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Majority Colourings of Digraphs

Stephan Kreutzer † Sang-il Oum ‡ Paul Seymour §

Dominic van der Zypen David R. Wood ¶

Abstract. We prove that every digraph has a vertex 4-colouring such that for each vertex v, at

most half the out-neighbours of v receive the same colour as v. We then obtain several results

related to the conjecture obtained by replacing 4 by 3.

1 Introduction

A majority colouring of a digraph is a function that assigns each vertex v a colour, such that at

most half the out-neighbours of v receive the same colour as v. In other words, more than half

the out-neighbours of v receive a colour different from v (hence the name ‘majority’). Whether

every digraph has a majority colouring with a bounded number of colours was posed as an

open problem on mathoverflow [7]. In response, Ilya Bogdanov proved that a bounded number of

colours suffice for tournaments. The following is our main result.

Theorem 1. Every digraph has a majority 4-colouring.

Proof. Fix a vertex ordering. First, 2-colour the vertices left-to-right so that for each vertex v,

at most half the out-neighbours of v to the left of v in the ordering receive the same colour

as v. Second, 2-colour the vertices right-to-left so that for each vertex v, at most half the out-

neighbours of v to the right of v in the ordering receive the same colour as v. The product

colouring is a majority 4-colouring.

Note that this proof implicitly uses two facts: (1) every digraph has an edge-partition into two

acyclic subgraphs, and (2) every acyclic digraph has a majority 2-colouring.

The following conjecture naturally arises:

Conjecture 2. Every digraph has a majority 3-colouring.
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This conjecture would be best possible. For example, a majority colouring of an odd directed

cycle is proper (since each vertex has out-degree 1), and therefore three colours are necessary.

There are examples with large outdegree as well. For odd k > 1 and prime n ≫ k, let G be

the directed graph with V (G) = {v0, . . . , vn−1} where N+
G (vi) = {vi+1, . . . , vi+k} and vertex

indices are taken modulo n. Suppose that G has a majority 2-colouring. If some sequence

vi, vi+1, . . . , vi+k contains more than k+1
2 vertices of one colour, say red, and vi is the leftmost

red vertex in this sequence, then more than k−1
2 out-neighbours of vi are red, which is not allowed.

Thus each sequence vi, vi+1, . . . , vi+k contains exactly k+1
2 vertices of each colour. This implies

that vi and vi+k+1 receive the same colour, as otherwise the sequence vi+1, . . . , vi+k+1 would

contain more than k+1
2 vertices of the colour assigned to vi+k+1. For all vertices vi and vj , if

ℓ = j−i
k+1 in the finite field Zn, then j = i+ ℓ(k+1) and vi, vi+(k+1), vi+2(k+1), . . . , vi+ℓ(k+1) = vj

all receive the same colour. Thus all the vertices receive the same colour, which is a contradiction.

Hence the claimed 2-colouring does not exist.

Note that being majority c-colourable is not closed under taking induced subgraphs. For example,

let G be the digraph with V (G) = {a, b, c, d} and E(G) = {ab, bc, ca, cd}. Then G has a majority

2-colouring: colour a and c by 1 and colour b and d by 2. But the subdigraph induced by {a, b, c}

is a directed 3-cycle, which has no majority 2-colouring.

The remainder of the paper takes a probabilistic approach to Conjecture 2, proving several results

that provide evidence for Conjecture 2. A probabilistic approach is reasonable, since in a random

3-colouring, one would expect that a third of the out-neighbours of each vertex v receive the

same colour as v. So one might hope that there is enough slack to prove that for every vertex v,

at most half the out-neighbours of v receive the same colour as v. Section 2 proves Conjecture 2

for digraphs with very large minimum outdegree (at least logarithmic in the number of vertcies),

and then for digraphs with large minimum outdegree (at least a constant) and not extremely

large maximum indegree. Section 3 shows that large minimum outdegree (at least a constant) is

sufficient to prove the existence of one of the colour classes in Conjecture 2. Section 4 discusses

multi-colour generalisations of Conjecture 2.

Before proceeding, we mention some related topics in the literature:

• For undirected graphs, the situation is much simpler. Lovász [4] proved that for every

undirected graph G and integer k > 1, there is a k-colouring of G such that every vertex

v has at most 1
k
deg(v) neighbours receiving the same colour as v. The proof is simple.

Consider a k-colouring of G that minimises the number of monochromatic edges. Suppose

that some vertex v coloured i has greater than 1
k
deg(v) neighbours coloured i. Thus less

than k−1
k

deg(v) neighbours of v are not coloured i, and less than 1
k
deg(v) neighbours of

v receive some colour j 6= i. Thus, if v is recoloured j, then the number of monochromatic

edges decreases. Hence no vertex v has greater than 1
k
deg(v) neighbours with the same
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colour as v.

