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Extending partial 3-colourings in a planar graph
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Abstract

Let D be a disc, and let X be a finite subset of points on the boundary of D: An essential part
of the proof of the four colour theorem is the fact that many sets of 4-colourings of X do not

arise from the proper 4-colourings of any graph drawn in D: In contrast to this, we show that
every set of 3-colourings of X arises from the proper 3-colourings of some graph drawn in D:
r 2002 Published by Elsevier Science (USA).

1. Introduction

Let X be a finite subset of the boundary of a disc D: Call a set Q of k-colourings of
X k-feasible if there exists a drawing G in D with XDVðGÞ such that the k-
colourings of X which can be extended to k-colourings of G are precisely those in Q:
We are interested in the following question: what sets of colourings are k-feasible?
Kempe chain arguments show that for kX4 only certain heavily restricted sets of
k-colourings are k-feasible, and this is an important technique in the proof of the
four colour theorem. For k ¼ 1; 2 it is easy to see that only certain structured sets of
k-colourings are k-feasible. In contrast, we shall show that any set of 3-colourings is
3-feasible.
One may ask the question: given a set of k-colourings of X which is k-feasible,

how large is the smallest graph which admits precisely this set of k-colourings? For 3-

colouring, our proof yields a bound of Oð9jX jÞ on the size of this graph. For k ¼ 4
and 5 we do not know of any bound, but for k ¼ 6; we will prove a quadratic bound
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in Section 3. When kX7 there is a simple linear bound resulting from Euler’s
formula.
It will be convenient for us to work with vertex colouring in terms of partitions.

We will consider a k-colouring of a set to be a partition of its elements into at most k

nonempty sets. A k-colouring of a graph G is a k-colouring of VðGÞ such that each
member of the partition is a stable set. For any set X ; we define CðXÞ to be the set of
all 3-colourings of X : If tACðXÞ and xATAt; we define tðxÞ ¼ T : If G is a graph
and XDVðGÞ; we define

FGðXÞ ¼ ftACðXÞ j t can be extended to a 3� colouring of Gg:

2. 3-Feasible colourings

Our main result is the following theorem.

Theorem 2.1. Let D be a disc, let X be a finite subset of the boundary of D, and let

QDCðX Þ be a set of 3-colourings of X. Then there exists a drawing G in D with

XDVðGÞ; such that FGðXÞ ¼ Q:

The proof of this theorem will require three lemmas. The first two lemmas will be
used to construct a (possibly nonplanar) graph G0 with XDVðG0Þ and with the
property that FG0

ðXÞ ¼ Q: The third lemma will define a particular planar graph
Cloverleaf which provides a planar simulation of a crossing. We will then draw G0 in
a disc (with crossings) with X on the boundary as required, and then use Cloverleaf

as a gadget to remove the crossings. The resulting graph G will satisfy the theorem.

Lemma 2.2. For every finite set X, and every 3-colouring t of X ; there exists a graph G

with XDVðGÞ such that FGðXÞ ¼ CðXÞ\ftg:

Proof. We proceed by induction on jX j: If jX jo3 or if there do not exist
x1; x2AX with tðx1Þ ¼ tðx2Þ; then one of the graphs K4;K2;K1;3;K4 � e has

the required properties. Hence we may assume that jX jX3 and that there
exist distinct x1; x2AX such that tðx1Þ ¼ tðx2Þ ¼ T : Let z be a new vertex (not in
X ), let X 0 ¼ ðX \fx1; x2gÞ,fzg; let T 0 ¼ ðT\fx1; x2gÞ,fzg and t0 ¼ ðt\fTgÞ,fT 0g:
Inductively, we may choose a graph G0 with the property that X 0DVðG00Þ and
FG0 ðX 0Þ ¼ CðX 0Þ\ft0g: Let F be the graph of Fig. 1, and let G be the graph
obtained from the disjoint union of G0 and F by identifying the vertex z of G0 and
the vertex z of F : Let sACðX Þ be given. We claim that s is extendable to G if
and only if sat:

