. It follows that G is k-colorable, contrary to the fact that G is minimum imperfect.

��

9. Line graphs

In the rest of the paper we outline the proof of (8.3). The first step is to show that if G

contains a line graph of a bipartite subdivision of a “large" 3-connected graph, then either
G is itself a line graph of a bipartite graph, or it has one of the separations mentioned in
(8.3).

9.1 Let G be a Berge graph, let J be a 3-connected graph, let H be a bipartite subdi-
vision of J , and let L(H) be an induced subgraph of G. Assume further that H 	= K3,3,
and that if J = K4, then some edge of every 4-cycle of J is subdivided in H . Then G is
a line graph of a bipartite graph, or has a 2-join or has an even skew partition.

Let us sketch the main steps in the proof of (9.1). First, it is convenient to enlarge
L(H) into a certain auxiliary structure, which we call a J -strip system. Let J be
3-connected, and let G be Berge. A J -strip system in G is a pair (S, N), where Suv =
Svu ⊆ V (G) for each edge uv of J , and Nv ⊆ V (G) for each vertex v of J such that
(for uv ∈ E(J ), a uv-rung means an induced path R of G with ends s, t say, where
V (R) ⊆ Suv , and s is the unique vertex of R in Nu, and t is the unique vertex of R in
Nv)

(i) the sets Suv (uv ∈ E(J )) are pairwise disjoint,
(ii) for each u ∈ V (J ), Nu ⊆ ⋃

(Suv : v ∈ V (J ) adjacent to u),
(iii) for each uv ∈ E(J ), every vertex of Suv is in a uv-rung,
(iv) if uv, wx ∈ E(J ) with u, v, w, x all distinct, then there are no edges between Suv

and Swx ,
(v) if uv, uw ∈ E(J ) with v 	= w, then Nu ∩ Suv is complete to Nu ∩ Suw, and there

are no other edges between Suv and Suw.
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Now L(H) gives rise to a J -strip system (S, N) as follows. First notice that V (J ) ⊆
V (H), and that each edge uv ∈ E(J ) corresponds to a path in H . Let f1, f2, . . . , fk

be the edges of that path, in order, such that f1 is incident with u. Then f1, f2, . . . , fk

is the vertex-set of an induced path of L(H). We put f1 into Nu, fk into Nv , and define
Suv := {f1, f2, . . . , fk}. By repeating this for every edge of J we arrive at a J -strip
system, which we call the J -strip system derived from L(H).

If (S, N) is a J -strip system in G, we define V (S, N) to be the union of Suv over all
edges of J . Thus Nv ⊆ V (S, N) for every v ∈ V (J ).

We say that a set X saturates the J -strip system (S, N) if for every u ∈ V (J ) there is
at most one neighbor v of u in J such that Nu ∩Suv 	⊆ X. A vertex u ∈ V (G)−V (S, N)

is major if its neighbors in V (S, N) saturate (S, N), and minor otherwise. A set X ⊆
V (S, N) is local if either X ⊆ Nv for some v ∈ V (J ), or X ⊆ Suv for some edge
uv ∈ E(J ). For the proof of (9.1) we first choose J with |V (J )| maximum, start with
the J -strip system derived from L(H), and enlarge it to a J -strip system with V (S, N)

maximum. The advantage of that is that now we have the following lemma:

9.2 Let F ⊆ V (G) − V (S, N) be connected and contain no major vertices. Then the
set of neighbors in V (S, N) of vertices in F is a local set.

We will not give a proof of this lemma, but let us point to Figure 1 for illustration.
Let (S, N) be the J -strip system derived from L(H), where J and H are as in Figure 1.
There is a unique component F of V (G)−V (S, N), and the neighbors of F do not form
a local set. But the strip system is not maximal: the set F can be added to the J -strip
system (S, N).

Now for the proof of (9.1). Suppose first that there is a major vertex, and let Y be a
maximal anticonnected set of major vertices. Let X be the set of common neighbors of
vertices in Y . It can be shown that X saturates the strip system, and from there it is not
hard to produce first a skew partition, and then an even skew partition.

