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Abstract. We consider a node placement and sizing problem that arises in certain types of broadband
access architectures, such as ADSL and FTTC. We consider three variants of the problem that become
progressively more restrictive, to capture realistic planning concerns and to produce solutions that have
desirable practical attributes. A distinguishing feature of the problem is a constraint that limits the distance
between each customer and the placed node that is assigned to serve it. We present a dynamic programming
algorithm to solve the two most practical variants of the problem, and we provide computational results for
both realistic and randomly generated test problems.

1. Introduction

In network planning, the term node placement refers to the process of determining the
locations, or nodes, at which to install certain types of networking equipment. In plac-
ing nodes, a planner selects the nodes to equip from a possibly larger set of candidate
nodes. The term placement is used because there is no active equipment between placed
nodes, so we may view the placed nodes as being logically connected by uninterrupted
runs of cable. Thus, the equipped nodes become the only nodes in a logical view of
the network. A simple example of node placement in a tree network is illustrated in
figure 1. Often concurrent with node placement is node sizing, which is the process of
determining the capacity of equipment to be installed at a placed node. In this paper,
we consider node placement and sizing for broadband access technologies that combine
copper and fiber distribution media. We use the term copper broadband access (CBA)
as a generic term for these technologies that include digital subscriber line (DSL), fiber-
to-the-curb (FTTC), and their many variants. DSL technology itself includes variants
like ADSL, HDSL, and VDSL among others, which are generically referred to as xDSL.
Similarly, FTTx generically refers to more fiber-rich technologies that include FTTC and
its relatives: fiber-to-the-neighborhood, fiber-to-the-cabinet, fiber-to-the-home (FTTH)
and others. We use the term CBA to refer to all of these technologies except FTTH,
which is essentially fiber all way from the central office (CO) to the subscriber.
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Figure 1. Illustration of node placement in a network

Although they differ in their details, the CBA technologies are all characterized by
the combined use of copper and fiber to deliver broadband and more traditional services
to subscribers. These services include voice telephony, high-speed data, and may also
include video. In general, subscribers may be either business or residential, but it will
simplify discussion to restrict ourselves to a single type of subscriber, which we assume
to be residential.

CBA technologies deploy fiber between the central office and an intermediate point
in the network, and they use traditional copper into the subscribers’ premises. At this
intermediate node, equipment converts signals between the optical domain, used on the
fiber, and the electrical domain, used on the copper. We refer to this node as the O/E
node (optical/electrical), and to the equipment as O/E converters or O/E devices. This
equipment also typically performs other networking functions, such as multiplexing and
demultiplexing of signals. Traditional telephone networks use copper all the way from
the CO to the customer, and thus no O/E equipment is used.

The use of fiber in the network allows more information, or higher bandwidth, to
be delivered to subscribers, thereby enabling higher-speed services. The use of copper
makes CBA technologies attractive to telephone providers who have large investments
in existing copper infrastructure. Copper, however, poses some technical challenges that
lead to the node placement problem that we consider in this paper. Attenuation and other
impairments along the copper degrade signals and limit the bandwidth that can be deliv-
ered to subscribers. The distance that a signal can travel on copper varies, depending on
the bandwidth of the signal, as well as the gauge and condition of the copper plant.

From a customer’s perspective, the CBA technologies differ primarily in the
amount of information that can be delivered. Each CBA technology is typically asso-
ciated with a characteristic bandwidth, or line speed, that is assured by requiring that
each customer be no more than a prescribed distance from the O/E node that connects
it to the CO. This prescribed distance applies to every subscriber in the network and is,
again, a characteristic of the particular technology. We refer to this characteristic dis-
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Figure 2. Typical range limits for different types of xDSL.

tance as the range limit, or simply range, for the technology. We illustrate typical range
limits in figure 2, which is based on a similar figure in [1].

From a mathematical standpoint, the design problems associated with different
types of CBA technology are very similar, but they have some practical differences.
First, they differ in their range limits. As a consequence, they differ in the degree to
which they can leverage the existing copper plant. They also differ in the type of equip-
ment that can be placed at the O/E nodes. As a rule, the O/E converters for longer-reach
variants, like ADSL, can support more customers but at lower bitrates. Finally, there may
be differences in the types of locations at which converters may be placed. For shorter-
reach cases, every telephone pole, roadside pedestal, or manhole may be a candidate
node, while the choice might be more limited for longer-reach technologies. Although
there are many practical differences between the types of CBA, mathematically they
manifest themselves in differences in the parameters to an otherwise identical problem.
Thus, we consider CBA network planning in this unified context.

In the next section, we provide integer programming formulations for the node
placement and sizing problem. In section 3, we develop a dynamic programming ap-
proach to address the more practical of the formulations presented. In section 4, we
present results from two realistic networks that we have encountered and several random
ones. In section 5, we describe some variations and extensions of the basic problems de-
scribed in section 2, and we show how many of these can be handled with the same core
algorithm. Section 6 contains brief concluding remarks.

2. Problem formulations

The CBA node placement and sizing problem requires placing and sizing O/E nodes in
a given candidate network. Regardless of the type of CBA network we are planning, the
problem is essentially the same. The problem is described using a network of candidate
nodes that forms a tree with the CO at its root. Each customer routes directly to a single
candidate node to form what might be viewed as a larger tree network with the customers
at the leaves. However, throughout the paper, we will use the terms tree and network to
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refer to the network of candidate nodes, and we will use the terms augmented tree or
augmented network to refer to the larger tree that includes the customers.

Each link in the augmented tree has an associated length. In addition, we have
O/E converters that we can place at the candidate nodes to serve the customers. There
may be several different models of O/E converter that differ in their costs and capacities,
where the capacity of a converter is the number of subscribers that it may serve. Specific
equipment models and range limits vary among the different flavors of CBA. Given the
augmented network and the equipment data, the node placement and sizing problem is to
place equipment at some subset of the candidate nodes so that customers can be feasibly
served at the least cost. The nodes at which equipment is placed are the solution to the
node placement problem and the capacity of the equipment placed is the solution to the
node sizing problem.

In our work, we have considered three variants of the node placement and sizing
problem. We can view them as becoming progressively more restrictive to produce so-
lutions that have desirable practical attributes. Thus, the precise meaning of a feasible
solution remains to be defined. We will begin with the least restrictive problem statement
and then impose further restrictions.

2.1. The baseline problem

This first version of the problem is originally stated in [5] and is extensively studied
in [12]. We believe that this version captures the technical capability of the network
equipment, but does not consider the practical issues of network construction and man-
agement. It also does not ensure effective reuse of existing copper. Thus, although it
delivers a solution that is technically correct, these solutions may be difficult to imple-
ment and manage in the network. We present this version of the problem as a baseline
from which to build the more constrained formulations, but we do not address solving
this version of the problem in this paper.

The constraints for this version of the problem require that:

(1) Each customer is served at a node that is within the prescribed range limit.

(2) The number of customers served at a node does not exceed the capacity of the O/E
converters placed at the node.

The input for our problem is the augmented tree network, a range limit, and a set of O/E
converters for each candidate node. To state and later solve the problem, we perform
two preprocessing operations. First, we use the augmented tree to compute distances
between candidate nodes and customers. This identifies the subset of candidate nodes
that are within range to serve each customer.

