A shorter proof of the path-width theorem

Paul Seymour¹ Princeton University, Princeton, NJ 08544

September 9, 2023; revised September 10, 2023

 $^1\mathrm{Supported}$ by AFOSR grant FA9550-22-1-0234, and NSF grant DMS-2154169.

Abstract

A graph has *path-width* at most w if it can be built from a sequence of graphs each with at most w+1 vertices, by overlapping consecutive terms. Every graph with path-width at least w-1 contains every w-vertex forest as a minor: this was originally proved by Bienstock, Robertson, Thomas and the author, and was given a short proof by Diestel. Here we give a proof even shorter and simpler than that of Diestel.

1 The proof

All graphs in this paper are finite, and may have loops or parallel edges. If G is a graph, |G| denotes its number of vertices, and for $A \subseteq V(G)$, G[A] denotes the subgraph induced on A. A path-decomposition of a graph G is a sequence (W_1, \ldots, W_n) of subsets of V(G) (called bags), with union V(G), such that for every edge uv of G there exists i such that $u, v \in W_i$, and such that $W_i \cap W_k \subseteq W_j$ for $1 \leq i < j < k \leq n$; and it has width at most w if $|W_i| \leq w + 1$ for each i. A graph has path-width at most w if it admits a path-decomposition with width at most w. Robertson and the author [3] proved that for every forest F, all graphs that do not contain F as a minor have bounded path-width (and the conclusion is false for all graphs F that are not forests); and later Bienstock, Robertson, Thomas and author [1] proved:

1.1 For every forest F, every graph that does not contain F as a minor has path-width at most |F| - 2.

This is tight, since a complete graph on |F| - 1 vertices has path-width |F| - 2 and does not contain F as a minor. It was given a short proof by Diestel [2], but there is an even shorter proof, that we present here.

A model of a loopless graph H in a graph G is a map ϕ with domain $V(H) \cup E(H)$, such that

- $\phi(h)$ is a non-null connected subgraph of G for each $h \in V(H)$, and $\phi(h), \phi(h')$ are vertexdisjoint for all distinct $h, h' \in V(H)$;
- $\phi(f) \in E(G)$ for each $f \in E(H)$, and $\phi(f) \neq \phi(f')$ for all distinct $f, f' \in E(H)$;
- if $f \in E(H)$ is incident in H with $h \in V(H)$, then $\phi(f)$ is incident in G with a vertex of $\phi(h)$.

Thus there is a model of H in G if and only if G contains H as a minor.

A separation of G is a pair (A, B) of subsets of V(G) with union V(G), such that there are no edges between $A \setminus B$ and $B \setminus A$, and its order is $|A \cap B|$. If (A, B) and (A', B') are separations of G, we write $(A, B) \leq (A', B')$ if $A \subseteq A'$ and $B' \subseteq B$. For each integer $w \geq 0$, we say a separation (A, B) of a graph G is w-good if there is a path-decomposition of G[A] with width at most w and with last bag $A \cap B$. We need the following observation, which is the heart of the proof:

1.2 If (A', B') and (P,Q) are separations of G, where (A', B') is w-good and $(P,Q) \leq (A', B')$, and there are $|P \cap Q|$ vertex-disjoint paths of G between P and B', then (P,Q) is w-good.

Proof. Let $t = |P \cap Q|$, and let R_1, \ldots, R_t be disjoint paths between P and B'. We may assume that each has only one vertex in B', and hence in $A' \cap B'$. Each of these paths has only its first vertex in P, and so if we contract the edges of R_1, \ldots, R_t , we preserve the subgraph G[P]. Let H be the union of G[P] and the paths R_1, \ldots, R_t . Since (A', B') is w-good, there is a path-decomposition of H of width at most w, such that its last bag consists of the t ends in B' of the paths R_1, \ldots, R_t . But contracting the edges of R_1, \ldots, R_t brings this to a path-decomposition of G[P] with last bag $P \cap Q$ (since each edge to be contracted has both ends inside a bag). This proves 1.2.

