ACADEMIC PRESS

# Extending partial 3-colourings in a planar graph 

Matt DeVos ${ }^{\mathrm{a}, 1}$ and Paul Seymour ${ }^{\mathrm{b}, 2}$<br>${ }^{\text {a }}$ Applied Math Department, Princeton University, Princeton, NJ 08544, USA<br>${ }^{\mathrm{b}}$ Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Received 10 June 1999


#### Abstract

Let $D$ be a disc, and let $X$ be a finite subset of points on the boundary of $D$. An essential part of the proof of the four colour theorem is the fact that many sets of 4-colourings of $X$ do not arise from the proper 4 -colourings of any graph drawn in $D$. In contrast to this, we show that every set of 3-colourings of $X$ arises from the proper 3-colourings of some graph drawn in $D$. (C) 2002 Published by Elsevier Science (USA).


## 1. Introduction

Let $X$ be a finite subset of the boundary of a disc $D$. Call a set $Q$ of $k$-colourings of $X$-feasible if there exists a drawing $G$ in $D$ with $X \subseteq V(G)$ such that the $k$ colourings of $X$ which can be extended to $k$-colourings of $G$ are precisely those in $Q$. We are interested in the following question: what sets of colourings are $k$-feasible? Kempe chain arguments show that for $k \geqslant 4$ only certain heavily restricted sets of $k$-colourings are $k$-feasible, and this is an important technique in the proof of the four colour theorem. For $k=1,2$ it is easy to see that only certain structured sets of $k$-colourings are $k$-feasible. In contrast, we shall show that any set of 3 -colourings is 3-feasible.

One may ask the question: given a set of $k$-colourings of $X$ which is $k$-feasible, how large is the smallest graph which admits precisely this set of $k$-colourings? For 3colouring, our proof yields a bound of $O\left(9^{|X|}\right)$ on the size of this graph. For $k=4$ and 5 we do not know of any bound, but for $k=6$, we will prove a quadratic bound

[^0]in Section 3. When $k \geqslant 7$ there is a simple linear bound resulting from Euler's formula.

It will be convenient for us to work with vertex colouring in terms of partitions. We will consider a $k$-colouring of a set to be a partition of its elements into at most $k$ nonempty sets. A $k$-colouring of a graph $G$ is a $k$-colouring of $V(G)$ such that each member of the partition is a stable set. For any set $X$, we define $C(X)$ to be the set of all 3-colourings of $X$. If $\tau \in C(X)$ and $x \in T \in \tau$, we define $\tau(x)=T$. If $G$ is a graph and $X \subseteq V(G)$, we define

$$
\Phi_{G}(X)=\{\tau \in C(X) \mid \tau \text { can be extended to a } 3-\text { colouring of } G\}
$$

## 2. 3-Feasible colourings

Our main result is the following theorem.
Theorem 2.1. Let $D$ be a disc, let $X$ be a finite subset of the boundary of $D$, and let $Q \subseteq C(X)$ be a set of 3 -colourings of $X$. Then there exists a drawing $G$ in $D$ with $X \subseteq V(G)$, such that $\Phi_{G}(X)=Q$.

The proof of this theorem will require three lemmas. The first two lemmas will be used to construct a (possibly nonplanar) graph $G_{0}$ with $X \subseteq V\left(G_{0}\right)$ and with the property that $\Phi_{G_{0}}(X)=Q$. The third lemma will define a particular planar graph Cloverleaf which provides a planar simulation of a crossing. We will then draw $G_{0}$ in a disc (with crossings) with $X$ on the boundary as required, and then use Cloverleaf as a gadget to remove the crossings. The resulting graph $G$ will satisfy the theorem.

Lemma 2.2. For every finite set $X$, and every 3-colouring $\tau$ of $X$, there exists a graph $G$ with $X \subseteq V(G)$ such that $\Phi_{G}(X)=C(X) \backslash\{\tau\}$.