Next, we augment the set of O/E converters available at a candidate node to in-
clude combinations. We assume that it is possible to place converters in all possible
combinations and multiples at any candidate site. This leads to a formulation with gen-
eral integer variables representing the number of each type of converter to place at each
candidate node. We prefer an alternate binary formulation that first requires determining
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the least-cost way to serve s subscribers at each location, for all values of s between 1
and the number of subscribers that reach it. The binary formulation that results is of-
ten more amenable to general integer programming [13], but it is also more consistent
with the way that our dynamic programming algorithm works, which is the reason for
our preference. To avoid confusion, we will refer to the non-dominated combinations
of converters computed for a candidate node as the stacks available for that node. Each
stack is characterized by a cost, a capacity, and a set of constituent O/E devices.

Computing the stacks is equivalent to solving an integer knapsack cover problem to
obtain non-dominated combinations of converters [12]. When the input includes only the
amount of customer demand to cover (i.e., an integer), this would not be a polynomial-
time operation. However, it is polynomial in the number of houses. Also, the number of
equipment models available at each candidate node is generally small, so the computa-
tion is fast in practice. The set of O/E converters available to place might be common
to all candidate nodes or it might have site dependencies. In this paper, we allow site
dependencies.

The objective for our problem is to minimize the cost of serving the customers. In
practice, there are several components to the total cost of serving the customers. The
main ones are: the cost of the O/E converters; the cost of terminating equipment at both
the O/E node and the customer site; the cost of housing for equipment at placed nodes;
the cost of fiber; the cost of copper; and the various installation costs. The terminating
equipment is essentially a fixed cost per subscriber, so from the standpoint of our opti-
mization, it is a constant that we can ignore. Placing and sizing the O/E nodes and then
assigning customers to be served by those nodes effectively determines the remaining
costs. The models that we present in this section and the algorithm described in the next
explicitly consider only the costs borne at the nodes. This can include the cost of the
O/E converters, the cost of their housing, and installation costs. We can consider the
installation cost for an O/E device as part of the cost for an individual unit, and we can
add the cost for housing to the cost of the different stacks computed by the knapsack
cover. Thus, the cost of a stack can capture a variety of costs incurred at a node.

In many cases, subscribers already have telephone service, so there would already
be copper in the network. Fiber, however, may need to be installed. The costs to add fiber
may include the cost to add conduit in which to place the fiber and the cost of the fiber
itself. Of these, conduit placement is usually the more costly. In our discussions with
network specialists, the costs that they were most concerned with were those incurred at
the nodes. For this reason, we present our basic models and algorithms with the objective
of minimizing the costs incurred at the nodes, but note that the algorithm adapts to handle
some of the link costs as well.

We provide an integer programming (IP) formulation for each version of the prob-
lem, but we do so mainly to concretely establish the problems that we will address. We
do not use IP techniques to solve the problem. To state the problem, we now define the
following parameters:
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R: the range limit;
N : the set of candidate nodes;
S: the set of customers;
Ns : the set of candidate nodes that are within range limit R of customer s;
Mi : the set of stacks of O/E devices available at candidate node i;
cij : the cost of equipment stack j for candidate node i; and
qij : the number (quantity) of subscribers that stack j can serve at candidate node i.

The variables are:
xij : is 1 if stack j is placed at candidate node i and 0 otherwise; and
zsi: is 1 if subscriber s is assigned to node i for service and 0 otherwise.

Now, our first formulation is:

[BASE] Minimize
∑
i∈N

∑
j∈Mi

cij xij

s.t.
∑
i∈Ns

zsi = 1, ∀s ∈ S,

∑
s∈S: i∈Ns

zsi �
∑
j∈Mi

qij xij , ∀i ∈ N,

∑
j∈Mi

xij � 1, ∀i ∈ N,

zsi ∈ {0, 1}, ∀s ∈ S, i ∈ Ns,

xij ∈ {0, 1}, ∀i ∈ N, j ∈ Mi.

The first set of constraints assure that each customer is assigned to some node for
service. The second set of constraints guarantee that the capacity placed at each node is
sufficient to serve the assigned customers. The third set of constraints assure that at most
one stack is placed at any node. This third set of constraints is not really necessary in the
usual cases when the cost to serve customers at a node either increases linearly or ex-
hibits economies of scale, but it may be useful computationally. Finally, the range limits
are imposed by including the variable zsi only if customer s can reach candidate node i.

This problem can be thought of as a variant of the capacitated concentrator loca-
tion problem [10], which is itself a variant of the capacitated facility location problem
[6] that requires each demand (customer in our case) to be served entirely by one facil-
ity. Our problem, however, has a number of important differences from more general
problems:

(1) all demands are for one unit;

(2) there are no costs for assigning a customer to a facility;

(3) reach constraints limit the locations at which customer demand may be served;

(4) the nodes (as opposed to the equipment) are effectively uncapacitated;

(5) the underlying network is a tree.
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In his thesis, Mazur [12] considers the version of the problem that we have described
above (and in [5]) when the stacks available at the candidate nodes are identical. He
shows that, when distances are imposed on an underlying network that is more general
than a tree, the decision version of the problem is NP-complete, and he conjectures that
the tree instance is also NP-complete. If there is only a single type of converter to place
at the candidate nodes, then the problem is polynomially solvable by a simple greedy
algorithm proposed by Jaeger and Goldberg [8] that extends the previous work of Kariv
and Hakimi [9]. A special case in which there is only one size converter whose cost is
location dependent is considered by Williams [14]. The survey by Magnanti and Wolsey
[11] provides an excellent discussion of a wide variety of design problems on trees.

2.2. Restricted formulations

In discussing solutions to the [BASE] problem with access network specialists, we found
that our solutions allowed too much freedom and produced solutions that might be tech-
nically feasible but would not likely be used in practice. Our solutions allowed the ability
to assign customers to service nodes independently, subject to capacity and reach limi-
tations. Thus, there is no preference for serving neighboring customers from the same
node. This is not the way network providers typically manage their networks.

Figure 3 provides two illustrations of assignments that might arise from the previ-
ous formulation that would likely not be implemented in a real network. Both examples
show cases in which the copper wires for customers route through a common site en
route to their assigned O/E node. In the first example, the copper for both customers
routes over location 1, but neither is served there. In the second example, the copper
for both customers routes to node 2, where one customer is served and the other passes
by. Our colleagues felt that these types of solutions were impractical for real networks
because they would be cumbersome to manage. They felt that if two customers were
close enough that their copper wires met en route to their serving locations, then these

Figure 3. Examples of unrealistic service assignments.
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customers should ultimately be served at the same node. For example 1, this would
imply that if either customer were served by nodes placed at 1, 2, or 5, then the other
must either be served at the same node or its copper wire should not reach location 1.
However, assigning house A to a node at 3 or house B to a node at 4 implies no constraint
on where the other house is served. In example 2, copper from both customers must go
to location 3, so these two customers must always be served at the same node.

When we require that the copper wire between a customer and its O/E node can
intersect that of another customer only if they are served at the same node, the solutions
obtained tend to be much more orderly. Now, each placed node serves all customers
homed within an associated subtree of the tree. This feature is exploited in the solution
approach that we describe in the next section.

