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Abstract
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such that every graph with no minor isomorphic to G has a 2-coloring of either its vertices or

its edges where each color induces a graph of tree-width at most k: Some generalizations are

also proved.

r 2003 Elsevier Inc. All rights reserved.

MSC: primary 05C15; secondary 05C55

Keywords: Tree-width; Vertex partitions; Edge partitions; Small components

ARTICLE IN PRESS

E-mail addresses: matdevos@math.princeton.edu (M. DeVos), ding@math.lsu.edu (G. Ding),

bogdan@math.lsu.edu (B. Oporowski), sanders@graphtheory.com (D.P. Sanders),

breed@cs.mcgill.ca (B. Reed), pds@math.princeton.edu (P. Seymour),

vertigan@math.lsu.edu (D. Vertigan).
1Partially supported by National Science Foundation under Grant DMS-9400946.
2Partially supported by the National Security Agency, Grant MDA904-94-H-2057.
3Partially supported by the Louisiana Education Quality Support Fund, Grant LEQSF(1995–98)–RD–

A–08.
4Supported by the Office of Naval Research, Grant N00014-92-J-1965.

0095-8956/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jctb.2003.09.001



1. Introduction

A vertex partition of a graph G; into n parts, is a set fP1;y;Png of induced

subgraphs of G such that
Sn

i¼1 VðPiÞ ¼ VðGÞ; and if iaj; then VðPiÞ-VðPjÞ ¼ |:
An edge partition of a graph G; into n parts, is a set fQ1;y;Qng of subgraphs of G

such that
Sn

i¼1 EðQiÞ ¼ EðGÞ; and if iaj; then EðQiÞ-EðQjÞ ¼ |: A partition into n

parts, can be associated with a coloring (of edges or vertices, as appropriate) with n

colors in the obvious way.
The edge partition fQ1;y;Qng of a graph G is balanced, as witnessed by a vertex

partition fP1;y;Png of G; if GjPiDGjQi for all i; and GjðPi,PjÞDGjðQi,QjÞ; for
all i; j: This is a technical condition needed later. In terms of colorings, with a set of
colors C; the edge coloring, cE : E-C is balanced, as witnessed by a vertex coloring,
cV : V-C; if for every edge e with endpoints u; v; it holds that cEðeÞAfcV ðuÞ; cV ðvÞg:

Given a graph G; a T-decomposition of G is a pair ðT ;XÞ; where T is a graph, and
for each vertex t of T ; there is a bag XtDVðGÞ such that X ¼ ðXt : tAVðTÞÞ; and the
following are satisfied.

(1)
S

tAVðTÞ Xt ¼ VðGÞ:
(2) For every edge xy of G; there is a tAVðTÞ such that fx; ygDXt:
(3) For every xAVðGÞ; the subgraph of T induced by ftAVðTÞ : xAXtg is

connected.

The width of ðT ;XÞ is maxfjXtj � 1 : XtAXg:
If T is a tree, then ðT ;XÞ is a tree-decomposition. The tree-width of a graph G;

denoted twðGÞ; is the smallest integer w such that G has a tree-decomposition of
width w: A graph is a partial k-tree if it has tree-width at most k: Tree-width is
important not only for its theoretical application in the graph minors project, but
also for its algorithmic qualities: many problems which are NP-hard for the class of
all graphs are solvable in linear time for the class of graphs of tree-width at most k

for every fixed k:
Given graphs G and H; G is a minor of H; denoted GpmH; if G can be obtained

from a subgraph of H by contracting edges. If a G is not a minor of H; then H is a
graph with no G-minor. An important result of Robertson and Seymour [6] (see also
[9]) is that if P is a planar graph, then there is an integer k such that every graph G

with no P-minor has tree-width at most k: This is not true for any non-planar graph,
as the n � n planar grid has tree-width n (see [5]).

Ding et al. [3], generalizing a relaxation of a conjecture in [1], showed that, given
any surface, although a graph G embedded on that surface may have arbitrarily large
tree-width, G has both a vertex partition and an edge partition into two graphs
whose tree-width is bounded by a function depending only on the Euler
characteristic of the surface. The set S of all graphs embedded on a surface is an
example of a minor-closed class, that is, if GAS; and HpmG; then HAS: Thomas
[10] conjectured that every minor-closed class of graphs, other than the class of all
graphs, should have this partition property. In other words, Thomas conjectured,
and we prove, the following theorem:
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Theorem 1.1. For every graph K ; there are integers kV ¼ kV ðKÞ and kE ¼ kEðKÞ;
such that every graph with no K-minor has a vertex partition into two graphs

with tree-width at most kV ; and an edge partition into two graphs with tree-width at

most kE :

This follows from the following stronger theorem.

Theorem 1.2. For every graph K and integer jX1; there are integers kV ¼ kV ðK; jÞ
and kE ¼ kEðK ; jÞ; such that every graph with no K-minor has a vertex partition

into j þ 1 graphs such that any j parts form a graph with tree-width at most kV ; and

an edge partition into j þ 1 graphs such that any j parts form a graph with tree-width

at most kE :

Also we prove this.

Theorem 1.3. For every graph K and integer jX1; there are integers iV ¼ iV ðK ; jÞ and

iE ¼ iEðK ; jÞ; such that every graph with no K-minor has a vertex partition into iV
graphs such that any j0pj parts form a graph with tree-width at most j0 � 1; and an

edge partition into iE graphs such that any j0pj parts form a graph with tree-width at

most j0:

The proofs of these theorems are completed in Section 6. These proofs
will be accomplished as follows. First, an important result of Robertson
and Seymour, Theorem 2.1, on the structure of graphs without a particular
graph as a minor will be stated in Section 2. A corollary of Theorem 2.1,
namely Corollary 2.2, will be the structural graph-theoretic result we actually
use. This structure has elements both of surfaces and of tree-width in it.
The main structure is a surface-like structure called an outgrowth. The
partitions to be defined will break an outgrowth up into pieces called layers

of bounded height. These partitions and layers are considered in
Section 3. A bound on the tree-width of layers is established in Section 4. Then
Section 5 deals with two other graph constructions mentioned in Section 2, namely
extensions and clique-joins. Finally, as already noted, the main proofs are completed
in Section 6.