Proof. We proceed by induction on $|X|$. If $|X|<3$ or if there do not exist $x_{1}, x_{2} \in X$ with $\tau\left(x_{1}\right)=\tau\left(x_{2}\right)$, then one of the graphs $K_{4}, K_{2}, K_{1,3}, K_{4}-e$ has the required properties. Hence we may assume that $|X| \geqslant 3$ and that there exist distinct $x_{1}, x_{2} \in X$ such that $\tau\left(x_{1}\right)=\tau\left(x_{2}\right)=T$. Let $z$ be a new vertex (not in $X)$, let $X^{\prime}=\left(X \backslash\left\{x_{1}, x_{2}\right\}\right) \cup\{z\}$, let $T^{\prime}=\left(T \backslash\left\{x_{1}, x_{2}\right\}\right) \cup\{z\}$ and $\tau^{\prime}=(\tau \backslash\{T\}) \cup\left\{T^{\prime}\right\}$. Inductively, we may choose a graph $G^{\prime}$ with the property that $X^{\prime} \subseteq V\left(G^{\prime \prime}\right)$ and $\Phi_{G^{\prime}}\left(X^{\prime}\right)=C\left(X^{\prime}\right) \backslash\left\{\tau^{\prime}\right\}$. Let $F$ be the graph of Fig. 1, and let $G$ be the graph obtained from the disjoint union of $G^{\prime}$ and $F$ by identifying the vertex $z$ of $G^{\prime}$ and the vertex $z$ of $F$. Let $\sigma \in C(X)$ be given. We claim that $\sigma$ is extendable to $G$ if and only if $\sigma \neq \tau$.

Case 1: $\sigma\left(x_{1}\right) \neq \sigma\left(x_{2}\right)$. In this case $\sigma \neq T$. Since only one colouring of $X^{\prime}$ does not extend to $G^{\prime}$, and $\left|X^{\prime}\right| \geqslant 2$, we may always choose a colour for $z$ such that the resulting colouring of $X^{\prime}$ will extend to $G^{\prime}$. Since this colouring of $z$ can also be completed to a proper 3-colouring of $F$, we have found a proper 3-colouring of $G$, and we conclude that $\sigma \in \Phi_{G}(X)$.


Fig. 1. A basic five vertex graph.

Case 2: $\sigma\left(x_{1}\right)=\sigma\left(x_{2}\right)$. Let $S=\sigma\left(x_{1}\right)$ and $S^{\prime}=\left(S \backslash\left\{x_{1}, x_{2}\right\}\right) \cup\{z\}$. When $x_{1}$ and $x_{2}$ are given the same colour, $\sigma$ can only be completed to a proper 3-colouring of $F$ so that $z$ has the same colour as $x_{1}, x_{2}$. Thus, $\sigma$ cannot be extended to a proper 3colouring of $G$ if and only if the colouring $\sigma^{\prime} \in C\left(X^{\prime}\right)$ given by $\sigma^{\prime}=(\sigma \backslash\{S\}) \cup\left\{S^{\prime}\right\}$ cannot be extended to a proper 3-colouring of $G^{\prime}$. This is true if and only if $\sigma^{\prime}=\tau^{\prime}$, which is true if and only if $\sigma=\tau$. Thus, we have that $\Phi_{G}(X)=C(X) \backslash\{\tau\}$ as desired.

Lemma 2.3. For every finite set $X$, and $Q \subseteq C(X)$, there exists a graph $G$ with $X \subseteq V(G)$ such that $\Phi_{G}(X)=Q$.

Proof. If $Q=C(X)$ then the graph $(X, \emptyset)$ satisfies the lemma, so we may assume that $C(X) \backslash Q \neq \emptyset$. For each $\tau \in C(X) \backslash Q$, we may choose a graph $G_{\tau}$ such that $X \subseteq V\left(G_{\tau}\right)$ and $\Phi_{G_{\tau}}(X)=C(X) \backslash\{\tau\}$ by Lemma 1. Now, we construct $G$ by taking the disjoint union of the $G_{\tau}$ graphs and then identifying all of the copies of each vertex in $X$. Now, a colouring $\sigma \in C(X)$ is not extendable to all of $G$ if and only if $\sigma$ is not extendable to $G_{\tau}$ for some $\tau \in C(X) \backslash Q$, which holds if and only if $\sigma \in C(X) \backslash Q$. Thus, we have $\Phi_{G}(X)=Q$ as desired.