To enforce the proper type of solution, we need to add some constraints on copper
intersection to the [BASE] problem. We will begin by letting P(s, i) denote the unique
path in the tree that connects customer s to candidate node i. The path P(s, i) can
be thought of as being associated with variable zsi . The variable effectively considers
whether copper should route along the associated path. If we wish to make two z vari-
ables positive then we need to verify that their associated paths intersect in an allowable
fashion – either not at all, or en route to a common serving node. We can do this by
adding the following “wire-crossing” constraints:

zsi + zrj � 1 ∀s 	= r, i 	= j : P(s, i) ∩ P(r, j) 	= ∅. (1)

These constraints say that if two paths intersect, then at most one of the implied assign-
ments can be made. Note that if s = r the constraint is already implied in [BASE] and
if i = j the constraint is not required because the paths lead to the same serving node.
Adding these constraints to [BASE], the new formulation becomes:

[WIRE] Minimize
∑
i∈N

∑
j∈Mi

cij xij

s.t.
∑
i∈Ns

zsi = 1, ∀s ∈ S,

∑
s∈S: i∈Ns

zsi �
∑
j∈Mi

qij xij , ∀i ∈ N,

∑
j∈Mi

xij � 1, ∀i ∈ N,

zsi + zrj � 1, ∀s 	= r, i 	= j : P(s, i) ∩ P(r, j) 	= ∅,
zsi ∈ {0, 1}, ∀s ∈ S, i ∈ Ns,

xij ∈ {0, 1}, ∀i ∈ N, j ∈ Mi.

Both the [BASE] and [WIRE] formulations implicitly assume that there is the flexibility
to route copper to any node placed within a subscriber’s range limit. This is not neces-
sarily true, so we also consider a slightly modified third formulation.
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Particularly for the longer-reach xDSL technologies, the ability to leverage existing
copper is a key consideration for network providers. In order to deploy xDSL quickly
and cost-effectively, many providers do not want to install new copper. They want to
overlay xDSL on their existing copper network. When this is the case, the set of candi-
date nodes that could serve each customer is further restricted to those that are already
along the subscriber’s path to the central office. These are the locations that are already
traversed by copper from the CO to the subscriber, and the new network would simply
replace the portion of the copper between the O/E node and the CO with fiber. Thus,
by restricting the locations at which a subscriber can be served, we can assure that the
solution will require no new copper. The candidate nodes in the input network would
typically represent cross-connect locations or other locations at which there is conve-
nient access to the existing copper. The formulation for this “overlay” design problem is
stated as in [WIRE], but the definition of Ns must be modified as we just described. We
do not state the resulting formulation but will refer to it as [OVER].

We note that in the context of the overlay formulation, the wire-crossing constraints
have a simpler interpretation. In this version of the problem, the wire-crossing constraint
is equivalent to saying that a copper wire will never route across a placed node.

The [WIRE] and [OVER] formulations bear some similarity to the local access
network expansion problem considered by Balakrishnan, Magnanti and Wong [3]. (See
also [2].) They also consider installing fiber along the path to the CO, but they do so
to relieve copper exhaust. To obtain practical solutions, they impose “contiguity con-
straints” that are similar to our wire-crossing constraints. If we define the homing node
for a customer to be the candidate node that the customer is incident to in the augmented
network, then the contiguity constraints require that all customers with homing nodes
on P(s, i) be served at node i when s is served there. This is somewhat less restrictive
than the wire-crossing constraint, but similar in its purpose. The problem in [3] focuses
on augmenting copper link capacity and installing concentrators between the customer
and CO that communicate with the CO over fiber. Thus, they consider link costs and
capacities, which we do not. But, we consider placing capacitated facilities at the nodes,
and we must further impose range limits.

3. The dynamic programming solution

We now describe the specifics of our algorithm for obtaining optimal solutions for the
[WIRE] and [OVER] formulations. We will begin by describing the approach for the
[WIRE] formulation and then describe how it can be modified to accommodate the more
constrained [OVER] formulation. The input to the algorithm is:

(a) The tree network of candidate nodes, including the distances between them;

(b) The customers, including their homing nodes and the distances to them;

(c) For each candidate node, the stacks of equipment that can be placed there, given by
their cost and capacity;
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(d) The range limit.

Note that we can always assume that there is a feasible solution to any instance provided
to the algorithm because we can scan the tree in a preprocessing step to verify that each
customer can reach at least one candidate node. Thus, we assume that the algorithm
begins with a feasible instance.

The solution algorithm is essentially a dynamic programming (DP) method. It be-
gins at the leaves of the tree formed by the candidate locations and works toward the
central office at its root. The algorithm essentially runs in two passes. The first pass com-
putes the optimal cost to serve the customers, while the second backtracks to recover an
optimal solution. Before describing the method, we define a few helpful terms. Through-
out this discussion, we will use node to imply a candidate node. The parent of any node
is the first node on the path between it and the root. The children of a node are the ones
that have it as a parent. The deletion of any link in the tree yields two components. We
will refer to the component that contains the root as the rootward subtree and the other
component as the leafward subtree. Similarly, we will refer to the subtree that results
from deleting the link between the node and its parent as the rootward subtree from the
node. And, we refer to the other component as being the leafward subtree from the node,
or simply the node’s subtree.

In general, dynamic programming is a method for solving optimization problems
that have a large search space but are structured in such a way that it is possible to
“grow” a full solution from optimal partial solutions. A common thread in dynamic pro-
gramming is solving a complex problem by solving a sequence of simple problems. In
CBA network design, we begin by solving small problems at the leaves of the tree. At
a particular leaf, we must eventually decide whether to serve the customers that home
there with an O/E stack at that node or at some other node in the rootward subtree from
that node. If we decide to serve the customers at that leaf, then we must place equip-
ment there, so we’d choose the cheapest stack that can serve the subtending customers.
If we decide to serve these customers in the rootward subtree, then the cost at the cur-
rent leaf is zero, but these customers must percolate through the rootward subtree until
they are served by equipment at another node. An illustration of how a basic dynamic
programming algorithm proceeds on a tree is provided in [11].

Typically, solving a dynamic program involves a certain amount of bookkeeping
that is handled by defining a value function. The value function maps (in this case)
decisions into costs. A key property of the value function is that we can grow solutions
by manipulating value functions. At a high level, the value function is evaluated at each
node and it tells us how much it will cost to serve the customers in that node’s component
when they are served in each possible way. We compute the value function for a parent
node directly from the value functions of its children.

For the current problem, the value function for a node A is of the form c(A,B, n),
where B is another node and n is a number of customers. The precise meaning of
c(A,B, n) varies depending upon whether B is in the subtree rootward from A or not.
If B is in the subtree rootward from A, then c(A,B, n) is the cost of the cheapest way
to serve all of the customers in node A’s subtree within A’s subtree except for n of them
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which are served at node B. When B is in node A’s subtree then c(A,B, n) is the cost
of the cheapest way to serve all of the customers in node A’s subtree within this sub-
tree plus n more from the rootward subtree that must all be served at B. In either case,
c(A,B, n) represents the total cost of equipment placed within A’s subtree under the
particular scenario defined by B and n.

Notice that customers in A’s subtree may be served in the rootward subtree or
rootward customers may be served in A’s subtree, but not both. Thus, it may be that A’s
subtree absorbs customers from the rootward subtree or it may shunt its own customers
rootward, but the wire-crossing constraint assures that customers flow only one way
across A. Moreover, the constraint assures that all customers crossing A must be served
at the same node.

We now describe how to compute the value functions more precisely. To do this,
we use the notation defined in section 2.1 plus some additional notation that we now
define:
hs: the homing node for customer demand s;
dA: the number of demands homed to node A;
NA:

⋂
s: hs=A Ns , which is the set of nodes that can reach every demand homed to

node A;
TA: the subtree leafward from node A;
m(i, d): minimum {cij : j ∈ Mi, qij � d}, which is the cost of the least expensive stack

at node i that can serve d demands.