If (A, B) and (A', B') are separations of G, the second *extends* the first if $(A, B) \leq (A', B')$ and $|A \cap B| \geq |A' \cap B'|$. A w-good separation of G is *maximal* if no different w-good separation extends it. Let $w \geq 0$ be an integer, let T be a tree or the null graph, and let (A, B) be a separation of a graph G. We say that (A, B) is (w, T)-spanning if

- $|A \cap B| = |T|;$
- there is a model ϕ of T in G[A] such that $V(\phi(h)) \cap A \cap B \neq \emptyset$ for each $h \in V(T)$; and
- if $|T| \le w + 1$ then (A, B) is maximal w-good.

In order to prove 1.1, we may assume that F is a tree T say (by adding edges to F if necessary), and so it suffices to prove:

1.3 Let $w \ge 0$ be an integer, let G be a graph that has path-width more than w, and let T be a tree or the null graph, with $|T| \le w + 2$. Then there is a (w, T)-spanning separation of G.

Proof. We proceed by induction on |T|, keeping w fixed. If |T| = 0, the result holds since there is a maximal w-good separation of order zero, say (A, B) (possibly with $A = \emptyset$), which is therefore (w, T)-spanning. So we assume that $1 \leq |T| \leq w + 2$ and the result holds for |T| - 1. Choose $j \in V(T)$ with degree at most one, and if $|T| \geq 2$ let i be the neighbour of j in T.

From the inductive hypothesis, there is a $(w, T \setminus \{j\})$ -spanning separation (A, B) of G, which is therefore maximal w-good, since $|T \setminus \{j\}| < w + 2$. Let ϕ be a model of $T \setminus \{j\}$ in G[A] such that $V(\phi(h)) \cap A \cap B \neq \emptyset$ for each $h \in V(T) \setminus \{j\}$. We choose $v \in B \setminus A$ as follows. If |T| = 1, then $A \cap B = \emptyset$; choose $v \in B$ arbitrarily. (This is possible since $B \neq \emptyset$, because G has path-width more than w: this is the only place where we use that the path-width is large.) If $|T| \ge 2$, let $u \in V(\phi(i)) \cap B$. Then u has a neighbour $v \in B \setminus A$, since otherwise $(A, B \setminus \{u\})$ is w-good and extends (A, B), contradicting the maximality of (A, B). This defines v.

If |T| = w + 2, then $(A \cup \{v\}, B)$ is (w, T)-spanning, so we may assume that |T| < w + 2, and therefore $(A \cup \{v\}, B)$ is w-good. So there is a maximal w-good separation (A', B') of G that extends $(A \cup \{v\}, B)$. Since (A', B') does not extend (A, B) (because (A, B) is maximal w-good), its order is exactly |T|. Suppose that there is a separation (P,Q) of G of order less than |T|, with $(A \cup \{v\}, B) \leq (P,Q) \leq (A', B')$. Choose (P,Q) with minimum order; then it follows from Menger's theorem that there are $|P \cap Q|$ vertex-disjoint paths from P to B', and so from 1.2, (P,Q) is w-good. But (P,Q) extends (A,B), since $|P \cap Q| \leq |T| - 1 = |A \cap B|$, and $(P,Q) \neq (A,B)$ since $v \in P$, contradicting the maximality of (A, B). Thus there is no such (P,Q), and so by Menger's theorem, there are |T| disjoint paths of G between $A \cup \{v\}$ and B'. By combining these with the model ϕ , we deduce that (A', B') is (w, T)-spanning. This proves 1.3.

References

- D. Bienstock, N. Robertson, P. Seymour and R. Thomas, "Quickly excluding a forest", J. Combinatorial Theory, Ser. B, 52 (1991), 274–283.
- [2] R. Diestel, "Graph minors I: a short proof of the path-width theorem", Combinatorics, Probability and Computing, 4 (1995), 27–30.
- [3] N. Robertson and P. Seymour, "Graph minors. I. Excluding a forest", J. Combinatorial Theory, Ser. B, 35 (1983), 39–61.