To assist in the proofs, some important relationships between tree-width and
graph minors are needed. The proofs of these results follow easily from the
definitions of tree-width, minor, and the following. A clique is a complete subgraph.
Given two graphs G and H; a graph J is a clique-join of G and H if G-H is a clique,
and J is a subgraph of G,H:

Lemma 1.4.

(1) If GpmH; then twðGÞptwðHÞ:
(2) If H is a clique-join of G1 and G2; then twðHÞpmaxftwðG1Þ; twðG2Þg:
(3) If there is a vertex x such that G ¼ H � x; then twðHÞptwðGÞ þ 1:
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2. Excluding a graph

Let Pn be the path on vertices (in order) t1;y; tn: Let Cn be the circuit on vertices
(in cyclic order) t1;y; tn:

Given a positive integer r; an r-ring with perimeter t1;y; tn is a graph R on the
vertex set ft1;y; tng such that there is a family of bags X ¼ ðXti

: i ¼ 1;y; nÞ for

which:

(1) ðPn;X Þ is a Pn-decomposition of R of width r � 1;
(2) for 1pipn; tiAXti

:

Note that our definition of r-ring differs from that in [7] in that we require all
vertices to be on the perimeter. However, if vertices were not required to be on the
perimeter, an easy construction would put them on the perimeter without violating
any condition in this paper.

We introduce a closely related concept. An r-round with perimeter t1;y; tn is a
graph R on the vertex set ft1;y; tng such that there is a family of bags X ¼ ðXti

:
i ¼ 1;y; nÞ for which:

(1) ðCn;X Þ is a Cn-decomposition of R of width r � 1;
(2) for 1pipn; tiAXti

:

Observe that if X ¼ ðXti
: i ¼ 1;y; nÞ is an r-ring with perimeter t1;y; tn; then X

is also an r-round with the same perimeter. Note that width r � 1 means that jXti
jpr

for 1pipn:

Let V � ¼
S

N

i¼0 V i denote the set of strings of letters from an alphabet V : A

supergraph H consists of a vertex set V ¼ VðHÞ; an edge set E ¼ EðHÞ and an
incidence function IH : E-V�: (Often we identify e with its vertex string IHðeÞ:) For
comparison, an edge in a hypergraph is (associated with) a set of vertices, whereas an
edge in a supergraph is associated with an ordered list of vertices (possibly with
repetition). An edge e ¼ v1;y; vn has order jjejj ¼ n and size jej ¼ jfv1;y; vngj: If
jjejj ¼ jej then e is non-degenerate otherwise it is degenerate.

Two strings in V � are cyclically equivalent if one can be obtained from the other by
a sequence of moves that are reversals v1v2;y; vn/vn;y; v2v1 and cyclings

v1v2;y; vn/v2;y; vnv1:
Throughout this paper, every edge in a supergraph has size at least two.

An edge in a supergraph H is a 2–edge if it has order two, otherwise it is a
superedge. Let E2ðHÞ denote the set of all 2-edges and let E3ðHÞ denote the set of all
superedges.

A supergraph H is embedded on a surface S as follows. Each vertex is a point.
Each 2–edge, e; is the image of a continuous bijective map fe : ½0; 1-S; where feð0Þ
and feð1Þ are the endvertices of e: Each superedge, Z ¼ v1;y; vn; is the image of a
continuous map fZ : DZ-S where DZ is a closed disk with distinct points, t1;y; tn in

cyclic order on the boundary, such that fZðtiÞ ¼ vi: The continuous mapping fZ is

injective on D � ft1;y; tng: Thus, if Z is non-degenerate, then the image fZðDZÞ is a
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closed disk, otherwise it is obtained from a closed disk by identifying certain points
on the boundary. There are no intersections between pointsets of vertices and edges
except those mentioned here.

Sometimes we identify the vertices and edges of (super)graph H with their pointsets
on the surface S: The faces of H on S are the connected components of S� H:

A crosscap (respectively, handle) reduction of a surface is performed by replacing a

crosscap (respectively, handle) by a disk. We say surface S0 is a reduction of surface

S; and we write S0pS; if S0 is obtained from S by a (possibly empty) sequence of
crosscap and handle reductions. We declare that an embedding of a supergraph H

on S0 is also an embedding on S; whenever S0pS:
We define crosscap and handle reductions on faces similarly. Thus, without loss of

generality, we may always perform all possible crosscap and handle reductions on
faces. We define two other constructions we may be able to use under certain
circumstances. If a face is a surface punctured k times (that is, it has k

disjoint boundaries), we cap the face by replacing it with k disks. We span the face
by adding k � 1 new 2-edges in the face, so the boundaries are joined into one
boundary.

Thus, provided we can do face reductions together with cappings or spannings, we
may assume that every face is an open disk.

Throughout this paper, unless otherwise noted, we assume that every graph G;
every supergraph H; and every surface S is connected, and that every face is simply
connected, that is, every face is an open disk.

