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ABSTRACT

We show that if G is a simple connected graph with

jE(G)j � jV (G)j+

1

2

t(t� 1)

and jV (G)j 6= t+ 2, then G has a spanning tree with > t leaves, and this is best possible.
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Given a connected graph G, determining the maximum number of leaves in a spanning

tree of G is known to be NP-hard [1]. (All graphs in this paper are simple and �nite. A leaf

is a vertex with degree 1.) But we may ask for lower bounds on this number.

The �rst result of this type seems to be due to Storer [2], who stated (without proof) that

every connected cubic graph with n vertices has a spanning tree with at least n=4+2 leaves,

and this is tight. Linial conjectured that, more generally, every connected graph with n

vertices and with minimum degree k has a spanning tree with at least ((k�2)=(k+1))n+ c

k

leaves, where c

k

is a constant depending only on k. Some progress has been made toward

this conjecture; Kleitman and West [3] proved it for k = 3 with c

3

= 2, and Griggs and Wu

[4] proved it for k = 4; 5 with c

4

= 8=5 and c

5

= 2. (All these bounds have been shown to

be tight.)

Our approach is di�erent. We do not impose any condition on the individual degrees in the

graph; instead, for all n and t we determine the smallest F (n; t) such that every connected

graph with n vertices and at least F (n; t) edges must have a spanning tree with more than

t leaves. It turns out that F (n; t) separates; we will show that if t < n� 2, F (n; t)� n is a

function of t alone.

Incidentally, it was shown in about 1981 by Neil Robertson and the third author (unpub-

lished) that for any �xed integer t � 2, every connected graph with no K

1;t+1

minor has a

bounded number of vertices of degree 6= 2. An easy consequence of this is that there is a

function f(t) so that every connected graph G with jE(G)j > jV (G)j+ f(t) has a spanning

tree with > t leaves. But now we wish to sharpen this, to make it best possible.

For any integer n > t � 2, de�ne

f(n; t) =

8

>

>

>

>

<

>

>

>

>

:

n+

1

2

(t

2

� 4) if n = t+ 2 and t is even

n+

1

2

(t

2

� 5) if n = t+ 2 and t is odd

n+

1

2

(t

2

� t� 2) if n = t+ 1 or n � t+ 3

We shall prove the following two results (the �rst is easy, and the second is the main result

of the paper).

Theorem 1. For all integers n > t � 2 there is a connected graph with n vertices and f(n; t)

edges in which every spanning tree has � t leaves.
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Theorem 2. For all integers n > t � 2, every connected graph with n vertices and > f(n; t)

edges has a spanning tree with > t leaves.

Some notation: we use G r X to denote the graph obtained by deleting X (here X can

be a vertex or an edge, or a set of vertices or edges); and if X � V (G), GjX denotes the

restriction of G to X, that is, Gr (V (G)�X).

Proof of Theorem 1. If n = t+2, let H be a graph with n vertices and d

1

2

ne edges, in which

every vertex has degree � 1. Let G be its complement; then G is connected, jE(G)j = f(n; t),

and no spanning tree of G has � t + 1 leaves, since no vertex of G has degree n� 1.

If n = t+ 1 or n � t+3, let G be obtained from a complete graph K

t+1

by replacing some

edge e by a path of n � t edges between the ends of e. Then again it is easy to check that

G is connected, jE(G)j = f(n; t) and no spanning tree of G has � t+ 1 leaves. �

We prove Theorem 2 in two steps. First, we show:

Lemma. Theorem 2 is true for all n and t such that 2 � t < n � t + 3.

Proof: If n = t + 1, no graph with n vertices has > f(n; t) edges, so the claim is vacuous.

Now suppose that n = t + 2. If jV (G)j = n and jE(G)j > f(n; t), then G has a vertex of

degree n� 1 = t + 1, and hence the claim holds.

Finally, let n = t+3, and let G be a connected graph with n vertices and > f(n; t) edges.

We suppose that every spanning tree of G has � t leaves. Let H be the complement of G.

Then jV (H)j = n; jE(H)j � 2n� 6 (since jE(G)j > f(n; t)); no vertex of H has degree n� 1

(since G is connected); every vertex of H has degree � 2 (since G has maximum degree � t);

and every two vertices of H have distance � 2 (for otherwise there are adjacent vertices u, v

of G such that every other vertex of G is adjacent to � 1 of them, and then G has a spanning

tree with > n� 2 = t + 1 leaves, a contradiction).

(1) Every vertex of H has degree �n� 4.

Subproof. Suppose that some v has degree n�3 or n�2 (n�1 is impossible by hypothesis).