The value function of the dynamic program, c(A,B, n) is defined as: the cost of
serving the demands in TA within that subtree, if n is zero; the cost of serving these
demands within TA plus serving an additional n demands from outside the subtree at B,
if B is inside the subtree; or the cost of serving all but n of these demands within A’s
subtree and the remainder at B, if B is not in TA. In this last case we let c(A,B, n) = ∞
if the number of demands homed in TA that can reach B is less than n.

The base cases of the dynamic program correspond to the leaf nodes. If A is a leaf
node, there are three simple cases:

(i) If A 	= B, n = dA, and B ∈ NA, then c(A,B, n) = 0.

(ii) If A = B, or n = 0, then c(A,B, n) = m(A, dA + n).

(iii) Otherwise, c(A,B, n) = ∞.

If A is not a leaf node, then let KA be the set of children of A. First consider the
cases in which n is nonzero. Suppose B /∈ TA. We must route n demands from TA to
B. Since these routes must pass through A, wire-crossing constraints require that any
demand homed at A must also be routed to B. Thus if dA > 0 but B /∈ NA, then
c(A,B, n) = ∞. Otherwise we can route all of the demand homed at A to B, plus the
remaining part of n from the subtrees at the children of A. Thus, c(A,B, n) is obtained
by minimizing over all partitions of n − dA among the children of A. Specifically, let
n(·) denote a partition function; then c(A,B, n) is the minimum, over all partitions of
n− dA among KA, of

∑
k∈KA

c(k, B, n(k)).
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Now, suppose that B is in TA, but B 	= A. In this case, B must lie in TD for
some D ∈ KA. Because n is nonzero, we must route from outside TA to B, passing
through A. Once again, any demand homed at A must also be routed to B. So, if dA > 0
but B /∈ NA, then c(A,B, n) = ∞. Otherwise, we can route to B all of the demand
homed at A, plus n demands from outside TA, plus arbitrary demands homed to subtrees
at the other children of A. Thus c(A,B, n) is the minimum, over all nonnegative integer
functions n(·) on KA −D, of

c

(
D,B, n+ dA +

∑
k∈KA−D

n(k)

)
+

∑
k∈KA−D

c
(
k, B, n(k)

)
.

We note that in the above we minimize over all attainable integer values for n(k). How-
ever, the number of different values that n(k) can attain is certainly bounded by the
number of customers in Tk that can reach B.

Next, suppose that B = A. Then all of the demand homed to A must be served
at A. In addition, the n demands from outside, and arbitrary demands from the rest of
TA will be served at A. Thus, c(A,B, n) is the minimum, over all nonnegative integer
functions n(·) on KA, of

m

(
A, n+ dA +

∑
k∈KA

n(k)

)
+

∑
k∈KA

c
(
k,A, n(k)

)
.

The case that remains is where n is zero, and the node B is therefore irrelevant. (We,
thus, replace it with a place-holder “·” in the value function.) To compute the function
we must explore two subcases that depend upon whether or not we place equipment
at A. When we place equipment at A, it will serve all demand homed at A plus arbitrary
amounts of demand homed elsewhere in TA. If we place equipment at A, c(A, ·, 0)
would be the minimum, over all nonnegative integer functions n(·) on KA, of

m

(
A, dA +

∑
k∈KA

n(k)

)
+

∑
k∈KA

c
(
k,A, n(k)

)
.

If we place no equipment at A, then all demand in TA must be served in the subtrees of
A’s children. In this case, c(A, ·, 0) would be the minimum, over all children D of A,
over all nodes B ∈ TD such that either B ∈ NA or dA = 0, over all nonnegative integer
functions n(·) on KA −D, of

c

(
D,B, dA +

∑
k∈KA−D

n(k)

)
+

∑
k∈KA−D

c
(
k, B, n(k)

)
.

Finally, c(A, ·, 0) is the minimum over the two subcases.
The properties we need for a successful dynamic program are:

(a) the value functions at the leaves are easily computed from input data;

(b) the value functions at non-leaves can be computed from those of their children and
the input data; and



NODE PLACEMENT AND SIZING 211

(c) the value of the optimal solution is easily extracted.

The steps (i)–(iii) above show that the value functions at the leaves are computable as
required, and the discussion immediately following (i)–(iii) shows how to compute value
functions at non-leaf nodes. The value of the optimal solution is provided directly by
the value function at the root. The optimal value is c(R, ·, 0), where R is the root node.
Now, knowing the components that make up c(R, ·, 0), we can work back down the tree.
At each node we determine the specific components from its children that led to the
optimal decision at the parent node, and we note where equipment is placed.

As a final comment, we would like to mention that the complexity is not as bad as
it looks. We can bound the value of a function n(k) in any of the above formulas by the
number of demands from Tk that can actually reach the appropriate node. The resulting
minimization problems can be solved by relatively obvious dynamic programs, with a
number of stages at most the number of children of A, each stage consisting of a number
of states at most the number of demands in TA.

We now present a very small example to illustrate how we perform these functions.
Suppose that we may place equipment stacks with the following costs and capacities at
nodes A, B, or C:

Cost Capacity
1000 200
1500 400
2500 600
3000 800

Now suppose that we have nodes A and B that are children of node C and that
there are 300 customers homed to A, and 200 homed to B and C as shown in figure 4.

Let X denote any particular node in the rootward subtree from C that all customers
homed to A, B, and C can reach. (The figure shows it as C’s parent.)

For node A: We must serve either all or none of the houses that home at A at
node A. Thus, we either serve all 300 at A, or we serve them in the rootward subtree at

Figure 4. Sample network.
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B, C, or X.

c(A,C, 300) = 0 (the cost at A is 0 because we do not need equipment at A),

c(A,X, 300) = 0 (the cost at A is 0 because we do not need equipment at A),

c(A,B, 300) = 0 (the cost at A is 0 because we do not need equipment at A),

c(A, ·, 0) = 1500 (we serve A’s demand at A and need equipment at A),

c(A,A, 200) = 2500 (we serve C’s demand at A),

c(A,A, 400) = 3000 (we serve all demand at A).

The case at node B is analogous:

c(B,C, 200) = 0,

c(B,X, 200) = 0,

c(B,A, 200) = 0,

c(B, ·, 0) = 1000,

c(B,B, 200) = 1500,

c(B,B, 500) = 3000.

Now, the value function at node C combines information from its children.

c(C,X, 700) = 0 (the cost at C is 0 because customers are served at X),

c(C,X, 500) = 1000 (this is c(B, ·, 0) + c(A,X, 300)),

c(C,X, 400) = 1500 (this is c(A, ·, 0) + c(B,X, 200)),

c(C,X, 200) = 2500 (this is c(A, ·, 0) + c(B, ·, 0)),

c(C, ·, 0) = 3000.

We will now describe how to compute c(C, ·, 0) in detail. Determining c(C, ·, 0) requires
taking the minimum over two cases that correspond to whether or not we place equip-
ment at node C. First consider the case in which we place equipment at C. If equipment
is placed at C, then customers homed to A and B must be served at or below C. This
yields four subcases corresponding to the different customer partitions possible when
equipment is placed at C:

(a) Only customers homed at C are served at C:
n(A) = 0, n(B) = 0 and the cost is

m(C, 200) + c(A,C, 0)+ c(B,C, 0) = 1000 + 1500 + 1000 = 3500.

(b) Customers homed at B and C are served at C:
n(A) = 0, n(B) = 200 and the cost is

m(C, 400)+ c(A,C, 0) + c(B,C, 200) = 1500 + 1500 + 0 = 3000.