Given a surface S and a positive integer r; let a ðS; rÞ-outgrowth be a pair ðG;HÞ
where G is a graph, and H is a supergraph embedded on S; where for each superedge
ZAE3ðHÞ; with Z ¼ v1;y; vn; there is an r-ring RZ with perimeter t1Z;y; tnZ; such

that G is the graph obtained from H by replacing each superedge Z by r-ring RZ; as

follows. Starting with vertex disjoint copies of the graphs HjE2ðHÞ and RZ; for

ZAE3ðHÞ; identify vertex tiZ with fZðtiZÞ for every ZAE3ðHÞ and every ipjjZjj:
Clearly, VðGÞ ¼ VðHÞ:

Given a surface S and positive integers r; s; let a ðS; ðr; sÞÞ-outgrowth be a triple
ðG;H; Z0Þ where G is a graph, H is a supergraph embedded on S; and Z0AE3ðHÞ;
such that G is the graph obtained from H by replacing Z0 by an s-round and by
replacing every other superedge by an r-ring, as described in detail above. Again,
clearly VðGÞ ¼ VðHÞ:

If ðG;HÞ or ðG;H; Z0Þ is an outgrowth, we refer to the graph G as the graph from

the outgrowth. Note that in [7], the graph itself is referred to as the outgrowth. Note
also that our definition of outgrowth differs from that in [7] in that we allow
superedges to be degenerate.

If Y is a non-empty set of surfaces, then ðG;HÞ is a ðY; rÞ-outgrowth if there is a
SAY such that ðG;HÞ is a ðS; rÞ-outgrowth. Let K0 be the empty graph. It is
intended that ðK0;K0Þ is a ðS; rÞ-outgrowth for all possible values of S and r: Thus
for any set Y of surfaces, ðK0;K0Þ is a ðY; rÞ-outgrowth. If Y is empty, then let
ðK0;K0Þ be the only ðY; rÞ-outgrowth. We repeat all these definitions where r is
replaced by ðr; sÞ:
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Given an integer k; let G0 be a ðpkÞ-vertex extension of G if there is a set S of at
most k vertices of H such that G ¼ G0 � S: For example, the set of apex graphs is the
set of graphs which are ðp1Þ-vertex extensions of planar graphs.

The following is a major structural result from [7]. This theorem followed from an
important step in proving the Graph Minors Theorem [8].

Theorem 2.1 (Robertson and Seymour). Let K be a graph, and let YðKÞ be the set of

all surfaces in which K cannot be embedded. Then there are numbers rðKÞ; wðKÞ and

dðKÞ such that every graph with no K-minor may be constructed by clique-joins,
starting from ðpwðKÞÞ-vertex extensions of graphs from ðYðKÞ; rðKÞÞ-outgrowths

ðG1;H1Þ; where jE3ðH1ÞjpdðKÞ; and H1 has no degenerate edges.

It should be mentioned that Theorem 2.1 was proved with a slightly different
understanding of r-rings as noted above. However, it is easy to show that this
theorem remains valid if we additionally require that all vertices of an r-ring are on
the perimeter, as we do in this paper.

We wish to use a modified version of the structural theorem above, by removing
the bound dðKÞ on the number of superedges (and r-rings), and by removing the
requirement that superedges be non-degenerate.

Corollary 2.2. Let K be a graph, and let YðKÞ be the set of all surfaces in which K

cannot be embedded. Then there are numbers rðKÞ and wðKÞ such that every graph with

no K-minor may be constructed by clique-joins, starting from ðpwðKÞÞ-vertex

extensions of graphs from ðYðKÞ; rðKÞÞ-outgrowths.

Note that if K is a planar graph, then YðKÞ ¼ |; and a graph with no
K-minor may be constructed by clique-joins, starting from graphs on at
most wðKÞ vertices. This special case of Theorem 2.1 (or Corollary 2.2) that,
for every planar graph P; a graph with no P-minor has low tree-width, appears in [6]
(see also [9]).

3. Layers

The main step towards proving Theorem 1.2 is finding an edge and a vertex
ð j þ 1Þ-coloring, of a ðS; rÞ-outgrowth ðG;HÞ; such that any j colors form a graph
with bounded tree-width. (The bound would involve S; r and j:) Clearly there will be
no loss of generality in adding new edges to G and H; nor in deleting parallel
2-edges. We will describe two such constructions shortly.

We first examine the boundary of a face, which may be more complicated than just

a circuit. For a face F ; let %F denote its closure and let @F ¼ %F � F denote its
boundary. Let DF be a closed disk, with interior D0

F and boundary @DF : A

continuous injective map from D0
F to F extends uniquely to a continuous map

fF : DF- %F: Let t1;y; tn be the list, in cyclic order, of all points of @DF that are
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mapped to vertices. Let vi ¼ fF ðtiÞ for i ¼ 1;y; n: The string v1;y; vn is a vertex-

boundary of F . This string is unique up to cyclic equivalence.
The face F has order jjF jj ¼ n and size jF j ¼ jfv1;y; vngj: If jjejj ¼ jej; then F is

non-degenerate otherwise it is degenerate.
For a face F with vertex-boundary v1;y; vn; nX3; we fill F with a trivial superedge

ZF and r-ring RZF
by adding a new superedge ZF ¼ v1;y; vn embedded in the natural

way. Note that the pointset of F is replaced by the pointset of ZF (minus its vertices)
and n new faces of order two incident with ZF : The trivial r-ring RZF

has no edges and

has bag Xt ¼ ftg for each perimeter vertex t: Similarly, we may fill a face with a
trivial s-round.

For any superedge Z ¼ v1;y; vn we encycle Z by adding those 2-edges viviþ1

(reading indices modulo n) to G and H which are not already present and embedded
in the natural way. The new edges are also embedded in the natural way.

Suppose F0 is a face of supergraph H:We say that H is full (respectively, ðH;F0Þ is
full) if every face (respectively, other than F0) has order two, and is incident with one
2-edge and one superedge. We fill H (respectively, ðH;F0Þ) by performing all possible
face fillings (respectively, except on F0) and all possible encyclings.