Then jE(H r v)j � 2n � 6 � (n � 3) < jV (H r v)j � 1 and so H r v is not connected. Let

x 6= v be a vertex not adjacent to v in H, and let y be a vertex in another component of

H r v. Then every xy path has length � 3, a contradiction. This proves (1).
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Now since jE(H)j � 2n� 6, there is a vertex x of degree � 3; let S be its set of neighbours,

and let s = jSj. Then s � 3.

Let R = V (H) � (S [ fxg). Since every vertex has distance � 2 from x it follows that

every vertex in R has � 1 neighbour in S. For i = 1; 2, let R

i

be the set of all v 2 R with

exactly i neighbours in S and let R

3

= R� (R

1

[R

2

). Let there be p edges with both ends

in R, and q with both ends in S. Thus,

2n� 6 � jE(H)j � p+ q + s+ jR

1

j+ 2jR

2

j+ 3jR

3

j

and since 1 + s+ jR

1

j+ jR

2

j+ jR

3

j = n, it follows that

jR

1

j � p � q + jR

3

j � s+ 4 :

Let the restriction HjR of H to R have k components. Then

k � jRj � p � q + jR

2

j+ 2jR

3

j+ 4� s > jR

2

[ R

3

j :

Hence there is a component C of HjR with V (C) � R

1

. Choose v 2 V (C), and let u 2 S

be its unique neighbour in S. Now for every w 2 R � V (C), since the distance between

v and w is � 2 it follows that w is adjacent to u. Since u has degree �n � 4 by (1), and

s � 3, there is a vertex v

0

2 R not adjacent to u, and consequently v

0

2 V (C) � R

1

. Let

u

0

be the unique neighbour of v

0

in S, then u 6= u

0

. By the same argument, every vertex

in R � V (C) is adjacent to u

0

, and so belongs to R

2

[ R

3

. Hence R

1

= V (C), and so C is

unique. Consequently, k � jR

2

j+ jR

3

j+ 1.

Since k � q + jR

2

j+ 2jR

3

j+ 4� s and s � 3, it follows that q = 0, s = 3 and R

3

= ;. Let

S = fu; u

0

; u

00

g. Since u

00

has degree � 2, q = 0; R

3

= ; and every vertex in R

2

is adjacent

only to u and u

0

, it follows that u

00

has a neighbour v

00

2 V (C) � R

1

, and consequently

v

00

6= v; v

0

. As before, every vertex in R�V (C) is adjacent to u

00

, and so belongs to R

3

(= ;);

and hence it follows that R = V (C). Moreover, since k = jRj � p it follows that C is a tree.

Let v

0

be a vertex of C with degree 1 in C, and let v

1

be its neighbour in C. Let u

0

, u

1

be

their respective (unique) neighbours in S, and choose u

2

2 S � fu

0

; u

1

g. Then the distance

between v

0

and u

2

is � 3, a contradiction, as required. �

Proof of Theorem 2.
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We suppose for a contradiction that the theorem is false. Choose a connected graph G with

jV (G)j+jE(G)jminimum and an integer t � 2 with jV (G)j > t, so that jE(G)j > f(jV (G)j; t)

and every spanning tree in G has � t leaves. Let n = jV (G)j. From the Lemma and the

minimality of G it follows that

(1) n � t+ 4, f(n; t) = n +

1

2

t(t� 1)� 1, and jE(G)j = n+

1

2

t(t� 1).

We claim

(2) If u; v 2 V (G) are adjacent, there is a vertex adjacent to them both.

Subproof. By (1) and the de�nition of f , f(n� 1; t) = f(n; t)� 1, and so if u, v have no

common neighbour we can produce a smaller counterexample by contracting the edge uv.

This proves (2).

(3) For every vertex x, Gr x is connected.

Subproof. Suppose not; then there are connected subgraphs G

1

, G

2

of G with G

1

[G

2

= G,

V (G

1

\G

2

) = fxg and hence E(G

1

\G

2

) = ;, with jV (G

1

)j, jV (G

2

)j < jV (G)j. For i = 1; 2,

let n

i

= jV (G

i

)j, and let T

i

be a spanning tree of G

i

chosen with the maximum number of

leaves, t

i

say; and furthermore choose T

i

so that, if possible, x is not a leaf of it. Now n

i

6= 2

by (2), and so n

i

> t

i

� 2. From the minimality of G it follows that

jE(G

i

)j � f(n

i

; t

i

)

and so

n+

1

2

t(t� 1) = jE(G)j = jE(G

1

)j+ jE(G

2

)j � f(n

1

; t

1

) + f(n

2

; t

2

) :

