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Abstract

1 Introduction

Given two graphs, G and H, we say that H is an induced subgraph of G if
V (H) ⊆ V (G), and two vertices of H are adjacent if and only if they are adjacent in
G. Let F be a (possibly infinite) family of graphs. A graph G is called F -free if no
member of F is isomorphic to an induced subgraph of G. A clique in a graph is a set
of vertices all pairwise adjacent, and a stable set is a set of vertices all pairwise non-
adjacent. The complement of a graph G is the graph G, on the same vertex set as
G, and such that two vertices are adjacent in G if and only if they are non-adjacent
in G.

It turns out that many interesting families of graphs can be characterized as
being F -free for some family F . Perfect graphs is, possibly, one of the most well-
known examples. For a graph G, let us denote by χ(G) the chromatic number of G,
and by ω(G) the size of the largest clique in G. A graph G is called perfect if for
every induced subgraph H of G, χ(H) = ω(H). In 1961 Claude Berge conjectured
that being perfect is equivalent to the property of being F -free for a certain infinite
family F [2], and in 2002, in joint work with Neil Robertson and Robin Thomas,
we were able to prove this conjecture [9]. More precisely, Berge conjectured that a
graph is perfect if an only if no induced subgraph of it is an cycle of odd length at
least five, or the complement of one. Today such graphs are called Berge graphs.
The main part of our proof of the conjecture was a more general theorem, that
describes the structure of all Berge graphs. More precisely, we proved that every
Berge graph either belongs to one of a few well understood families of basic graphs, or
admits a certain decomposition (this was conjectured earlier by Conforti, Cornuéjols
and Vušković). Having obtained this explicit structural result for all Berge graphs,
we were able to verify that all of them are perfect (the other directions of Berge’s
conjecture is easy, because odd cycles and their complements are not perfect, and
every induced subgraph of a perfect graph is).

Theorems following the same general paradigm are known for F -free graphs for
other families F . Some of them are easy—for example it is almost immediate to
see that if F consists of a single graph which is an induced two-edge path, then
every F -free graph is either complete or disconnected. Others are difficult—take F
to be the set of all even-length cycles, or the set of all cycles of odd length at least
five (these are theorems of Conforti, Cornuéjols, Kapoor, and Vušković [21] and of
Conforti, Cornuéjols, and Vušković [23], respectively).

One might then ask whether a structural theorem of that kind should exist for
every family F . This question is, of course, not well defined, because we do not know
yet what graphs should be considered basic, and what kinds of decompositions should
be allowed. However, it is of great interest, at least in our opinion, to understand to
what extent forbidding an induced subgraph in a graph impacts the global structure
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of the graph. In the last few years, we have been studying F -free graphs for different
families F , in an attempt to get some insight into this question. In this paper we
will describe some of the theorems we came up with, and try and emphasize the
similarities among them.

Let us now mention a conjecture of Erdős and Hajnal [27], that, in a sense, is
concerned with the same question, namely whether forbidding a certain induced
subgraph has a global effect on a graph:

Conjecture 1.1 For every graph H, there exists δ(H) > 0, such that if G is an
{H}-free graph, then G contains either a clique or a stable set of size |V (G)|δ(H).

In Section 4 we will describe a structural result, that allowed to solve a special
case of 1.1, where H is a “bull” (we will give a precise definition later). The bull
was one of the smallest subgraph for which the conjecture had not been known, and
thus provided an interesting test case.

Finally, let us mention another problem concerning F -free graphs, and that is the
question of their recognition. We will focus on cases, where F consists of subdivision
of a given graph, possibly with parity conditions. It turns out that for some such
families F , there exist polynomial time algorithms to test whether a given graph is
F -free, while for others the recognition problem has been shown to be NP-complete.
At the moment we do not understand what causes this difference, but in the last
section of this paper we will survey some related results.

This paper is organized as follows. In Section 2 we describe the decomposition
theorem for Berge graphs. Section 3 contains the results about claw-free graphs,
there we also try to explain the difference between a “composition” theorem and a
“decomposition” theorem, and mention some results concerning coloring. Section 4
deals with bull-free graphs and the solution of the Erdős-Hajnal conjecture for them.
In Section 5 we introduce the notion of a “trigraph”, which is an object, slightly
more general than a graph, which was quite useful to us on a number of occasions.
Section 6 is about even-hole-free graphs, there we describe a solution to a conjecture
of Reed, and a coloring property of even-hole-free graphs that it implies. Finally,
in Section 7 we survey some results on testing for the presence of certain induced
subgraphs in a given graph.

2 Perfect Graphs

We start with some definitions. A hole in a graph is an induced cycle with at
lest four vertices, and an antihole in a graph is a hole in its complement. The length
of a hole is the number of edges in it (and the length of an antihole is the length of
its complement.) A path in G is an induced connected subgraph of G which is either
a one-vertex graph, or such that exactly two of its vertices have degree one, and all
the others have degree two (this definition is non-standard, but very convenient).
An antipath is an induced subgraph whose complement is a path. The length of a
path is the number of edges in it (and the length of an antipath is the number of
edges in its complement). If P is a path, P ∗ denotes the set of internal vertices of
P , called the interior of P ; and similarly for antipaths. A path or a hole is called
even if it has even length, and odd otherwise.
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A graph is called Berge if every hole and antihole in it is even. The goal of this
section is to describe a structural result about Berge graphs, that is used in [9] in
order to prove Berge’s Strong Perfect Graph Conjecture [2]:

Conjecture 2.1 A graph is perfect if and only if it is Berge.

We fist define the basic graphs. We say that G is a double split graph if V (G)
can be portioned into four sets {a1, . . . , am}, {b1, . . . , bm}, {c1, . . . , cn}, {d1, . . . , dn}
for some m,n ≥ 2, such that:

• ai is adjacent to bi for 1 ≤ i ≤ m, and cj is nonadjacent to dj for 1 ≤ j ≤ n

• there are no edges between {ai, bi} and {ai′ , bi′} for 1 ≤ i < i′ ≤ m, and all
four edges between {cj , dj} and {cj′ , dj′} for 1 ≤ j < j ′ ≤ n

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m and
1 ≤ j ≤ n, and these two edges have no common end.