• Seymour [6] considered digraph colourings such that every non-sink vertex receives a colour

different from some outneighbour, and proved that a strongly-connected digraph G admits

a 2-colouring with this property if and only G has an even directed cycle. The proof shows

that every digraph has such a 3-colouring, which we repeat here: We may assume that G

is strongly connected. In particular, there are no sink vertices. Choose a maximal set X

of vertices such that G[X] admits a 3-colouring where every vertex has a colour different

from some outneighbour. Since any directed cycle admits such a colouring, X 6= ∅. If

X 6= V (G), then choose an edge uv entering X and colour u different from the colour of

v, contradicting the maximality of X . So X = V (G). (The same proof show two colours

suffice if you start with an even cycle.)

• Alon [1, 2] posed the following problem: Is there a constant c such that every digraph with

minimum outdegree at least c can be vertex-partitioned into two induced digraphs, one

with minimum outdegree at least 2, and the other with minimum outdegree at least 1?

• Wood [8] proved the following edge-colouring variant of majority colourings: For every

digraph G and integer k > 2, there is a partition of E(G) into k acyclic subgraphs

such that each vertex v of G has outdegree at most ⌈deg
+(v)

k−1 ⌉ in each subgraph. The bound

⌈deg
+(v)

k−1 ⌉ is best possible, since in each acyclic subgraph at least one vertex has outdegree

0.

2 Large Outdegree

We now show that minimum outdegree at least logarithmic in the number of vertices is sufficient

to guarantee a majority 3-colouring. All logarithms are natural.

Theorem 3. Every graph G with n vertices and minimum outdegree δ > 72 log(3n) has a majority

3-colouring. Moreover, at most half the out-neighbours of each vertex receive the same colour.

Proof. Randomly and independently colour each vertex of G with one of three colours {1, 2, 3}.

Consider a vertex v with out-degree dv . Let X(v, c) be the random variable that counts the

number of out-neighbours of v coloured c. Of course, E(X(v, c)) = dv/3. Let A(v, c) be the event

that X(v, c) > dv/2. Note that X(v, c) is determined by dv independent trials and changing the

outcome of any one trial changes X(v, c) by at most 1. By the simple concentration bound1,

P(A(v, c)) 6 exp(−(dv/6)
2/2dv) = exp(−dv/72) 6 exp(−δ/72).

1 The simple concentration bound says that if X is a random variable determined by d independent trials, such that
changing the outcome of any one trial can affect X by at most c, then P(X > E(X) + t) 6 exp(−t2/2c2d); see [5,
Chapter 10]. With E(Xv) = dv/3 and t = dv/6 and c = 1 we obtain the desired upper bound on P(Xv > dv/2).
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The expected number of events A(v, c) that hold is

∑

v∈V (G)

∑

c∈{1,2,3}

P(A(v, c)) 6 3n exp(−δ/72) < 1,

where the last inequality holds since δ > 72 log(3n). Thus there exists colour choices such that

no event A(v, c) holds. That is, a majority 3-colouring exists.

The following result shows that large outdegree (at least a constant) and not extremely large

indegree is sufficient to guarantee a majority 3-colouring.

Theorem 4. Every digraph with minimum out-degree δ > 1200 and maximum in-degree at most

exp(δ/72)/12δ has a majority 3-colouring. Moreover, at most half the out-neighbours of each

vertex receive the same colour.

Proof. We assume δ > 1200, as otherwise the minimum out-degree δ is greater than the maximum

in-degree exp(δ/72)/12δ, which does not make sense.

We use the following weighted version of the Local Lemma [3, 5]: Let A := {A1, . . . , An} be

a set of ‘bad’ events, such that each Ai is mutually independent of A \ (Di ∪ {Ai}), for some

subset Di ⊆ A. Assume there are numbers t1, . . . , tn > 1 and a real number p ∈ [0, 14 ] such that

for 1 6 i 6 n,

(a) P(Ai) 6 pti and (b)
∑

Aj∈Di

(2p)tj 6 ti/2.

Then with positive probability no event Ai occurs.

Define p := exp(−δ/72). Since δ > 1200 we have p ∈ [0, 14 ]. Randomly and independently

colour each vertex of G with one of three colours {1, 2, 3}. Consider a vertex v with out-degree

dv . Let X(v, c) be the random variable that counts the number of out-neighbours of v coloured c.

