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Abstract

A graph has path-width at most w if it can be built from a sequence of graphs each with at most
w+1 vertices, by overlapping consecutive terms. Every graph with path-width at least w−1 contains
every w-vertex forest as a minor: this was originally proved by Bienstock, Robertson, Thomas and
the author, and was given a short proof by Diestel. Here we give a proof even shorter and simpler
than that of Diestel.



1 The proof

All graphs in this paper are finite, and may have loops or parallel edges. If G is a graph, |G|
denotes its number of vertices, and for A ⊆ V (G), G[A] denotes the subgraph induced on A. A
path-decomposition of a graph G is a sequence (W1, . . . ,Wn) of subsets of V (G) (called bags), with
union V (G), such that for every edge uv of G there exists i such that u, v ∈ Wi, and such that
Wi ∩Wk ⊆ Wj for 1 ≤ i < j < k ≤ n; and it has width at most w if |Wi| ≤ w + 1 for each i. A
graph has path-width at most w if it admits a path-decomposition with width at most w. Robertson
and the author [3] proved that for every forest F , all graphs that do not contain F as a minor have
bounded path-width (and the conclusion is false for all graphs F that are not forests); and later
Bienstock, Robertson, Thomas and author [1] proved:

1.1 For every forest F , every graph that does not contain F as a minor has path-width at most
|F | − 2.

This is tight, since a complete graph on |F | − 1 vertices has path-width |F | − 2 and does not contain
F as a minor. It was given a short proof by Diestel [2], but there is an even shorter proof, that we
present here.

A model of a loopless graph H in a graph G is a map φ with domain V (H) ∪ E(H), such that

• φ(h) is a non-null connected subgraph of G for each h ∈ V (H), and φ(h), φ(h′) are vertex-
disjoint for all distinct h, h′ ∈ V (H);

• φ(f) ∈ E(G) for each f ∈ E(H), and φ(f) 6= φ(f ′) for all distinct f, f ′ ∈ E(H);

• if f ∈ E(H) is incident in H with h ∈ V (H), then φ(f) is incident in G with a vertex of φ(h).

Thus there is a model of H in G if and only if G contains H as a minor.
A separation of G is a pair (A,B) of subsets of V (G) with union V (G), such that there are no

edges between A \ B and B \ A, and its order is |A ∩ B|. If (A,B) and (A′, B′) are separations of
G, we write (A,B) ≤ (A′, B′) if A ⊆ A′ and B′ ⊆ B. For each integer w ≥ 0, we say a separation
(A,B) of a graph G is w-good if there is a path-decomposition of G[A] with width at most w and
with last bag A ∩B. We need the following observation, which is the heart of the proof:

1.2 If (A′, B′) and (P,Q) are separations of G, where (A′, B′) is w-good and (P,Q) ≤ (A′, B′), and
there are |P ∩Q| vertex-disjoint paths of G between P and B′, then (P,Q) is w-good.

Proof. Let t = |P ∩ Q|, and let R1, . . . , Rt be disjoint paths between P and B′. We may assume
that each has only one vertex in B′, and hence in A′ ∩ B′. Each of these paths has only its first
vertex in P , and so if we contract the edges of R1, . . . , Rt, we preserve the subgraph G[P ]. Let H be
the union of G[P ] and the paths R1, . . . , Rt. Since (A′, B′) is w-good, there is a path-decomposition
of H of width at most w, such that its last bag consists of the t ends in B′ of the paths R1, . . . , Rt.
But contracting the edges of R1, . . . , Rt brings this to a path-decomposition of G[P ] with last bag
P ∩Q (since each edge to be contracted has both ends inside a bag). This proves 1.2.

If (A,B) and (A′, B′) are separations of G, the second extends the first if (A,B) ≤ (A′, B′) and
|A ∩B| ≥ |A′ ∩B′|. A w-good separation of G is maximal if no different w-good separation extends
it. Let w ≥ 0 be an integer, let T be a tree or the null graph, and let (A,B) be a separation of a
graph G. We say that (A,B) is (w, T )-spanning if
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• |A ∩B| = |T |;

• there is a model φ of T in G[A] such that V (φ(h)) ∩A ∩B 6= ∅ for each h ∈ V (T ); and

• if |T | ≤ w + 1 then (A,B) is maximal w-good.

In order to prove 1.1, we may assume that F is a tree T say (by adding edges to F if necessary),
and so it suffices to prove:

1.3 Let w ≥ 0 be an integer, let G be a graph that has path-width more than w, and let T be a tree
or the null graph, with |T | ≤ w + 2. Then there is a (w, T )-spanning separation of G.

Proof. We proceed by induction on |T |, keeping w fixed. If |T | = 0, the result holds since there
is a maximal w-good separation of order zero, say (A,B) (possibly with A = ∅), which is therefore
(w, T )-spanning. So we assume that 1 ≤ |T | ≤ w + 2 and the result holds for |T | − 1. Choose
j ∈ V (T ) with degree at most one, and if |T | ≥ 2 let i be the neighbour of j in T .

From the inductive hypothesis, there is a (w, T \ {j})-spanning separation (A,B) of G, which
is therefore maximal w-good, since |T \ {j}| < w + 2. Let φ be a model of T \ {j} in G[A] such
that V (φ(h)) ∩ A ∩ B 6= ∅ for each h ∈ V (T ) \ {j}. We choose v ∈ B \ A as follows. If |T | = 1,
then A ∩ B = ∅; choose v ∈ B arbitrarily. (This is possible since B 6= ∅, because G has path-width
more than w: this is the only place where we use that the path-width is large.) If |T | ≥ 2, let
u ∈ V (φ(i)) ∩ B. Then u has a neighbour v ∈ B \ A, since otherwise (A,B \ {u}) is w-good and
extends (A,B), contradicting the maximality of (A,B). This defines v.

If |T | = w + 2, then (A ∪ {v}, B) is (w, T )-spanning, so we may assume that |T | < w + 2,
and therefore (A ∪ {v}, B) is w-good. So there is a maximal w-good separation (A′, B′) of G that
extends (A ∪ {v}, B). Since (A′, B′) does not extend (A,B) (because (A,B) is maximal w-good),
its order is exactly |T |. Suppose that there is a separation (P,Q) of G of order less than |T |, with
(A∪ {v}, B) ≤ (P,Q) ≤ (A′, B′). Choose (P,Q) with minimum order; then it follows from Menger’s
theorem that there are |P ∩Q| vertex-disjoint paths from P to B′, and so from 1.2, (P,Q) is w-good.
But (P,Q) extends (A,B), since |P ∩ Q| ≤ |T | − 1 = |A ∩ B|, and (P,Q) 6= (A,B) since v ∈ P ,
contradicting the maximality of (A,B). Thus there is no such (P,Q), and so by Menger’s theorem,
there are |T | disjoint paths of G between A∪ {v} and B′. By combining these with the model φ, we
deduce that (A′, B′) is (w, T )-spanning. This proves 1.3.
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