Thus we may assume that there are no major vertices. If there is a component F

of G\V (S, N) whose set of neighbors is a subset of Nv for some v ∈ V (J ), then
(V (G) − Nv, Nv) is a skew partition, and it is not hard to convert it into an even skew
partition. On the other hand we may assume that G 	= L(H), and so by (9.2) there is an
edge uv ∈ E(J ) such that either Suv is not a path, or some component of G\V (S, N)

has all its neighbors in Suv . Let F be the union of all such components. Then the partition
(F ∪ Suv, V (G) − F − Suv) is a 2-join in G. This completes the sketch of the proof of
(9.1).

If H = K3,3, then the same argument works, except for the step where we deduce
that the set of common neighbors of a maximal anticonnected component of major

Fig. 1. J , H , L(H) and G
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Fig. 2. Line graph of a subdivision of K4

vertices saturates the strip system. However, if that outcome does not hold, then we find
that there is a bipartite subdivision H ′ of K3,3, itself not equal to K3,3, such that L(H ′)
is an induced subgraph of the complement of G. In that case we apply (9.1) to H ′ and
G. This proves

9.3 Let G be a Berge graph, let J be a 3-connected graph, let H be a bipartite subdi-
vision of J , and let L(H) be an induced subgraph of G. Assume further that if J = K4,
then some edge of every 4-cycle of J is subdivided in H . Then G or its complement is a
line graph of a bipartite graph, or has a 2-join or has an even skew partition.

Let us now assume that J = K4, and that no edge of some 4-cycle of J is subdivided
in H . Then L(H) is pictured in Figure 2; let P1, P2 and v1, v2, v3, v4 be as in that figure.
Let Q1 denote the antipath with vertex-set {v1, v3}, and let Q2 denote the antipath with
vertex-set {v2, v4}. Notice that if one of P1, P2 has length at least two (and hence at least
three, because they are odd), then L(H) has a 2-join, whereas if they both have length
one, then L(H) is a double split graph. Thus our strategy is as follows. First, we collect
all such paths P1, P2, . . . and antipaths Q1, Q2, . . . . More generally, we enlarge them
into strips and “antistrips", and maximize the resulting structure S. We divide vertices
of V (G) − V (S) into major and minor similarly as before. Here the situation is nicer,
because the structure is invariant under taking complements, and taking complements
turns minor vertices into major ones, and vice versa. As before, if there is a major vertex,
then a maximal anticonnected component of such vertices gives rise to a skew partition,
and similarly for connected components of minor vertices. Finally, if all of G falls into
the structure, then either the structure proves that G is a double split graph, or G has a
2-join. Thus we have

9.4 Let G be a Berge graph, let H be a bipartite subdivision of a 3-connected graph,
and let L(H) be an induced subgraph of G. Then G is a double split graph, or has an
even skew partition, or it or its complement is a line graph of a bipartite graph, or has
a 2-join.

10. Prisms

A triangle in a graph G is a cycle of length three. Let a1a2a3 and b1b2b3 be disjoint
triangles, and let P1, P2, P3 be three vertex-disjoint induced paths in G, where Pi has
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ends ai and bi , and at least one of P1, P2, P3 has length at least two. Assume further that
for 1 ≤ i < j ≤ 3 there are no edges between Pi and Pj , except for aiaj and bibj . In
those circumstances we say that P1 ∪ P2 ∪ P3 is a prism in G. Thus a prism is the line
graph of the graph consisting of three internally disjoint paths joining the same pair of
vertices. A version of the following result was suggested to the third author by Kristina
Vušković.

10.1 Let G be a Berge graph containing a prism such that neither G nor G has an
induced subgraph isomorphic to the line graph of a bipartite subdivision of a 3-con-
nected graph. Then either one of G, G admits a 2-join, or G admits an even skew
partition, or G admits an M-join.

If G is Berge, and P1, P2, P3 are the paths of a prism in G, then it is easy to see
that P1, P2, P3 have the same parity. If they are all even, then (10.1) can be proven
by a method analogous to the proof of (9.1). However, the proof is much harder when
P1, P2, P3 are odd. We refer to [6] for the details.