Case 1: sðx1Þasðx2Þ: In this case saT : Since only one colouring of X 0 does not
extend to G0; and jX 0jX2; we may always choose a colour for z such that the
resulting colouring of X 0 will extend to G0: Since this colouring of z can also be
completed to a proper 3-colouring of F ; we have found a proper 3-colouring of G;
and we conclude that sAFGðX Þ:
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Case 2: sðx1Þ ¼ sðx2Þ: Let S ¼ sðx1Þ and S0 ¼ ðS\fx1; x2gÞ,fzg:When x1 and x2
are given the same colour, s can only be completed to a proper 3-colouring of F so
that z has the same colour as x1; x2: Thus, s cannot be extended to a proper 3-
colouring of G if and only if the colouring s0ACðX 0Þ given by s0 ¼ ðs\fSgÞ,fS0g
cannot be extended to a proper 3-colouring of G0: This is true if and only if s0 ¼ t0;
which is true if and only if s ¼ t: Thus, we have that FGðXÞ ¼ CðX Þ\ftg as
desired. &

Lemma 2.3. For every finite set X, and QDCðXÞ; there exists a graph G with

XDVðGÞ such that FGðX Þ ¼ Q:

Proof. If Q ¼ CðXÞ then the graph ðX ; |Þ satisfies the lemma, so we may assume
that CðXÞ\Qa|: For each tACðX Þ\Q; we may choose a graph Gt such that
XDVðGtÞ and FGtðX Þ ¼ CðX Þ\ftg by Lemma 1. Now, we construct G by taking the
disjoint union of the Gt graphs and then identifying all of the copies of each vertex in
X : Now, a colouring sACðX Þ is not extendable to all of G if and only if s is not
extendable to Gt for some tACðX Þ\Q; which holds if and only if sACðXÞ\Q: Thus,
we have FGðX Þ ¼ Q as desired. &

Lemma 2.4. Let Cloverleaf and W ¼ fw1;w2;w3;w4g be defined by Fig. 2. Then

FCloverleaf ðWÞ ¼ ftACðWÞ j tðw1Þ ¼ tðw3Þ; tðw2Þ ¼ tðw4Þg:

Proof. Cloverleaf is made up of four triangular pieces by identifying their outermost
vertices. Each triangular piece only accepts 3-colourings for which the outermost

Fig. 1. A basic five vertex graph.
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vertices all have the same colour, or all have distinct colours. The proof follows
easily from this. &

For the remainder of the paper, it will be helpful to consider graphs with two
kinds of edges, ordinary edges and special edges. We redefine a colouring t of
such a graph to be a colouring of the vertex set so that for any adjacent vertices
x; y; we have tðxÞatðyÞ if xy is an ordinary edge, and tðxÞ ¼ tðyÞ if xy is a
special edge. The colourings of G are in one to one correspondence with
the colourings of the graph obtained from G by contracting all of its special
edges.

Proof of Theorem 2.1. Let D be a disc, and let X be a finite subset of the boundary
of D: It will be helpful for us to consider graphs which are drawn in D with
crossings. Let a scribble G be a drawing of a graph in D such that XDVðGÞ;
and with the additional properties that any two edges of G have at most one
point in common, either an endpoint or a crossing, no three edges have a
common crossing point, and the interior of every edge is disjoint from the vertex
set. Now, let Q be a set of 3-colourings of X : By Lemma 2.3 (and since every
graph is isomorphic to some scribble) we may choose a scribble G0 in D such that
FG0

ðXÞ ¼ Q:
We construct a new scribble G1 from G0 as follows: If e is an edge of G0 which

crosses k other edges, we subdivide it k times, forming a path P of length k þ 1
consisting of k special edges and one ordinary edge. This can be done in such a way
that each special edge of P crosses exactly one other edge, and the ordinary edge of P

does not cross another edge. Let G1 be the scribble formed by repeating this process
on each edge of G0: Since G0 is precisely the graph obtained by contracting the
special edges of G1; we have that FG1