(The name is because such a graph can be obtained from what is called a “split
graph” by doubling each vertex). The line graph L(G) of a graph G has vertex set
the set E(G) of edges of G, and e, f ∈ E(G) are adjacent in L(G) if they share an
end in G. Let us say a graph G is basic if either G or G is bipartite or is the line
graph of a bipartite graph, or is a double split graph. (Note that if G is a double
split graph then so is G.)

Now we turn to the various kinds of decomposition. If X ⊆ V (G) we denote the
subgraph of G induced on X by G|X. First, a special case of the “2-join” due to
Cornuéjols and Cunningham [25] — a proper 2-join in G is a partition (X1, X2) of
V (G) such that there exist disjoint nonempty Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2, and every vertex of B1 is
adjacent to every vertex of B2,

• there are no other edges between X1 and X2,

• for i = 1, 2, every component of G|Xi meets both Ai and Bi, and

• for i = 1, 2, if |Ai| = |Bi| = 1 and G|Xi is a path joining the members of Ai

and Bi, then it has odd length ≥ 3.

If X ⊆ V (G) and v ∈ V (G), we say v is X-complete if v is adjacent to every
vertex in X (and consequently v /∈ X), and v is X-anticomplete if v has no neighbors
in X. If X,Y ⊆ V (G) are disjoint, we say X is complete to Y (or the pair (X,Y ) is
complete) if every vertex in X is Y -complete; and being anticomplete to Y is defined
similarly. Our second decomposition is a slight variation of the “homogeneous pair”
of Chvátal and Sbihi [20]. Let A,B be two disjoint subsets of V (G). The pair (A,B)
is called a homogeneous pair in G if for every vertex v ∈ V (G) \ (A ∪B), v is either
A-complete or A-anticomplete and either B-complete or B-anticomplete. A proper
homogeneous pair in G is a homogeneous pair (A,B) such that, if A1, A2 respectively
denote the sets of all A-complete vertices and all A-anticomplete vertices in V (G),
and B1, B2 are defined similarly, then:
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• every vertex in A has a neighbor in B and a nonneighbor in B, and vice versa

• the four sets A1 ∩ B1, A1 ∩ B2, A2 ∩ B1, A2 ∩ B2 are all nonempty.

Let A,B be disjoint subsets of V (G). We say the pair (A,B) is balanced if there
is no odd path between nonadjacent vertices in B with interior in A, and there is no
odd antipath between adjacent vertices in A with interior in B. A set X ⊆ V (G)
is connected if G|X is connected (so ∅ is connected); and anticonnected if G|X is
connected. The third kind of decomposition we use is due to Chvátal [19] — a skew
partition in G is a partition (A,B) of V (G) such that A is not connected and B is not
anticonnected. In order for our result to be useful in the proof of the strong perfect
graph conjecture, we had to restrict ourselves to only using balanced skew-partition.

The main result of [9] is the following:

Theorem 2.2 For every Berge graph G, either G is basic, or one of G, G admits a
proper 2-join, or G admits a proper homogeneous pair, or G admits a balanced skew
partition.

Now, since all basic graphs are perfect (for bipartite graphs it is trivial; for
line graphs of bipartite graphs it is a theorem of König [28]; for their complements
it follows from a theorem of Lovász [29], although originally these were separate
theorems of König; and for double split graphs we leave it to the reader.); and none
of the decompositions can occur in a minimum size counterexample to 2.1 (for 2-joins
this is a result due to to Cornuéjols and Cunningham [25], for proper homogeneous
pairs due to Chvátal and Sbihi [20], and for balanced skew partition due to the
authors together with Robertson and Thomas [9]), it follows that no graph is a
minimum size counterexample to 2.1, and therefore 2.1 is true.

However, one can ask for more from a theorem of the kind of 2.2. While 2.2
provides enough insight into Berge graphs in order to prove 2.1, it does not give a
“recipe” that allows to build all Berge (or, equivalently, perfect) graphs, starting
from some “easy” basic pieces. (Unlike, say, the easy theorem we mentioned in the
introduction, that says that every graph with no path of length two can be built
by taking disjoint unions of complete graphs.) The problem lies, unfortunately, in
the most elegant of all the decompositions we used, the balanced skew-partition.
We have tried, but failed, to “reverse” it, that is turn it into a way to combine
two smaller perfect graphs together, to obtain a bigger perfect graph. This is also
the reason why 2.2 does not immediately imply the existence of a polynomial time
recognition algorithm for Berge graphs (we will come back to this in Section 7).

Another natural question to ask is whether all the basic classes and decomposi-
tions used in 2.2 are necessary. The answer to this question turns out to be “no”,
because the use of the proper homogeneous pair decomposition can be avoided and
2.2 can be strengthened as follows (this is the main result of [3]):

Theorem 2.3 For every Berge graph G, either G is basic, or one of G, G admits
a proper 2-join, or G admits a balanced skew partition.

In Section 5 we will explain the main idea of the proof of 2.3, which was to
consider more general objects, called “Berge trigraphs”.
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3 Claw-free Graphs

A claw is the complete bipartite graphs K1.3 (a vertex with three pairwise non-
adjacent neighbors). A graph is called claw-free if it is {K1,3}-free. One well known
class of claw-free graphs is the class of line graphs; some properties of line graphs
have been generalized to all claw-free graphs. (For example, Edmond’s matching
algorithm, that allows to find a maximum weight stable set in a line graphs [26],
was generalized by Minty to solve the maximum weight stable set problem in claw-
free graphs [30].)

However, the question “what does a general claw-free graph look like” remained
open, and we are now in the process of writing a series of papers answering it [11],
[12],[13],[14], [15]. Unlike in the case of perfect graphs, here we were able to prove
a a theorem that says: every claw-free graph can be built starting from graphs that
belong to certain explicitly constructed basic classes, and gluing them together by
prescribed operations; and all graphs built in this way are claw-free. We do not have
a formal way to tell what graphs we should allow to count as basic (can the class of
all claw-free graphs be basic?), or what operations are acceptable (is the operation
“add a vertex to a graph that has already been constructed provided it does not
introduce a claw” allowed?), but we do think that we managed to put our finger on
an interesting structural property of claw-free graphs. Informally, all of our basic
graphs are “explicit constructions”, meaning graphs defined by a list of adjacencies,
rather than properties (e.g. being claw-free). For the operations, our criterion was
to “eliminate guessing”. That means, roughly, that instead of constructing just all
claw-free graphs, we constructed pairs (G,X), where G is a claw-free graph, and X
is a “handle” (usually a subset of the vertex set of G, or, in some cases, a partition of
the vertex set), that will be used when we combine G with another claw-free graph in
the construction process. The question of formalizing these ideas is of great interest
to us.

