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Abstract

It is shown that any k-critical graph with n vertices contains a cycle of length at least

2

p

log(n� 1)= log(k � 2), improving a previous estimate of Kelly and Kelly obtained in 1954.

1 Introduction

A graph is k-critical if its chromatic number is k but the chromatic number of any proper subgraph

of it is at most k � 1. For a graph G, let L(G) denote the maximum length of a cycle in G, and

de�ne L

k

(n) = min L(G) where the minimum is taken over all k-critical graphs G with at least n

vertices. Answering a problem of Dirac, Kelly and Kelly [3] proved that for every �xed k > 2 the

function L

k

(n) tends to in�nity as n tends to in�nity. They also showed that L

4

(n) � O(log

2

n), and

after several improvements by Dirac and Read, Gallai [2] proved that for every �xed k � 4 there are

in�nitely many values of n for which

L

k

(n) �

2(k � 1)

log(k � 2)

log n:

This is the best known upper bound for L

k

(n). The best known lower bound, proved in [3], is that

for every �xed k � 4 there is some n

0

(k) such that for all n > n

0

(k)

L

k

(n) � (

(2 + o(1)) log logn

log log logn

)

1=2

; (1)

where the o(1) term tends to 0 as n tends to in�nity.

Note that the gap between the upper and lower bounds given above is exponential for �xed k,

and the problem of determining the asymptotic behaviour of L

k

(n) more accurately is still open; see

also [1], Problem 5.11 for some additional relevant references.
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In the present note we improve the lower bound given in (1) and show that in fact L

k

(n) �


(

p

log n= log(k � 1)) for every n and k � 4. (Note that trivially L

3

(n) = n:) The precise result we

prove is the following.

Theorem 1 Let G be a k-critical graph on n vertices, and let t denote the length of the longest path

in it. Then

n � 1 +

t�1

X

j=0

s(j; k) (2)

where

s(j; k) = j! for j � k � 3 and s(j; k) = (k � 2)!(k � 2)

j�k+2

for j � k � 2: (3)

Therefore, any k-critical graph on n vertices contains a path of length at least log(n� 1)= log(k � 2)

and a cycle of length at least 2

p

log(n� 1)= log(k � 2):

We note that the construction of Gallai shows that there are in�nitely many values of n for which

there is a k-critical graph on n vertices with no path of length greater than

2(k�1)

log(k�2)

log n, showing

that the statement of the above theorem for paths is nearly tight for �xed k.

2 The Proof

Suppose k � 4, and let G = (V;E) be a k-critical graph on n vertices. Fix v

0

2 V , and let T

be a depth �rst search (= DFS) spanning tree of G rooted at v

0

. Denote the depth of T , (that is,

the maximum length of a path from v

0

to a leaf) by r, and recall that all non-tree edges of G are

backward edges, that is, they connect a vertex of T with some ancestor of it in the tree. Call an

edge uv of T , where u is the parent of v, an edge of type j, if the unique path in T from v

0

to u has

length j. Note that the type of each edge is an integer between 0 and r � 1.

Claim: The number of edges of type j in T is at most s(j; k), where s(j; k) is given in (3).

Proof: Assign to each edge e = uv of type j in T , where u is the parent of v, a word S

e

of length

j + 1 over the alphabet K = f0; 1; 2; : : : ; k � 2g as follows. Let v

0

; v

1

; : : : ; v

j

= u be the unique path

in T from the root v

0

to u. Let F

e

be a proper coloring of G� e by the k � 1 colors in K such that

F

e

(v

i

) � i for all i � k � 2. Then S

e

= (F

e

(v

0

); F

e

(v

1

); : : : ; F

e

(v

j

)): The crucial observation is the

fact that if e and e

0

are distinct tree edges of type j, then S

e

6= S

e

0

. Indeed, let e = uv be as above

and suppose e

0

= u

0

v

0

is another edge of type j, where u

0

is the parent of v

0

. Let w be the lowest

common ancestor of u and u

0

(which may be u itself, if u = u

0

), and suppose S

e

= S

e

0

. Then the

two colorings F

e

and F

e

0

coincide on the tree path from v

0

to w. Let y be the vertex following w on

the tree-path from v

0

to v and let T

y

be the subtree of T rooted at y. De�ne a coloring H of G as

follows; for each vertex z of G, H(z) = F

e

(z) if z 62 T

y

, and H(z) = F

e

0

(z) if z 2 T

y

. It is easy to

check that since the only edges of G connecting T

y

with the rest of the graph lead from T

y

to the

path from v

0

to w, the coloring H is a proper coloring of G with k � 1 colors. This contradicts the
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assumption that the chromatic number of G is k, and hence proves the required fact. Since every

word S

e

corresponds to a proper coloring of a path of length j+1 in which the color of vertex number

i is at most i (for all 0 � i � j ), the number of possible distinct words is at most j! for j � k � 3,

and at most (k � 2)!(k � 2)

j�k+2

if j � k � 2. This completes the proof of the Claim.

By the above claim, the total number, n� 1, of edges of T satis�es n� 1 �

P

r�1

j=0

s(j; k): Since r

is the depth of the tree, G contains a path of length r, showing that t � r and hence implying (2).

As k � 4, the right-hand-side of (2) is easily checked to be at most 1 + (k� 2)

t�1

, implying that the

maximum length of a path in G is at least log(n� 1)= log(k � 2): Since G is 2-connected, it follows,

by a theorem of Dirac (cf., e.g., [4]), that it contains a cycle of length at least 2

p

t, completing the

proof. 2

Remark 1. It is easy to check that the above theorem implies that if k � 4 then any k-critical

graph G on n vertices contains an odd cycle of length at least

p

log(n� 1)= log(k � 2): Indeed, let

C be a longest cycle in G. If it is odd, the desired result follows, by Theorem 1. Otherwise, let A

be an odd cycle in G. If A and C are vertex disjoint, there are, by the 2-connectivity of G, two

internally disjoint paths from A to C providing an odd cycle containing at least half of C. A similar

argument gives the same conclusion if A and C share only one common vertex. If they have more

common vertices, split the edges of A not in C into paths that intersect C only in their ends. Then,

there is such a path whose union with C is not 2-colorable (as otherwise the union of A and C would

have been 2-colorable). Thus, in this case too we obtain an odd cycle containing at least half of C,

and the required result follows from Theorem 1. Note that this shows that any large k-critical graph

contains a large 3-critical subgraph. The problem of deciding if every large k-critical graph contains

a large s critical graph for other values of k > s � 3, which is mentioned in [1], Problem 5.6, remains

open.

Remark 2. A very simple proof of the fact that any 2-connected graph G containing a path P of

length at least 2s

2

contains a cycle of length at least 2s is as follows. If the distance in G between

the two ends x and y of the path is at least s, then the union of two internally disjoint paths between

x and y forms a cycle of length at least 2s. Otherwise, consider a shortest path between x and y,

and list its intersection points with the path P . Then the distance along P between some two such

consecutive intersection points must be at least 2s

2

=s = 2s, providing, again, the required cycle.

Although the proof in [4] gives a slightly better constant, the above argument is much simpler.
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