ðXÞ ¼ Q: Furthermore, G1 also has the
properties that no ordinary edge crosses another edge, and each special edge crosses
exactly one other edge.
Now, we construct a new scribble G from G1 as follows: If x1x2 and y1y2 are

special edges that cross, then x1; x2; y1; y2 are all distinct, and we may choose a disc
D0DD such that D0 contains all of x1x2; y1y2 with x1; x2; y1; y2 on the boundary of
D0; and such that no other edges of G1 intersect D0 except at the points x1; x2; y1; y2:
Let G0

1 denote the scribble G1\fx1x2; y1y2g: Since x1x2 and y1y2 were crossing edges,

we may assume that x1; y1; x2; y2 occur on the boundary of D0 in this clockwise order,
and we may modify G0

1 by placing Cloverleaf in D0 and identifying the points

x1; y1; x2; y2 of G0
1 with w1;w2;w3;w4 of Fig. 2, respectively. Call this new scribble G00

1 :
Now, the proper 3-colourings of G1 are precisely those proper 3-colourings t of G0

1 in

which tðx1Þ ¼ tðx2Þ and tðy1Þ ¼ tðy2Þ; but these are precisely the 3-colourings of
w1;w2;w3;w4 which can be extended to Cloverleaf. Thus we find that FG00

1
ðX Þ ¼

FG1
ðXÞ ¼ Q: Let G be the graph obtained by repeating this process for each pair

of crossing edges in G1: Then, FGðX Þ ¼ Q; and G has no special edges or crossings,
so G is an ordinary graph drawn in D with all of the required properties, and we
are done. &
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3. Bounding the graph size

If a set of k-colourings is k-feasible, one may ask how large a graph realizing

it needs to be. From the proof of Theorem 1 in the previous section, Oð9jX jÞ is a
bound when k ¼ 3:We do not know of a bound for the cases k ¼ 4 and 5, but when
kp6 we have a bound again. Indeed, in general we may assume that no vertex in
VðGÞ\X has degree ok: If k46; it follows from Euler’s formula that
jVðGÞjpOðjX jÞ: In the remainder of this section, we will prove a bound of

OðjX j2Þ for the case k ¼ 6:

Theorem 3.1. Let G be a simple planar graph with the infinite region bounded by a

cycle C, and such that the degree of every vertex in VðGÞ\VðCÞ is at least 6. Then

jVðGÞjpjVðCÞj2=12þ jVðCÞj=2þ 1:

Although this theorem does not directly concern graph colouring, we are including
it in part because of its own interest. We note that the theorem is tight for a regular
hexagonal piece of the triangular lattice.
A quilt is a simple planar drawing G with a cycle C bounding the infinite region,

such that every finite region is bounded by a triangle, and such that the degree of any
vertex in VðGÞ\VðCÞ is at least 6. If PDC is a path with distinct terminal vertices of
degree 3 and all internal vertices of degree 4, we will call P a convenient path (of the
quilt).

Lemma 3.2. If G is a quilt with no vertices of degree 2, then G has p6 convenient

paths.

