A shorter proof of the path-width theorem

Paul Seymour ${ }^{1}$
Princeton University, Princeton, NJ 08544

September 9, 2023; revised September 10, 2023
${ }^{1}$ Supported by AFOSR grant FA9550-22-1-0234, and NSF grant DMS-2154169.

Abstract

A graph has path-width at most w if it can be built from a sequence of graphs each with at most $w+1$ vertices, by overlapping consecutive terms. Every graph with path-width at least $w-1$ contains every w-vertex forest as a minor: this was originally proved by Bienstock, Robertson, Thomas and the author, and was given a short proof by Diestel. Here we give a proof even shorter and simpler than that of Diestel.

1 The proof

All graphs in this paper are finite, and may have loops or parallel edges. If G is a graph, $|G|$ denotes its number of vertices, and for $A \subseteq V(G), G[A]$ denotes the subgraph induced on A. A path-decomposition of a graph G is a sequence $\left(W_{1}, \ldots, W_{n}\right)$ of subsets of $V(G)$ (called bags), with union $V(G)$, such that for every edge $u v$ of G there exists i such that $u, v \in W_{i}$, and such that $W_{i} \cap W_{k} \subseteq W_{j}$ for $1 \leq i<j<k \leq n$; and it has width at most w if $\left|W_{i}\right| \leq w+1$ for each i. A graph has path-width at most w if it admits a path-decomposition with width at most w. Robertson and the author [3] proved that for every forest F, all graphs that do not contain F as a minor have bounded path-width (and the conclusion is false for all graphs F that are not forests); and later Bienstock, Robertson, Thomas and author [1] proved:
1.1 For every forest F, every graph that does not contain F as a minor has path-width at most $|F|-2$.

This is tight, since a complete graph on $|F|-1$ vertices has path-width $|F|-2$ and does not contain F as a minor. It was given a short proof by Diestel [2], but there is an even shorter proof, that we present here.

A model of a loopless graph H in a graph G is a map ϕ with domain $V(H) \cup E(H)$, such that

- $\phi(h)$ is a non-null connected subgraph of G for each $h \in V(H)$, and $\phi(h), \phi\left(h^{\prime}\right)$ are vertexdisjoint for all distinct $h, h^{\prime} \in V(H)$;
- $\phi(f) \in E(G)$ for each $f \in E(H)$, and $\phi(f) \neq \phi\left(f^{\prime}\right)$ for all distinct $f, f^{\prime} \in E(H)$;
- if $f \in E(H)$ is incident in H with $h \in V(H)$, then $\phi(f)$ is incident in G with a vertex of $\phi(h)$.

Thus there is a model of H in G if and only if G contains H as a minor.
A separation of G is a pair (A, B) of subsets of $V(G)$ with union $V(G)$, such that there are no edges between $A \backslash B$ and $B \backslash A$, and its order is $|A \cap B|$. If (A, B) and ($\left.A^{\prime}, B^{\prime}\right)$ are separations of G, we write $(A, B) \leq\left(A^{\prime}, B^{\prime}\right)$ if $A \subseteq A^{\prime}$ and $B^{\prime} \subseteq B$. For each integer $w \geq 0$, we say a separation (A, B) of a graph G is w-good if there is a path-decomposition of $G[A]$ with width at most w and with last bag $A \cap B$. We need the following observation, which is the heart of the proof:
1.2 If $\left(A^{\prime}, B^{\prime}\right)$ and (P, Q) are separations of G, where $\left(A^{\prime}, B^{\prime}\right)$ is w-good and $(P, Q) \leq\left(A^{\prime}, B^{\prime}\right)$, and there are $|P \cap Q|$ vertex-disjoint paths of G between P and B^{\prime}, then (P, Q) is w-good.
Proof. Let $t=|P \cap Q|$, and let R_{1}, \ldots, R_{t} be disjoint paths between P and B^{\prime}. We may assume that each has only one vertex in B^{\prime}, and hence in $A^{\prime} \cap B^{\prime}$. Each of these paths has only its first vertex in P, and so if we contract the edges of R_{1}, \ldots, R_{t}, we preserve the subgraph $G[P]$. Let H be the union of $G[P]$ and the paths R_{1}, \ldots, R_{t}. Since $\left(A^{\prime}, B^{\prime}\right)$ is w-good, there is a path-decomposition of H of width at most w, such that its last bag consists of the t ends in B^{\prime} of the paths R_{1}, \ldots, R_{t}. But contracting the edges of R_{1}, \ldots, R_{t} brings this to a path-decomposition of $G[P]$ with last bag $P \cap Q$ (since each edge to be contracted has both ends inside a bag). This proves 1.2.

