Long cycles in critical graphs

Noga Alon * Michael Krivelevich ${ }^{\dagger} \quad$ Paul Seymour ${ }^{\ddagger}$

Abstract

It is shown that any k-critical graph with n vertices contains a cycle of length at least $2 \sqrt{\log (n-1) / \log (k-2)}$, improving a previous estimate of Kelly and Kelly obtained in 1954.

1 Introduction

A graph is k-critical if its chromatic number is k but the chromatic number of any proper subgraph of it is at most $k-1$. For a graph G, let $L(G)$ denote the maximum length of a cycle in G, and define $L_{k}(n)=\min L(G)$ where the minimum is taken over all k-critical graphs G with at least n vertices. Answering a problem of Dirac, Kelly and Kelly [3] proved that for every fixed $k>2$ the function $L_{k}(n)$ tends to infinity as n tends to infinity. They also showed that $L_{4}(n) \leq O\left(\log ^{2} n\right)$, and after several improvements by Dirac and Read, Gallai [2] proved that for every fixed $k \geq 4$ there are infinitely many values of n for which

$$
L_{k}(n) \leq \frac{2(k-1)}{\log (k-2)} \log n
$$

This is the best known upper bound for $L_{k}(n)$. The best known lower bound, proved in [3], is that for every fixed $k \geq 4$ there is some $n_{0}(k)$ such that for all $n>n_{0}(k)$

$$
\begin{equation*}
L_{k}(n) \geq\left(\frac{(2+o(1)) \log \log n}{\log \log \log n}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where the $o(1)$ term tends to 0 as n tends to infinity.
Note that the gap between the upper and lower bounds given above is exponential for fixed k, and the problem of determining the asymptotic behaviour of $L_{k}(n)$ more accurately is still open; see also [1], Problem 5.11 for some additional relevant references.

[^0]In the present note we improve the lower bound given in (1) and show that in fact $L_{k}(n) \geq$ $\Omega(\sqrt{\log n / \log (k-1)})$ for every n and $k \geq 4$. (Note that trivially $L_{3}(n)=n$.) The precise result we prove is the following.

Theorem 1 Let G be a k-critical graph on n vertices, and let t denote the length of the longest path in it. Then

$$
\begin{equation*}
n \leq 1+\sum_{j=0}^{t-1} s(j, k) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
s(j, k)=j!\text { for } j \leq k-3 \text { and } s(j, k)=(k-2)!(k-2)^{j-k+2} \text { for } j \geq k-2 \tag{3}
\end{equation*}
$$

Therefore, any k-critical graph on n vertices contains a path of length at least $\log (n-1) / \log (k-2)$ and a cycle of length at least $2 \sqrt{\log (n-1) / \log (k-2)}$.

We note that the construction of Gallai shows that there are infinitely many values of n for which there is a k-critical graph on n vertices with no path of length greater than $\frac{2(k-1)}{\log (k-2)} \log n$, showing that the statement of the above theorem for paths is nearly tight for fixed k.

2 The Proof

Suppose $k \geq 4$, and let $G=(V, E)$ be a k-critical graph on n vertices. Fix $v_{0} \in V$, and let T be a depth first search ($=\mathrm{DFS}$) spanning tree of G rooted at v_{0}. Denote the depth of T, (that is, the maximum length of a path from v_{0} to a leaf) by r, and recall that all non-tree edges of G are backward edges, that is, they connect a vertex of T with some ancestor of it in the tree. Call an edge $u v$ of T, where u is the parent of v, an edge of type j, if the unique path in T from v_{0} to u has length j. Note that the type of each edge is an integer between 0 and $r-1$.
Claim: The number of edges of type j in T is at most $s(j, k)$, where $s(j, k)$ is given in (3).
Proof: Assign to each edge $e=u v$ of type j in T, where u is the parent of v, a word S_{e} of length $j+1$ over the alphabet $K=\{0,1,2, \ldots, k-2\}$ as follows. Let $v_{0}, v_{1}, \ldots, v_{j}=u$ be the unique path in T from the root v_{0} to u. Let F_{e} be a proper coloring of $G-e$ by the $k-1$ colors in K such that $F_{e}\left(v_{i}\right) \leq i$ for all $i \leq k-2$. Then $S_{e}=\left(F_{e}\left(v_{0}\right), F_{e}\left(v_{1}\right), \ldots, F_{e}\left(v_{j}\right)\right)$. The crucial observation is the fact that if e and e^{\prime} are distinct tree edges of type j, then $S_{e} \neq S_{e^{\prime}}$. Indeed, let $e=u v$ be as above and suppose $e^{\prime}=u^{\prime} v^{\prime}$ is another edge of type j, where u^{\prime} is the parent of v^{\prime}. Let w be the lowest common ancestor of u and u^{\prime} (which may be u itself, if $u=u^{\prime}$), and suppose $S_{e}=S_{e^{\prime}}$. Then the two colorings F_{e} and $F_{e^{\prime}}$ coincide on the tree path from v_{0} to w. Let y be the vertex following w on the tree-path from v_{0} to v and let T_{y} be the subtree of T rooted at y. Define a coloring H of G as follows; for each vertex z of $G, H(z)=F_{e}(z)$ if $z \notin T_{y}$, and $H(z)=F_{e^{\prime}}(z)$ if $z \in T_{y}$. It is easy to check that since the only edges of G connecting T_{y} with the rest of the graph lead from T_{y} to the path from v_{0} to w, the coloring H is a proper coloring of G with $k-1$ colors. This contradicts the
assumption that the chromatic number of G is k, and hence proves the required fact. Since every word S_{e} corresponds to a proper coloring of a path of length $j+1$ in which the color of vertex number i is at most i (for all $0 \leq i \leq j$), the number of possible distinct words is at most j ! for $j \leq k-3$, and at most $(k-2)!(k-2)^{j-k+2}$ if $j \geq k-2$. This completes the proof of the Claim.