The first step in proving the theorem described in the previous paragraphs is
obtaining a result similar to 2.2 for the class of claw-free graphs. First we need a
number of definitions.

Let G be a graph. If X ⊆ V (G), the graph obtained from G by deleting X is
denoted by G \ X. A clique of size three is a triangle, and a stable set of size three
is a triad. Distinct vertices u, v of G are twins (in G) if they are adjacent and have
exactly the same neighbors in V (G) \ {u, v}.

Next, let us explain the decompositions. The first is just that there are two
vertices in G that are twins, or briefly, “G admits twins”. For the second, let (A,B)
be a homogeneous pair, such that A,B are both cliques, and A is neither complete
nor anticomplete to B. In these circumstances we call (A,B) a W-join. (Note that
there is no requirement that A∪B 6= V (G). If the complement of G is bipartite, then
G admits a W-join except in degenerate cases.) The pair (A,B) is nondominating
if some vertex of G \ (A ∪ B) has no neighbor in A ∪B; and it is coherent if the set
of all (A ∪ B)-complete vertices in V (G) \ (A ∪ B) is a clique.

Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are nonempty
and there are no edges between V1 and V2. We call the pair (V1, V2) a 0-join in G.
Thus G admits a 0-join if and only if it is not connected.

Next, suppose that V1, V2 partition V (G), and for i = 1, 2 there is a subset
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Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a clique, and Ai, Vi \ Ai are both nonempty

• A1 is complete to A2

• every edge between V1 and V2 is between A1 and A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for i =

1, 2 there are subsets Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are cliques, Ai ∩Bi = ∅ and Ai, Bi and Vi \ (Ai ∪Bi) are all
nonempty

• A1 is complete to A2, and B1 is complete to B2, and there are no other edges
between V1 and V2, and

• V0 is a clique; and for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete to
Vi \ (Ai ∪ Bi).

We call the triple (V1, V0, V2) a generalized 2-join, and if V0 = ∅ we call the pair
(V1, V2) a 2-join. (This is closely related to, but not the same as, the 2-join from
the previous section.)

We use one more decomposition, the following. Let (V1, V2) be a partition of
V (G), such that for i = 1, 2 there are cliques Ai, Bi, Ci ⊆ Vi with the following
properties:

• For i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi

• V1 is complete to V2 except that there are no edges between A1 and A2, between
B1 and B2, and between C1 and C2.

• V1, V2 are both nonempty.

In these circumstances we say that G is a hex-join of G|V1 and G|V2. Note that if
G is expressible as a hex-join as above, then the sets A1 ∪ B2, B1 ∪ C2 and C1 ∪ A2

are three cliques with union V (G), and consequently no graph G with a stable set
of size four is expressible as a hex-join.

Next, we list some basic classes of graphs.

• Line graphs. We say G ∈ S0 if G is isomorphic to a line graph.

• The icosahedron. This is the unique planar graph with twelve vertices all
of degree five. For 0 ≤ k ≤ 3, icosa(−k) denotes the graph obtained from the
icosahedron by deleting k pairwise adjacent vertices. We say G ∈ S1 if G is
isomorphic to icosa(0), icosa(−1) or icosa(−2).

• The graphs S2. Let G be the graph with vertex set {v1, . . . , v13}, with
adjacency as follows. v1- · · · -v6 is a hole in G of length 6. Next, v7 is adjacent to
v1, v2; v8 is adjacent to v4, v5, and possibly to v7; v9 is adjacent to v6, v1, v2, v3;
v10 is adjacent to v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is
adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent to v1, v2, v4, v5, v7, v8. We
say H ∈ S2 if H is isomorphic to G \ X, where X ⊆ {v11, v12, v13}.
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• Circular interval graphs. Let Σ be a circle and let F1, . . . , Fk be subsets
of Σ, each homeomorphic to the closed interval [0, 1], and no three with union
Σ. Let V be a finite subset of Σ, and let G be the graph with vertex set V
in which v1, v2 ∈ V are adjacent if and only v1, v2 ∈ Fi for some i. Such a
graph is called a circular interval graph. If

⋃k
i=1 6= Σ, we say that G is a liner

interval graph. We write G ∈ S3 if G is a circular interval graph. .

• An extension of L(K6). Let H be the graph with seven vertices h0, . . . , h6,
in which h1, . . . , h6 are pairwise adjacent and h0 is adjacent to h1. Let G be
the graph obtained from the line graph L(H) of H by adding one new vertex,
adjacent precisely to the members of V (L(H)) = E(H) that are not incident
with h1 in H. Then G is claw-free. Let S4 be the class of all graphs isomorphic
to induced subgraphs of G.

• The graphs S5. Let n ≥ 0. Let A = {a1, . . . , an}, B = {b1, . . . , bn} and
C = {c1, . . . , cn} be three cliques, pairwise disjoint. For 1 ≤ i, j ≤ n, let ai, bj

be adjacent if and only if i = j, and let ci be adjacent to aj , bj if and only if
i 6= j. Let d1, d2, d3, d4, d5 be five more vertices, where d1 is A∪B∪C-complete;
d2 is complete to A ∪ B ∪ {d1}; d3 is complete to A ∪ {d2}; d4 is complete to
B ∪ {d2, d3}; d5 is adjacent to d3, d4; and there are no more edges. Let the
graph just constructed be G. We say H ∈ S5 if (for some n) H is isomorphic
to G \ X for some X ⊆ A ∪ B ∪ C.

• 2-simplicial graphs of antihat type. Let n ≥ 0. Let A = {a0, a1, . . . , an}, B =
{b0, b1, . . . , bn} and C = {c1, . . . , cn} be three cliques, pairwise disjoint. For
0 ≤ i, j ≤ n, let ai, bj be adjacent if and only if i = j > 0, and for 1 ≤ i ≤ n
and 0 ≤ j ≤ n let ci be adjacent to aj, bj if and only if i 6= j 6= 0. Let the
graph just constructed be G. We say H ∈ S6 if (for some n) H is isomorphic
to G \ X for some X ⊆ A ∪ B ∪ C, and then H is said to be 2-simplicial of
antihat type.

