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Université de Paris VI,

4 Place Jussieu

75252 Paris Cedex 05, France

Paul Seymour1

Department of Mathematics

Princeton University

Princeton, NJ 08544, USA

February 1999; revised September 4, 2003

1This research was supported by ONR grant N00014-97-1-0512 and NSF grant DMS 9701598



Abstract

We prove that Hadwiger’s conjecture holds for line graphs. Equivalently, we show that for every
loopless graph G (possibly with parallel edges) and every integer k ≥ 0, either G is k-edge-colourable,
or there are k + 1 connected subgraphs A1, ..., Ak+1 of G, each with at least one edge, such that
E(Ai ∩ Aj) = ∅ and V (Ai ∩ Aj) 6= ∅ for 1 ≤ i < j ≤ k.



1 Introduction

Hadwiger’s conjecture asserts that for every loopless graph G and every integer k ≥ 0, either G is
k-vertex-colourable, or G has Kk+1 as a minor, that is, there are k +1 non-null connected subgraphs
A1, ...., Ak+1 of G, such that V (Ai ∩ Aj) = ∅ and there is an edge between V (Ai) and V (Aj), for
1 ≤ i < j ≤ k + 1. This is still open, but in this paper we prove the conjecture for line graphs. (For
line graphs of simple graphs the result follows easily from Vizing’s theorem and was already known,
but here we permit parallel edges.)

Thus, our main result is:

1.1 For every loopless graph G, and every integer k ≥ 0 such that G is not k-edge-colourable, there

are connected subgraphs A1, ..., Ak+1 of G, each with at least one edge, such that E(Ai ∩Aj) = ∅ and

V (Ai ∩ Aj) 6= ∅ for 1 ≤ i < j ≤ k + 1.

The referee informs us that Monrad, Stiebitz, Toft and Vizing discussed and obtained a solution
to the same problem in September 2002, independent of our work (but knowing that a solution had
been obtained). Their solution is similar to ours and they do not intend to publish it.

2 A version of Hadwiger’s theorem

We need a version of Vizing’s adjacency lemma. Let e1 be an edge of a loopless graph G (which may
have parallel edges), with ends v0, v1 ∈ V (G), let k ≥ 1 be an integer, and let φ be a k-edge-colouring
of G\e1. For a vertex v, let

φ(v) = {1, ..., k} \ {φ(e) : e ∈ E(G\e1) incident with v}.

AVizing fan for v0, e1, φ is a sequence e2, ..., en ∈ E(G) such that

• for 2 ≤ i ≤ n, ei is incident with v0; let vi be its other end

• v1, v2, ..., vn are all distinct

• for all j ≥ 2 there exists i < j with i ≥ 1 such that φ(ej) ∈ φ(vi).

Vizing [1, 2] proved:

2.1 Let G, e1, v0, v1, k, φ be as above, where v0 has degree ≤ k, and let e2, .., en be a Vizing fan for

v0, e1, φ, where ei has ends v0, vi (1 ≤ i ≤ n). If G is not k-edge-colourable then the sets

φ(v0), φ(v1), ..., φ(vn)

are mutually disjoint.

This has the following corollary. (The number of edges incident with a vertex v is denoted by
deg(v), and if u, v are distinct vertices, µ(u, v) denotes the number of edges with ends {u, v}.)
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2.2 Let v0 be a vertex of a loopless graph G, and let k ≥ 0 be an integer such that G is not k-edge-

colourable, G\v0 is k-edge-colourable, and every vertex of G has degree ≤ k. There are neighbours

v1, ..., vn of v0, all distinct, so that

∑

1≤i≤n

(deg(vi) + µ(v0, vi) − k) ≥ 2.

Proof. By deleting edges incident with v0, we may assume that there is an edge e1 incident with
v0 such that G\e1 is k-edge-colourable and G is not k-edge-colourable. Let e1 have ends {v0, v1}, let
φ be a k-edge-colouring of G\e1, and choose a Vizing fan e2, ..., en for v0, e1, φ, with n maximum.
From the maximality of n the set

{φ(e) : e ∈ E(G) incident with v0 but not with any of v1, .., vn}

is disjoint from all the sets φ(v1), φ(v2), ..., φ(vn) (and also trivially from φ(v0)); and by 2.1 the sets
φ(v0), φ(v1), ..., φ(vn) are mutually disjoint. Consequently,

(

deg(v0) −
∑

1≤i≤n

µ(v0, vi)

)

+
∑

0≤i≤n

(

k − deg(vi)
)

+ 2 ≤ k,

that is
∑

1≤i≤n

(

deg(vi) + µ(v0, vi) − k
)

≥ 2.