The set of elements of a supergraph H on surface S is the set PðHÞ of all vertices,
edges and faces of H on S:

We define a (symmetric) incidence relation on the elements of H: A vertex v is
incident with edge e ¼ v1;y; vn if vAfv1;y; vng: A vertex v is incident with face F if

vA %F: A face F is incident with an edge e if %F intersects the pointset of e in a point
other than a vertex. No other incidences are possible; in particular, elements of the
same type cannot be incident.

We define a metric, d : PðHÞ � PðHÞ-R on the elements of H: Let dða; bÞ ¼ m
2
;

where m is the least integer such that a ¼ p0 and b ¼ pm and consecutive entries in

the sequence p0;y; pm are incident. In particular dða; bÞ ¼ 1
2
if and only if a and b are

incident. Moreover, vertices incident with a common face (or edge) are at distance 1.

Given a connected supergraph H drawn on a surface S and a face F0; the height,

hH
F0
ðxÞ ¼ hðxÞ of an element xAPðHÞ; relative to F0, is given by hðxÞ ¼ dðF0; xÞ � 1

2
:

Observe that, if ðH;F0Þ is full, then every vertex has integer height.
If ðG;HÞ is a ðS; rÞ-outgrowth, F0 is a face of H and 2hX0 is an integer, then

ðG;H;F0Þ is a ðS; r; hÞ-layer provided that every vertex and edge of H has
height at most h: Layers are of interest because the vertex and edge partitions of
ðS; rÞ-outgrowths that we will define have components which are,
respectively ðS; r; hÞ-layers for some h to be specified later. We will prove this
assertion after some definitions. (The following section proves that these layers have
bounded tree-width.)

We use a traditional approach to defining a vertex and edge partition of an
outgrowth ðG;HÞ based upon distance from a given face F0 of the supergraph.
Without loss of generality ðH;F0Þ is full. For each integer hX0 let Vh be the set of
vertices at height h: For integers 0pipj; let Ei;jðGÞ be the set of edges of G which

have one end at height i and the other at height j: (Note that Ei;jðGÞ ¼ | unless

i � jp1:) Define Ei;jðHÞ similarly. Observe that the edges in Eh�1;h all have height
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h � 1
2; whereas the edges in Eh;h may have heights h � 1

2; h or h þ 1
2; and if hðeÞ ¼ h

then e is a 2-edge.
It is convenient to define vertex and edge partitions via colorings. For an integer

lX2; the set of colors will be Zl ; the integers mod l: The canonical vertex l-coloring

assigns color hðmod lÞ to all vertices in Vh: The canonical edge l-coloring assigns
color hðmod lÞ to all edges in Eh�1;h,Eh;h: Note that this edge-coloring is balanced,

as witnessed by the given vertex coloring.
We will be interested in subgraphs formed by some 1pjol of these colors, and in

bounding the tree-width of (the components of) these subgraphs. Since adjacent
vertices or edges can differ in height by at most one, it is sufficient to bound the tree-
width of the following two types. Here 0papb ¼ a þ j � 1:

GV
½a;b ¼ Gj

[b
h¼a

Vh

 !
;

GE
½a;b ¼ Gj

[b
h¼a

ðEh�1;h,Eh;hÞ
 !

:

Let E0
a ¼ feAEa;a : hðeÞXag: Let

Ĝ½a;b ¼ Gj
[b
h¼a

ðEh�1;h,Eh;hÞ
 !

,E0
a

" #
:

We wish to express Ĝ½a;b as an outgrowth of an appropriate supergraph. This is

done naturally, but we provide details. Suppose, in general, G0 ¼ ðV 0;E0Þ is a
subgraph of G where ðG;HÞ is a ðS; rÞ-outgrowth with F0 a face of H; and r-ring RZ

associated with each superedge ZAE3ðHÞ: We define an outgrowth ðG0;H 0Þ and a
layer ðG0;H 0;F 0

0Þ as follows. Let VðH 0Þ ¼ VðG0Þ: Delete every edge eAE � E0 from
either E2ðHÞ or some r-ring RZ: Also, delete the edges in ðE � E0Þ-E2ðHÞ from the

drawing of H on S: After deleting these edges, this leaves the vertices to be deleted,
V � V 0; isolated. Remove each vertex in V � V 0 from the drawing of H; from the
vertex list of each superedge, from every r-ring perimeter and every bag. If, after
these deletions, the superedge Z has size less than two, then delete it. If, after these
deletions, the superedge Z has size two, say with incident vertices u; v; and edge uv is
in RZ; then replace Z with a 2-edge uv; otherwise just delete it. Otherwise, make the

new embedding of disk DZ; representing Z; a subset of the old embedding such that it

only hits the appropriate remaining vertices. Let F 0
0 be the face of H 0 that contains

the pointset of F0: Note that F 0
0 need not be simply connected.

Define ðĜ½a;b; Ĥ½a;b; F̂½a;bÞ similarly to ðG0;H 0;F 0
0Þ:

Continue by reducing, capping and filling all faces other than F̂½a;b: Reduce and

span face F̂½a;b; to obtain ðG½a;b;H½a;b;F½a;bÞ which is full, by construction.
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Lemma 3.1. Suppose ðG;HÞ is a ðS; rÞ-outgrowth, with face F0; such that ðH;F0Þ is

full. For integers lX2; 1pjol; 0papb ¼ a þ j � 1; ðG½a;b;H½a;b;F½a;bÞ is a full

ðS; r; j þ 1
2
Þ-layer. Moreover GV

½a;b and GE
½a;b are subgraphs of G½a;b:

Proof. These statements are clear except for the bound j þ 1
2
on height of L ¼

ðG½a;b;H½a;b;F½a;bÞ:Note that the edges added by filling faces other than F̂½a;b all have

endpoints in VbðGÞ and without loss of generality we may assume these edges were
already in G: If a ¼ 0; the result is immediate, so we may suppose a40: Now,
considering heights in the original ðG;H;F0Þ; the vertices of G½a;b have heights

ranging from a � 1 to b and the edges of G½a;b have heights ranging from a � 1
2 to

b þ 1
2
: Now all the vertices and edges of G½a;b that had height a � 1 in ðG;H;F0Þ; are

incident with the face F½a;b in H½a;b; so their height in L is zero. Consequently, all

other vertices and edges of GE
½a;b have height in L that is a � 1 less than its original

height in ðG;H;F0Þ: Thus L has height at most b þ 1
2
� ða � 1Þ ¼ j þ 1

2
as

required. &

The above bounds on height are best possible.