There is another graph that can be excluded by similar methods. A double diamond
is the graph with vertex-set {a1, a2, a3, a4, b1, b2, b3, b4} and the following adjacencies:
every two ai’s are adjacent except for a3a4, every two bi’s are adjacent except for b3b4,
and ai is adjacent to bi for all i = 1, 2, 3, 4.

10.2 Let G be a Berge graph such that no induced subgraph of G or G is isomorphic to
a prism or the line graph of a bipartite subdivision of a 3-connected graph. If the double
diamond is an induced subgraph of G, then either G or G admits a 2-join, or G admits
an even skew partition.

11. Skew partitions revisited

Let us say a Berge graph G is bipartisan if no induced subgraph of G or G is iso-
morphic to the double diamond, a prism, or the line graph of a bipartite subdivision of
a 3-connected graph. In view of (9.4), (10.1) and (10.2) it suffices to prove (8.3) for
bipartisan graphs. From (8.1), (8.2) and the perfection of basic graphs we deduce that
every minimum imperfect graph is bipartisan.

It turns out that stronger theorems hold for bipartisan graphs, and in this section
we discuss one such result. It can be shown that if a bipartisan graph has a skew parti-
tion, then it has an even skew partition. Thus in the remainder of the proof of (8.3) we
do not need to concern ourselves with checking whether a particular skew partition is
even. Here we confine ourselves to proving the essential part of Chvátal’s skew partition
conjecture:

11.1 No minimum imperfect graph admits a skew partition.

In the proof we will need the following beautiful and powerful theorem of Roussel
and Rubio [38]. (We proved it independently, in joint work with Carsten Thomassen, but
Roussel and Rubio found it earlier.) We use it many times in our proof of (1.1). So far
we have not shown enough detail to demonstrate its usefulness, but its time has come.
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11.2 Let G be a Berge graph, let X ⊆ V (G) be anticonnected, and let P be an induced
path in G\X of odd length, such that both ends of P are complete to X. Then either

(i) some internal vertex of P is complete to X, or
(ii) the path P has length at least five and there exists an induced path Q with both

ends in X such that P and Q has the same interior, or
(iii) the path P has length three and there is an induced odd antipath joining the internal

vertices of P with interior in X.

Please note that if (ii) above holds, then G has a prism. Thus for bipartisan graphs
we have the following simpler version.

11.3 Let G be a bipartisan Berge graph, let X ⊆ V (G) be anticonnected, and let P

be an induced path in G\X of odd length, such that both ends and no internal vertex
of P are complete to X. Then the path P has length three and there is an induced odd
antipath joining the internal vertices of P with interior in X.

Since, as noted above, every minimum imperfect graph is bipartisan, (11.1) follows
from (8.4) and the following result.

11.4 If a bipartisan Berge graph has a skew partition, then it has a rigid skew partition.

Proof. Let G be a bipartisan Berge graph, and let (A, B) be a skew partition in G chosen
so that B is minimal with respect to inclusion. Assume first that some v ∈ B has no
neighbor in some component of G|A. Since (A∪{v}, B −{v}) is not a skew partition of
G by the minimality of B, we deduce that B −{v} is anticonnected. Thus v is adjacent to
every vertex of B − {v}, and hence by considering the anticonnected component {v} of
G|B we deduce that (A, B) is rigid, as desired. Thus we may assume that every v ∈ B

has a neighbor in every component of G|A.
We now prove the following claim.

Claim. Let B1 be a maximal anticonnected subset of B. If some vertex u ∈ A is adjacent
to every vertex of B1, then (A, B) is rigid.

To prove the claim let first P be an induced path of length at least two with both ends
in B1 and interior in A. We must prove that P is even. The interior of P belongs to a
component of G|A with vertex-set A1, say. If u 	∈ A1, then P can be completed to a
hole by adding u. Since this hole is even, it follows that P is even. Thus we may assume
that u ∈ A1. Let A2 be the vertex-set of another component of G|A. Since every vertex
of B has a neighbor in A2, there exists an induced path P ′ with the same ends as P and
with interior contained in A2. By completing this path to a hole through the vertex u we
see that P ′ is even. Thus P is even, for otherwise P ∪ P ′ is an odd hole.