• Antiprismatic graphs. Let us say a graph is antiprismatic if for every
three pairwise nonadjacent vertices u, v, w, every vertex different from u, v, w
is adjacent to exactly two of them. Antiprismatic graphs are claw-free, and
we gave a structural description of them in the first two papers of the series
[11],[12]. We will not include it here for reasons of space.

We can now state the theorem:

Theorem 3.1 Let G be claw-free. Then either

• G ∈ S0 ∪ · · · ∪ S6, or

• G admits either twins, a nondominating W-join, a coherent W-join, a 0-join,
a 1-join, a generalized 2-join, or a hex-join, or

• G is antiprismatic.

Similarly to 2.2, we call 3.1 a “decomposition theorem. But, unlike 2.2, 3.1 can
be converted into what we call a “composition theorem”, meaning a theorem that
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allows us to build all claw-free graphs. This is done by “reversions” the decompo-
sitions, to obtain “compositions”. For example, every claw-free graph that admits
twins can be obtained from a smaller claw-free graph by adding a new adjacent copy
of an existing vertex. Moreover, given a claw-free graph, one can do this operation,
and the resulting graph will be claw-free, no matter what vertex has been replicated
(so there is no need to guess the “right” vertex to replicate). Reversing other opera-
tions is more difficult, and the general result we obtain for claw-free graphs is quite
complicated, and we will not include it here.

Instead, let us consider a subclass of claw-free graphs, the class of “quasi-line”
graphs. These are graphs in which the vertex set of the neighborhood of every vertex
is the union of two cliques. Let Wi be the graph consisting of an antihole H of length
i, and a V (H)-complete vertex v (therefore v 6∈ V (H)); and let F be the family of
graphs consisting of the claw, together with all Wi with odd i ≥ 5. Then G is a
quasi-line graph if and only if G is F -free.

Circular interval graphs are quasi-line graphs, but there is another way to con-
struct quasi-line graphs, that we explain next. A vertex v ∈ V (G) is simplicial if
the set of neighbors of v is a clique. A strip (G, a, b) consists of a claw-free graph G
together with two designated simplicial vertices a, b called the ends of the strip. For
instance, if G is a linear interval graph, with vertices v1, . . . , vn in order and with
n > 1, then v1, vn are simplicial, and so (G, v1, vn) is a strip, called a linear interval
strip.

Suppose that (G, a, b) and (G′, a′, b′) are two strips. We compose them as follows.
Let A,B be the set of vertices of G \ {a, b} adjacent in G to a, b respectively, and
define A′, B′ similarly. Take the disjoint union of G \ {a, b} and G′ \ {a′, b′}; and let
H be the graph obtained from this by adding all possible edges between A and A ′

and between B and B ′. Then H is claw-free.
This method of composing two strips is symmetrical between (G, a, b) and (G′, a′, b′),

but we do not use it in a symmetrical way. We use it as follows. Start with a graph
G0 with an even number of vertices and which is the disjoint union of complete
graphs, and pair the vertices of G0. Let the pairs be (a1, b1), . . . , (an, bn), say. For
i = 1, . . . , n, let (G′

i, a
′

i, b
′

i) be a strip. For i = 1, . . . , n, let Gi be the graph obtained
by composing (Gi−1, ai, bi) and (G′

i, a
′

i, b
′

i); then the resulting graph Gn is called a
composition of the strips (G′

i, a
′

i, b
′

i) (1 ≤ i ≤ n). For instance, if for each of the
strips (G′

i, a
′

i, b
′

i) , G′

i is a 3-vertex path with ends a′

i, b
′

i, then the effect of composing
with (G′

i, a
′

i, b
′

i) is the identification of ai, bi; and so the graphs that are compositions
of such 3-vertex path strips are precisely line graphs.

It is easy to check that every graph that is the composition of linear interval
strips is a quasi-line graph, so this gives us a second construction for quasi-line
graphs (and this includes line graphs, since the 3-vertex strip mentioned above is a
linear interval strip).

We can prove the following decomposition theorem for quasi-line graphs [16]:

Theorem 3.2 For every quasi-line graph G, either G is a circular interval graph,
or G is a composition of linear interval strips, or G admits a 0-join, or a W -join.

It is clear how to “reverse” the 0-join decomposition: all one needs to do is take
a disjoint union. The W -join decomposition is trickier, but, it turns out, that one
can avoid it at the expense of expanding the list of basic graphs. (In order to do
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that, we use the same idea as in eliminating proper homogeneous pairs from 2.2,
and we will explain it later).

Let us now describe the expanded list of basic graphs. We say that a graph G is
a fuzzy circular interval graph if:

• there is a map φ from V (G) to a circle C (not necessarily injective), and

• there is a set of intervals from C, none including another, and such that no
point of C is an end of more than one of the intervals, so that

• for u, v in G, if u, v are adjacent then {u, v} is a subset of one of the intervals,
and if u, v are nonadjacent then u, v are both ends of any interval including
both of them (and in particular, if φ(u) = φ(v) then u, v are adjacent).

(If also we required φ to be injective, this would be equivalent to the definition
of a circular interval graph.) If x, y are ends of an interval and one of the sets
φ−1(x), φ−1(y) has at least two members, then the pair (φ−1(x), φ−1(y)) is a homo-
geneous pair of cliques; and these turn out to be the only kinds of homogeneous
pairs of cliques that we need. (Fuzzy linear interval strips are defined analogously,
with the additional condition that if a, b are the ends of the strip then φ(a), φ(b) are
different from φ(v) for all other vertices v of G.)

We prove [16]:

Theorem 3.3 For every quasi-line graph G, either G is a fuzzy circular interval
graph, or G is a composition of fuzzy linear interval strips, or G admits a 0-join.

This immediately implies the following composition theorem:

Theorem 3.4 Every quasi-line graph G can be obtained by taking disjoint unions
of fuzzy circular interval graphs and graphs that are compositions of fuzzy linear
interval strips. Moreover, every graph obtained this way is a quasi-line graph.