Lemma 2.4. Let Cloverleaf and $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ be defined by Fig. 2. Then

$$
\Phi_{\text {Cloverleaf }}(W)=\left\{\tau \in C(W) \mid \tau\left(w_{1}\right)=\tau\left(w_{3}\right), \tau\left(w_{2}\right)=\tau\left(w_{4}\right)\right\} .
$$

Proof. Cloverleaf is made up of four triangular pieces by identifying their outermost vertices. Each triangular piece only accepts 3 -colourings for which the outermost
vertices all have the same colour, or all have distinct colours. The proof follows easily from this.

For the remainder of the paper, it will be helpful to consider graphs with two kinds of edges, ordinary edges and special edges. We redefine a colouring $\tau$ of such a graph to be a colouring of the vertex set so that for any adjacent vertices $x, y$, we have $\tau(x) \neq \tau(y)$ if $x y$ is an ordinary edge, and $\tau(x)=\tau(y)$ if $x y$ is a special edge. The colourings of $G$ are in one to one correspondence with the colourings of the graph obtained from $G$ by contracting all of its special edges.

Proof of Theorem 2.1. Let $D$ be a disc, and let $X$ be a finite subset of the boundary of $D$. It will be helpful for us to consider graphs which are drawn in $D$ with crossings. Let a scribble $G$ be a drawing of a graph in $D$ such that $X \subseteq V(G)$, and with the additional properties that any two edges of $G$ have at most one point in common, either an endpoint or a crossing, no three edges have a common crossing point, and the interior of every edge is disjoint from the vertex set. Now, let $Q$ be a set of 3-colourings of $X$. By Lemma 2.3 (and since every graph is isomorphic to some scribble) we may choose a scribble $G_{0}$ in $D$ such that $\Phi_{G_{0}}(X)=Q$.

We construct a new scribble $G_{1}$ from $G_{0}$ as follows: If $e$ is an edge of $G_{0}$ which crosses $k$ other edges, we subdivide it $k$ times, forming a path $P$ of length $k+1$ consisting of $k$ special edges and one ordinary edge. This can be done in such a way that each special edge of $P$ crosses exactly one other edge, and the ordinary edge of $P$ does not cross another edge. Let $G_{1}$ be the scribble formed by repeating this process on each edge of $G_{0}$. Since $G_{0}$ is precisely the graph obtained by contracting the special edges of $G_{1}$, we have that $\Phi_{G_{1}}(X)=Q$. Furthermore, $G_{1}$ also has the properties that no ordinary edge crosses another edge, and each special edge crosses exactly one other edge.

Now, we construct a new scribble $G$ from $G_{1}$ as follows: If $x_{1} x_{2}$ and $y_{1} y_{2}$ are special edges that cross, then $x_{1}, x_{2}, y_{1}, y_{2}$ are all distinct, and we may choose a disc $D^{\prime} \subseteq D$ such that $D^{\prime}$ contains all of $x_{1} x_{2}, y_{1} y_{2}$ with $x_{1}, x_{2}, y_{1}, y_{2}$ on the boundary of $D^{\prime}$, and such that no other edges of $G_{1}$ intersect $D^{\prime}$ except at the points $x_{1}, x_{2}, y_{1}, y_{2}$. Let $G_{1}^{\prime}$ denote the scribble $G_{1} \backslash\left\{x_{1} x_{2}, y_{1} y_{2}\right\}$. Since $x_{1} x_{2}$ and $y_{1} y_{2}$ were crossing edges, we may assume that $x_{1}, y_{1}, x_{2}, y_{2}$ occur on the boundary of $D^{\prime}$ in this clockwise order, and we may modify $G_{1}^{\prime}$ by placing Cloverleaf in $D^{\prime}$ and identifying the points $x_{1}, y_{1}, x_{2}, y_{2}$ of $G_{1}^{\prime}$ with $w_{1}, w_{2}, w_{3}, w_{4}$ of Fig. 2, respectively. Call this new scribble $G_{1}^{\prime \prime}$. Now, the proper 3-colourings of $G_{1}$ are precisely those proper 3-colourings $\tau$ of $G_{1}^{\prime}$ in which $\tau\left(x_{1}\right)=\tau\left(x_{2}\right)$ and $\tau\left(y_{1}\right)=\tau\left(y_{2}\right)$, but these are precisely the 3-colourings of $w_{1}, w_{2}, w_{3}, w_{4}$ which can be extended to Cloverleaf. Thus we find that $\Phi_{G_{1}^{\prime \prime}}(X)=$ $\Phi_{G_{1}}(X)=Q$. Let $G$ be the graph obtained by repeating this process for each pair of crossing edges in $G_{1}$. Then, $\Phi_{G}(X)=Q$, and $G$ has no special edges or crossings, so $G$ is an ordinary graph drawn in $D$ with all of the required properties, and we are done.