(c) Customers homed at A and C are served at C:
n(A) = 300, n(B) = 0 and the cost is
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m(C, 500)+ c(A,C, 300) + c(B,C, 0) = 2500 + 0 + 1000 = 3500.

(d) All customers are served at C:
n(A) = 300, n(B) = 200 and the cost is

m(C, 700)+ c(A,C, 300) + c(B,C, 200) = 3000 + 0 + 0 = 3000.

Next, consider the case in which we do not place equipment at C. Therefore, we must
serve C’s customers at either A or at B. If we serve them at A, we get two subcases
depending upon whether or not we also serve B’s customers at A:

(e) B’s customers are served at B:
n(B) = 0 and the cost is c(A,A, 200) + c(B,A, 0) = 2500 + 1000 = 3500.

(f) B’s customers are also served at A:
n(B) = 200 and the cost is c(A,A, 400) + c(B,A, 200) = 3000 + 0 = 3000.

If we serve C’s customers at B, we get two more subcases that are analogous to the
previous ones:

(g) A’s customers are served at A:
n(A) = 0 and the cost is c(B,B, 200) + c(A,B, 0) = 1500 + 1500 = 3000.

(h) A’s customers are also served at B:
n(A) = 300 and the cost is c(B,B, 500) + c(A,B, 300) = 3000 + 0 = 3000.

We obtain c(C, ·, 0) by minimizing over these eight subcases. If C were in fact the root,
we would see that the least cost to serve the given set of customers is $3000, which is
obtained in five possible ways.

Now, to handle the [OVER] formulation, we require very little change to the
method described for the [WIRE] formulation. Essentially, we need to modify the reach-
able set, Ns , of candidate nodes for each customer s. This can be accomplished either
by manipulating the sets directly or by altering the distances so that we can continue to
use distance to determine reachability. We do the latter by replacing the undirected links
forming the tree with two directed links. The link from a node to its parent has the same
length as the original link; whereas, the link from a parent to its child has a length that
exceeds the range limit. The long length of the leafward link prevents routing in any
direction except toward the root.

4. Computational comparisons

In this section, we present computational comparisons on two network models based
on actual geographic areas.1 The first is based on a network in Iowa where FTTC de-
ployment was under study; the second is derived from a network in Colorado and is be-
ing used to demonstrate ADSL network planning [4]. In our tests, we consider placing

1 Precise data for real networks is scarce because it is generally considered proprietary by its owners.
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Table 1
Equipment models used for Colorado example (xDSL).

Capacity (# of subscribers) Cost ($)

20 15,500
36 26,500
52 36,000
68 45,500

Table 2
Equipment models for Iowa example (FTTC).

Capacity (# of subscribers) Cost ($)

4 796
8 1,026

16 1,441
32 2,081

smaller, cheaper O/E devices characteristic of FTTC in Iowa and larger, more expensive
ones characteristic of ADSL in Colorado. The specific O/E equipment that we use is
given in tables 1 and 2. We believe these data to be realistic, but not real.

In performing these tests we focus on two things:

(1) the solution time;

(2) the effect of the formulation on the cost of the solution.

We present solution times to illustrate that the algorithm seems to run quickly on rela-
tively large problems. This is critical for use in an interactive planning process, such as
described in [4]. We envision the algorithm for CBA network design being used to plan
the area served by one CO (which is called a wire center) at a time. A typical wire center
might have on the order of twenty thousand customers, but of those, a relatively small
fraction would be interested in subscribing to high-speed services like xDSL. Thus, the
number of subscribers in a typical wire center is likely to be on the order of 2000. The
near-term demand for higher-speed access with FTTC is likely to be even less. In the
networks that we consider as test cases, Colorado has 1619 customers and 393 candidate
nodes, while Iowa has 609 customers and 218 candidate nodes. A schematic illustration
of the Iowa network is given in figure 5. The figure shows the central office (labeled FDI
in the figure) and the remaining candidate nodes but not the customers.

Since two customers with the same homing node must ultimately be served at
the same placed node, the DP algorithm can effectively collapse them into one. Thus,
the number of distinct homing nodes may be a better indicator of the problem size for
the DP than the specific number of customers. (However, the number of customers is
certainly relevant because the pre-processing to determine equipment stacks depends
on the number of customers.) The Colorado data contains 233 customers with distinct
homing nodes and the Iowa data contains 148. In both cases, this is considerably smaller
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Figure 5. Iowa network.

Table 3
Results for Colorado network.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 1,141, 5002 0.53 35 N/A
[WIRE] 1,166, 500 2.73 29 1.1
[OVER] 1,258, 500 10.83 41 0.9

Table 4
Results for Iowa network.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 81,064 0.0 69 N/A
[WIRE] 81,064 0.0 69 0.2
[OVER] 90,148 11.21 83 0.2

than the number of customers, which illustrates how the algorithm can use the wire-
crossing constraint to its advantage.

Results for the two networks are given in tables 3 and 4. The times provided are
the user times reported by the time command running on a sun4m machine. The times
reported include all processing to solve the problem along with input and output. Thus,
these times include both the time spent in the core DP algorithm and all preprocessing
to compute equipment stacks and distances and reachability.

To solve the [BASE] version of the problem, we apply a combinatorial search al-
gorithm that is briefly described in [5]. This algorithm constructs both a lower bound
on the cost of the network design and an upper bound provided by the best feasible so-
lution it identifies. For the Colorado problem, we allow the algorithm to run for 5000

2 This is the best feasible solution identified, but could not be confirmed optimal.
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seconds. In this time, the solution it finds is within 1% of the lower bound ($1,135,500),
but cannot be confirmed optimal.3 The [BASE] problem for Iowa is easily solved to
optimality by the combinatorial method. The percent gap provided in the tables repre-
sents the percentage by which the obtained solution differs from a lower bound on the
solution cost for the [BASE] formulation. This lower bound is either the optimal cost of
the [BASE] solution or a lower bound thereon. For the [BASE] solution obtained, the
gap is a measure of suboptimality. For the [WIRE] and [OVER] formulations we are
guaranteed to find the corresponding optimal solution by the DP algorithm, so this value
provides a comparison among formulations. It can be viewed as a bound on the extra
cost incurred by using the more restrictive formulations. Note that this is an entirely
different interpretation of what the gap represents.

Our reason for solving the [BASE] problem is primarily to provide a comparison
on solution cost. The two methods that restrict wire crossing are more constrained, so the
resulting designs will cost at least as much as that of the [BASE] design. The difference
in cost between the solution for the [BASE] problem and that of the [WIRE] formulation
gives us a measure of how much we might need to pay to build a more maintainable net-
work. The difference in cost between solutions for the two more restricted formulations
might provide a measure of the additional cost of networking equipment that one must
pay for the ability to reuse existing copper. If this is more than the cost of installing new
copper, a planner may wish to reconsider the overlay restriction. For both of our test
cases, the increase in cost to enforce the wire crossing restrictions imposed for easier
maintenance is relatively modest. For Iowa there is no increase in cost. For Colorado,
the cost is within 3% of the cost of the lower bound.

The additional equipment cost incurred to enforce copper overlay is somewhat
larger for these two examples. In both cases it is approximately 11% over the lower
bound on equipment cost.