Finally, let us mention, that, similarly to the case of Berge graphs, the property
of being claw-free implies that the chromatic number of a graph (and therefore all
its induced subgraphs) is bounded by a function of the size of its largest clique. It is
easy to see that for a claw-free graph G, χ(G) ≤ ω(G)2, and this is tight since every
graph with no triad is claw-free. However, if we restrict our attention to graphs that
are, in some sense, “far away” from being triad-free, a much better bound is true
[17]:

Theorem 3.5 Let G be a connected claw-free graph that contains a triad. Then
χ(G) ≤ 2ω(G).

The proof of 3.5 uses our structure theorem for claw-free graphs, but if we replace
χ(G) ≤ 2ω(G) by χ(G) ≤ 4ω(G), there is an easy elementary proof. However, the
factor of 2 is tight. 3.5 can be strengthened further if we assume that G is a quasi-line
graph [8]:

Theorem 3.6 Let G be a quasi-line graph. Then χ(G) ≤ 3
2ω(G).
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The proof of 3.6 relies on 3.4, and the factor of 3
2 is tight.

Curiously, we also a get a theorem similar to 3.5 for graphs whose complements
are claw-free [17], and here the proof does not use any of the heavy machinery
described earlier in this section.

Theorem 3.7 Let G be the complement of a connected claw-free graph that contains
a triad. Then χ(G) ≤ 2ω(G).

4 Bull-free Graphs

The bull is the graph B with vertex set

{x1, x2, x3, y, z}

and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

A graph is called bull-free if it is {B}-free. Obvious examples of bull free graphs are
graphs with no triangle and graphs with no triad; but there are others. Let us call
a graph G an ordered split graph if there exists an integer n such that the vertex
set of G is the union of a clique {k1, . . . , kn} and a stable set {s1, . . . , sn}, and si is
adjacent to kj if and only if i + j ≤ n + 1. It is easy to see that every ordered split
graph is bull-free. A large ordered split graph contains a large clique and a large
stable set, and therefore the three classes (triangle-free, triad-free and ordered split
graphs) are significantly different.

It turns out, however, that, similarly to claw-graphs, there is a composition the-
orem for bull-free graphs; all bull-free graphs can be built starting from graphs that
belong to a few basic classes, gluing them together by certain operations [4]. The
basic classes we need are triangle-free graphs, triad-free graphs, a certain general-
ization of the ordered split graphs, and a couple of others, that we will not describe
here. Let B denote the set of all bull-free graphs that belong to one of the basic
classes. Next we describe some operations, that are used to combine two smaller
bull-free graphs together, to obtain a new, larger, bull-free graph.

Operation O1 is the operation of complementation. The input of O1 is a graph
G1, and the output is the complement of G1.

Operation O2 is the operation of taking disjoint union of two graphs. The
input of O2 is a pair of graphs G1, G2, and the output is a new graph G3, with
V (G3) = V (G1) ∪ V (G2) and E(G3) = E(G1) ∪ E(G2).

Operation O3 is defined as follows. The input of O3 is a pair of graphs G1, G2,
and ordered subsets A1, B1 of V (G1) and A2, B2 of V (G2), with the following prop-
erties:

• A1, B1, A2, B2 are stable sets, with |A1| = |A2| and |B1| = |B2|.

• A1 is complete to B1, and A2 to B2.

• For i = 1, 2 let G′

i be the graph obtained from Gi by adding two new vertices
ai, bi such that {ai} is complete to Ai and {bi} to Bi, and there are no other
edges incident with ai, bi. Then both G′

1 and G′

2 is bull free.
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Under these circumstances, the result of applying O3 to G1, G2, A1, B1, A2, B2 is
the graph G3, obtained from the disjoint union of G1 and G2 by identifying the
corresponding vertices of A1 and A2, and the corresponding vertices of B1 and B2.

Operation O4 is the operation of substitution. The input of O4 is a pair of
graphs G1, G2 and a vertex v ∈ V (G1). The output is a new graph G3, with
V (G3) = V (G1) ∪ V (G2) \ {v} and E(G3) = E(G1 \ {v}) ∪ E(G2) ∪ {xy : x ∈
V (G1)\{v}, y ∈ V (G2), and xv ∈ E(G1)}. Please note that unlike all the previous
operations, O4 is not symmetric between G1 and G2.

The main result of [4] is the following:

Theorem 4.1 Let G be a bull-free graph. Then either G ∈ B, or G can be ob-
tained starting from graphs in B, by repeated applications of operations O1, . . . ,O4.
Conversely, every graph obtained in this way is bull-free.

As in the case of claw-free graphs, we start by proving a “decomposition” theorem
for bull-free graphs, that is a theorem that says that every bull-free graph is either
basic, or admits a decomposition. Reversing the decompositions yields the opera-
tions O1, . . . ,O4. Another similarity with claw-free graphs (and quasi-line graphs)
is that one can state a decomposition theorem for bull-free graphs that uses very
few basic classes, but needs a decomposition similar to a W -join. The conditions
under which introducing a homogeneous pair in a bull-free graph produces another
bull-free graph are quite complicated, and do not seem to be far from saying “add
a vertex if it does not create a bull”. But again, by considering the more general
structure of “bull-free trigraphs”, we were able to eliminate the use of homogeneous
pairs, at the expense of expanding the list of basic classes.

In [10] Safra and the first author use 4.1 to settle the Erdös-Hajnal conjecture
for the case when H is the bull, by proving the following:

Theorem 4.2 Let G be a bull-free graph. Then G contains a stable set or a clique
of size |V (G)|

1

4 .

In order to prove 4.2, it is shown inductively, using 4.1, that every bull-free
graph G can be covered by at most |V (G)|

1

2 induced subgraphs of G, each of which
is perfect. It follows that there exists an induced subgraph H of G, containing at
least |V (G)|

1

2 vertices, and such that H is perfect. Consequently, H contains a stable

set or a clique of size |V (H)|
1

2 ≥ |V (G)|
1

4 , and 4.2 follows.

5 Trigraphs

The goal of this section is to introduce the notion of a “trigraph”. A trigraph
T is a 4-tuple (V (T ), E(T ), S(T ), N(T )) where V is the vertex set of T and every
unordered pair of vertices belongs to one of the three disjoint sets: the strong edges
E(T ), the strong non-edges N(T ) and the switchable pairs S(T ), and such that every
vertex of T belongs to at most one switchable pair. Let us say that two vertices u, v
of T are strongly adjacent if {u, v} is a strong edge, strongly non-adjacent if {u, v} is
a strong non-edge, and semi-adjacent if {u, v} is a switchable pair. In this notation a
graph can be viewed as a trigraph with an empty set of switchable pairs. A realization
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of a trigraph T = (V (T ), E(T ), S(T ), N(T )) is a graph G = (V (G), E(G)) such that
V (G) = V (T ), and E(T ) ⊆ E(G) ⊆ S(T ).