Now let Q be an induced antipath of length at least two with both ends in A and
interior in B1, and suppose for a contradiction that Q is odd. The ends of Q belong to the
same component of G|A. Let the vertex-set of that component be A′

1, and let A′
2 be the

vertex-set of another component of G|A. By (11.3) applied in the complement of G to
the path Q and anticonnected set A′

2 we deduce that Q has length three. Thus Q is also
a path of length three, with both ends in B1 and interior in A, contrary to the previous
paragraph. This proves the claim.
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To prove the theorem we may assume that (A, B) is not rigid, and hence there exists
a maximal anticonnected set B1 ⊆ B such that the graph obtained from G by adding
a vertex adjacent to precisely the vertices of B1 is not Berge. This means that there is
either an induced odd path of length at least two with both ends in B1 and interior in A,
or an induced odd antipath of length at least two with both ends in A and interior in B1.
Let B2 be a maximal anticonnected subset of B other than B1.

Assume first that there exists an induced path P of length at least five with both ends
in B1 and interior in A. By applying (11.3) to P and B2 we deduce that some internal
vertex of P is adjacent to every vertex of B2, and hence (A, B) is rigid by the claim.
Thus we may assume that no such path P exists.

If P is as in the previous paragraph, but of length three, then it is also an antipath
with both ends in A and interior in B1. Thus it follows that G has an induced odd antipath
Q1 with both ends in A and interior in B1. Let x1, y1 ∈ A be the ends of Q1. Since
they are adjacent, they belong to the same component of G|A. Let the vertex-set of that
component be A1, and let A2 be the vertex-set of another component of G|A. By (11.3)
applied in the complement of G to the path Q1 and anticonnected set A2 we deduce that
Q1 has length three (let its internal vertices be b1 and b′

1) and that there exists an induced
odd path P2 with ends b1 and b′

1 and all internal vertices in A2. By the conclusion of
the previous paragraph the path P2 has length three; let its vertices be b1, x2, y2, b

′
1, in

order. By the claim and (11.3) applied to the path P2 and anticonnected set B2 we may
assume that there exists an induced odd antipath Q2 with ends x2, y2 and interior in B2.
The proof that Q1 has length three applies to Q2 as well, and so Q2 has length three.
Thus Q2 is also a three-edge path; let its vertex set be b2, x2, y2, b

′
2, in order. Since Q1

cannot be completed to an odd antihole by adding b2 or b′
2, we deduce that each of them

has a neighbor in {x1, y1}. But they do not have a common neighbor in {x1, y1}, for
otherwise Q2 can be completed to an odd antihole using that common neighbor. Thus
either b2 is adjacent to x1 and not to y1 and b′

2 is adjacent to y1 and not to x1, or b′
2 is

adjacent to x1 and not to y1 and b2 is adjacent to y1 and not to x1. In the former case the
subgraph of G induced by {x1, y1, x2, y2, b1, b

′
1, b2, b

′
2} is a double diamond, and in the

latter case it is isomorphic to the line graph of the graph K3,3 with one edge deleted. In
either case this is a contradiction to the fact that G is bipartisan. ��

We remark that (11.1) comes short of proving Chvátal’s skew partition conjecture in
its full generality, because Chvátal conjectured the same conclusion for minimal imper-
fect graphs. However, (11.1) is sufficiently strong for the proof of (1.1), which in turn
implies Chvátal’s conjecture.

12. Wheels

As we pointed out earlier, it suffices to prove (8.3) for bipartisan graphs. For bipartisan
graphs a stronger result holds.

12.1 Let G be a bipartisan graph such that G and G are not bipartite. Then G has an
even skew partition.

The proof of (12.1) is still fairly long, and perhaps somewhat less natural than the
earlier steps. Our strategy, originally initiated by Conforti and Cornuéjols [7], is to use
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wheels. If Y ⊆ V (G), then we say that an edge of G is Y -complete if both its ends are
complete to Y . A wheel in a graph G is a pair (C, Y ), where C is a hole in G of length
at least six and Y ⊆ V (G) − V (C) is a non-empty anticonnected set such that there are
two disjoint Y -complete edges of C. We call C the rim and Y the hub of the wheel.