Of course, E(X(v, c)) = dv/3. Let A(v, c) be the event that X(v, c) > dv/2. Let A := {A(v, c) :

v ∈ V (G), c ∈ {1, 2, 3}} be our set of events. Let t(v, c) := tv := dv/δ be the associated weight.

Then tv > 1. It suffices to prove that conditions (a) and (b) hold.

Note that X(v, c) is determined by dv independent trials and changing the outcome of any one

trial changes X(v, c) by at most 1. By the simple concentration bound,

P(A(v, c)) 6 exp(−(dv/6)
2/2dv) = exp(−dv/72) = exp(−δtv/72) = ptv .

Thus condition (a) is satisfied. For each event A(v, c) let D(v, c) be the set of all events

A(w, c′) ∈ A such that v and w have a common out-neighbour. Then A(v, c) is mutually
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independent of A \ (D(v, c) ∪ {A(v, c)}). Since tw > 1,

∑

A(w,c′)∈D(v,c)

(2p)tw 6
∑

A(w,c′)∈D(v,c)

(2p)1 = 2p|D(v, c)|.

Since each out-neighbour of v has in-degree at most exp(δ/72)/12δ, we have |D(v, c)| 6

dv exp(δ/72)/4δ and

∑

A(w,c′)∈D(v,c)

(2p)tw 6 pdv exp(δ/72)/2δ = exp(−δ/72)tv exp(δ/72)/2 = tv/2.

Thus condition (b) is satisfied. By the local lemma, with positive probability, no event A(v, c)

occurs. That is, a majority 3-colouring exists.

Note that the conclusion in Theorem 3 and Theorem 4 is stronger than in Conjecture 2. We now

show that such a conclusion is impossible (without some extra degree assumption).

Lemma 5. For all integers k and δ, there are infinitely many digraphs G with minimum outdegree

δ, such that for every vertex k-colouring of G, there is a vertex v such that all the out-neighbours

of v receive the same colour.

Proof. Start with a digraph G0 with at least kδ vertices and minimum outdegree δ. For each

set S of δ vertices in G0, add a new vertex with out-neighbourhood S. Let G be the digraph

obtained. In every k-colouring of G, at least δ vertices in G0 receive the same colour, which

implies that for some vertex v ∈ V (G) \ V (G0), all the out-neighbours of v receive the same

colour.

3 Stable Sets

A set T of vertices in a digraph G is a stable set if for each vertex v ∈ T , at most half the

out-neighbours of v are also in T . A majority colouring is a partition into stable sets. Of course,

if a digraph has a majority 3-colouring, then it contains a stable set with at least one third of

the vertices. The next lemma provides a sufficient condition for the existence of such a set.

Theorem 6. Every digraph G with n vertices and minimum outdegree at least 22 has a stable

set with at least n
3 vertices.

Theorem 6 is proved via the following more general lemma.
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Lemma 7. For 0 < α < p < β < 1, every digraph G with minimum outdegree at least

δ :=









(β + p) log
(

p
p−α

)

(β − p)2









contains a set T of at least αn vertices, such that |N+
G (v) ∩ T | 6 β|N+

G (v)| for every vertex

v ∈ T .

Proof. Let dv := |N+
G (v)| be the outdegree of each vertex v of G. Initialise S := ∅. For each

vertex v of G, add v to S independently and randomly with probability p. Let Xv := |N+
G (v)∩S|.

Note that Xv ∼ Bin(dv, p) and

P(Xv > βdv) =

dv
∑

k>⌊βdv⌋+1

(

dv
k

)

pk(1− p)dv−k. (1)

By the Chernoff bound2,

P(Xv > βdv) 6 exp

(

−
(β − p)2

β + p
dv

)

6 exp

(

−
(β − p)2

β + p
δ

)

6
p− α

p
. (2)

where the last inequality follows from the definition of δ. Let B := {v ∈ S : Xv > βdv}. Then

E(|B|) =
∑

v∈V (G)

P(v ∈ S and Xv > βdv).

Since the events v ∈ S and Xv > βdv are independent,

E(|B|) =
∑

v∈V (G)

P(v ∈ S)P(Xv > βdv) = p
∑

v∈V (G)

P(Xv > βdv) 6 (p− α)n.

Let T := S \B. Thus |N+
G (v) ∩ T | 6 βdv for each vertex v ∈ T , as desired. By the linearity of

expectation,

E(|T |) = E(|S|)−E(|B|) = pn−E(|B|) > αn.

Thus there exists the desired set T .

Proof of Theorem 6. The proof follows that of Lemma 7 with one change. Let α := 1
3 and β := 1

2

and p := 0.38. Then δ = 129. If 22 6 dv 6 128 then direct calculation of the formula in (1)

verifies that P(Xv > βdv) 6
p−α
p

, as in (2). For dv > 129 the Chernoff bound proves (2). The

rest of the proof is the same as in Lemma 7.