Thus trigraphs are objects, generalizing graphs, and on a number of occasions,
considering them instead of graphs, when dealing with classes of graphs defined by
forbidding certain induced subgraphs, allowed us to prove stronger theorems for the
class of graphs we were interested in.

We use trigraphs while dealing with Berge graphs, claw-free graphs, and bull-free
graphs. In all three cases the situation is as follows: we are able to prove a theorem
that said “every Berge (claw-free, bull-free) graph either belongs to one of a few basic
classes, or admits one of a few decompositions”, where one of the decompositions was
a “homogeneous pair decomposition” (these are really a few different decomposition,
depending on the exact class of graphs in question, but all of them have in common
that the graph admits a homogeneous pair). In all cases, it is possible to define an
operation that is the “reverse” of the homogeneous pair decomposition, let us call it
an expansion. Given a list L of basic graphs, we call an expanded basic graph every
graph that can be obtained from a graph in L by performing expansions. Now we
would like to strengthen the theorem, and prove that every Berge (claw-free, bull-
free) graph is either an expanded basic graph, or admits one of a few decompositions
(none of which is a homogeneous pair decomposition). The last step is to describe
explicitly all expanded basic graphs, thus eliminating the use of homogeneous pairs.

The approach we use is as follows. Let F be a family of graphs. Let us say that
the family T of trigraphs is F -free, if every graph that is a realization of a trigraph in
T is F -free. Now, instead of considering Berge (claw-free, bull-free) graphs, we turn
to Berge (claw-free, bull-free) trigraphs. For every decomposition we expect to use
for the class of F -free graphs, we define its trigraph analogue, in such a way that if
two vertices of a graph were specified as being adjacent in the graph decomposition,
they are specified as being strongly adjacent in the trigraph decomposition, and
the same for pairs that were specified to be non-adjacent. For example, the graph
decomposition “G is disconnected”, becomes the trigraph decomposition “V (T ) can
be partition into two non-empty subsets V1 and V2, such that every vertex of V1 is
strongly non-adjacent to every vertex of V2”. For every basic class C of graphs, the
corresponding basic class of trigraphs consists of all F -free trigraphs T , such that
some graph of C is a realization of T .

Now suppose we were able to prove that every F -free graph is either basic or
admits one of the decompositions D1, . . . , Dk, or admits a homogeneous pair. In all
the cases that we have considered, we could then prove that every F -free trigraph
is either basic (in the trigraph sense explained above) or admits (the trigraph ana-
logue of) one of the decompositions D1, . . . , Dk, or admits (the trigraph analogue
of) a homogeneous pair. So far this is the same theorem, only in slightly grater
generality. It turns out, however, that this more general version allows us to prove
the strengthened theorem for graphs that we are interested in.

It is enough to prove that every F -free trigraph is either basic (in the trigraph
sense) or admits (the trigraph analogue of) one of the decompositions D1, . . . , Dk.
Here is the outline of the proof. Suppose this is false and let T be a trigraph that is
not basic, and does not admits any of the decomposition D1, . . . , Dk, and subject to
that with |V (T )| minimum. By the theorem we know for trigraphs, T admits (the
trigraph analogue of) a homogeneous pair (A,B). So every vertex of V (T )\ (A∪B)
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is either strongly adjacent to every vertex of A, or strongly anti-adjacent to every
vertex of A, and the same for B. Let T ′ be the trigraph obtained from T by replacing
the set A by a new vertex a, and the set B by a new vertex b, such that

• a is semi-adjacent to b in T ′

• for every vertex v ∈ V (T ) \ (A ∪ B), v is strongly adjacent to a in T ′ if v is
strongly adjacent to every vertex of A in T , and v is strongly anti-adjacent to
a in T ′ if v is strongly anti-adjacent to every vertex of A in T , and

• for every vertex v ∈ V (T ) \ (A ∪ B), v is strongly adjacent to b in T ′ if v is
strongly adjacent to every vertex of B in T , and v is strongly anti-adjacent to
b in T ′ if v is strongly anti-adjacent to every vertex of B in T

By the minimality of |V (T )|, it follows that T ′ is either basic, or admits one of the
decompositions D1, . . . , Dk. But then, since the pair {a, b} is a switchable pair of T ′,
the adjacency between the vertices a and b was not specified in the definition of the
decomposition, and therefore T exhibits the same kind of behavior as T ′, meaning
that T is either basic, or admits the same kind of decomposition as T ′ (this is true
with a few exceptions due to certain non-triviality conditions, but the “bad” cases
can be dealt with separately). This, however, is a contradiction to the way T was
chosen. This completes the proof.

At first it seems that instead of using trigraphs, one could redefine the decom-
positions and say the whole proof in terms of graphs only. We would like to remark
that despite a certain amount of effort invested in this approach, we were unable to
come up with a consistent set of definitions, and so the idea of using trigraphs seems
crucial.

6 Even-hole-free Graphs

In this section we discuss the family of even-hole-free graphs; these are F -free
graphs where F is the family of all cycles of even length. (Similarly, odd-hole-free
graphs are graphs with no induced odd cycles of length at least five). Unfortunately,
for even-hole-free graphs we do not have a composition theorem similar to 3.4 or
4.1. The best known result of this kind is a theorem similar to 2.2, due to Conforti,
Cornuéjols, Kapoor and Vušković [21], that states that every even-hole-free graph is
either basic or admits a decomposition. This theorem was then used in [22] to design
a polynomial time recognition algorithm for the class of even-hole-free graphs.

However, the following conjecture of Reed [32] remained open (a bisimplicial
vertex in a graph is a vertex whose set of neighbors is the union of two cliques):

Conjecture 6.1 Every non-null even-hole-free graph has a bisimplicial vertex.