In light of the above results, and since the [BASE] version of the problem appears to
be difficult [12], it is compelling to consider employing an algorithm that solves [WIRE]
as an approximation for [BASE]. If we do this, a natural question becomes: how bad can
this approximation be? In the appendix, we demonstrate that an optimal design under
the [WIRE] formulation can cost as much as |S| times that of the [BASE] formulation,
where |S| is the number of customers and where we assume that the cost to serve k

customers at a node is no more than k times the cost to serve one customer there. When
costs at the candidate nodes are more arbitrary (as when there are diseconomies of scale)
the comparison can be arbitrarily bad. Not surprisingly, examples that actually achieve
the worst-case bounds are highly contrived.

4.1. Results for random problems

To augment our results from realistic networks, we also consider five randomly gener-
ated problems. These problems each contain 5000 customers and 1000 candidate nodes.

3 These are tighter bounds than we were able to obtain applying the CPLEX® MIP solver.
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Table 5
Results for random network 1.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 401,365 0.07 280 N/A
[WIRE] 470,796 17.4 297 8.4
[OVER] 499,329 24.5 324 7.3
Lower bound 401,085

Table 6
Results for random network 2.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 395,050 0.06 270 N/A
[WIRE] 466,853 18.2 292 8.5
[OVER] 490,227 24.2 315 7.1
Lower bound 394,820

Table 7
Results for random network 3.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 390,813 0.07 263 N/A
[WIRE] 453,561 16.1 278 7.4
[OVER] 479,043 22.7 308 7.2
Lower bound 390,533

The problems are created as follows. The candidate nodes are assigned a unique iden-
tification number between 1 and 1000, and the tree structure is created by randomly
selecting a candidate’s parent from among the lower-numbered candidate nodes. Each
customer’s homing node is randomly selected from among the candidate nodes. (This
resulted in at least 991 customers with distinct homing nodes in each example.) Dis-
tances between candidate nodes are randomly generated integers between 1 and 200.
The distance between a customer and its parent is a randomly generated integer in the
range [0, 900]. For these examples, we apply a maximum range limit of 1000.

We perform the tests using the equipment models shown in table 2. Once again, we
run the combinatorial algorithm to obtain bounds for the [BASE] formulation, allowing
it to run for up to 5000 seconds. The results for the random problems are shown in
tables 5–9.

The algorithm for the [BASE] formulation is unable to confirm optimality for the
first three problems but reaches optimality for the last two. We observe that the DP algo-
rithm solves these problems quickly, but the cost for implementing a more manageable
solution appears higher in the random examples. We surmise that this is likely because
of the natural “clustering” that occurs in real networks is absent in the random ones.
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Table 8
Results for random network 4.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 393,077 0.0 267 N/A
[WIRE] 456,995 16.3 285 7.6
[OVER] 487,126 23.9 315 6.2
Lower bound 393,077

Table 9
Results for random network 5.

Formulation Cost ($) % gap Placed nodes Time (s)

[BASE] 393,077 0.0 267 N/A
[WIRE] 463,500 17.9 281 7.4
[OVER] 488,666 24.3 311 6.3
Lower bound 393,077

4.1.1. A more detailed study on customers’ reach
We now conduct a more detailed study using random network 1. In the preceding tri-
als, the range limit is 1000 and the distance between a customer and its homing node is
an independent randomly generated number in the interval [0, 900]. Thus, the reach of
each customer beyond its homing node is an independent random number in the interval
[100, 1000]. We now conduct a more detailed study on the effect of customer reach on
both the solution time of our algorithm and on the characteristics of solutions generated.
We note that when reaches beyond the homing node are short, the solutions are more
constrained and more costly, and when reaches are long, solutions are less constrained
and less costly. More intuitively, when reaches are long, solutions will try to take ad-
vantage of economies of scale by placing fewer nodes that serve more customers. When
reaches are short, we have no choice but to place more nodes that typically serve fewer
customers.

In the next set of experiments, we vary customers’ reach and observe the effects
on both the solution and the running time of the algorithm. We conduct a sequence of
10 tests corresponding to reaches from 100 to 1000 in steps of 100. For each test, every
customer’s reach past its homing node is fixed to a common value and a solution is gen-
erated. The results for the [BASE], [WIRE], and [OVER] formulations are summarized
in tables 10–12. Table 10 includes data for reaches only up to 400. When each customer
has a reach of 400 past its homing node, the cost of the optimal solution for the [BASE]
formulation is $325,662, which is equal to the cost to serve 5000 customers when there
are no range limits at all. (This is the cost of placing 156 size-32 O/E converters and a
single size-8 converter, which is the cheapest way to serve 5000 customers at a single
location.) Thus, the cost will not decrease further as the reach increases.

Most of the results produced by the dynamic program are consistent with intuition.
As the reach increases, the cost and the number of nodes placed decrease. As the reach
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Table 10
Results varying reach for BASE formulation.

Reach Cost ($) Cost lower bound % gap Placed nodes

100 675413 675413 0.0 586
200 413042 407307 1.41 266
300 343441 338948 1.33 176
400 325662 325662 0.0 118

Table 11
Results varying reach for WIRE formulation.

Reach Cost ($) % gap Placed nodes Time (s)

100 684134 1.29 591 5.9
200 452484 11.09 269 7.0
300 400050 18.03 194 8.8
400 360999 10.85 126 14.0
500 345737 6.16 88 18.2
600 337868 3.75 66 36.5
700 333087 2.28 47 69.4
800 331035 1.65 43 128.5
900 328539 0.88 30 217.1

1000 326717 0.32 17 326.8

Table 12
Results varying reach for OVER formulation.

Reach Cost ($) % gap Placed nodes Time (s)

100 702604 4.03 613 5.9
200 484521 18.96 306 5.7
300 413705 22.06 212 6.5
400 370886 13.89 139 6.8
500 351580 7.96 99 7.1
600 341781 4.95 71 9.4
700 337156 3.53 59 10.2
800 333169 2.31 48 9.6
900 329184 1.08 35 9.9

1000 327484 0.56 18 9.3

increases, so too does the number of choices available to the DP. This manifests itself
in increasing solution times. With the [OVER] formulation, the solution times seem to
level off, but this is not the case with the less-constrained [WIRE] formulation. While it
is not surprising that the impact on solution time is greater with the [WIRE] formulation
than it is with the [OVER] formulation, the magnitude of the difference when the reaches
are long is somewhat surprising. This observation may prove useful in a practical setting
because solutions generated by the more constrained formulation do not cost much more
when the reaches are long.
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5. Design problem extensions

There are a number of additional issues that lead to extensions to the basic algorithm
that we have described. Some of these additional issues do not require changes to the
core algorithm described in section 3, while others do. In this section, we consider four
variations that have arisen during the time that we have studied CBA network design.
All of these can be addressed by applying the basic DP algorithm to an altered net-
work provided as input. We present them roughly in order of their practical motivation.
Throughout this section, we focus on input adaptations for the DP algorithm to han-
dle the modified problem; therefore, we restrict our discussion to only the [WIRE] and
[OVER] formulations.

5.1. Network augmentation

One of the primary practical considerations is whether we can augment an existing net-
work. In such a situation, we may have existing O/E converters with spare capacity
already placed in the network, and we may have existing customers already assigned to
O/E nodes. Expanding an existing network can be accomplished with some preprocess-
ing but no fundamental change to the DP. The two issues we must address are how to in-
corporate existing spare capacity at the nodes and whether the wire-crossing constraints
apply between new and existing subscribers. Handling spare capacity is accomplished as
a post-processor to computing the O/E stacks. In the simplest case, we can assume that
the existing spare capacity is free. If a node has spare capacity p, then we add one con-
verter with cost 0 and capacity p and we add p to the capacity of all stacks constructed
for this node.