But n = n

1

+ n

2

� 1, and f(n

i

; t

i

) �n

i

+

1

2

(t

2

i

� 4), with strict inequality unless either t

i

= 2,

or n

i

= t

i

+ 2 and t

i

is even. Consequently

1

2

t(t� 1) �

1

2

(t

2

1

+ t

2

2

)� 3 :

Now T

1

[ T

2

is a spanning tree of G with � t

1

+ t

2

� 2 + " leaves, where " = 0 if x is a leaf

of both T

1

, T

2

and " = 1 otherwise. Consequently t

1

+ t

2

� 2 + " � t, and so

1

2

(t

1

+ t

2

� 2 + ")(t

1

+ t

2

� 3 + ") �

1

2

(t

2

1

+ t

2

2

)� 3 ;
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that is

�

t

1

�

5

2

+ "

��

t

2

�

5

2

+ "

�

+

5

2

"�

1

2

"

2

�

1

4

:

If " = 1 then

�

t

1

�

3

2

� �

t

2

�

3

2

�

+ 2 �

1

4

, which is false since t

1

; t

2

� 2; and so " = 0 and

�

t

1

�

5

2

��

t

2

�

5

2

�

�

1

4

:

If t

1

= t

2

= 3 we must have equality throughout; but if t

1

= 3 then f(n

1

; t

1

) < n

1

+

1

2

(t

2

1

�4),

a contradiction. We may therefore assume that t

1

= 2. Hence G

1

is a path or circuit, and

by (2) G

1

is a 3-vertex circuit. But then T

1

can be chosen so that x is not a leaf of it,

contradicting that " = 0. This proves (3).

Let x be a vertex ofG with maximum degree s say; and let S be the set of all its neighbours.

In addition, choose x so that either some vertex in S has degree < s, or every vertex of G

has degree s. (This is possible since G is connected.)

(4) t � s � 3.

Subproof. By (1) jE(G)j > jV (G)j, and so s � 3. Since every spanning tree of G has � t

leaves and hence every tree subgraph of G also has � t leaves, it follows that s � t. This

proves (4).

Let R = V (G)� (S [ fxg). A graph is non-null if it has at least one vertex.

(5) GjR is non-null and connected.

Subproof. By (3) Gr x is connected, and so by (1) and (4),

jE(Gr x)j = n+

1

2

t(t� 1)� s �n +

1

2

((t� 1)

2

� (t� 1)� 2) > f(n� 1; t� 1) :

From the minimality of G, Grx has a spanning tree T with � t leaves. Every vertex v in S is

a leaf for T , for otherwise we could add the edge xv to T to obtain a tree with � t+1 leaves,

a contradiction. Since T has � t � 3 leaves, it follows that T r S is non-null and connected,

and consequently so is GjR. This proves (5).

Let there be e

1

edges with both ends in S, e

2

edges with both ends in R, and e

0

edges

with one end in S and the other in R.

(6) e

0

+ 2e

2

� 2n + t(t� 1)� s(s+ 1), with equality only if every vertex of G has degree s.
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Subproof. Since every vertex has degree � s, by summing the degrees in S we obtain

s+ e

0

+ 2e

1

� s

2

with equality only if every vertex in S has degree s (and hence every vertex in G has degree

s, from the choice of x). But

e

0

+ e

1

+ e

2

+ s = jE(G)j = n +

1

2

t(t� 1)

and the result follows on eliminating e

1

. This proves (6).

For each vertex y 2 S, let G

y

= Gj(R [ fyg), and let d(y) be the degree of y in G

y

, that

is, the number of neighbours of y in R. Let d = maxfd

y

: y 2 Sg, and let t

2

= t+ 2� s � 2.

(7) sd � e

0

, s � d+ 2, t

2

� d+ 1, and d � 1.

Subproof. e

0

=

P

y2S

d(y) �ds, so the �rst claim follows. Choose y 2 S with d(y) = d. By

(2) applied to x, y, it follows that y has a neighbour in S, and so its degree is at least d+2;

and hence d + 2 � s, proving the second claim. For the third, the set of edges incident with

x in G, together with those incident with y in G

y

, form a subtree of G with s� 1+ d leaves,

and so

s� 1 + d � t = s+ t

2

� 2

and the third claim follows. Finally d � 1 since R 6= ; and G is connected.

(8) If y 2 S satis�es d(y) = d, then G

y

is connected, and every spanning tree of G

y

has � t

2

leaves. In particular any neighbour in R of y has � t

2

� 1 neighbours in R, and every other

vertex of R has � t

2

neighbours in R.