This conjecture is proved by Addario-Berry, Havet, Reed and the authors in [1].
At first we directed out effort to trying to find a composition theorem for even-hole-
free graphs, but were unsuccessful. It still seemed, however, that proving a statement
stronger than 6.1, that would contain some information about the location of the
bisimplicial vertices in the graph, would allow us to apply induction and prove 6.1.
This direction was a lot more fruitful, and eventually lead to a proof of 6.1, that we
now outline.
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Let us start with some definitions. Let G be a graph and let S be a subset of
V (G). The neighborhood of S, denoted by NG(S), is S together with the set of all
vertices of V (G) \ S with a neighbor in S. The non-neighborhood of S is the set
V (G)\NG(S). If S consists of a single vertex s, we write NG(s) instead of NG({s}).
A set S of vertices in a graph G is called dominating (in G) if NG(S) = V (G), and
non-dominating otherwise. An induced subgraph H of G is dominating if V (H) is
dominating, and non-dominating otherwise; we denote by NG(H) the set NG(V (H)).
The stronger statement we ended up proving is the following:

Theorem 6.2 Let G be an even-hole-free graph. Then both the following statements
hold:

1. If H is a non-dominating hole in G, then some vertex of V (G) \ NG(H) is
bisimplicial in G.

2. If K is a non-dominating clique in G of size at most two, then some vertex of
V (G) \ NG(K) is bisimplicial in G.

Clearly the second statement of 6.2 with K = ∅ implies 6.1. We remark that
the second statement of 6.2 is false if we replace “at most two” by “at most three”.
The graph obtained from K4 by choosing a vertex and subdividing once the edges
incident with it is a counterexample.

Let us now describe the proof of 6.2. The proof uses induction. Let G be a graph
such that 6.2 holds for all smaller graphs. First we suppose that G fails to satisfy
the first statement, that is there is a non-dominating hole H in G, but there is no
bisimplicial vertex in the non-neighborhood of V (H). Now the idea is to examine
the neighborhood of V (H) and try to find what we call a “useful cutset” in G, that
is, a subset C of V (G) and an edge e with both ends in C such that

• V (G) \ C is the disjoint union of two non-empty sets, L and R, anticomplete
to each other

• C ⊆ N(e) and the non-neighborhood of e in the graph G|(C∪R) is a non-empty
subset of the non-neighborhood of V (H) in G.

If we find such a cutset C, then it follows, from the minimality of G, that R contains
a vertex v which is bisimplicial in G|(C ∪ R); and since L is anticomplete to R, it
follows that v is a bisimplicial vertex of G, which is a contradiction.

Unfortunately, we do not always succeed in finding a useful cutset; sometimes we
have to make do with a set C and a list u1, .., uk, v1, .., vk of vertices of C (possibly
with repetitions) where ui is non-adjacent to vi in G for every 1 ≤ i ≤ k, such that:

• V (G) \ C is the disjoint union of two non-empty sets, L and R, anticomplete
to each other

• the graph G′ obtained from G|(R ∪ C) by adding the edge uivi for every
1 ≤ i ≤ k is even-hole-free

• For some edge e of G′, C ⊆ NG′(e), and the non-neighborhood of e in the G′

is a non-empty subset of the non-neighborhood of V (H) in G
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• if v is a bisimplicial vertex of G′ contained in the non-neighborhood of e, then
v is bisimplicial in G.

Having found such a set C etc, the same argument as in the case of a “genuine”
useful cutset leads to a contradiction.

So G satisfies the first statement of 6.2. Suppose it fails to satisfy the second.
This means that there is a non-dominating clique K of size at most two in G with
no bisimplicial vertex in its non-neighborhood. An easy argument shows that there
is a hole H of G such that K is included in V (H). Since the first assertion of the
theorem holds for G, we deduce that H is dominating in G. Now we can examine
the structure of G relative to H, and again find variations on the idea of a useful
cutset, such as the one described above, that lead to a contradiction. So G satisfies
the second statement of 6.2 too. This completes the inductive proof.

A graph G is called odd-signable if there exists a function f : E(G) → {0, 1}
such that

∑
e∈E(H) f(e) is odd for every hole H of G. It is natural to ask whether

6.1 is true if we replace “even-hole-free” by “odd-signable”. The answer to this
question is “no”, and the six vertex graph which is the 1-skeleton of the cube is a
counterexample.

Finally, we would like to point out an easy corollary of 6.1, that, similarly to
the case of perfect graphs, claw-free graphs and quasi-line graphs, establishes a
connection between the property of being F -free, and the fact the the chromatic
number of the graph (and therefore if all induced subgraphs) is bounded by a function
of the size of the largest clique.

Theorem 6.3 Let G be an even hole free graph. The χ(G) ≤ 2ω(G)/

Proof. The proof is by induction on |V (G)|. By 6.1 there exists a bisimplicial vertex
v in G. The graph G′ obtained from G by deleting v is another even hole free graph,
ω(G′) ≤ ω(G), and, inductively, G′ can be properly colored with at most 2ω(G)
colors. Let c be such a coloring of G′. Since v is bisimplicial in G, |NG(v)| ≤ 2ω(G)
and at least one of the 2ω colors does not appear in NG(v) \ {v} in c. Now v can
be colored with this color, thus extending c to a proper coloring of G with at most
2ω(G) colors. This proves 6.3.

7 Detecting Induced Subgraphs

Given an infinite family F of graphs, it is natural to ask whether one can test
in polynomial time if a given graph G is F -free. In this section, will survey some
known results in this direction. For brevity, let us say “testing for F” when we
mean “testing for being F -free”. In all cases the family F we consider consists of
subdivisions of a given graph, possibly with some parity conditions. It turns out
that even in this restricted setting, testing for F can be done in polynomial time for
families F , and can be shown to be NP -complete for others. At the moment we do
not know what the reason for this difference in behavior is.

A pyramid is a graph consisting of a triangle {b1, b2, b3}, called the base, a vertex
a 6∈ {b1, b2, b3}, called the apex, and three paths P1, P2, P3, such that for i, j ∈ 1, 2, 3

• the ends of Pi are a and bi,
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• if i 6= j then Pi is disjoint from Pj and the only edge between V (Pi) and V (Pj)
are bibj , and

• at most one of P1, P2, P3 has length one.

In this case we say that the pyramid is formed by the paths P1, P2, P3.