If there are no wire-crossing constraints imposed between new and old subscribers,
then we can simply ignore the existing subscribers and proceed. If the wire-crossing
constraints must be enforced between all customers (both new and old), then we can
modify the input to assure a correct solution. We need to make sure that new nodes are
placed only in allowable regions of the network and that new customers “respect” the
existing copper wires. We can view an existing solution as a set of non-overlapping con-
nected subgraphs overlaying the network. Each subgraph contains exactly one O/E node
and corresponds to the part of the network traversed by the copper wires of subscribers
served by this O/E node. We call these subgraphs the domain of the O/E node contained
within it. The first part of figure 6 illustrates an O/E node with its surrounding domain
and a set of new customers that desire service.

To strictly enforce the wire-crossing constraints, we must assure that any new sub-
scriber whose wire enters this domain is served at the existing node. We can do this by
replacing the entire domain with the single O/E node. Any structure (customer or node)
outside of the domain that had formerly had a link into it is now directly connected to the
O/E node. To guarantee a proper solution, we need to invoke the bidirectional represen-
tation of the tree described in section 3. The length of the link to O/E node is the length
of the corresponding path in the original network, and the length of any link exiting the
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Figure 6. Example of shrinking the domain of an O/E node.

O/E node will be greater than the allowable range. This transformation is shown in the
second part of figure 6.

We note that any new customer homing to a location within an existing domain is
served at the domain’s O/E node if it can reach it; otherwise, it cannot be served. In
practice, somewhat looser wire-crossing requirements might be enforced between new
and old customers. Such constraints might allow placement of new equipment to serve
customers that cannot reach the domain’s O/E node but might still forbid passing through
a domain without being served there.

5.2. Node capacities

So far we have considered the case where the equipment is capacitated but the sites
themselves are uncapacitated. We may also consider applying two different types of
capacity restrictions at a node. There may be a limit on the number of customers that can
be served at a node, or there may be a limit on the number of O/E converters that can
be placed at a node. The latter restriction might capture space limitations in equipment
housings. Site-based capacity restrictions constrain the choices when we preprocess to
generate equipment stacks, and they affect problem feasibility.

From the standpoint of “stack creation”, the limit on the number of customers that
may be served at a node is easy to handle: we simply stop building stacks when we have
optimally covered the smaller of the customer limit and the number of customers within
its reach. The introduction of limits on the number of converters that may be placed at
a node is a bit more complicated. The new limit makes the knapsack cover problem at
the candidate node more like a two-dimensional knapsack in which there are limits on
dimensions corresponding to both customers and equipment. In practice, our experience
yields intuition that may help to mitigate this added complexity. We rarely observe solu-
tion where more than two or three converters are placed at a node. Thus, if the limit on
the number of converters is large, then it is likely not to be violated. Alternatively, when
the limit is small, stack building can probably consider the possibilities exhaustively.
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With node capacities in place, it may be the case that some customers cannot be
served even though they can reach a candidate node. We can address feasibility issues as
part of either pre-processing or post-processing. If we handle it in post-processing then
we alter the problem to assure a feasible solution but are able to identify and remove
infeasibilities in the solution. We can assure a feasible problem by inserting a new “fake
candidate node” between each customer and its homing node. At this new candidate
node, there will be one available equipment stack. It has larger cost than any real con-
verter and capacity equal to 1. The distances to and from the new node can be set to
assure a feasible solution without altering the total distance to any real candidate node.
This effectively applies a “Big-M” type approach to gain feasibility. Any customer that
can be served feasibly is served at a real node and those that cannot are served at the new
fake nodes.

For certain special cases, it is probably more straightforward to pre-process to re-
move infeasible customers prior to invoking the DP. One popular special case of node
capacities is where equipment may be prohibited at a “candidate” node. Such nodes have
an “empty” equipment stack provided to the DP as input, and the DP serves no customers
at these locations. When candidate nodes either have infinite capacity or no capacity, we
assure feasibility by simply checking that every customer can reach a candidate node
where equipment is available and removing those that cannot.

5.3. Profit maximization

As telecommunications providers begin to offer services that are not regulated, they will
become more interested in the profitability of their network. To this end, suppose that our
objective were to maximize the profit over a given period. Assume that we can associate
a common value for the expected revenue with each customer in the planning area. (This
might be the case when there is a subscription service like ADSL being offered.) With
another simple data pre-processing step, we can alter the input to the DP to “trick” it
into maximizing profit. The trick is to insert a new, hypothetical candidate node between
each potential customer and its homing node. At this new candidate node, there will be
one available equipment stack. It has cost equal to the expected revenue of the incident
customer and capacity equal to 1. The distance from the customer to this new node can be
any positive distance smaller than the original distance to its homing node. The distance
between the new node and the original home pole will be the difference between the
original distance and the amount applied between the new node and the customer.

When we apply the DP algorithm to this altered problem, customers assigned to
non-hypothetical nodes are profitably served with the equipment placed at those nodes.
Other customers are not profitable to serve in the implied solution. However, planners
may still choose to assign these customers to actual O/E nodes at additional cost.

We are currently exploring more general profit-based formulations to see how eas-
ily they can also be accommodated within the context of the DP algorithm.
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Figure 7. Transformation to allow devices with differing range limits.

5.4. Equipment-based range limits

So far, we have only considered the case in which there is a constant range limit charac-
teristic of a particular type of CBA technology. Although we know of no specific exam-
ples, it is conceivable that different types of equipment for a particular problem instance
may have different signal propagation properties that might result in equipment-specific
range limits. Thus, if we have two different O/E devices for FTTC, one might be able to
reach customers within 1000 feet, while the other can reach only 800 feet.

Such a situation is also easily handled by a modification to the problem input data.
Consider a given problem has available O/E devices with n different range limits. For
simplicity, we will illustrate the transformation assuming that the same equipment is
available at all candidate nodes, and discuss the more general case afterward. First, we
replace every candidate node with n candidate nodes that are connected to each other
by a path. Figure 7 provides an example in which there are O/E devices available at
a candidate node having reaches of 800, 900, and 1000. One of the locations in the
path occupies the same position as the original candidate node in the tree, and the rest
of the path is accessible only through this location. The equipment stacks available at
the first candidate node include only the devices with the longest range. Now, moving
along the path, each candidate node is associated with a progressively shorter range
limit. The distance between two candidate nodes in the path is the difference between
their associated range limits. The stack at any candidate node may use devices with the
associated range limit or longer ones. To implement the [OVER] formulation we use the
distances along the path as described, but we do not make distances away from the root
along this path prohibitively long as we usually do.

We now apply the DP algorithm to this altered problem using the longest of the
limits for its range limit parameter. Equipment placed along a path in the altered problem
is placed at the associated site in the real network. By making shorter-reach equipment
available only at a distance from the true candidate node, we assure that it is reachable
in the real solution.
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To allow a more general instance in which different candidate nodes may have
equipment of different reaches, we employ the same basic approach. The range limit
that the DP will use is the longest range for any piece of equipment. This will be the
range associated with the closest candidate node to the root in every path. However, the
associated candidate node may or may not have available equipment with this reach. If
it does not, this candidate is associated with an empty stack of equipment, as described
in section 5.2. Otherwise, it is as above. The remaining candidate nodes along the path
are associated with the remaining allowable ranges for the equipment that can be placed
at the true candidate node.