12.2 If (C, Y ) is a wheel in a Berge graph, then C has an even number of Y -complete
edges.

Proof. If not, then, since C is even, it has an odd subpath P of length at least three
with both ends but no internal vertex complete to Y . By (11.2) applied to P and Y there
exists either an induced odd path R as in (11.2)(ii) or an induced odd antipath Q as in
(11.2)(iii). Since C has two Y -complete edges, it has a vertex z 	∈ V (P ) complete to Y .
By adding z to R or Q as appropriate we obtain an odd hole or an odd antihole in G, a
contradiction. ��

Let (C, Y ) be a wheel in a Berge graph G. We say that two vertices u, v ∈ V (C)

have the same wheel parity if a subpath of C joining them contains an even number
of Y -complete edges (in which case so does the other subpath of C joining them, by
(12.2)), and we say they have opposite wheel parity otherwise. Now let X be the set of
all common neighbors of vertices of Y . Let us say that the wheel (C, Y ) is separable if
some set Z ⊆ X ∪ Y intersects both X and Y and separates a vertex of one wheel parity
from a vertex of the opposite wheel parity. This is a desirable property, because in this
case (V (G)−Z, Z) is a skew partition of G. Unfortunately, not all wheels are separable.
First, let us point out the significance of prisms. In the example of Figure 3 the wheel
(C, {y1, y2}) (C is shown thick) is not separable. If the path P joining the vertices u

and v has length at least two (in fact, it must be odd), then G has a prism, while if P

has length one, then the complement of G has a prism. This example illustrates that the
absence of prisms eliminates a large class of wheels that are not separable.

But even in bipartisan graphs not all wheels are separable. For instance, consider
the graph in Figure 4. It is tempting to replace C by the hole vv1v2v3v4v5, but then {y}
is no longer a hub. However, this argument does work when (C, Y ) is an “odd wheel".
A Y -segment is a maximal subpath of C whose vertices are all complete to Y . We say
that a wheel (C, Y ) is an odd wheel, if it has an odd Y -segment. For odd wheels the
above argument indeed works: if the difficulty indicated in Figure 4 arises, then we can
reroute the rim to obtain another odd wheel, which is better in a certain way. Thus we

P

u vy1 2y

Fig. 3. A non-separable odd wheel



Progress on perfect graphs 421

C

v

v
v

v

v
v

y5

4
3

2

1

Fig. 4. A non-separable wheel in a bipartisan graph

can show that some carefully selected wheel is separable, and so we have the following
result, obtained independently by Conforti, Cornuéjols, Vušković and Zambelli [8].

12.3 If a bipartisan graph has an odd wheel, then it has an even skew partition.

How about wheels that are not odd? Those require a different approach. Let (C, Y )

be such a wheel in a bipartisan graph. Then there are three consecutive vertices u1, u0, u2
on C, all complete to Y . We now find a maximal sequence u1, u2, . . . , ut of vertices
complete to Y ∪ {u0} such that for all i = 3, 4, . . . , t

• there exists a connected subset of V (G) including V (C) − {u0, u1, u2}, containing
a neighbor of ui , containing no neighbor of u0 and containing no vertex complete to
{u1, u2, . . . , ui−1}, and

• the vertex ui is not complete to {u1, u2, . . . , ui−1}.
Let U = {u1, u2, . . . , ut }, and let V be the set of all U -complete vertices other than
u0. Now it is almost true that the set U ∪ V separates {u0} from V (C) − {u0, u1, u2},
in which case (V (G) − U − V, U ∪ V ) is a skew partition. Thus we show (see [6] for
details) that either G has a skew partition, or G has a wheel (C′, Y ′), where Y is a proper
subset of Y ′. By choosing the original wheel with Y maximal we therefore obtain an
extension of (12.3) to all wheels.

Finally, we must prove that for every bipartisan graph, either it satisfies the con-
clusion of (12.1), or either it or its complement contains a wheel. We refer to [6] for
full details. A weaker result (using a less restricted definition of a wheel) was obtained
independently by Conforti, Cornuéjols and Zambelli [9].

Acknowledgements. We would like to acknowledge our debt to Michele Conforti, Gérard Cornuéjols and
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