4. Bounding the tree-width of ðR; r; hÞ-layers

This section establishes a bound on the tree-width of a ðS; r; hÞ-layer in terms of S;
r and h:

A ðS; ðr; sÞ; hÞ-layer is a triple ðG;H; ZðFÞÞ where H has a special superedge ZðFÞ
and associated s-round RZðFÞ; every other superedge has an associated r-ring; G is

obtained from H by replacing superedges by the s-round and r-rings; ðG �
EðRZðFÞÞ;H � ZðFÞ;FÞ is a ðS; r; hÞ-layer, where F is created by the deletion of ZðFÞ:
(Note that F is not a face of H:) The height of ZðFÞ; and its incident faces, is declared

to be �1
2
: All other vertices and edges have the same height in ðG;H; ZðFÞÞ as in

ðG � EðRZðFÞÞ;H � ZðFÞ;FÞ:
For a surface S; let wðSÞ denote the Euler characteristic of S:
Let /hS denote h � Ihm; the fractional part of h: The following is the main

theorem of this section.

Theorem 4.1. If ðG;H; ZðFÞÞ is a full ðS; ðr; sÞ; hÞ-layer, then G has tree-width at most

ð2� wðSÞÞ½2Ihmð2r þ 1Þ þ 2/hSðr þ 1Þ þ 2s � 1

þ ½3Ihmð2r þ 1Þ þ 4/hSðr þ 1Þ þ 3s � 2:

The proof of the theorem will follow some lemmas and definitions. Before stating
these, we prove two easy corollaries, which will be used in the proof of the main
theorem appearing in the next section.
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Corollary 4.2. If ðG;H;FÞ is a full ðS; r; hÞ-layer, then G has tree-width at most

ð2� wðSÞÞ½2Ihmð2r þ 1Þ þ 2/hSðr þ 1Þ þ 1

þ ½3Ihmð2r þ 1Þ þ 4/hSðr þ 1Þ þ 1:

Proof. Fill face F with an s-round with s ¼ 1 and apply Theorem 4.1. &

Corollary 4.3. Let G be a connected graph such that ðG;HÞ is ðS; rÞ-outgrowth, and let

F be a face of H: Then G has a balanced edge and a vertex l-coloring, such that any

jol colors form a graph with tree-width at most

ð2� wðSÞÞ½2jð2r þ 1Þ þ r þ 2 þ ½3jð2r þ 1Þ þ 2r þ 3:

Proof. This follows from Lemma 3.1, and the preceding discussion, with

h ¼ j þ 1
2
: &

The 2-degree of a vertex v in a supergraph H; denoted deg2 v is the degree of v in
HjE2ðHÞ: A full supergraph is subcubic if every vertex has 2-degree at most three.

For L ¼ ðG;H; ZðFÞÞ; let X L
Z;t denote the bag associated with superedge Z and

perimeter vertex t on RZ for L:

Note that H being full implies that the edges listed cyclically around any vertex
alternate between 2-edges and superedges.

Lemma 4.4. If there is a counterexample to Theorem 4.1, then there is a

counterexample with H full and subcubic.

Proof. As discussed above, we can suppose the supergraph H is full without loss of
generality. The remainder of the proof is similar to the proof that any graph can be
obtained from a subcubic graph by contraction, although here we must preserve
height and other structure.

Suppose x is a vertex with 2-degree more than three. Let the height of x be j: Let
the cyclic ordering of edges around x be Z1; e1;y; Zm; em (where each Zi is a
superedge and each ei is a 2-edge) such that, without loss of generality, the height of

Z1 is j � 1
2
: Suppose lAf3;y;m � 1g:

We define the height preserving decontraction of x through ðZ1; ZlÞ as follows, to
obtain L0 ¼ ðG0;H 0; ZðFÞÞ from L ¼ ðG;H; ZðFÞÞ: Remove x from H and add two
new vertices x0 and x00: Add a new 2-edge ex ¼ x0x00: Each edge in Z1; e1;y; el�1; Zl is
declared to be incident with x0: Each edge in Zl ; el ;y; Zm; em; Z1 is declared to be
incident with x00: H 0 is embedded naturally. For yAfx0; x00g and Z incident with y in

H 0; the bag X L0
Z;y ¼ X L

Z;x,fyg � fxg: For any other bag Y ; with xAY associated with

Z1 or Zl in H we change Y to Y,fx0g � fxg or Y,fx00g � fxg so as to preserve the
required properties for r-rings and s-rounds. This creates a triple ðG0;H 0; ZðFÞÞ where
G ¼ G0=ex:
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Note, by the choice of Z1 this operation does not increase height. By finitely many
height preserving decontractions we obtain a ðS; ðr; sÞ; hÞ-layer, ðG00;H 00; ZðFÞÞ such
that H 00 is subcubic and G00 is a minor of G: By Lemma 1.4 (1) the result follows. &

Sometimes it is useful to rotate the perimeter around an r-ring. The next simple
lemma shows that this may be done by adding a factor of two to its width.