6. Concluding remarks

The version of the algorithm that is described in section 3 and tested in section 4 is imple-
mented as the design engine for Telcordia’s™ Network Planner – a prototype software
tool for xDSL network planning over an existing copper network. Since we are plan-
ning over an existing network, the tool implements the [OVER] formulation. It already
allows consideration of several features described in the previous section and is being
enhanced to include others. Within this tool, the placement and sizing algorithm is com-
bined with demand forecasting for a more comprehensive planning tool. An overview of
this broader context in which the node placement and sizing problem is solved is given
in [4].

In an idealized planning context, we can assume that distance accurately captures
the signal degradation in the copper portion of the network. To apply the algorithm
within Network Planner or to extend its applicability to a more realistic engineering
setting, we need to model the capabilities of the copper plant with more detail. To date,
we have encountered a number of “real world” issues that we have incorporated into
the algorithm to varying degrees. Some of the issues that have arisen are different cable
gauges, and the presence of things that interfere with xDSL delivery like DLC systems,
load coils, bridged taps, poor quality copper, and interference from other wires within
a binder group4 [1,7]. (These latter issues arise in the process of loop qualification.)
Several of these are handled by simple modifications to the input to the DP algorithm,
but others need to be better understood within the context of our algorithm to determine
whether or not we can (or should) handle them.

Variations on profit maximization pose interesting extensions. We have described
the simple case in which all subscribers yield equal revenue and our objective becomes
one of profit maximization. Rather than just maximizing profit, we expect that a ques-
tion that network providers might ask when breaking into emerging markets like xDSL
is: given that we have $X to spend, which areas should we serve? This appears to be
somewhat harder than the simple profit maximization described previously.

To date, the strongest interest in this algorithm is for expanding ADSL network
coverage beyond the houses that can be reached directly from the CO. Placing O/E de-

4 A binder group is a group of wires that are bundled together in large cables.
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vices deeper into the network can enable service to all houses within a CO’s area. As
demand for bandwidth increases, we expect that demand for more fiber-rich technolo-
gies, like FTTC or FTTH, will also increase. The algorithm that we have described
remains applicable until the point that the fiber reaches the home.
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Appendix

We now address the relationship between the [WIRE] and [BASE] formulations in more
detail. In particular, we consider the worst-case performance guarantees that can be
made if we use an optimal solution for [WIRE] as an approximation to the optimal
solution for [BASE]. When we assume that the equipment costs at the candidate nodes
are such that the cost to serve k customers a site is no more than k times the cost to serve
one, we can guarantee that the optimal value of the [WIRE] version of the problem is
no more than |S| times the optimal value of the [BASE] problem. (|S| is the number
of customers.) Thus, solving the [WIRE] version of the problem provides a feasible
solution for [BASE] that costs no more than |S| times optimal.

To illustrate, we will demonstrate that we can take any feasible solution for the
[BASE] problem and “uncross” the wires to obtain a feasible solution for the [WIRE]
problem that costs no more than |S| times more. So, in particular, uncrossing the optimal
solution to the [BASE] problem yields a feasible solution to [WIRE] that costs no more
than |S| times more. Thus, the optimal solution for [WIRE] is certainly within this
bound.

Assume that we have a feasible solution to the [BASE] problem that has costC. If it
is not feasible for [WIRE] then it has wires destined for different O/E nodes overlapping
someplace along their routes. We will call candidate or placed nodes that are overlapped
by wires terminating at different O/E nodes crossing points. We can remove all crossing
points by rerouting each wire to go from the customer to the closest of the placed O/E
nodes. If there are ties in distance, we can associate a unique number or name with each
node and use them to break ties lexicographically.

Clearly, each customer is within range of its new O/E node. To see that this routing
includes no crossing points, observe that a crossing point requires there to be some wire
w1 overlapping another wire w2 at a location y, and also requires these wires to route to



226 CARPENTER ET AL.

Figure 8. Worst-case example for approximating [BASE] with [WIRE].

different O/E nodes. Since the closest location to y is uniquely determined, a crossing
point cannot occur because if it did, one of the wires could be “shortened” by routing to
the other O/E node. Thus, such situations do not occur.

The uncrossing procedure creates no new O/E nodes. It merely shuffles the cus-
tomers among previously-existing O/E nodes. To build a feasible solution from the rout-
ing obtained, we may need to add capacity at the O/E nodes. Let Ci denote the cost of
the equipment at placed node i under the [BASE] solution. Now, notice that every O/E
node serves at least one customer in the [BASE] solution and serves no more than |S|
customers in the new arrangement. Thus, our rearrangement will incur a cost of no more
than |S|Ci at any node, and its total cost is no more than |S|C. Therefore, we are assured
that there exists a feasible solution to [WIRE] whose cost is no more than |S|C.

Although this appears to be a crude cost bound, a simple example shows that it is
tight. Suppose that we have the network illustrated in figure 8. Here we have a cluster
of |S| − 1 houses labeled A that can reach candidate locations at X and the central
office. We also have a single house labeled B that can reach only X. Now, suppose
that O/E converters available at the CO are free and have sufficient capacity to serve
all |S| customers. Further, suppose that there is one type of converter available at X
and it has capacity equal to 1 and cost C. The optimal solution to the [BASE] problem
serves |S| − 1 houses at the CO and one at X, for a total cost of C. The optimal solution
to the [WIRE] problem must serve all customers at X, incurring a cost of |S|C and
demonstrating that the worst-case bound is tight.

If we were now to remove the assumption that the cost to serve k customers at a
node is no more than k times the cost to serve one, then it is easy to see that the [WIRE]
solution can cost arbitrarily more than that of [BASE]. To see this, we can use the above
example but make only two stacks available at X. One has cost C and capacity equal
to 1, while the other has capacity |S| and an arbitrarily high cost.

Although our description of the algorithm allows different stacks of O/E devices to
be available at each node, the results in section 4 are generated assuming that the same
devices are available at each node for the same cost. When this is the case, the worst-case
relationship between [BASE] and [WIRE] improves. If the optimal value of the [BASE]
problem is C, then the value provided by [WIRE] is within O(

√|S| )C.
If we are given a solution to [BASE] with cost C, we can uncross it as described

previously. Let Si denote the set of customers whose wires route to a node i in the
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uncrossed solution. Now, let us partition the nodes into two sets:

I = {
i: |Si| �

√|S|}, J = {
i: |Si| >

√|S|}.
We can provide enough capacity for customers served at nodes in I , by multiplying the
previous cost at each of these nodes by |Si|, for a cost of no more than

√|S|C. Now, we
can satisfy the customers assigned to nodes in J by placing a stack of equipment that
includes all of the O/E devices in the entire [BASE] solution at each node in J . There
are fewer than

√|S| nodes in J , so the cost at these nodes is no more than
√|S|C. In

total, the cost can be no more than 2
√|S|C. Thus, we know that the bound is no worse

than O(
√|S| )C.

Now, consider an example that expands on the one in figure 8. Let there be K
branches off of the CO that each look like the branch in figure 8, so that the network of
candidate nodes is a star. Thus, the candidate nodes are the CO and the K leaves, which
we denote X1, . . . , XK . Each node Xi is the homing node for K customers, K − 1 of
which reach the CO and one that cannot. Now, suppose that there are two O/E devices
available at each candidate node, and we can use them to construct stacks that combine
them as desired. One device has capacity equal to 1 and cost 1; the other has capacity
K(K−1) and cost K. The optimal solution for this instance of the [BASE] problem has
cost 2K. The optimal solution for the [WIRE] formulation has cost K2. Thus, we have
a ratio of K/2, which is

√|S|/2.
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