Let P be the family of all pyramids. It turns out that testing for P is relatively
easy, and can be done in time O(|V (G)|9) [5]. The idea is as follows. If G contains
a pyramid, then it contains a pyramid P with the number of vertices smallest. We
are going to “guess” some of the vertices of P in G, then find shortest paths in
G between pairs of vertices that we guessed that were joined by a path in P , and
then test whether the subgraph of G formed by the union of these shortest paths
is a pyramid. If the answer is “yes”, then G contains a pyramid, and we stop.
Surprisingly, it turns out, that choosing the shortest paths with a little bit of care,
we can guarantee that if the answer is “no”, then there is no pyramid in P . We call
this general strategy of testing for a family F a shortest-paths detector for F .

Let us now be more precise. For u, v ∈ V (G) we denote by dG(u, v) the length
of the shortest path of G between u and v. If P is a pyramid, formed by three paths
P1, P2, P3, with apex a and base {b1, b2, b3}, we say its frame is the 10-tuple

a, b1, b2, b3, s1, s2, s3,m1,m2,m3,

where

• for i = 1, 2, 3, si is the neighbor of a in Pi

• for i = 1, 2, 3, mi ∈ V (Pi) satisfies dPi
(a,mi) − dPi

(mi, bi) ∈ {0, 1}.

A pyramid P in G is optimal if there is no pyramid P ′ with |V (P ′)| < |V (K)|.

Theorem 7.1 [5] Let P be an optimal pyramid, with frame a, b1, b2, b3, s1, s2, s3,m1,m2,m3.
Let S1, T1 be the subpaths of P1 from m1 to s1, b1 respectively. Let F be the set of
all vertices nonadjacent to each of s2, s3, b2, b3.

1. Let Q be a path between s1 and m1 with interior in F , and with minimum
length over all such paths. Then a-s1-Q-m1-T1-b1 is a path (say P ′

1), and
P ′

1, P2, P3 form an optimal pyramid.

2. Let Q be a path between m1 and b1 with interior in F , and with minimum
length over all such paths. Then a-s1-S1-m1-Q-b1 is a path (say P ′

1), and
P ′

1, P2, P3 form an optimal pyramid.

Analogous statements hold for P2, P3.

7.1 can be used to design an algorithm to test for P:

• guess the frame a, b1, b2, b3, s1, s2, s3,m1,m2,m3 of an optimal pyramid P of
G,

• find shortest paths between m1 and b1, and between m1 and s2, not containing
any neighbors of s2, s3, b2, andb3; do the same for m2.b2, s2 and m2, b3, s3,
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• test if the union of the six shortest paths, together with the vertex a forms a
pyramid.

Now, by 7.1, the answer if “yes”, if and only if G contains a pyramid. The algorithm
in [5] is similar, it was modified a little to bring the running time down to O(|V (G)|)9.

The main result of [5] is a polynomial time algorithm for testing if a graph is
Berge (and therefore perfect). Since every pyramid contains an odd hole, it follows
that every odd-hole-free, and therefore every Berge, graph is P-free.

Even though the algorithm in [5] was found after 2.2 had been proved, it does
not use 2.2. The idea in [5] is to use the shortest-path detector for odd holes.
Unfortunately, there does not seem to be a theorem similar to 7.1 for odd holes,
and so, first, the graph needs to be “prepared” for using a shortest-paths detector.
The first step is to test for P, and a few other families F , that are easy to test for,
and such that every Berge graphs is F -free. Now we can assume that the graph in
question is F -free for all these F . The next step is applying “cleaning”, a technique
fist proposed in [24]. The idea of cleaning is to find, algorithmically, polynomially
many subsets X1, . . . , Xk of V (G), such that if G contains an odd hole, then for at
least one value of i ∈ {1, . . . , k} the graph Gi = G\Xi contains an odd hole that can
be found using a shortest-paths detector. Finally, applying a shortest-paths detector
for odd hole to each of G1, . . . , Gk, we detect and odd hole if and only if G contains
one.

In addition to the algorithm just described, [5] contains another algorithm to
test for Bergeness, that instead of a shortest-paths detector for odd holes, uses a
decomposition theorem for odd-hole-free graphs from [23], but we will not describe
this algorithm here. We remark, that both algorithms in [5] test for Bergeness, and
not for the family of odd holes. The question of testing if a graph contains an odd
hole is still open. On the other hand, the problem of testing if a graph contains
an even hole can be solved in polynomial time. There are two known algorithms.
One, due to Conforti, Cornuéjols, Kapoor, and Vušković [22], and the others due
to Kawarabayshi and the authors [7]. Both algorithms use cleaning, and then, the
former uses a decomposition theorem of [21] for even-hole-free graphs, and the latter
a shortest-paths detector.

There are two other kinds of graphs that are somewhat similar to the pyramid,
called a “theta” and a “prism”. A theta in a graph consisting of two nonadjacent
vertices s, t and three paths P,Q,R, each between s and t, such that the sets V (P )\
{s, t}, V (Q) \ {s, t}, and V (R) \ {s, t} are pairwise disjoint, the union of every pair
of them is a hole. A prism is a graph consisting of two disjoint triangles {a1, a2, a3}
and {b1, b2, b3} and three paths P1, P2, P3, with the following properties:

• for i = 1, 2, 3, the ends of Pi are ai and bi,

• P1, P2, P3 are pairwise disjoint , and

• for 1 ≤ i < j ≤ 3, there are precisely two edges between V (Pi) and V (Pj),
namely aiaj and bibj.

Let T be the family of all thetas, and Pr the family of all prisms. Then every
even-hole-free graph is T ∪ Pr-free, and so prisms and thetas play a similar role
for even-hole-free graphs to the one that pyramids play for odd-hole-free graphs. It
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turns out, however, that, unlike P, the problem of testing for Pr is NP -complete
(this is a theorem due to Maffray and Trotignon [31]). On the other hand, testing
for T can be done in polynomial time [18]. The problems of testing for P ∪ Pr
and testing for T ∪ Pr can also be solved in polynomial time (see [31] and [6],
respectively).

All the algorithms mentioned above use variations on the ideas of cleaning and
shortest paths detectors (or decomposition theorems), except one, and that is the
algorithm for testing for T . There our approach is different. We prove that a
graph is T -free if and only if it admits a certain structure, that can be tested for in
polynomial time. This result is particularly pleasing from our point of view, because
this is the first time that a composition theorem and an algorithm appear together
in the study of graphs with forbidden induced subgraphs.
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