Lemma 4.5. If R is an r-ring with perimeter t1;y; tn; then for each i such that 2pipn;
R is a ð2rÞ-ring with perimeter ti;y; tn; t1;y; ti�1:

Proof. Let R be an r-ring with perimeter t1;y; tn by means of bags X1;y;Xn: Let
iAf2;y; ng be given. For each jAf1;y; ng; let Yj :¼ Xi,Xj: Then the bags

Yi;y;Yn;Y1;y;Yi�1 give the result. &

Lemma 4.6. If there is a counterexample to Theorem 4.1, then there is a

counterexample with H full, subcubic with height ho1:

Proof. Suppose the ðS; ðr; sÞ; hÞ-layer, L ¼ ðG;H; ZðFÞÞ is a counterexample where
H is full and subcubic, with the height h as small as possible. Suppose hX1: We shall
construct a ðS; ðr; s þ 2r þ 1Þ; h � 1Þ-layer, L0 ¼ ðG;H 0; ZðF 0ÞÞ; as follows, to obtain

a contradiction. For iAf2; 3g let Eh
i ðHÞ denote the set of edges in EiðHÞ which have

height h: Since H is full and subcubic, for every superedge ZAE
1=2
3 ðHÞ; there is a 2-

edge eðZÞAE0
2ðHÞ such that Z and eðZÞ bound a face. By finitely many height

preserving decontractions we may ensure that these 2-edges form a matching.

Applying Lemma 4.5 we rotate the r-ring RZ associated with each ZAE
1=2
3 ðHÞ; to

obtain a 2r-ring R0
Z with perimeter t1;y; tn and bags X1;y;Xn; say, where eðZÞ ¼

t1tn: Construct H 0 from H by deleting ZðFÞ; and every Z and eðZÞ for ZAE
1=2
3 ðHÞ;

creating a face F 0; and then filling F 0 with a superedge ZðF 0Þ:
We now need to associate with ZðF 0Þ an ðs þ 2r þ 1Þ-round, by specifying all the

bags, so that ðG;H 0; ZðF 0ÞÞ has the required properties. For each ZAE
1=2
3 ðHÞ; with

R0
Z; t1;y; tn and Xt1 ;y;Xtn

as above, let X L0

ZðF 0Þ;ti
¼ X L

ZðFÞ;t1,Xti
for iAf1;y; n � 1g

and let X L0

ZðF 0Þ;tn
¼ X L

ZðFÞ;tn
,Xtn

,ft1g: Any other vertex t of ZðF 0Þ corresponds

naturally to a vertex of ZðFÞ so we leave the bag unchanged.
It is routine to check that L0 has the required properties and the lemma follows. &

We now complete the proof of Theorem 4.1.

Proof. Suppose ðG;H; ZðFÞÞ is a ðS; ðr; sÞ; hÞ-layer which contradicts the
theorem. By the above lemmas we may assume that H is full and subcubic and

that hAf0; 1
2
g:

Suppose first that h ¼ 0: Then H has a single superedge ZðFÞ: Let H2 ¼ H � ZðFÞ:
Then H2 is a graph on S with a single face F : By Euler’s formula, there is a set C of
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exactly 2� wðSÞ edges such that T ¼ H2 � C is a spanning tree of H2: For each
xAVðGÞ let Tx be the set of all vertices vAVðGÞ such that x is in some bag associated
with v: Clearly H2jTx is connected for every xAVðGÞ:

Now each 2-edge is associated with four entries (each with a corresponding bag) in
the vertex-list of the face F : Let Ye and Ze be the two bags at one end of e: For any x;
if eAH2jTx; then xAYe,Ze: Let D ¼

S
eACðxAYe,ZeÞ: Let G0 ¼ G � D:

Now G0 is obtained from G by the deletion of at most ð2� wðSÞÞð2s � 1Þ vertices
so by Lemma 1.4,

twðGÞptwðG0Þ þ ð2� wðSÞÞð2s � 1Þ:
A tree-decomposition of G0 of width 3s � 2 (that is, with bag size at most 3s � 1) is

obtained as follows, using tree T : Arbitrarily choose a root z of T : For each xAVðTÞ
let the bag be the union of the bags (with D removed) associated with x in L

together with the predecessor (if any) of x in the rooted tree. The result follows
for h ¼ 0:

The result for h ¼ 1
2

follows similarly after a reduction similar to that in

the proof of Lemma 4.6. We just briefly outline the modifications to the
arguments for this case. We do not need to rotate any r-rings for this
construction, although we may first have to do some decontractions (at no cost to
the bounds). We reduce to the h ¼ 0 case where, at worst, each vertex is associated

with one bag of size s and two of size s þ r þ 1: The edges in E
1=2
2 ðHÞ form a

matching and so we assume the tree T contains all of these to obtain the required
bound. &

5. Extensions and clique sums

In this section we extend the partition results from outgrowths to minor-
closed classes. It will become apparent why the edge partitions of the previous
sections were required to be balanced. This property is very useful in dealing with
clique-joins.

For a set of surfaces Y; and integer rX1; let GY;r be the set of all graphs from

ðY; rÞ-outgrowths.
For a set of graphs G and integer wX0; let G"w be the set of all pairs ðG;WÞ

where G is a graph and WDVðGÞ such that jW jpw and ðG � WÞAG: We call the
vertices in W the extra vertices of G:

Let Gþ w be the set of graphs G for which there exists W such that
ðG;WÞAG"w; that is, Gþ w is the set of all graphs that are ðpwÞ-vertex extensions
of graphs in G:

Define Gþ wD inductively as follows:

(1) If GAGþ w; then GAGþ wD:
(2) If G1AGþ wD and ðG2;WÞAG"w and G is a clique-join of G1 and G2 on a

clique Q with VðQÞDW ; then GAGþ wD:
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The only restriction from taking arbitrary clique-joins is that VðQÞDW :
Theorem 2.1 and Corollary 2.2 still hold with such a restriction imposed [4], and
so we get a further corollary.