If (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ are separations of G, the second extends the first if $(A, B) \leq\left(A^{\prime}, B^{\prime}\right)$ and $|A \cap B| \geq\left|A^{\prime} \cap B^{\prime}\right|$. A w-good separation of G is maximal if no different w-good separation extends it. Let $w \geq 0$ be an integer, let T be a tree or the null graph, and let (A, B) be a separation of a graph G. We say that (A, B) is (w, T)-spanning if

- $|A \cap B|=|T|$;
- there is a model ϕ of T in $G[A]$ such that $V(\phi(h)) \cap A \cap B \neq \emptyset$ for each $h \in V(T)$; and
- if $|T| \leq w+1$ then (A, B) is maximal w-good.

In order to prove 1.1, we may assume that F is a tree T say (by adding edges to F if necessary), and so it suffices to prove:
1.3 Let $w \geq 0$ be an integer, let G be a graph that has path-width more than w, and let T be a tree or the null graph, with $|T| \leq w+2$. Then there is a (w, T)-spanning separation of G.

Proof. We proceed by induction on $|T|$, keeping w fixed. If $|T|=0$, the result holds since there is a maximal w-good separation of order zero, say (A, B) (possibly with $A=\emptyset$), which is therefore (w, T)-spanning. So we assume that $1 \leq|T| \leq w+2$ and the result holds for $|T|-1$. Choose $j \in V(T)$ with degree at most one, and if $|T| \geq 2$ let i be the neighbour of j in T.

From the inductive hypothesis, there is a $(w, T \backslash\{j\})$-spanning separation (A, B) of G, which is therefore maximal w-good, since $|T \backslash\{j\}|<w+2$. Let ϕ be a model of $T \backslash\{j\}$ in $G[A]$ such that $V(\phi(h)) \cap A \cap B \neq \emptyset$ for each $h \in V(T) \backslash\{j\}$. We choose $v \in B \backslash A$ as follows. If $|T|=1$, then $A \cap B=\emptyset$; choose $v \in B$ arbitrarily. (This is possible since $B \neq \emptyset$, because G has path-width more than w : this is the only place where we use that the path-width is large.) If $|T| \geq 2$, let $u \in V(\phi(i)) \cap B$. Then u has a neighbour $v \in B \backslash A$, since otherwise $(A, B \backslash\{u\})$ is w-good and extends (A, B), contradicting the maximality of (A, B). This defines v.

If $|T|=w+2$, then $(A \cup\{v\}, B)$ is (w, T)-spanning, so we may assume that $|T|<w+2$, and therefore $(A \cup\{v\}, B)$ is w-good. So there is a maximal w-good separation $\left(A^{\prime}, B^{\prime}\right)$ of G that extends $(A \cup\{v\}, B)$. Since $\left(A^{\prime}, B^{\prime}\right)$ does not extend (A, B) (because (A, B) is maximal w-good), its order is exactly $|T|$. Suppose that there is a separation (P, Q) of G of order less than $|T|$, with $(A \cup\{v\}, B) \leq(P, Q) \leq\left(A^{\prime}, B^{\prime}\right)$. Choose (P, Q) with minimum order; then it follows from Menger's theorem that there are $|P \cap Q|$ vertex-disjoint paths from P to B^{\prime}, and so from 1.2, (P, Q) is w-good. But (P, Q) extends (A, B), since $|P \cap Q| \leq|T|-1=|A \cap B|$, and $(P, Q) \neq(A, B)$ since $v \in P$, contradicting the maximality of (A, B). Thus there is no such (P, Q), and so by Menger's theorem, there are $|T|$ disjoint paths of G between $A \cup\{v\}$ and B^{\prime}. By combining these with the model ϕ, we deduce that $\left(A^{\prime}, B^{\prime}\right)$ is (w, T)-spanning. This proves 1.3.

References

[1] D. Bienstock, N. Robertson, P. Seymour and R. Thomas, "Quickly excluding a forest", J. Combinatorial Theory, Ser. B, 52 (1991), 274-283.
[2] R. Diestel, "Graph minors I: a short proof of the path-width theorem", Combinatorics, Probability and Computing, 4 (1995), 27-30.
[3] N. Robertson and P. Seymour, "Graph minors. I. Excluding a forest", J. Combinatorial Theory, Ser. B, 35 (1983), 39-61.