## Cloverleaf



Fig. 2. Cloverleaf A square-shaped planar graph.

## 3. Bounding the graph size

If a set of $k$-colourings is $k$-feasible, one may ask how large a graph realizing it needs to be. From the proof of Theorem 1 in the previous section, $O\left(9^{|X|}\right)$ is a bound when $k=3$. We do not know of a bound for the cases $k=4$ and 5 , but when $k \leqslant 6$ we have a bound again. Indeed, in general we may assume that no vertex in $V(G) \backslash X$ has degree $<k$. If $k>6$, it follows from Euler's formula that $|V(G)| \leqslant O(|X|)$. In the remainder of this section, we will prove a bound of $O\left(|X|^{2}\right)$ for the case $k=6$.

Theorem 3.1. Let $G$ be a simple planar graph with the infinite region bounded by a cycle $C$, and such that the degree of every vertex in $V(G) \backslash V(C)$ is at least 6 . Then $|V(G)| \leqslant|V(C)|^{2} / 12+|V(C)| / 2+1$.

Although this theorem does not directly concern graph colouring, we are including it in part because of its own interest. We note that the theorem is tight for a regular hexagonal piece of the triangular lattice.

A quilt is a simple planar drawing $G$ with a cycle $C$ bounding the infinite region, such that every finite region is bounded by a triangle, and such that the degree of any vertex in $V(G) \backslash V(C)$ is at least 6 . If $P \subseteq C$ is a path with distinct terminal vertices of degree 3 and all internal vertices of degree 4 , we will call $P$ a convenient path (of the quilt).

Lemma 3.2. If $G$ is a quilt with no vertices of degree 2 , then $G$ has $\leqslant 6$ convenient paths.

Proof. Let $C$ be the cycle bounding the infinite region, and let $|V(G)|=n$ and $|V(C)|=m$. Construct a new graph $G^{\prime}$ by adding a new vertex $u$ in the infinite region of $G$, and adding edges joining $u$ to each vertex of $V(C)$. Now, $G^{\prime}$ is a planar triangulation with $n+1$ vertices, so we have

$$
\begin{aligned}
6(n+1)-12 & =\sum_{v \in V\left(G^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(v) \\
& =\sum_{v \in V(C)}\left(\operatorname{deg}_{G}(v)+1\right)+m+\sum_{v \in V(G) \backslash V(C)} \operatorname{deg}_{G}(v) \\
& \geqslant \sum_{v \in V(C)} \operatorname{deg}_{G}(v)+6(n-m)+2 m
\end{aligned}
$$

Rearranging, we find that $\sum_{v \in V(C)} \operatorname{deg}_{G}(v) \leqslant 4 m-6$. Thus, there are at least 6 more vertices of degree 3 than vertices of degree $\geqslant 5$ in $C$. It follows that $G$ has at least 6 convenient paths.

Proof of Theorem 3.1. It suffices to prove the theorem for quilts, so we will let $G$ to be a quilt and $C$ the cycle of $G$ bounding the infinite region. Let $\mathscr{C}_{G}$ be the set of all convenient paths in $G$, and let

$$
\begin{aligned}
& \mu(G)= \begin{cases}1 & \text { if } G \text { has a vertex of degree } 2, \\
\min _{P \in \mathscr{C}_{G}}|E(P)| & \text { otherwise }\end{cases} \\
& \Psi(G)=|V(C)|^{2} / 12+|V(C)| / 2+1
\end{aligned} \begin{aligned}
& \Psi_{0}(G)=\mu(G)+|V(C)|^{2} / 12+|V(C)| / 3+1
\end{aligned}
$$

Claim 1. If $|V(C)|<6$, then $|V(G)| \leqslant \Psi(G) \mid \leqslant \Psi_{0}(G)$.
If $|V(C)|<6$, then $G$ must have a vertex of degree 2 by Lemma 3.2. Deleting this vertex and repeating the argument proves that $V(G)=V(C)$. But for all $k$, we have $k \leqslant k^{2} / 12+k / 2+1$. Thus, $|V(G)| \leqslant \Psi(G) \leqslant \Psi_{0}(G)$.