Corollary 5.1. Let G be a minor closed class of graphs other than the class of all

graphs. Then there is a finite set of surfaces,Y; and there are numbers r and w such that

GDðGY;rÞ þ wD:

Proof. Choose graph KeG: Let Y ¼ YðKÞ; r ¼ rðKÞ; w ¼ wðKÞ: The result follows
from Corollary 2.2 modified with the above-noted restriction on clique-joins. &

Let C be a set of colors. Let G ¼ ðV ;EÞ be a graph. For an edge coloring cE :
E-C of graph G; and BDC; let EðBÞ ¼ feAE : cEðeÞABg: For a vertex coloring
cV : V-C of graph G; and BDC; let VðBÞ ¼ fvAV : cV ðvÞABg:

Suppose kB
EAZ,fNg for all BDC: We say that graph G has a ðkB

E : BDCÞ edge
coloring cE : E-C if twðGjEðBÞÞpkB

E for all BDC: Make a similar definition for

vertex coloring.
If the edge coloring, cE : E-C is balanced, as witnessed by a vertex coloring,

cV : V-C; then we may combine these into a balanced full coloring c ¼ ðcE,cV Þ :
ðE,VÞ-C: Recall, this has the property that for every edge e with endpoints u; v; it
holds that cðeÞAfcðuÞ; cðvÞg: We call this condition the endpoint rule. We say c is a

balanced ðkB
E : BDCÞ full coloring, if CjE is a balanced ðkB

E : BDCÞ edge coloring.

Lemma 5.2. Suppose that G is a set of graphs, and wX0 is an integer. Let C be a set of

colors. Suppose kB
EAZ,fNg and kB

VAZ,fNg; for all BDC: Suppose GAGþ wD:

(1) If every graph in G has a ðkB
V : BDCÞ vertex coloring, then G has a ðkB

V þ w :
BDCÞ vertex coloring.

(2) If every graph in G has a balanced ðkB
E : BDCÞ edge (and full) coloring, then G has

a balanced ðkB
E þ w : BDCÞ edge (and full) coloring.

Proof. (1) Let G be a set of graphs, such that every graph in G has a ðkB
V : BDCÞ

vertex coloring. Suppose GAGþ wD:
If GAGþ w; then there exists W such that ðG;WÞAG"w: Thus G � WAG and so

has a ðkB
V : BDCÞ vertex coloring. If we extend the coloring from G � W to G by

arbitrarily coloring W ; then the result follows, using Lemma 1.4(3).
Now suppose G1AGþ wD and ðG2;WÞAG"w and G is a clique-join of G1 and G2

on a clique Q with VðQÞDW : By induction there is a ðkB
V þ w : BDCÞ vertex

coloring of G1 and there is a ðkB
V : BDCÞ vertex coloring of G2 � W : Note that the

graphs G1 and G2 � W are vertex disjoint so we may use these two colorings to
vertex color G1,ðG2 � WÞ: This leaves the vertices in W � VðQÞ to be colored, and
we do so arbitrarily.

Observe, for any BDC; that GjVðBÞ is a clique-join of G1jVðBÞ and G2jVðBÞ; on
the clique with vertex set VðQÞ-VðBÞ: By Lemma 1.4(3), twðG2jVðBÞÞptwððG2 �
WÞjVðBÞÞ þ wpkB

V þ w: So by Lemma 1.4(2), twðGjVðBÞÞpkB
V þ w; as required.
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(2) Let G be a set of graphs, such that every graph in G has a ðkB
E : BDCÞ edge

coloring. Suppose GAGþ wD:
We wish to find a balanced ðkB

E þ w : BDCÞ edge coloring cE : EðGÞ-C; so we

also give a vertex coloring cV : VðGÞ-C that witnesses that cE is balanced, and we
combine these into a balanced full coloring c ¼ cE,cV : Thus, we will color both
edges and vertices of G such that every edge satisfies the endpoint rule.

If GAGþ w; then there exists W such that ðG;WÞAG"w: Thus G � WAG and so

has a balanced ðkB
E : BDCÞ full coloring. If we extend the coloring from G � W to G

by arbitrarily coloring W ; and coloring edges incident with vertices arbitrarily
subject to the endpoint rule, then the result follows, using Lemma 1.4(3).

Now suppose G1AGþ wD and ðG2;WÞAG"w and G is a clique-join of G1 and G2

on a clique Q with VðQÞDW : By induction there is a balanced ðkB
E þ w : BDCÞ full

coloring of G1 and there is a balanced ðkB
E : BDCÞ full coloring of G2 � W : Note

that the graphs G1 and G2 � W are vertex disjoint so we may use these two colorings
to fully color G1,ðG2 � WÞ: This leaves the vertices in W � VðQÞ; and the edges
incident with these vertices, and the edges between VðQÞ and VðG2 � WÞ; to be
colored. We color these vertices and edges arbitrarily, subject to the endpoint rule,
except that for any edge e with endpoints uAVðQÞ and vAVðG2Þ � VðQÞ; we set
cðeÞ ¼ cðuÞ:

For any BDC; there are no edges in GjEðBÞ between VðQÞ � VðBÞ and VðG2Þ �
VðQÞ; by the above choice of coloring for edges between VðQÞ and VðG2Þ � VðQÞ:
Therefore GjEðBÞ is a clique-join of G1jEðBÞ and G2jEðBÞ; on the clique with vertex

set VðQÞ-VðBÞ: By Lemma 1.4(3), twðG2jEðBÞÞptwððG2 � WÞjEðBÞÞ þ wpkB
E þ

w: So by Lemma 1.4(2), twðGjEðBÞÞpkB
E þ w; as required. &

6. Proofs of main theorems

In this section, we prove the theorems stated in Section 1, as well as some other
theorems. For a finite set of surfaces Y let