By the above claim, the total number, $n-1$, of edges of T satisfies $n-1 \leq \sum_{j=0}^{r-1} s(j, k)$. Since r is the depth of the tree, G contains a path of length r, showing that $t \geq r$ and hence implying (2). As $k \geq 4$, the right-hand-side of (2) is easily checked to be at most $1+(k-2)^{t-1}$, implying that the maximum length of a path in G is at least $\log (n-1) / \log (k-2)$. Since G is 2 -connected, it follows, by a theorem of Dirac (cf., e.g., [4]), that it contains a cycle of length at least $2 \sqrt{t}$, completing the proof.
Remark 1. It is easy to check that the above theorem implies that if $k \geq 4$ then any k-critical graph G on n vertices contains an odd cycle of length at least $\sqrt{\log (n-1) / \log (k-2)}$. Indeed, let C be a longest cycle in G. If it is odd, the desired result follows, by Theorem 1. Otherwise, let A be an odd cycle in G. If A and C are vertex disjoint, there are, by the 2-connectivity of G, two internally disjoint paths from A to C providing an odd cycle containing at least half of C. A similar argument gives the same conclusion if A and C share only one common vertex. If they have more common vertices, split the edges of A not in C into paths that intersect C only in their ends. Then, there is such a path whose union with C is not 2-colorable (as otherwise the union of A and C would have been 2-colorable). Thus, in this case too we obtain an odd cycle containing at least half of C, and the required result follows from Theorem 1. Note that this shows that any large k-critical graph contains a large 3 -critical subgraph. The problem of deciding if every large k-critical graph contains a large s critical graph for other values of $k>s \geq 3$, which is mentioned in [1], Problem 5.6, remains open.
Remark 2. A very simple proof of the fact that any 2 -connected graph G containing a path P of length at least $2 s^{2}$ contains a cycle of length at least $2 s$ is as follows. If the distance in G between the two ends x and y of the path is at least s, then the union of two internally disjoint paths between x and y forms a cycle of length at least $2 s$. Otherwise, consider a shortest path between x and y, and list its intersection points with the path P. Then the distance along P between some two such consecutive intersection points must be at least $2 s^{2} / s=2 s$, providing, again, the required cycle. Although the proof in [4] gives a slightly better constant, the above argument is much simpler.

References

[1] T. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.
[2] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 165-192.
[3] J. B. Kelly and L. M. Kelly, Paths and circuits in critical graphs, Amer. J. Math. 76 (1954), 786-792.
[4] L. Lovász, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979, Problem 10.29.

[^0]: *School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, and Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in part by a Sloan Foundation grant 96-6-2 and by a State of New Jersey grant.
 ${ }^{\dagger}$ DIMACS Center, Rutgers University, Piscataway, NJ 08854, USA. Email: mkrivele@dimacs.rutgers.edu. Research supported by a DIMACS Postdoctoral Fellowship.
 ${ }^{\ddagger}$ Department of Mathematics, Princeton University, Princeton, NJ 08544. Email:pds@math.princeton.edu. Research supported in part by ONR grant N00014-97-1-0512.