Fig. 2. Cloverleaf A square-shaped planar graph.
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Proof. Let C be the cycle bounding the infinite region, and let jVðGÞj ¼ n and
jVðCÞj ¼ m: Construct a new graph G0 by adding a new vertex u in the infinite region
of G; and adding edges joining u to each vertex of VðCÞ: Now, G0 is a planar
triangulation with n þ 1 vertices, so we have

6ðn þ 1Þ � 12 ¼
X

vAVðG0Þ
degG0 ðvÞ

¼
X

vAVðCÞ
ðdegGðvÞ þ 1Þ þ m þ

X
vAVðGÞ\VðCÞ

degGðvÞ

X

X
vAVðCÞ

degGðvÞ þ 6ðn � mÞ þ 2m:

Rearranging, we find that
P

vAVðCÞ degGðvÞp4m � 6: Thus, there are at least 6 more

vertices of degree 3 than vertices of degree X5 in C: It follows that G has at least 6
convenient paths. &

Proof of Theorem 3.1. It suffices to prove the theorem for quilts, so we will let G to
be a quilt and C the cycle of G bounding the infinite region. Let CG be the set of all
convenient paths in G; and let

mðGÞ ¼
1 if G has a vertex of degree 2;

minPACG
jEðPÞj otherwise;

(

CðGÞ ¼ jVðCÞj2=12þ jVðCÞj=2þ 1;

C0ðGÞ ¼ mðGÞ þ jVðCÞj2=12þ jVðCÞj=3þ 1:

Claim 1. If jVðCÞjo6; then jVðGÞjpCðGÞjpC0ðGÞ:

If jVðCÞjo6; then G must have a vertex of degree 2 by Lemma 3.2. Deleting this
vertex and repeating the argument proves that VðGÞ ¼ VðCÞ: But for all k; we have

kpk2=12þ k=2þ 1: Thus, jVðGÞjpCðGÞpC0ðGÞ:

Claim 2. If jVðGÞjX6; then jVðGÞjpC0ðGÞpCðGÞ:

We prove the claim by induction on jVðGÞj: If G has a vertex of degree 2,
then C0ðGÞpCðGÞ: Also, if G has no vertices of degree 2, then by the lemma
and the fact that the convenient paths of G are edge-disjoint it follows that
C0ðGÞpCðGÞ: Thus, to prove the claim, it will suffice to show that jVðGÞjpC0ðGÞ:
Let m ¼ jVðCÞj:
Suppose that C has a chord edge e; and let C1;C2 be the two cycles such that

EðC1,C2Þ ¼ EðCÞ,feg and EðC1-C2Þ ¼ feg: Let G1;G2 be the quilts bounded by
the cycles C1 and C2; respectively. Let k ¼ jVðC1Þj; then ðk � 3Þðm � k � 1ÞX0:
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Thus, by induction

jVðGÞj ¼ jVðG1Þj þ jVðG2Þj � 2pCðG1Þ þCðG2Þ � 2

p k2=12þ k=2þ 1þ ðm � k þ 2Þ2=12þ ðm � k þ 2Þ=2þ 1� 2

¼m2=12� mk=6þ 5m=6þ k2=6� k=3þ 4
3

¼m2=12þ m=3þ 11=6� ðk � 3Þðm � k � 1Þ=6pC0ðGÞ:
Thus, we may assume that C does not have a chord, so in particular G has

minimum degree 3. Let P be the shortest convenient path in C:
Case 1: jEðPÞj ¼ 1: Let u; v be the endvertices of P: Since C does not have any

chords, G0 ¼ G\fu; vg is a quilt. Let C0 be the cycle bounding the infinite region of G0:
Then jVðC0Þj ¼ m � 1; so by induction we have:

jVðGÞj ¼ jVðG0Þj þ 2pCðG0Þ þ 2

¼ðm � 1Þ2=12þ ðm � 1Þ=2þ 1

¼m2=12þ m=3þ 7=12pC0ðGÞ:
Case 2: jEðPÞjX2: Let v be an endvertex of P; and let G0 ¼ G\v: Then G is a quilt

with boundary C0 and jVðC0Þj ¼ jVðCÞj ¼ m: Since G and G0 have no vertices of
degree two, it follows from our construction that mðG0Þ ¼ mðGÞ � 1: Thus, by
induction we have that jVðGÞj ¼ jVðG0Þj þ 1pC0ðG0Þ þ 1 ¼ CðGÞ as desired. &
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