2� wðYÞ ¼ max
SAY

ð2� wðSÞÞ:

Theorem 6.1. Let Y be a finite set of surfaces, and let rX1; wX0 and lX2 be integers.
Then every graph in ðGY;rÞ þ wD has a balanced edge and a vertex l-coloring, such that

any jol colors form a graph with tree-width at most

ð2� wðYÞÞ½2jð2r þ 1Þ þ r þ 2 þ ½3jð2r þ 1Þ þ 2r þ 3 þ w:

Proof. This follows from Corollary 4.3 and Lemma 5.2. &

Theorem 6.2. Let G be a minor closed class of graphs other than the class of all graphs.
Let lX2 be an integer. Then there exist numbers a and b such that every graph in G has
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a balanced edge and a vertex l-coloring, such that any jol colors form a graph with

tree-width at most aj þ b:

Proof. This follows from Corollary 5.1 and Theorem 6.1. &

The proofs of Theorems 1.1 and 1.2 follow immediately.
Finally, we need to prove Theorem 1.3. We first consider partitioning graphs of

bounded tree-width. This topic was examined in [2], but we need a new formulation
here.

A k-tree G is a graph with the following structure. Suppose n4k; let V ¼ VðGÞ ¼
fv1;y; vng; and let Vj ¼ fv1;y; vjg: For kojpn; the neighborhood of vj in GjVj is a

k-clique. Observe that the largest clique in G has size k þ 1:
(Recall that, a subgraph of a k-tree is a partial k-tree and every (simple) graph with

tree-width at most k is a partial k-tree.)
Let C ¼ f1;y; k þ 1g be a set of colors. We define the canonical balanced full

coloring c : VðGÞ,EðGÞ-C of G, as follows. We color cðviÞ ¼ i for ipk; then we
extend the vertex coloring uniquely, subject to being a proper vertex coloring. If edge
e has endpoint vi and vj with ioj; then we color cðeÞ ¼ cðviÞ:

Theorem 6.3. Let C ¼ f1;y; k þ 1g: If G has tree-width at most k; then G has a

balanced full coloring c : VðGÞ,EðGÞ-C; such that GjVðBÞ is a ðjBj � 1Þ-tree and

GjEðBÞ is a jBj-tree for every BDC:

Proof. Without loss of generality G is a k-tree. Let c be the canonical balanced full
coloring. Let VjðBÞ ¼ Vj-VðBÞ: Let EjðBÞ ¼ Ej-EðBÞ: Observe that GjðVkþ1ðBÞÞ is
a jBj-clique and for kojpn; if vjAVðBÞ; then the neighborhood of vj in GjVj is a

ðjBj � 1Þ-clique. So GjVðBÞ is a ðjBj � 1Þ-tree.
Now GjEðBÞ is obtained from GjVðBÞ by attaching each vertex in V � VðBÞ to a

jBj-clique. So GjEðBÞ is a jBj-tree. &

For a vertex coloring c; let pc denote the corresponding vertex partition. The meet,
c14c2; of two vertex colorings c1 and c2 is defined by ðc14c2ÞðvÞ ¼ ðc1ðvÞ; c2ðvÞÞ; that
is, each vertex gets an ordered pair of colors. For a family of colorings ðci : iAIÞ;
define

V
iAI ci similarly. Make similar definitions for edge colorings and partitions.

Clearly,

c ¼
^
iAI

ci ) pc ¼
^
iAI

pci
:

Also,

jpcjp
Y
iAI

jpci
j:

The following theorem sounds technical, but it is straightforward and very useful.

For a set C and integer j let C
j


 �
¼ fBDC : jBj ¼ jg:
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Theorem 6.4. The following statement holds for both edge and vertex colorings. Let G;
G0; and Gj; j ¼ 1; 2;y be classes of graphs. Suppose, for all j; that Gj is closed under

subgraphs (respectively, induced subgraphs) in the edge (respectively, vertex) coloring

case. Let jX1; lXj; mXj; be integers.

(1) Suppose that every graph in G can be l-colored so that every j colors form a graph

in G0:
(2) Suppose that every graph in G0 can be m-colored so that, for every j0pj; every j0

colors form a graph in Gj0 :

Then there exists an integer i such that every graph in G can be i-colored so that, for

every j0pj; every j0 colors form a graph in Gj0 :

Proof. We prove it in the edge case. (The vertex case is almost identical.) Let GAG
and let c : EðGÞ-C be a coloring satisfying (1), where C is a set of colors of size l:

For each BA C
j


 �
; let cB : EðBÞ-CB; be a coloring satisfying (2), where CB is a set of

colors of size m: Extend coloring CB to all of EðGÞ by assigning a single new color g;
say, to each edge in EðGÞ � EðBÞ; to yield c0B : EðGÞ-CB,fgg: Let c0 ¼

V
BA

C
j


 � c0B:

Then c0 is the desired coloring, and it uses at most ipðm þ 1Þ
l
j


 �
colors. &

We may now prove Theorem 1.3. In fact it follows from the following stronger
theorem, using Corollary 5.1.

Theorem 6.5. Let Y be a finite set of surfaces, and let rX1; wX0; and jX1 be integers.
There are integers iV and iE ; such that every graph in ðGY;rÞ þ wD has a vertex

partition into iV graphs such that any j0pj parts form a graph with tree-width at most

j0 � 1; and an edge partition into iE graphs such that any j0pj parts form a graph with

tree-width at most j0:

Proof. This follows from Theorems 6.1, 6.3 and 6.4. &
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