Claim 2. If $|V(G)| \geqslant 6$, then $|V(G)| \leqslant \Psi_{0}(G) \leqslant \Psi(G)$.
We prove the claim by induction on $|V(G)|$. If $G$ has a vertex of degree 2 , then $\Psi_{0}(G) \leqslant \Psi(G)$. Also, if $G$ has no vertices of degree 2 , then by the lemma and the fact that the convenient paths of $G$ are edge-disjoint it follows that $\Psi_{0}(G) \leqslant \Psi(G)$. Thus, to prove the claim, it will suffice to show that $|V(G)| \leqslant \Psi_{0}(G)$. Let $m=|V(C)|$.

Suppose that $C$ has a chord edge $e$, and let $C_{1}, C_{2}$ be the two cycles such that $E\left(C_{1} \cup C_{2}\right)=E(C) \cup\{e\}$ and $E\left(C_{1} \cap C_{2}\right)=\{e\}$. Let $G_{1}, G_{2}$ be the quilts bounded by the cycles $C_{1}$ and $C_{2}$, respectively. Let $k=\left|V\left(C_{1}\right)\right| ;$ then $(k-3)(m-k-1) \geqslant 0$.

Thus, by induction

$$
\begin{aligned}
|V(G)| & =\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-2 \leqslant \Psi\left(G_{1}\right)+\Psi\left(G_{2}\right)-2 \\
& \leqslant k^{2} / 12+k / 2+1+(m-k+2)^{2} / 12+(m-k+2) / 2+1-2 \\
& =m^{2} / 12-m k / 6+5 m / 6+k^{2} / 6-k / 3+\frac{4}{3} \\
& =m^{2} / 12+m / 3+11 / 6-(k-3)(m-k-1) / 6 \leqslant \Psi_{0}(G) .
\end{aligned}
$$

Thus, we may assume that $C$ does not have a chord, so in particular $G$ has minimum degree 3. Let $P$ be the shortest convenient path in $C$.

Case 1: $|E(P)|=1$. Let $u, v$ be the endvertices of $P$. Since $C$ does not have any chords, $G^{\prime}=G \backslash\{u, v\}$ is a quilt. Let $C^{\prime}$ be the cycle bounding the infinite region of $G^{\prime}$. Then $\left|V\left(C^{\prime}\right)\right|=m-1$, so by induction we have:

$$
\begin{aligned}
|V(G)| & =\left|V\left(G^{\prime}\right)\right|+2 \leqslant \Psi\left(G^{\prime}\right)+2 \\
& =(m-1)^{2} / 12+(m-1) / 2+1 \\
& =m^{2} / 12+m / 3+7 / 12 \leqslant \Psi_{0}(G) .
\end{aligned}
$$

Case 2: $|E(P)| \geqslant 2$. Let $v$ be an endvertex of $P$, and let $G^{\prime}=G \backslash v$. Then $G$ is a quilt with boundary $C^{\prime}$ and $\left|V\left(C^{\prime}\right)\right|=|V(C)|=m$. Since $G$ and $G^{\prime}$ have no vertices of degree two, it follows from our construction that $\mu\left(G^{\prime}\right)=\mu(G)-1$. Thus, by induction we have that $|V(G)|=\left|V\left(G^{\prime}\right)\right|+1 \leqslant \Psi_{0}\left(G^{\prime}\right)+1=\Psi(G)$ as desired.


[^0]:    E-mail address: matdevos@math.princeton.edu (M. DeVos).
    ${ }^{1}$ This research was supported by the Navy under Navy Assert Grant N00014-98-1-0457.
    ${ }^{2}$ This research was supported by the ONR under Grant N0014-97-1-0512 and the NSF under Grant DMS 9701598.