Subproof. By (5), G

y

is connected, with � 4 vertices since n � s+ 4 by (1) and (4). Let T

be a spanning tree of G

y

; then by adding the edges incident with x to it we obtain a spanning

tree of G with � s� 2 more leaves. Consequently T has � t� s+2 = t

2

leaves, and so every

subtree of G

y

has � t

2

leaves, and (8) follows.

De�ne " =

8

>

>

>

>

<

>

>

>

>

:

1

2

t

2

� 1 if n� s = t

2

+ 2 and t

2

is even

1

2

t

2

�

3

2

if n� s = t

2

+ 2 and t

2

is odd

0 otherwise :
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(9) (s� 2)

�

t

2

� 2�

1

2

d

�

� ".

Subproof. Choose y 2 S with d(y) = d. Now jV (G

y

)j = n � s � t

2

+ 2, since n � t + 4 by

(1). From (8) and the minimality of G,

d+ e

2

= jE(G

y

)j � f(n� s; t

2

) :

From (7), e

0

� sd, and so, substituting for e

0

and e

2

in (6), we obtain

sd+ 2(f(n� s; t

2

)� d) � 2n+ t(t� 1)� s(s+ 1)

and since t = s+ t

2

� 2, it follows that

f(n� s; t

2

) �n +

1

2

t

2

2

+ st

2

� 3s�

5

2

t

2

+ 3�

1

2

(s� 2)d :

But from its de�nition,

f(n� s; t

2

) = n� s+

1

2

t

2

(t

2

� 1)� 1 + " ;

and on substituting the claim follows.

(10) t

2

� 3 and " = 0.

Subproof. Suppose t

2

� 4. Since " �

1

2

t

2

� 1, we deduce from (9) that

(s� 2)

�

t

2

� 2�

1

2

d

�

�

1

2

t

2

� 1

which can be rewritten as

�

1

2

d+

1

2

(d� 1) + (s� d� 2)

��

1

2

+

1

2

(t

2

� 4) +

1

2

(t

2

� d� 1)

�

�

1

4

d :

But this is impossible, since d � 1 � 0, s � d � 2 � 0, t

2

� 4 � 0, t

2

� d � 1 � 0, and equality

cannot hold in all four inequalities simultaneously. Thus t

2

� 3, and so " = 0 by the de�nition

of ". This proves (10).

(11) t

2

= 3 and d = 2, and s = t� 1.
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Subproof. From (9) and (10) we deduce that (s� 2)

�

t

2

� 2�

1

2

d

�

� 0. Since s � 3 by (4),

it folows that t

2

� 2 +

1

2

d. Since t

2

� d+ 1 and d � 1 by (7), we deduce that either t

2

= 2 and

d = 1, or t

2

= 3 and d = 2.

If t

2

= 2 and d = 1, then s = t. Since n � t + 3 and GjR is connected, there are two

adjacent vertices u, v in R. By (2) they have a common neighbour w. Now w =2 S since

d = 1. Choose a minimal path of G from S to fu; v; wg; and by adding this and two of

uv, uw, vw to the edges incident with x, we obtain a tree in G with � s + 1 > t leaves, a

contradiction. This proves (11).

By (11), it follows that we have equality in (9), and hence e

0

= sd, and we have equality

in (6). Consequently every vertex of G has degree s. Since e

0

= sd, it follows that d(y) = d

for every vertex y 2 S, and so by (8), every v 2 R has � t

2

neighbours in R, with strict

inequality if it has a neighbour not in R. Since every vertex has degree s > t

2

(because

s � d+2 = 4 and t

2

= 3), it follows that every vertex in R has � s� t

2

+1 = s�2 neighbours

in S. Consequently

2s = ds = e

0

� (n� s� 1)(s� 2) :

On the other hand,

1

2

sn = jE(G)j = n +

1

2

t(t� 1) = n+

1

2

(s+ 1)s

and so

2s+ sn � (n� s� 1)(s� 2) + 2n+ (s+ 1)s

which is impossible. This completes the proof. �

It is easy to see that the proof just given can be converted into a polynomial time algorithm

to �nd the tree, given a graph satisfying the hypotheses of the theorem. The algorithm would

begin by checking that the graph is 2-connected (and if not, winning by looking at the blocks

separately); checking that every edge is in a triangle (if not, winning by contracting the edge);

then choosing a vertex of maximum degree, x say; checking that the graph stays connected

when x and its neighbours are all deleted (and if not, winning by deleting x); then choosing

a neighbour y of x as in the proof, and winning by deleting x and all neighbours except y

(the proof shows that this graph must have enough edges for the algorithm to be applicable

to it, except in one degenerate case which is easily treated separately). We omit the details.
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