2 The Chernoff bound implies that if X ∼ Bin(d, p) then P(X > (1+ǫ)pd) 6 exp(− ǫ2

2+ǫ
pd) for ǫ > 0. With ǫ = β

p
−1

we have P(X > βd) 6 exp(− (β−p)2

p+β
d).
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Note the following corollary of Lemma 7 obtained with α = 1
2 − ǫ and p = 1

2 −
ǫ
2 . This says that

graphs with large minimum outdegree have a stable set with close to half the vertices.

Proposition 8. For 0 < ǫ < 1
2 , every n-vertex digraph G with minimum outdegree at least

2ǫ−2(2− ǫ) log(1−ǫ
ǫ
) contains a stable set of at least (12 − ǫ)n vertices.

4 Multi-Colour Generalisation

The following natural generalisation of Conjecture 2 arises.

Conjecture 9. For k > 2, every digraph has a vertex (k+ 1)-colouring such that for each vertex

v, at most 1
k
deg+(v) out-neighbours of v receive the same colour as v.

The proof of Theorem 1 generalises to give an upper bound of k2 on the number of colours in

Conjecture 9. It is open whether the number of colours is O(k). This conjecture would be best

possible, as shown by the following example. Let G be the k-th power of an n-cycle, with arcs

oriented clockwise, where n > 2k + 3 and n 6≡ 0 (mod k + 1). Each vertex has outdegree k.

Say G has a vertex (k + 1)-colouring such that for each vertex v, at most ǫk out-neighbours of

v receive the same colour as v. If ǫk < 1 then the underlying undirected graph of G is properly

coloured, which is only possible if n ≡ 0 (mod k + 1). Hence ǫ > 1
k
.

Lemma 7 with α = 1
k
− ǫ and β = 1

k
and p = 1

k
− ǫ

2 implies the following ‘stable set’ version of

Conjecture 9 for digraphs with large minimum outdegree.

Proposition 10. For k > 2 and ǫ ∈ (0, 1
k
), every n-vertex digraph G with minimum outdegree at

least 2ǫ−2( 4
k
− ǫ) log

(

2
ǫk

− 1
)

contains a set T of at least ( 1
k
− ǫ)n vertices, such that for every

vertex v ∈ T , at most 1
k
deg+(v) out-neighbours of v are also in T .

5 Open Problems

In addition to resolving Conjecture 2, the following open problems arise from this paper:

1. Is there a constant β < 1 for which every digraph has a 3-colouring, such that for every

vertex v, at most β deg+(v) out-neighbours receive the same colour as v?

2. Does every tournament have a majority 3-colouring?

3. Does every Eulerian digraph have a majority 3-colouring? Note that for an Eulerian

digraph G, if each vertex v has in-degree and out-degree deg(v), then by the result for

undirected graphs mentioned in Section 1, the underlying undirected graph of G has a
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4-colouring such that each vertex v has at most 1
2 deg(v) in- or- out-neighbours with the

same colour as v. In particular, G has a majority 4-colouring. By an analogous argument

every Eulerian digraph has a 3-colouring such that each vertex v has at most 2
3 deg(v)

in- or- out-neighbours with the same colour as v, thus proving a special case of the first

question above.

4. Does every digraph in which every vertex has in-degree and out-degree k have a majority

3-colouring? A variant of Theorem 4 proves this result for k > 144.

5. Is there a characterisation of digraphs that have a majority 2-colouring (or a polynomial

time algorithm to recognise such digraphs)?

6. Does every digraph have a O(k)-colouring such that for each vertex v, at most 1
k
deg+(v)

out-neighbours receive the same colour as v (for all k > 2)?

7. A digraph G is majority c-choosable if for every function L : V (G) → Z with |L(v)| > c

for each vertex v ∈ V (G), there is a majority colouring of G with each vertex v coloured

from L(v). Is every digraph majority c-choosable for some constant c? The proof of

Theorem 1 shows that acyclic digraphs are majority 2-choosable, and obviously Theorem 3

and Theorem 4 extend to the setting of choosability.

8. Consider the following fractional setting. Let S(G) be the set of all stable sets of a

digraph G. Let S(G, v) be the set of all stable sets containing v. A fractional majority

colouring is a function that assigns each stable set T ∈ S(G) a weight xT > 0 such that
∑

T∈S(G,v) xT > 1 for each vertex v of G. What is the minimum number k such that every

digraph G has a fractional majority colouring with total weight
∑

T∈S(G) xT 6 k? Perhaps

it is less than 3.
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