Finally, we claim that n ≥ 2. For there exists c ∈ φ(v1), because deg(v1) ≤ k and the edge e0 is not
coloured. Since we cannot properly extend φ by giving e0 the colour c, it follows that c 6∈ φ(v0); and
hence n ≥ 2 from maximality.

This in turn has the following corollary.

2.3 Let G be a loopless graph, and let k ≥ 0 be an integer such that G is not k-edge-colourable and

every vertex has degree ≤ k. Then there exist distinct vertices u, v, w such that

min
(

deg(u),deg(v)
)

+ µ(v, w) ≥ k + 1.

Proof. Choose v0 ∈ V (G) of maximum degree; we may assume that G\v0 is k-edge-colourable, for
otherwise we may delete v0 and repeat. Let v1, ..., vn be as in 2.2, with n ≥ 2. Then (writing vn+1

for v1)
∑

1≤i≤n

(deg(vi) + µ(v0, vi+1) − k) ≥ 2

and so there exists i with 1 ≤ i ≤ n such that

deg(vi) + µ(v0, vi+1) ≥ k + 1.

Let u = v1, v = v0, w = vi+1; then u, v, w are distinct (since n ≥ 2), and

min

(

deg(u),deg(v)

)

+ µ(v, w) = deg(vi) + µ(v0, vi+1) ≥ k + 1

as required.
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3 The main proof

Proof of 1.1: We proceed by induction on |V (G)|. We clain first that we may assume that

(1) For every two distinct vertices v1, v2, if d = min(deg(v1),deg(v2)) then there are d paths of

G between v1 and v2, pairwise edge-disjoint.

For by Menger’s theorem there is a partition (X1, X2) of V (G) with v1 ∈ X1 and v2 ∈ X2, such
that there are |δ(X1, X2)| pairwise edge-disjoint paths of G between v1 and v2, where δ(X1, X2) de-
notes the set of edges of G with one end in X1 and the other in X2. Suppose that |X1|, |X2| ≥ 2. For
i = 1, 2 let Gi be the graph obtained from G by deleting all edges with both ends in Xi and then iden-
tifying all the vertices of Xi in a new vertex. Since G is not k-edge-colourable, it follows that at least
one of G1, G2 is not k-edge-colourable, say G1. Since |X1| > 1, it follows that |V (G1)| < |V (G)|, and
so from the inductive hypothesis there are pairwise edge-disjoint connected subgraphs A ′

1, ..., A
′
k+1

of G1, each with at least one edge, such that V (A′
i ∩ A′

j) 6= ∅ (1 ≤ i < j ≤ k + 1). From the
choice of (X1, X2), there are paths P (e) (e ∈ δ(X1, X2)) of G2, pairwise edge-disjoint, such that
e ∈ E(P (e)) (e ∈ δ(X1, X2)) and v2 belongs to every P (e). For 1 ≤ i ≤ k + 1, let Ai be the
subgraph of G formed by all the edges in A′

i, and the edges in P (e) for each e ∈ E(A′
i), and all

vertices incident with these edges. Then A1, ...., Ak+1 satisfy the theorem. So we may assume that
min(|X1|, |X2|) = 1; but then (1) holds. This proves (1).

If some vertex v has degree ≥ k+1, let A1, ..., Ak+1 be pairwise edge-disjoint connected subgraphs,
each with v ∈ V (Ai) and E(Ai) 6= ∅; then the theorem is satisfied. We may therefore assume that
every vertex has degree ≤ k. By ref2.3, there are distinct vertices u, v, w such that

min(deg(u),deg(v)) + µ(v, w) ≥ k + 1.

Let d = min(deg(u),deg(v)); then by (1) there are d edge-disjoint paths between u and {v, w}, and
we may choose them so that no edge between v and w belongs to any of them. Then these d paths,
together with the µ(v, w) edges between v and w, form k +1 edge-disjoint connected subgraphs that
pairwise intersect, as required.

Remark: In fact this proof shows that if G is not k-edge-colourable and yet every vertex has degree
≤ k, then there are three distinct vertices u, v, w and k + 1 edge-disjoint paths each between two of
u, v, w.
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